
Low complexity bit-parallel GF (2m) multiplier
for all-one polynomials

Yin Li1, Gong-liang Chen2, and Xiao-ning Xie

1 Xinyang local taxation bureau, Henan, China. Email:yunfeiyangli@gmail.com,
2 School of Information Security Engineering, Shanghai Jiaotong University,

Shanghai, China. Email:chengl@sjtu.edu.cn

Abstract. This paper presents a new bit-parallel multiplier for the finite
field GF (2m) generated with an irreducible all-one polynomial. Redun-
dant representation is used to reduce the time delay of the proposed
multiplier, while a three-term Karatsuba-like formula is combined with
this representation to decrease the space complexity. As a result, the
proposed multiplier requires about 10 percent fewer AND/XOR gates
than the most efficient bit-parallel multipliers using an all-one polyno-
mial, while it has almost the same time delay as the previously proposed
ones.

1 Introduction

The arithmetic operations in GF (2m) are frequently desired in many areas of
computer algebra and public-key cryptosystems [1]. Thus it is necessary to design
efficient algorithms for finite field operations such as addition, multiplication, ex-
ponentiation, and multiplicative inversion. In particular, efficient design of the
multiplier is required by hardware implementation of multiplication, since other
time consuming operations such as exponentiation and inversion can be carried
out by iterative multiplications. The multiplication in a polynomial basis con-
sists of multiplying two polynomials and then reducing the result modulo an
irreducible polynomial. The choice of corresponding irreducible polynomial is
important to perform the reduction efficiently. The most used irreducible poly-
nomials are the all-one polynomials (AOP) [2, 3] and the sparse polynomials such
as trinomials [4, 5] and pentanomials [5, 6].

In hardware implementation, the efficiency of the architecture is always e-
valuated by space and time complexity. The former is expressed as the number
of logic gates (XOR and AND) and the latter is expressed as the sum of gates
delay of the critical path. Based on the special form of AOP, efficient bit-parallel
multipliers are proposed using polynomial basis (PB)[2], normal basis (NB) [3,
7, 8], weakly dual basis [9] and non-conventional basis [10]. These multipliers are
known as the most efficient ones among the previous bit-parallel multipliers and
require m2 AND gates, m2 − 1 XOR gates and TA + (1 + dlog2(m − 1)e)TX
delays. Some other bit-parallel multipliers using an AOP have been proposed in
[11–14].

In a recent paper, Chang et al. [15] has proposed a low complexity bit-parallel
multiplier for AOP using redundant representation. A redundant representation
[16] was derived from the minimal cyclotomic ring. In this case, the field GF (2m)
is represented as a subring of a residue class ring F2[x]/(xn + 1) with n > m.
Advantages of using redundant representation include free squaring operation
and elimination of the modular reduction step in the field multiplication. Based
on this representation, Chang et al. can apply Karatsuba approach to reduce
the space complexity without increasing gates delay. Consequently, with nearly
the same time complexity, the proposed multiplier only requires approximately
3/4 gates compared with previous multipliers.

In this paper, we present an improvement of Chang et al. approach. Unlike
previous multipliers, we apply a three-term Karatsuba-like formula [17, 18] to the
polynomial multiplication which can save even more logic gates. On the other
hand, it still maintains a relatively low time complexity with the use of redun-
dant representation. In consequence, we can obtain a bit-parallel multiplier with
approximately 8/9 gates of Chang et al. multiplier, while the time complexity
is TA + (3 + dlog2

m
3 e)TX . For a large number of AOPs, this delay is equal to

TA + (1 + dlog2(m− 1)e)TX which matches the best results.

The rest of this paper is organized as follows: In Section 2, we briefly review
the redundant representation for GF (2m) defined by the AOP. Then we propose
a new bit-parallel multiplier architecture using the redundant representation in
Section 3. Section 4 presents a comparison between the proposed multiplier and
some others. Finally, some conclusions are drawn.

