
Programmable encryption and key-dependent messages

Dominique Unruh
University of Tartu

July 27, 2012

This is a preliminary version. The technical
content is complete, but discussion and
examples will be extended. Feedback is

welcome.

Abstract

We present the notion of PROG-KDM security for public-key encryption schemes.
This security notion captures both KDM security and revealing of secret keys (key
corruptions) in a single definition. This is achieved by requiring the existence of a
simulator that can program ciphertexts when a secret key is revealed, i.e., the simulator
can delay the decision what plaintext is contained in what ciphertext to the moment
where the ciphertext is opened. The definition is formulated in the random oracle
model.

We show that PROG-KDM security can be achieved by showing that a natural
and practical construction in the ideal cipher model is PROG-KDM secure (hybrid
encryption using authenticated CBC encryption).

Contents

1 Introduction 2
1.1 The problem . 2
1.2 Prior approaches . 4
1.3 Our contribution . 7

2 Definition of PROG-KDM 7

3 PROG-KDM via hybrid encryption 12

1

1 INTRODUCTION

4 Proof of PROG-KDM security 13
4.1 Basic definitions . 13
4.2 Preparing the ground . 14
4.3 Reordering . 17
4.4 Cleaning up . 26
4.5 Analyzing FC . 27

References 31

Symbolindex 33

Index 36

1 Introduction

1.1 The problem

Encryption schemes constitute the oldest and arguably the most important cryptographic
primitive. The first rigorous security definition was given by Shannon [Sha49] in the
information-theoretical case. For public-key encryption, the first definition is probably that
of semantic security [GM84] which is equivalent to IND-CPA security [GM84, BDPR98].
However, IND-CPA turned out to be insufficient for many applications, because it only
covers passive attacks. As soon as an adversary can ask for decryptions of ciphertexts of his
choosing, IND-CPA does not give any guarantees any more. To cover this case, the notion
of IND-CCA2 security was introduced [RS92, BDPR98]. Roughly, IND-CCA2 security
guarantees that the adversary learns nothing about the plaintext of a ciphertext, even if he
can ask for decryptions of arbitrary other ciphertexts.

IND-CCA2 security is probably the most popular security notion for general purpose
public-key encryption schemes. One reason is that IND-CCA2 secure encryption gives us
“worry-free encryption”, that is, an IND-CCA2 secure encryption should be usable in any
setting where we would expect some idealized encryption scheme to work. For example, in
an ideal world, we would not expect data to be leaked from a ciphertext if we can decrypt
a different ciphertext. IND-CCA2 security guarantees precisely this.

When striving for a general-purpose encryption scheme (e.g., one that is to be included
in an industrial standard), “worry-free encryption” is an important goal, as we do not know
in advance in which situations the encryption scheme is to be used. Unfortunately, over
time it has been recognized that IND-CCA2 secure encryption is not fully “worry-free”.
There are two scenarios in which IND-CCA2 security fails to give the intuitively expected
guarantees:

• Key-dependent messages (KDM): IND-CCA2 security does not guarantee secu-
rity if the plaintexts that are encrypted are themselves functions of the secret keys
[BRS02]. At a first glance, this may seem exotic, but it may happen in a number of

2

1.1 The problem 1 INTRODUCTION

natural use cases. For example, hard-disk encryption may encrypt the swap partition,
which in turn contains the secret key for decrypting the hard-disk. Furthermore,
KDM can also occur unintentionally in a complex protocol where secret keys are
exchanged between parties. Finally, some protocols even intentionally create cyclic
key-message-dependencies (key-cycles) [CL01]. In all these cases, IND-CCA2 security
does not guarantee anything. But obviously, if we wish encryption to be “worry-free”,
we have to guarantee security even in these situations.

• Revealing of secret keys (key corruptions): When a secret key is revealed, then
obviously all plaintexts encrypted with respect to that secret key will be revealed,
too. However, ciphertexts encrypted with unrevealed secret keys should not reveal
any information. There is a surprising subtlety due to which IND-CCA2 does not
fully guarantee this (noticed, according to [DNRS03], already in 1985 in the context
of Byzantine agreement). For example, assume there are n correlated plaintexts mi

(e.g., shares of a secret sharing scheme), all encrypted with different keys, and an
adversary can ask to see n/2 of these keys. Intuitively, we would expect that he does
not learn more about the shares than by just requesting n/2 shares. However, using
IND-CPA (or IND-CCA2) security alone, we cannot prove this fact!

The obvious way how we would prove such a fact is to consider two games: the original
game in which each ciphertext ci is an encryption of mi, and the modified game,
where only the ciphertexts ci opened by the adversary contain mi, all others contain 0.
(In the second game, it is then obvious that the adversary learns nothing beyond n/2
shares.) If we knew in advance, which ci are to be opened, IND-CPA would guarantee
indistinguishability of these games. However, we have to give the ci to the adversary
before knowing which ones will be opened. Moreover, which ci the adversary opens
may even depend on the values of the ci itself. This circular dependency obviates the
use of IND-CPA for proving that the adversary learns nothing beyond n/2 shares.

In fact, there are three variants of this problem: the problem we just described
is the receiver selective opening problem. Tightly related is the sender selective
opening problem, in which the adversary does not request secret keys, but gets the
randomness and plaintexts that were used to produce the ciphertexts. And the selective
decommitment problem, in which commitments are sent instead of ciphertexts, and
opened instead of decrypted.

In our setting, we will be concerned with receiver selective openings only, because
sending secret keys seems to be a natural protocol operation and thus should be
covered by “worry-free” encryption.