2 Redundant representation

The notion of redundant representation was firstly used by Itoh and Tsujii [16]
for design of efficient multiplier. Later, such representation had been applied
in many multipliers [19–21]. The idea was to use the minimal cyclotomic ring
F2[x]/(xn + 1) where the current field can be embedded and the field arithmetic
operations are performed in such ring. If the field GF (2m) is generated with an
irreducible AOP, we have n = m+ 1 which has the minimal redundant bits.

The irreducible AOP in the form f(x) =
∑m

i=0 x
i over F2 exist if and only if

m+ 1 is prime and 2 is primitive modulo m+ 1 [1]. The definition of redundant
representation with respect to AOP is presented as follows:

Definition 1. [15] Let x be a root of the irreducible AOP f(x) of degree m.
Then the set {1, x, x2, · · · , xm−1} induce a polynomial basis of GF (2m). Expand
such set as {1, x, x2, · · · , xm}. Any element α ∈ GF (2m) is represented as

α =

m∑
i=0

αix
i, αi ∈ F2.

The representation is called as a redundant representation of GF (2m).

The modular reduction using redundant representation is very simple. Since
xm+1 = 1, for any A =

∑m
i=0 aix

i ∈ GF (2m), we have

A · xi mod xm+1 + 1 = am−ix
m + · · ·+ a0x

i + amx
i−1 + · · ·+ am−i+1.

Therefore, A · xi can be computed by an i-bit left cyclic shift of A. In hardware
implementation, this can be carried out by a simple rewiring and does not cost
any logic gates.

3 Multiplier based on 3-term Karatsuba-like formula

The classic Karatsuba method [24] has been used to improved the efficiency of
bit-parallel multiplier for GF (2m) generated by an AOP [15] and a trinomial
[22, 23]. This method starts with a way to multiply two 2-term polynomials
using three scalar multiplications, thus it can reduce the space complexity by
approximately a factor of 3/4. However, there is also a way to multiply two 3-
term polynomials using six scalar multiplications [17, 18]. In F2[x], we can check
that

(a2x
2 + a1x+ a0)(b2x

2 + b1x+ b0)
= a2b2(x4 + x3 + x2) + a1b1(x3 + x2 + x)

+ a0b0(x2 + x+ 1) + (a2 + a1)(b2 + b1)x3

+ (a2 + a0)(b2 + b0)x2 + (a1 + a0)(b1 + b0)x.

In the following, we will use this approach, referred as 3-term Karatsuba-like
formula, to computed the polynomial multiplication and to reduce the space
complexity even further. Moreover, based on the property of redundant repre-
sentation presented in Section 2, the proposed multiplier can also obtain a low
time complexity.

Consider the field GF (2m) generated with an irreducible AOP f(x). Let
x be a root of f(x), then we represent the field element U ∈ GF (2m) as U =∑m

i=0 uix
i, ui ∈ F2. Since m+1 is a prime, m+1 mod 3 = 1 or m+1 mod 3 = 2,

then we have 3|m or 3|m−1. In order to apply the 3-term Karatsuba-like formula,
we split the polynomial into two blocks with one contains m bits (or m− 1 bits)
and another contains the left bits, then use this formula to m-bit (or m− 1-bit)
polynomial multiplications. We deal with these two cases separately.

(i) when 3|m : Assume that A = A′x + a′, B = B′x + b′ where A′ =∑m−1
i=0 aix

i, B′ =
∑m−1

i=0 bix
i, ai, bi, a

′, b′ ∈ F2. The multiplication AB can be
computed as:

AB = (A′x+ a′)(B′x+ b′)
= A′B′x2 + (A′b′ +B′a′)x+ a′b′.

(1)

Let k = m/3 and we partition A′ = A3x
2k+A2x

k+A1, B
′ = B3x

2k+B2x
k+B1

where Ai =
∑k−1

j=0 aj+(i−1)kx
j , Bi =

∑k−1
j=0 bj+(i−1)kx

j , for i = 1, 2, 3. Then we
multiply A′, B′ with the 3-term Karatsuba formula and do some transformation

as follows:

A′B′ = (A3x
2k +A2x

k +A1) · (B3x
2k +B2x

k +B1)
= A3B3(x4k + x3k + x2k) +A2B2(x3k + x2k + xk)

+A1B1(x2k + xk + 1) + C3D3x
3k + C2D2x

2k + C1D1x
k

= (A3B3x
2k +A2B2x

k +A1B1)(x2k + xk + 1)
+(C3D3x

2k + C2D2x
k + C1D1)xk.

where C3 = A3 + A2, C2 = A3 + A1, C1 = A2 + A1 and D3 = B3 + B2, D2 =
B3 +B1, D1 = B2 +B1. Thus (1) can be rewritten as:

AB = (A3B3x
2k +A2B2x

k +A1B1)(x2k+2 + xk+2 + x2)
+ (C3D3x

2k + C2D2x
k + C1D1)xk+2

+(A′b′ +B′a′)x+ a′b′.
(2)

Let S1 = (A3B3x
2k + A2B2x

k + A1B1)(x2k+2 + xk+2 + x2) and S2 denote the
left parts of (2). Then the modular multiplication AB mod xm+1 + 1 = S1 +
S2 mod xm+1 + 1. We compute S1, S2 modulo xm+1 + 1 separately.

Firstly, we consider the computation of (A3B3x
2k + A2B2x

k + A1B1) mod

xm+1 + 1. Let A1B1 = (
∑k−1

i=0 aix
i) · (

∑k−1
i=0 bix

i) =
∑2k−2

i=0 rix
i. These ris can

be calculated as following equation:

ri =

{∑i
j=0 ajbi−j , 0 ≤ i ≤ k − 1,∑k−1
j=i−k+1 ajbi−j , k ≤ i ≤ 2k − 2.

(3)

Similarly, we get the coefficients of A2B2 =
∑2k−2

i=0 six
i and A3B3 =

∑2k−2
i=0 tix

i

as:

si =

{∑i
j=0 aj+kbi−j+k, 0 ≤ i ≤ k − 1,∑k−1
j=i−k+1 aj+kbi−j+k, k ≤ i ≤ 2k − 2.

(4)

and

ti =

{∑i
j=0 aj+2kbi−j+2k, 0 ≤ i ≤ k − 1,∑k−1
j=i−k+1 aj+2kbi−j+2k, k ≤ i ≤ 2k − 2.

(5)

Note that k = m/3 and m + 1 = 3k + 1, the expression (A3B3x
2k + A2B2x

k +

A1B1) mod xm+1 + 1 =
∑3k

i=0 zix
i can be obtained as follows:

zi =

ri + ti+k+1, 0 ≤ i ≤ k − 3,
ri, k − 2 ≤ i ≤ k − 1,
si−k + ri, k ≤ i ≤ 2k − 2,
si−k, i = 2k − 1,
si−k + ti−2k, 2k ≤ i ≤ 3k − 2,
ti−2k, 3k − 1 ≤ i ≤ 3k.

(6)

According to (3), (4), (5) and (6), we can find that, for 0 ≤ i ≤ k − 2 and
i = 3k, zi consists of sums of k − 1 elements, for k − 1 ≤ i ≤ 3k − 1, zi consists
of sums of k elements. Therefore, circuit implementation of

∑3k
i=0 zix

i requires

Table 1. Space and time complexities of S1 mod xm+1 + 1, if 3|m

Operation # AND #XOR Time delay

A3B3x
2k + A2B2x

k + A1B1 3k2 3k2 TA + dlog2 keTX

S1 mod xm+1 + 1 - 5k + 1 2TX

k(k−1)+(2k+1)k = 3k2 XOR. Note that the computation of A3B3, A2B2, A1B1

also need 3k2 AND gates. Consequently, the space complexity for this operation
is equal to 3k2 XOR and 3k2 AND, and time delay is TA + dlog2 keTX .