Thus, if our goal is a general-purpose “worry-free” encryption, we should strive to satisfy
a security definition that deals gracefully both with KDM and with revealing of secret
keys. In this work, we will present such a definition, dubbed PROG-KDM, for public-key
encryption (in the random-oracle model) and show that it can be instantiated by natural
practical constructions.

3

1.2 Prior approaches 1 INTRODUCTION

1.2 Prior approaches

We first give a very short survey of existing approaches towards definitions of secure
encryption schemes with respect to KDM, and with respect to revealing secret keys:

• KDM: KDM security was first introduced by Black, Rogaway, and Shrimpton [BRS02]
who defined IND-KDM, an extension of IND-CPA that allows the adversary to produce
key-dependent messages. Being based on IND-CPA, IND-KDM does not protect
against active attacks (chosen ciphertext attacks). They instantiate the definition in
the random-oracle model. Later, Boneh, Halevi, Hamburg, and Ostrovsky [BHHO08]
give an instantiation in the standard model. The definition of IND-KDM is extended
to active attacks by Camenisch, Chandran, and Shoup [CCS09], who define and
instantiate KDM-CCA2, a natural merger of IND-KDM and IND-CCA2. Furthermore,
two additional definitions of KDM-security have been proposed, DKDM [BPS07] (for
symmetric encryption, but easy to generalize to the public-key setting [BDU08]), and
adKDM [BDU08]. These two definitions simultaneously cover KDM and secret key
revealing, they will be discussed in the next paragraph.

• Secret key revealing: The first solution to the selective opening problem was
presented by Canetti, Feige, Goldreich, and Naor [CFGN96]. They gave a definition
for encryption schemes (in a generalized, interactive sense) called non-committing
encryption (NCE) which has the following property: After encrypting a message, it is
possible to “lie” about the message. That is, after encrypting a message m, and after
the communication c has been observed, for any message m′, a simulator can produce
a fake internal view of the communicating parties that is consistent with c being an
encryption of m′. In the specific case of non-interactive non-committing encryption
(NINCE), this means that given a ciphertext c, it is possible to produce randomness
such that encrypting m′ would lead to c (sender-NINCE), and to produce a secret
key such that decrypting c would lead to m′ (receiver-NINCE).

Why is receiver-NINCE a solution to the problem of secret key revealing? Recall our
explanations why IND-CPA security is not sufficient to show that the adversary cannot
recover more than n/2 shares when opening n/2 encryptions of shares. The problem
was that with IND-CPA, we needed to produce fake encryptions for those ciphertexts
that were not opened, and real encryptions (encryptions of the shares) for those that
were opened. With NCE, in the modified game, we just produce fake encryptions for
all ciphertexts, and only when a ciphertext ci is opened, we retroactively make it look
like a ciphertext to the share si. NCE guarantees that this is indistinguishable from
the original situation where the shares are encrypted normally. Yet, in the modified
game, only n/2 shares are ever accessed, hence the adversary cannot learn more than
he could from n/2 shares.

The problem with receiver-NINCE is that it is impossible to achieve unless we restrict
the total length of all encrypted plaintexts to at most the length of the secret key
(Nielsen [Nie02]): If by revealing a different secret key sk ′, one can open a given

4

1.2 Prior approaches 1 INTRODUCTION

ciphertext c as a different message m′, then sk ′ must contain all the information
about m′, hence sk ′ cannot be shorter than m′. Nielsen [Nie02] also showed that in
the random oracle model, it is possible to construct receiver-NINCE schemes without
any limitation on the total plaintext length. The basic observation is that instead of
making sk ′ contain the information about m′, we can re-program the random oracle
(change the random oracle’s so-far unaccessed values) so that decrypting c will lead
to m′. (This observation also underlies our approach, see below.)

An alternative approach to the problem of revealing secret keys is to directly model
the selective opening problem, leading to the definitions of IND-SO-CPA and SIM-SO-
CPA (formulated in [BHK12] for the sender selective opening case, but they can be
easily reformulated for the receiver selective opening case, too). IND-SO-CPA security
directly models a game in which first the correlated plaintexts are chosen according
to some (adversarially chosen) distribution, and then the adversary picks a subset of
the ciphertexts to be opened. Then the adversary is either given all the remaining
(unopened) plaintexts, or some fresh plaintexts (chosen randomly but consistently
with the already opened plaintexts). IND-SO-CPA guarantees that the adversary
cannot tell the difference.

SIM-SO-CPA also models a game with correlated plaintexts according to some
adversarially chosen distribution, and allows the adversary to open a subset of the
ciphertexts. Then, essentially, SIM-SO-CPA says that whatever the adversary can
compute from the ciphertexts and the openings, a simulator can also compute from
the opened plaintexts alone.

So both IND-SO-CPA and SIM-SO-CPA seem to guarantee that the adversary does not
learn anything about the unopened plaintexts (except for what can be deduced from
the opened ones). However, also IND-SO-CPA and SIM-SO-CPA (suitably adapted
to the receiver selective opening case) are not sufficient for “worry-free” encryption.