Moreover, based on previous description, the operation (A3B3x
2k+A2B2x

k+
A1B1) · xn, for n = 2, k + 2, 2k + 2 can be computed by a n-bit left cyclic shift

of
∑3k

i=0 zix
i, we can obtain the result by a simple rewiring without using any

gates. Therefore,

S1 mod xm+1 + 1 =
∑m

i=0

(
zi+2 mod m+1

+zi+k+2 mod m+1 + zi+2k+2 mod m+1

)
xi.

(7)

It can be seen that the partial sums can be reused in the addition of (7) and k+1
XOR gates can be saved. The space and time complexities of S1 mod xm+1 + 1
are summarized in Table 1.

Then we consider the computation of

S2 mod xm+1 + 1
= (C3D3x

2k + C2D2x
k + C1D1)xk+2

+(A′b′ +B′a′)x+ a′b′ mod xm+1 + 1.
(8)

Since (C3D3x
2k + C2D2x

k + C1D1)xk+2 modulo xm+1 + 1 can be carried out
by a k + 2 -bit left cyclic shift of C3D3x

2k + C2D2x
k + C1D1 mod xm+1 + 1,

we only need to computed this expression. Note that Ci, Di, i = 1, 2, 3 consist of
the same bits as Ai, Bi, we just follow the same line as the computation in (6)
to obtain the result. It also costs 3k2 XOR plus 3k2 AND, with time delay is
TA + dlog2 keTX .

Table 2. Space and time complexities of S2 mod xm+1 + 1, if 3|m

Operation # AND #XOR Time delay

C1, C2, C3 - 3k TX

D1, D2, D3 - 3k

C3D3x
2k + C2D2x

k + C1D1 3k2 3k2 TA + dlog2 keTX

(A′b′ + B′a′)x + a′b′ 2m + 1 m TA + TX

S2 mod xm+1 + 1 - m + 1 TX

Furthermore, note that degA′ = degB′ = m− 1, the computation of (A′b′+
B′a′)x + a′b′ do not need any reduction. Thus such expression totally requires
2m+ 1 AND gates plus m XOR gates and the time delay is TA +TX . The space
and time complexities of the two expressions are presented in Table 2.

As seen in Table 1 and 2, the two operations have the same time delay thus
they can be computed in parallel. Finally, we add together (7) and (8). This
addition requires m+ 1 XOR gates and TX gate delay. Thus the total space and
time complexities of the proposed architecture can be calculated from Table 1
and 2 plus extra gates for the final addition:

AND = 2m2

3 + 2m+ 1,

XOR = 2m2

3 + 20m
3 + 3,

Time delay = TA + (3 + dlog2 keTX).

Since k = m/3, we have dlog2 ke ≤ dlog2me − 1. But this is interesting only
if

dlog2 ke < dlog2me − 1. (9)

This happens frequently when m = 2n + c where c is less than 2n−1. In this
case, the time delay of our architecture becomes TA + (1 + dlog2meTX). Since
m is even, dlog2me = dlog2(m − 1)e, the time complexity can be rewritten as
TA + (1 + dlog2(m− 1)eTX).

(ii) when 3|m − 1: In this case, assume that A = A′x2 + a′1x + a′0, B =

B′x2 + b′1x+ b′0 where A′ =
∑m−2

i=0 aix
i, B′ =

∑m−2
i=0 bix

i, for all the coefficients
in F2. Let k = (m − 1)/3 and we partition A′ = A3x

2k + A2x
k + A1, B

′ =
B3x

2k +B2x
k +B1 with each part consists of k elements. Similar with previous

case, the multiplication AB is computed as:

AB = (A3B3x
2k +A2B2x

k +A1B1)(x2k+4 + xk+4 + x4)
+(C3D3x

2k + C2D2x
k + C1D1)xk+4 +A′(b′1x

3 + b′0x
2)

+B′(a′1x
3 + a′0x

2) + (a′1x+ a′0)(b′1x+ b′0).

where C3 = A3 + A2, C2 = A3 + A1, C1 = A2 + A1 and D3 = B3 + B2, D2 =
B3 + B1, D1 = B2 + B1. Then we divide above expression into two blocks and
compute each block modulo xm+1 + 1, separately.

S1 = (A3B3x
2k +A2B2x

k +A1B1)(x2k+4 + xk+4 + x4)

and
S2 = (C3D3x

2k + C2D2x
k + C1D1)xk+4 +A′(b′1x

3 + b′0x
2)

+B′(a′1x
3 + a′0x

2) + (a′1x+ a′0)(b′1x+ b′0).

The computation processes are nearly the same as those presented in the case of
3|m. We can easily compute S1, S2 modulo xm+1 + 1 using the similar strategy.
The space and time complexities with respect to the two expressions above are
summarized in Table 3 and Table 4.

Table 3. Space and time complexities of S1 mod xm+1 + 1, if 3|m− 1

Operation # AND #XOR Time delay

A3B3x
2k + A2B2x

k + A1B1 3k2 3k2 TA + dlog2 keTX

S1 mod xm+1 + 1 - 5k + 3 2TX

Table 4. Space and time complexities of S2 mod xm+1 + 1, if 3|m− 1

Operation # AND #XOR Time delay

C1, C2, C3 - 3k TX

D1, D2, D3 - 3k

C3D3x
2k + C2D2x

k + C1D1 3k2 3k2 TA + dlog2 keTX

A′(b′1x
3 + b′0x

2) + B′(a′1x
3 4m− 2 3m− 2 TA + 3TX

+a′0x
2) + (a′1x + a′0)(b′1x + b′0)

S2 mod xm+1 + 1 - m + 1 TX

Note that, in practical application dlog2 ke is usually larger than 3, thus
operations of the third and forth row in Table 4 can be carried out in parallel with
time delay TA + dlog2 keTX . In the end, another m+ 1 XOR gates and TX delay
should be added to compute the final result. Thus the total space complexity
and time complexity of the proposed architecture can be calculated from Tables
3, 4 and extra gates on adding S1 mod xm+1 + 1 and S2 mod xm+1 + 1 together:

AND = 2m2

3 + 8m
3 −

4
3 ,

XOR = 2m2

3 + 22m
3 ,

Time delay = TA + (3 + dlog2(m−1
3)eTX).

Furthermore, if m − 1 = 2n + c with c ≤ 2n−1, the time delay of our archi-
tecture can be rewritten as TA + (1 + dlog2(m− 1)eTX).

4 Comparison

Table 5 gives a comparison of different implementations of bit-parallel multipliers
in the class of fields defined by an irreducible AOP. From Table 5, we can see
that our multiplier requires about 33% fewer circuit gates than the previous five
architectures and about 10% fewer circuit gates than Chang et al. multiplier.
On the other hand, the time complexity of the proposed multiplier is TA + (3 +
dlog2(m

3)e)TX . In fact, we have searched all irreducible AOP with degree m less
than 8000 and it is found that for more than 50% AOPs satisfy the inequality
(9). In this case, the time delay of our architecture is equal to TA+(1+dlog2(m−
1)e)TX which matches the best results.

In addition, there are many general bit-parallel multipliers for the fieldGF (2m)
generated with other irreducible polynomials. Those multipliers can be divided