In the case of IND-SO-CPA, there is a simple example: The protocol produces n
shares si of a secret s using an (n/2 + 1)-out-of-n secret sharing scheme. Then each
share si is encrypted and the resulting ciphertext ci is sent to the adversary. The
adversary may select n/2 of the ciphertexts which are subsequently opened. The
adversary wins if he can reconstruct s. Assume that the secret sharing scheme has
the property that n/2 shares already information-theoretically determine the secret
s and all other shares (although n/2 + 1 shares are required to actually compute s).
A “worry-free encryption” should make sure that the adversary cannot reconstruct s,
since he only sees n/2 shares. But IND-SO-CPA only guarantees that after opening
n/2 shares, we cannot distinguish the remaining n/2 shares si from freshly chosen
shares s′i that are consistent with the opened shares si. But since n/2 shares already
information-theoretically determine all the other shares, consistency between the s′i
and the n/2 opened si implies that s′i = si for all i! IND-SO-CPA implies that si and
s′i are indistinguishable; this is trivial as they are equal. So IND-SO-CPA does not

5

1.2 Prior approaches 1 INTRODUCTION

give any helpful guarantees in this case.1

To show the limitations of SIM-SO-CPA, we need a slightly more elaborate example
protocol: Again, we produce shares si of a secret s. But now ci is not an encryption
of si, but an encryption of the tuple mi := (si, H(c1, . . . , ci−1)) for some hash function
H.2 In this case SIM-SO-CPA cannot be applied: The definition requires the adversary
to output a distribution D which then produces the plaintexts mi, which are then
encrypted to produce the ciphertexts ci. However, D has no access to the ciphertexts
ci, so the plaintexts mi cannot depend on the ciphertexts ci. So SIM-SO-CPA cannot
be use to show the security of the example protocol, and thus should not be considered
sufficient if we want “worry-free encryption”.

Finally, in an attempt to combine KDM-security with the possibility of revealing
secret keys, Backes, Pfitzmann, and Scedrov [BPS07] suggested DKDM security (for
symmetric encryption). However, DKDM has the limitation that one is not allowed to
reveal a key as soon as it has been used for encrypting. This was resolved by Backes,
Dürmuth, and Unruh [BDU08], who presented adKDM security (for the public-key
case) and showed that it is satisfied by the OAEP encryption scheme [BR94] in the
random oracle model. adKDM security allows the adversary to perform an arbitrary
sequence of encryptions and decryptions, including encryptions using KDMs. Some of
the encryptions may be marked by the adversary as “challenge encryptions”. adKDM
then guarantees that the adversary cannot tell whether these challenge encryptions
are performed honestly, or whether zero-plaintexts are encrypted. Unfortunately, this
is not sufficient to solve the selective opening problem (receiver case): As in the case
of IND-CPA security, it is not clear how to show that, given n ciphertexts ci with
correlated plaintexts and n/2 adaptively chosen openings, the adversary cannot learn
more than n/2 plaintexts. The reason is that adKDM requires us to choose during
encryption which ciphertexts are supposed to be challenge ciphertexts, and these may
not be opened. But like in the case of IND-CPA security, we do not know during
encryption which ciphertexts will be opened.

To summarize, none of the aforementioned definitions fully solves the problem of
KDMs and of revealing secret keys. IND-KDM and KDM-CCA2 only cover KDM security.
DKDM and adKDM cover both KDM and revealing secret keys, but are restricted in
their applicability in the case of selective openings. IND-SO-CPA and SIM-SO-CCA are
restricted in the same fashion. Only receiver-NINCE seems to fully solve the problem of
selective openings (because it allows us to “reprogram” the ciphertexts to contain what we
want when opening, removing the need to know any plaintexts that are not opened). So
the idea behind receiver-NINCE seems to be our best bet for dealing with revealing secret
keys. However, existing definitions of receiver-NINCE do not deal with active attacks (CCA

1We stress that this does not constitute a proof that IND-SO-CPA security does not imply security of
the example protocol. However, it demonstrates that at least the natural way of applying IND-SO-CPA to
the present situation fails. The same holds for our arguments concerning SIM-SO-CPA and adKDM below.

2We did not encrypt mi := (si, c1, . . . , ci−1), because this would lead to an exponential blow-up of the
size of ci.

6

1.3 Our contribution 2 DEFINITION OF PROG-KDM

security) and nor with KDMs. Also, receiver-NINCE can (unless we impose strong limits
on the total size of the plaintexts) only be implemented in the random oracle model.

In this work, we will extend the idea of receiver-NINCE to incorporate active attacks
and KDMs by defining the notion of PROG-KDM in which a simulator is able to change
(“program”) the plaintexts of ciphertexts when revealing the secret key. We will, however, not
remove the need for the random oracle. We believe that finding a definition for “worry-free
encryption” that works in the standard model is a highly revelant open problem.

1.3 Our contribution

We define a notion of security of encryption schemes in the random oracle model, PROG-
KDM (Section 2). The definition covers key dependent messages and the revealing of secret
keys, under active attacks. Security is modeled by ensuring that the real world where
encryptions are done honestly should be indistinguishable from a simulated world in which
the simulator is able to program ciphertexts to have a certain content at the moment
when he has to produce the secret key. This ensures that the adversary can learn nothing
about unopened plaintexts in the ideal model, and thus, by indistinguishability, also not
in the real model. The definition follows very basically the idea of receiver-NINCE in the
programmable random oracle model [Nie02], however adding KDM security (and nested
encryptions) to the definition turns out to be non-trivial.

Furthermore, we show that our definition can be met. We show that a very natural
construction satisfies PROG-KDM security in the ideal cipher model (see, e.g., [CPS08]).
(The construction is given in Section 3, and the proof in Section 4.) More precisely, we
consider a hybrid encryption scheme where the key-encapsulation mechanism is an arbitrary
CCA-secure key-encapsulation mechanism, and where we use CBC mode [EMST76] for the
symmetric part (authenticated with a one-time MAC, as CBC would not even be IND-CCA2
secure otherwise). We stress that this construction is very practical and natural, in fact,
it would be a natural answer when asked for a simple and practically efficient encryption
scheme.