Table 5. Comparison of bit-parallel Multipliers for GF (2m) generated with AOP

Multiplier # AND #XOR Time delay

Hasan [3] m2 m2 − 1 TA + (1 + dlog2(m− 1)e)TX

Koç [2] m2 m2 − 1 TA + (2 + dlog2(m− 1)e)TX

Wu [9] m2 m2 − 1 TA + (1 + dlog2(m− 1)e)TX

Kim [10] m2 m2 − 1 TA + (1 + dlog2(m− 1)e)TX

Reyhani-Masoleh [8] m2 m2 − 1 TA + (1 + dlog2(m− 1)e)TX

Chang [15] 3m2

4
+ 2m + 1 3m2

4
+ 3m + 1 TA + (1 + dlog2(m + 1)e)TX

3|m 2m2

3
+ 2m + 1 2m2

3
+ 20m

3
+ 3 TA + (3 + dlog2(m

3
)e)TX

3|m− 1 2m2

3
+ 8m

3
− 4

3
2m2

3
+ 22m

3
TA + (3 + dlog2(m−1

3
)e)TX

into two categories according to space complexity, namely, quadratic multipliers
and subquadratic multipliers. The best multiplier for the first type contains at
least m2 AND and m2− 1 XOR gates with time delay of TA + (1 + dlog2me)TX
[25] (for good field it is equal to TA + dlog2meTX). The multiplier of the sec-
ond type contains about O(mlog2 3) circuit gates and usually requires at least
TA + (1 + 2dlog2me)TX gates delay [26, 27]. It is obvious that our architecture
still has certain advantage compared with other general multipliers. The time
complexity of our multiplier is comparable to the fastest bit-parallel multiplier
and much faster than the subquadratic multipliers, but the space complexity
is smaller than the fastest ones [5]. Therefore, our architecture offers a proper
tradeoff between space and time complexity.

In [28], Ciet et al. resuscitate elliptic curve cryptography (ECC) over the field
which is generated with an irreducible AOP. They have proposed a sequence of
such finite fields which are secure for ECC. Among the four examples suggested
for ECC in [28], there are two fields, namely, GF (2178) and GF (21186), which
satisfy the inequality (9). In these cases, our architecture outperforms Chang et
al. approach by saving 10% logic gates with the same time delay. The details are
presented in Table 6.

Table 6. Complexity for practical field defined by irreducible AOP

Field our method Chang et al.

#AND #XOR Time #AND #XOR Time
GF (2178) 21596 22428 TA + 9TX 24120 24298 TA + 9TX

GF (21186) 940892 946428 TA + 12TX 1057320 1058506 TA + 12TX

5 Conclusion

In this paper, a new bit-parallel multiplier architecture for all-one polynomial
is proposed. In the proposed architecture, redundant representation and a 3-

term Karatsuba-like formula are combined which can reduce the time complexity
and space complexity, respectively. This multiplier can be used in area-critical
occasion because it has low space complexity but maintains a relatively low time
delay.

Moreover, besides the 3-term Karatsuba-like formula, other Karatsuba-like
formulas could also be used for the optimization. We are currently working on
applying the five and seven term Karatsuba-like formulae to the AOP multiplier.

References

1. A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian,
Applications of Finite Fields, Kluwer Academic, Norwell, Massachusetts, USA,
1993.

2. Ç. K. Koç, B. Sunar, Low-complexity bit-parallel canonical and normal basis mul-
tipliers for a class of finite fields, IEEE Trans. Comput. 47 (3) (1998) 353–356.

3. M. A. Hasan, M. Z. Wang, V. K. Bhargava, A modified massey-omura parallel
multiplier for a class of finite fields, IEEE Trans. Comput. 42 (10) (1993) 1278–
1280.

4. B. Sunar, Ç. K. Koç, Mastrovito multiplier for all trinomials, IEEE Trans. Comput.
48 (5) (1999) 522–527.

5. H. Fan, M. A. Hasan, Fast bit parallel shifted polynomial basis multiplier in
GF (2n), IEEE Trans. Circuits and Systems I, Foundamental Theory and Applica-
tions, 53 (12) (2006) 2606–2615.

6. F. Rodŕıguez-Henŕıquez, Çetin Kaya Koç, Parallel multipliers based on special
irreducible pentanomials, IEEE Trans. Comput. 52 (12) (2003) 1535–1542.

7. A. Reyhani-Masoleh, M. A. Hasan, A new construction of massey-omura parallel
multiplier over GF (2m), IEEE Trans. Comput. 51 (5) (2002) 511–520.

8. A. Reyhani-Masoleh, M. A. Hasan, Efficient multiplication beyond optimal normal
bases, IEEE Trans. Comput. 52 (4) (2003) 428–439.

9. H. Wu, M. A. Hasan, Low complexity bit-parallel multipliers for a class of finite
fields, IEEE Trans. Comput. 47 (8) (1998) 883–887.