2 Definition of PROG-KDM

As explained in the introduction, we wish to define a security notion for encryption schemes
that allows us to program the ciphertexts, i.e., the real world where encryptions are done
honestly should be indistinguishable from a simulated world in which the simulator is able
to program ciphertexts to have a certain content at the moment when he has to produce
the secret key.

In the standard model, this is obviously impossible: The ciphertexts are already fixed
when revealing a secret key, so the secret key needs to carry the information about which
plaintext the ciphertext should be programmed to have. Since we do not impose an upper
bound on the length and number of ciphertexts, the secret key would have to carry an
unbounded amount of information.

7

2 DEFINITION OF PROG-KDM

However, we can get around this impossibility if we work in the random oracle model.
(In the following, we use the word random oracle for any oracle chosen uniformly out of a
family of functions; thus also the ideal cipher model (see [CPS08], going back to [Sha49])
or the generic group model [Sho97] fall under this term. The “standard” random oracle
[BR93] which is a uniformly randomly chosen function from the set of all functions we call
“random hash oracle” for disambiguation.)

In the random oracle model, we can see the random oracle as a function that is initially
undefined, and upon access, the function table is populated as needed (lazy sampling). This
enables the following proof technique: When a certain random oracle location has not been
queried yet, we may set it to a particular value of our choosing (this is called “programming
the random oracle”). In our case this can be used to program a ciphertext c: As long as
we make sure that the adversary has not yet queried the random oracle at the locations
needed for decrypting c (e.g., because to find these locations he needs to know the secret
key), we can still change the value of the oracle at these locations. This in turn may allow
us to change the value that c decrypts to.

Summarizing, we look for an encryption scheme with the following property: There is
a strategy for producing (fake) keys and ciphertexts, and for reprogramming the random
oracle (we will call this strategy the “ciphertext simulator”), such that the following two
things are indistinguishable: (a) (Normally) encrypting a value m, sending the resulting
ciphertext c, and then sending the decryption key. (b) Producing a fake ciphertext c.
Choosing m. And sending the decryption key.

Formally defining the required security property (PROG-KDM) turns out to be more
complex than one might expect, though. We cannot just state that the ciphertext simulator
is indistinguishable from an honest encryption oracle. The ciphertext simulator has a
completely different interface from the honest encryption oracle. In particular, it expects
the plaintext when being asked for the secret key, while the encryption oracle would expect
these upon encryption. To cope with this problem, we define two “wrappers”, the real
and the fake challenger. The real challenger essentially gives us access to the encryption
algorithm while the fake challenger, although it expects the plaintexts during encryption (to
be indistinguishable from the real challenger), uses the plaintexts only when the decryption
key is to be produced. These two challengers should then be indistinguishable. (The
challengers additionally make sure that the adversary does not perform any forbidden
queries such as submitting a ciphertext for decryption that was produced by the challenger.)

We first define the real challenger. The real challenger needs to allow us to query the
encryption and decryption keys, to perform encryptions and decryptions, and to give us
access to the underlying random oracle. However, if we only have these queries, situations like
the following would lead to problems: The adversary wishes to get Enc(ek1, Enc(ek2,m)).
We do not wish the adversary to have to request Enc(ek2,m) first and then resubmit it for
the second encryption, because this would reveal Enc(ek2,m), and we might later wish to
argue that Enc(ek2,m) stays secret. To be able to model such setting, we need to allow the
adversary to evaluate sequences of queries without revealing their outcome. For this, we
introduce queries such as R := encch(N,R1). This means: Take the value from register R1,

8

2 DEFINITION OF PROG-KDM

encrypt it with the key with index N ∈ {0, 1}∗, and store the result in register R. Also, we
need a query to apply arbitrary functions to registers: R := evalch(C,R1, . . . , Rn) applies
the circuit C to registers R1, . . . , Rn. (This in particular allows us to load a fixed value into
a register by using a circuit with zero inputs (n = 0). Finally, we have a query revealch(R1)
that outputs the content of a register.

Formally, the definition of the real challenger is the following:

Definition 1 (Real challenger) Fix an oracle O and an encryption scheme (K,E,D)
relative to that oracle. The real challenger RC is an interactive machine defined as follows.
RC has access to the oracle O. RC maintains a family (ekN , dkN)N∈{0,1}∗ of key pairs
(initialized as (ekN , dkN) ← K(1η) upon first use), a family (regN)N∈{0,1}∗ of registers
(initially all regN = ⊥), and a family of sets cipherN (initially empty). RC responds to the
following queries (when no answer is specified, the empty word is returned):
• R := getekch(N): RC sets regR := ekN .
• R := getdkch(N): RC sets regR := dkN .
• R := evalch(C,R1, . . . , Rn) where C is a Boolean circuit:3 Compute m := C(regR1

, . . . ,
regRn

) and set regR := m.
• R := encch(N,R1): Compute c ← EO(ekN , regR1

), append c to cipherN , and set
regR := c.
• oraclech(x): Return O(x).
• decch(N, c): If c ∈ cipherN , return forbidden where forbidden is a special symbol

(different from any bitstring and from a failed decryption ⊥). Otherwise, invoke
m← DO(dkN , c) and return m.
• revealch(R1): Return regR1

.
Here N and c range over bitstrings, R ranges over bitstrings with regR = ⊥ and the Ri
range over bitstrings R with regRi

6= ⊥.

Notice that the fact that we can do “hidden evaluations” of complex expressions, also
covers KDM security (security under key-dependent messages): We can make a register
contain the computation of, e.g., Enc(ek , dk) where dk is the decryption key corresponding
to ek .

We now proceed to define the fake challenger. The fake challenger responds to the
same queries, but computes the plaintexts as late as possible. In order to do this, upon a
query such as R := encch(N,R1), the fake challenger just stores the symbolic expression
“encch(N,R1)” in register R (instead of an actual ciphertext). Only when the content of
a register is to be revealed, the bitstrings are recursively computed (using the function
FCRetrieve below) by querying the ciphertext simulator. Thus, before defining the fake
challenger, we first have to define formally what a ciphertext simulator is:

Definition 2 (Ciphertext simulator) A ciphertext simulator CS for an oracle O is
an interactive machine that responds to the following queries: fakeenccs(R, l), deccs(c),

3Note that from the description of a circuit, it is possible to determine the length of its output. This will
be important in the definition of FCLen below.

9

2 DEFINITION OF PROG-KDM

enccs(R,m), getekcs(), getdkcs(), and programcs(R,m). Any query is answered with
a bitstring (except deccs(c) which may also return ⊥). A ciphertext simulator runs in
polynomial-time in the total length of the queries. A ciphertext simulator is furthermore
given access to an oracle O. The ciphertext simulator is also allowed to program O (that is,
it may perform assignments of the form O(x) := y). Furthermore, the ciphertext simulator
has access to the list of all queries made to O so far.4

The interesting queries here are fakeenccs(R, l) and programcs(R,m). A fakeenccs(R, l)-
query is expected to return a fake ciphertext for an unspecified plaintext of length l (associ-
ated with a handle R). And a subsequent programcs(R,m)-query with |m| = l is supposed
to program the random oracle such that decrypting c will return m. The ciphertext simula-
tor expects to get all necessary programcs(R,m)-queries directly after a getdkcs()-query
revealing the key. (Formally, we do not impose this rule, but the PROG-KDM does not
guarantee anything if the ciphertext simulator is not queried in the same way as does the
fake challenger below.) We stress that we allow to first ask for the key and then to program.
This is needed to handle key dependencies, e.g., if we wish to program the plaintext to be
the decryption key. The definition of the fake challenger will make sure that although we
reveal the decryption key before programming, we do not use its value for anything but the
programming until the programming is done.

Note that we do not fix any concrete behavior of the ciphertext simulator since our
definition will just require the existence of some ciphertext simulator.

We can now define the real challenger together with its recursive retrieval function
FCRetrieve:

Definition 3 (Fake challenger) Fix an oracle O, a length-regular encryption scheme
(K,E,D) relative to that oracle, and a ciphertext simulator CS for O. The fake challenger
FC for CS is an interactive machine defined as follows. FC maintains the following state:
• A family of instances (CSN)N∈{0,1}∗ of CS (initialized upon first use). Each ciphertext

simulator is given (read-write) oracle access to O.
• A family (regR)R∈{0,1}∗ of registers (initially all regR = ⊥). Registers regN are either

undefined (regN = ⊥), or bitstrings, or queries (written “getekch(N)” or “getdkch(N)”
or “evalch(C,R1, . . . , Rn)” etc.).
• A family (cipherN)N∈{0,1}∗ of sets of bitstrings. (Initially all empty.)

FC answers to the same queries as the real challenger, but implements them differently:
• R := getekch(N) or R := getdkch(N) or R := evalch(C,R1, . . . , Rn) or R :=
encch(N,R1): Set regR := “getekch(N)” or regR := “getdkch(N)” or regR :=

“evalch(C,R1, . . . , Rn)” or regR := “encch(N,R1)”, respectively.
• decch(N, c): If c ∈ cipherN , return forbidden. Otherwise, query deccs(c) from CSN

and return its response.
• oraclech(x): Return O(x).

4Our scheme will not make use of the list of the queries to O, but for other schemes this additional power
might be helpful.

10

2 DEFINITION OF PROG-KDM

• revealch(R1): Compute m ← FCRetrieve(R1). (FCRetrieve is defined below in
Definition 4.) Return m.

Definition 4 (Retrieve function of FC) The retrieve function FCRetrieve has access
to the registers regR and the ciphertext simulators CSN of FC. It additionally stores a
family (plainN)N∈{0,1}∗ of lists between invocations (all plainN are initially empty lists).
FCRetrieve takes an argument R (with regR 6= ⊥) and is recursively defined as follows:
• If regR is a bitstring, return regR.
• If regR = “getekch(N)”: Query CSN with getekcs(). Store the answer in regR.

Return regR.
• If regR = “evalch(C,R1, . . . , Rn)”: Compute mi := FCRetrieve(Ri) for i = 1, . . . , n.

Compute m′ := C(m1, . . . ,mn). Set regR := m′. Return m′.
• If regR = “encch(N,R1)” and there was no getdkcs()-query to CSN yet: Compute l :=
FCLen(R1). (FCLen is defined in Definition 6 below.) Query CSN with fakeenccs(R, l).
Denote the answer with c. Set regR := c. Append (R 7→ R1) to the list plainN . Append
c to cipherN . Return c.
• If regR = “encch(N,R1)” and there was a getdkcs()-query to CSN : Compute m :=
FCRetrieve(R1). Query CSN with enccs(R,m). Denote the answer with c. Set
regR := c. Append (R 7→ R1) to plainN . Append c to cipherN . Return c.
• If regR = “getdkch(N)”: Query CSN with getdkcs(). Store the answer in regR. If

this was the first getdkcs(N)-query for that value of N , do the following for each
(R′ 7→ R′1) ∈ plainN (in the order they occur in the list):

– Invoke m := FCRetrieve(R′1).
– Send the query programcs(R

′,m) to CSN .
Finally, return regR.