10. C. H. Kim, S. Oh, J. Lim, A new hardware architecture for operations in GF (2m),
IEEE Trans. Comput. 51 (1) (2002) 90–92.

11. M. Leone, A new low complexity parallel multiplier for a class of finite fields, in:
CHES ’01: Proceedings of the Third International Workshop on Cryptographic
Hardware and Embedded Systems, Springer-Verlag, London, UK, 2001, pp. 160–
170.

12. H.-S. Kim, S.-W. Lee, LFSR multipliers over GF (2m) defined by all-one polyno-
mial, Integr. VLSI J. 40 (4) (2007) 473–478.

13. P. K. Meher, Y. Ha, C.-Y. Lee, An optimized design for serial-parallel finite field
multiplication over GF (2m) based on all-one polynomials, in: ASP-DAC ’09: Pro-
ceedings of the 2009 Asia and South Pacific Design Automation Conference, IEEE
Press, Piscataway, NJ, USA, 2009, pp. 210–215.

14. H.-S. Kim, S.-W. Lee, Area and time efficient AB2 multipliers based on cellular
automata, Comput. Stand. Interfaces 31 (1) (2009) 137–143.

15. K.-Y. Chang, D. Hong, H.-S. Cho, Low complexity bit-parallel multiplier for
GF (2m) defined by all-one polynomials using redundant representation, IEEE
Trans. Comput. 54 (12) (2005) 1628–1630.

16. T. Itoh, S. Tsujii, Structure of parallel multipliers for a class of fields GF (2m), Inf.
Comput. 83 (1) (1989) 21–40.

17. P. L. Montgomery, Five, six, and seven-term karatsuba-like formulae, IEEE Trans.
Comput. 54 (3) (2005) 362–369.

18. A. Weimerskirch and C. Paar, Generalizations of the Karatsuba Algorithm for Effi-
cient Implementations, 2003, http://www.crypto.ruhr-uni-bochum.de/imperia/
md/\\content/texte/kaweb.pdf

19. H. Wu, M. A. Hasan, I. F. Blake, S. Gao, Finite field multiplier using redundant
representation, IEEE Trans. Comput. 51 (11) (2002) 1306–1316.

20. A. H. Namin, H. Wu, M. Ahmadi, A new finite-field multiplier using redundant
representation, IEEE Trans. Comput. 57 (5) (2008) 716–720.

21. A. H. Namin, H. Wu, M. Ahmadi, A high-speed word level finite field multiplier in
F2m using redundant representation, IEEE Trans. Very Large Scale Integr. Syst.
17 (10) (2009) 1546–1550.

22. M. Elia, M. Leone, C. Visentin, Low complexity bit-parallel multipliers for GF (2m)
with generator polynomial xm + xk + 1, Electronic Letters 35 (7) (1999) 551–552.

23. H. Shen, Y. Jin, Low complexity bit parallel multiplier for GF (2m) generated by
equally-spaced trinomials, Inf. Process. Lett. 107 (6) (2008) 211–215.

24. D. E. Knuth, Art of Computer Programming, Volume 2: Seminumerical Algorithm-
s, 3rd Edition. Addison-Wesley Professional, 1997.

25. H. Fan, J. Sun, M. Gu, K.-Y. Lam, Overlap-free Karatsuba-Ofman polynomial
multiplication algorithms, IET Inf. Secur. 4 (1) (2010) 8–14.

26. H. Fan, M. A. Hasan, A new approach to subquadratic space complexity parallel
multipliers for extended binary fields, IEEE Trans. Comput. 56 (2) (2007) 224–233.

27. H. Fan, M. A. Hasan, Subquadratic computational complexity schemes for extend-
ed binary field multiplication using optimal normal bases, IEEE Trans. Comput.
56 (10) (2007) 1435–1437.

28. M. Ciet, J.-J. Quisquater, F. Sica, A Secure Family of Composite Finite Fields
Suitable for Fast Implementation of Elliptic Curve Cryptography, Proc. Indocrypt
2001, (2001) 108–116.