The retrieve function uses the auxiliary function FCLen that computes what length
a bitstring associated with a register should have. This function only makes sense if we
require the encryption scheme to be length regular, i.e., the length of the output of the
encryption scheme depends only on the lengths of its inputs.

Definition 5 (Length regular encryption scheme) An encryption scheme (K,E,D)
is length-regular if there are functions `ek , `dk , `c such that for all η ∈ N and all m ∈ {0, 1}∗
and for (ek , dk)← K(1η) and c← E(ek ,m) we have |ek | = `ek (η) and |dk | = `dk (η) and
|c| = `c(η, |m|) with probability 1.

Definition 6 (Length function of FC) The length function FCLen has (read-only) ac-
cess to the registers regR of FC. FCLen takes an argument R (with regR 6= ⊥) and is
recursively defined as follows:
• If regR is a bitstring, return |regR|.
• If regR = “evalch(C,R1, . . . , Rn)”: Return the length of the output of the circuit
C. (Note that the length of the output of a Boolean circuit is independent of its
arguments.)

11

3 PROG-KDM VIA HYBRID ENCRYPTION

• If regR = “getekch(N)” or regR = “getdkcs(N)”: Let `ek and `dk be as in Definition 5.
Return `ek (η) or `dk (η), respectively.
• If regR = “encch(N,R1)”: Let `c be as in Definition 5. Return `c(η, FCLen(R1)).

We are now finally ready to define PROG-KDM security:

Definition 7 (PROG-KDM security) A length-regular encryption scheme (K,E,D)
(relative to an oracle O) is PROG-KDM secure iff there exists a ciphertext simulator CS
such that for all polynomial-time oracle machines A,5 Pr[ARC(1η) = 1]− Pr[AFC(1η) = 1]
is negligible in η. Here RC is the real challenger for (K,E,D) and O and FC is the fake
challenger for CS and O. Notice that A does not directly query O.

3 PROG-KDM via hybrid encryption

Setup. Let MAC be a one-time message authentication code (MAC) with key-space

{0, 1}`KMAC and that outputs tags of length `TMAC (see [CS03] for the definition of one-time
MACs).

Fix an ideal cipher OIC with key space {0, 1}`KIC and message space {0, 1}`MIC . Formally,

OIC is a uniformly chosen function from {+,−}× {0, 1}`KIC × {0, 1}`MIC to {0, 1}`MIC such that

OIC(+, k, ·) is a permutation on {0, 1}`MIC for each k ∈ {0, 1}`KIC and OIC(−, k, ·) its inverse.

Intuitively, this means that OIC is a family of permutations on {0, 1}`MIC , indexed by a key

k ∈ {0, 1}`KIC , such that one can query the permutation and its inverse (by using + or − as
the first argument to OIC).

Assume that `KIC and `MIC are superlogarithmic in the security parameter (such that 2−`
K
IC

and 2−`
M
IC are negligible).

Let (KKEM, EKEM, DKEM) be a CCA-secure key-encapsulation mechanism (KEM) with

message space {0, 1}`KMAC+`
K
IC . (See [CS03] for a definition of CCA-secure KEM.) Assume

that the length of a key output by KKEM depends only on the security parameter. For
readability, we will write messages in {0, 1}`KMAC+`

K
IC as pairs (kMAC, kIC).

Fix an injective function cbcpad : {0, 1}∗ → ({0, 1}`MIC)∗. Fix an efficiently sampleable

distribution DIV on {0, 1}`MIC . The function cbcpad is the padding function that maps a
message into a sequence of blocks for the ideal cipher. Assume that cbcpad is length-
regular, i.e., for |m| = |m′| we have |cbcpad(m)| = |cbcpad(m′)|, and that cbcpad is
efficiently computable and efficiently invertible. We define the encryption in CBC mode
as follows: EOIC

CBC(k,m) first chooses c0 ← DIV (the initialization vector)6 and computes
(m1, . . . ,mn) ← cbcpad(m). Then it computes ci := OIC(+, k, ci−1 ⊕mi) for i = 1, . . . , n

and returns c := c0‖ . . . ‖cn. DOIC
CBC(k, c) first splits c as c0‖ . . . ‖cn with ci ∈ {0, 1}`

M
IC .

5Here we consider A polynomial-time if it runs a polynomial number of steps in η, and the number
of steps performed by RC or FC is also polynomially-bounded. This additional requirement is necessary
since for an encryption scheme with multiplicative overhead (say, length-doubling), a sequence of queries
Ri := encch(N,Ri−1) of polynomial length will lead to the computation of an exponential-length ciphertext.

6Notice that a fixed IV can also be modeled by letting DIV assign probability 1 to that IV.

12

4 PROOF OF PROG-KDM SECURITY

Then it computes mi := OIC(−, k, ci) ⊕ ci−1, and m := cbcpad−1(m1, . . . ,mn). If |c| is
not a multiple of `MIC or |c| = 0 or cbcpad−1(m1, . . . ,mn) does not exist, DCBC returns ⊥,
otherwise DCBC returns m.

Construction. We construct a PROG-KDM secure encryption scheme (KOIC
hyb , E

OIC
hyb , D

OIC
hyb)

in the ideal cipher model as follows:
• Key generation: KOIC

hyb := KKEM.

• Encryption: EOIC
hyb (ek ,m) performs the following steps: First, it computes ((kMAC, kIC), cKEM)←

EKEM(ek). Then it computes cCBC ← EOIC
CBC(kIC,m) and t← MAC(kMAC, cCBC) and

returns c := (cKEM, cCBC, t).
• Decryption: DOIC

hyb (dk , c) performs the following steps: First, it parses c as (cKEM, cCBC, t).
Then it computes (kMAC, kIC)← DKEM(dk , cKEM), checks whether t = MAC(kMAC, cCBC),
computes and m ← DOIC

CBC(kIC, cCBC). If parsing, DKEM, DCBC, or the MAC-check
fails, return ⊥. Otherwise, return m.

4 Proof of PROG-KDM security

4.1 Basic definitions

Definition 8 (Ciphertext simulator for the hybrid encryption) The ciphertext sim-
ulator CS initially picks a key pair (ek , dk)← KKEM(1η). Then it answers to the following
queries:
• Upon query getekcs() or getdkcs(), return ek or dk, respectively.
• Upon query fakeenccs(R, l): Let n be the number of blocks returned by cbcpad(0l).

Compute ((kMAC, kIC), cKEM) ← EKEM(ek). Choose cCBC := c0‖ . . . ‖cn with c0 ←
DIV and ci

$← {0, 1}`MIC for i ≥ 1. Let t ← MAC(kMAC, cCBC). Return c :=
(cKEM, cCBC, t).
• Upon query deccs(c): Return DOIC

hyb (dk , c).
• Upon programcs(R,m)-query: Let kIC, cCBC refer to the values computed in the

(unique) fakeenccs(R, ·)-query. Let cCBC =: c0‖ . . . ‖cn (n+1 blocks of length `MIC). Let
(m1, . . . ,mn)← cbcpad(m). Let xi := ci−1⊕mi for all i. If all xi are pairwise distinct
and all ci are pairwise distinct, program OIC(+, kIC, x1) := c1, . . . , OIC(+, kIC, xn) :=
cn, and OIC(−, kIC, c1) := x1, . . . , OIC(−, kIC, cn) := xn. (Otherwise do not program
anything.)
• Upon query enccs(R,m), perform the queries fakeenccs(R, |m|) and programcs(R,m)

on yourself. Return what the fakeenccs-query returns.

Definition 9 (Lazy ideal cipher) The lazy ideal cipher OIC,lazy is a stateful probabilistic

oracle. It maintains a function OIC,lazy : {+,−} × {0, 1}`KIC × {0, 1}`MIC → {0, 1}`MIC , initially
undefined. (The function is called like the oracle itself in slight abuse of notation.) Upon
a query OIC,lazy(d, k, x), the oracle responds as follows: If OIC,lazy(d, k, x) = ⊥, it chooses

13

4.2 Preparing the ground 4 PROOF OF PROG-KDM SECURITY

y
$← {0, 1}`MIC and sets OIC,lazy(d, k, x) := y and OIC,lazy(d̄, k, y) := x (where d̄ := − if d = +

and vice versa). Then it returns OIC,lazy(d, k, x).

Lemma 10 (Lazy ideal cipher) The ideal cipher and the lazy ideal cipher are indis-
tinguishable. More precisely, for any polynomial-time machine A, |Pr[AOIC(1η) = 1] −
Pr[AOIC,lazy(1η) = 1]| is negligible in the security parameter η.

Proof. We first define another oracle ÕIC,lazy. ÕIC,lazy is defined like OIC,lazy, except that,

instead of choosing y
$← {0, 1}`MIC , it chooses y

$← {0, 1}`MIC \ range OIC,lazy(d, k, ·).
Since ÕIC,lazy chooses y according to the distribution of the original ideal cipher OIC

conditioned on the fact that OIC matches the function OIC,lazy wherever the latter is defined
so far, we have that OIC and ÕIC,lazy are perfectly indistinguishable, hence Pr[AOIC(1η) =

1] = Pr[AÕIC,lazy(1η) = 1].

Since A is polynomial-time, at any point in an execution of AÕIC,lazy or AOIC,lazy ,
range OIC,lazy(d, k, ·) has polynomial size for all d, k. Since `MIC is superlogarithmic, {0, 1}`MIC
has superpolynomial size. Thus the uniform distribution on {0, 1}`MIC \ range OIC,lazy(d, k, ·)
and that on {0, 1}`MIC are statistically indistinguishable. Since A only performs polynomially

many queries, it follows that |Pr[AÕIC,lazy(1η) = 1] − Pr[AOIC,lazy(1η) = 1]| is negligible.

With Pr[AOIC(1η) = 1] = Pr[AÕIC,lazy(1η) = 1] the lemma follows. �

4.2 Preparing the ground

In the following, let A be an adversary as in Definition 7. Without loss of generality, we
assume that all values R and N that A uses in his queries to RC or FC are chosen from
fixed polynomial-size sets R and N . (As opposed to, e.g., an adversary that picks uniformly
chosen random η-bit strings for R and N .) This can be achieved, e.g., if A uses consecutive
integers for R and N ; since R and N are treated as opaque identifiers by RC and FC this
does not change the outcome of the interaction between A and RC or FC.

Game 1. A interacts with RC. �

Game 2. A interacts with FC, with the following modifications to FCRetrieve:
• If regR = “encch(N,R1)”: Compute m := FCRetrieve(R1). Let c ← EOIC

hyb (ekN ,m)
where ekN denotes the encryption key ek maintained by CSN . Set regR := c. Append
(R 7→ R1) to the list plainN . Append c to cipherN . Return c.
• If regR = “getdkch(N)”: Query CSN with getdkcs(). Store the answer in regR.

Return regR. (That is, in comparison to Definition 4, we do not invoke FCRetrieve

and do not perform programcs(R,m)-queries.)
�

We claim that

Pr[A outputs 1 : Game 1] ≈ Pr[A outputs 1 : Game 2] (1)

14

4.2 Preparing the ground 4 PROOF OF PROG-KDM SECURITY

where ≈ means that the difference is negligible.
To show this, observe that in Game 2, FCRetrieve(R) computes the value that regR

would have in Game 1. (In Game 2, FCRetrieve does not program the ideal cipher, and its
only side effects are that it caches its return values, and that it modifies the sets plainN
and cipherN which, however, FCRetrieve never reads.)

Thus revealch-queries are answered in Game 1 and Game 2 in the same way. Also
oraclech-queries are answered in the same way because the oracle is not programmed.
deccs(N, c)-queries might be answered differently: Both Game 2 and Game 1 return
forbidden to such a query if c ∈ cipherN . However, in Game 1, cipherN may contain
more values because in Game 2 some encryptions are performed later (because FCRetrieve

computes the values regR lazily). If, however, this occurs, this means that in Game 2 a
ciphertext c is used that will only be computed by a later FCRetrieve-call. Since ciphertexts
produced by EKEM have superlogarithmic min-entropy, and since such ciphertexts are part
of the ciphertexts produced by Ehyb, this happens with negligible probability. Thus (1)
follows.

Game 3. As Game 2, but we replace OIC by the lazy ideal cipher OIC,lazy. �
By Lemma 10, we have

Pr[A outputs 1 : Game 2] ≈ Pr[A outputs 1 : Game 3] (2)

Game 4. A interacts with FC, but FCRetrieve is modified as follows:
• If regR = “encch(N,R1)”: Compute m := FCRetrieve(R1). Query CSNCSNCSN with
fakeenccs(R, |m|)fakeenccs(R, |m|)fakeenccs(R, |m|). Denote the answer with ccc. Set regR := c. Append (R 7→ R1)
to the list plainN . Append c to cipherN . Send a programcs(R,m)programcs(R,m)programcs(R,m)-query to CSNCSNCSN .
Return c.
• If regR = “getdkch(N)”: Query CSN with getdkcs(). Store the answer in regR.

Return regR.
And we use OIC,lazy instead of OIC. �
We claim that

Pr[A outputs 1 : Game 3] ≈ Pr[A outputs 1 : Game 4] (3)

To show this, we have to show that (a) computing c ← E
OIC,lazy

hyb (ekN ,m) has the same
effect as (b) sending fakeenccs(R, |m|) and programcs(R,m) to CSN and letting c denote
the answer of the fakeenccs-query. By definition of Ehyb, ECBC, and OIC,lazy, (a) is the
same as performing the following steps:
• ((kMAC, kIC), cKEM)← EKEM(ekN). c0 ← DIV. (m0, . . . ,mn) := cbcpad(m).

• For i = 1, . . . , n, assignOIC,lazy(+, kIC, ci−1⊕mi) := ci
$← {0, 1}`MIC andOIC,lazy(−, kIC, ci) :=

ci−1 ⊕mi [unless OIC,lazy is already defined at one of these positions].
• Let cCBC := c0‖ . . . ‖cn and t← MAC(kMAC, cCBC) and c := (cKEM, cCBC, t).

By definition of CSN , (b) is the same as performing the following steps:

15

4.2 Preparing the ground 4 PROOF OF PROG-KDM SECURITY

• Let n be the number of blocks returned by cbcpad(0|m|) (which has the same length
as cbcpad(m)). ((kMAC, kIC), cKEM)← EKEM(ekN). c0 ← DIV.

• For i = 1, . . . , n, pick ci
$← {0, 1}`MIC .

• Let cCBC := c0‖ . . . ‖cn and t← MAC(kMAC, cCBC) and c := (cKEM, cCBC, t).
• Let (m1, . . . ,mn)← cbcpad(m).
• For i = 1, . . . , n, assign OIC,lazy(+, kIC, ci−1 ⊕mi) := ci and OIC,lazy(−, kIC, ci) :=
ci−1 ⊕mi [unless ci = cj or ci−1 ⊕mi = cj−1 ⊕mj for some i 6= j].

It is easy to see that these two sequences of steps have the same effect unless one of the
conditions in square parentheses occur. In the first sequence, the condition is that OIC,lazy

is already defined at one of the positions. This happens only with negligible probability
since kIC and ci (i ≥ 1) are chosen uniformly at random (and at most polynomially many
locations of OIC,lazy are assigned prior to executing the sequence of steps). In the second
sequence, the condition is that ci = cj or ci−1 ⊕mi = cj−1 ⊕mj for some i 6= j. This
happens only with negligible probability because the ci (i ≥ 1) are chosen uniformly and
independently. Thus with overwhelming probability, (a) and (b) have the same effect. Hence
(3) follows.

Game 5. As Game 4, but we replace the lazy ideal cipher OIC,lazy by the ideal cipher OIC.
�
By Lemma 10, we have

Pr[A outputs 1 : Game 4] ≈ Pr[A outputs 1 : Game 5]. (4)

Game 6. A interacts with FC, but FCRetrieve is modified as follows:
• If regR = “encch(N,R1)”: Compute m := FCRetrieve(R1). Query CSN with
fakeenccs(R,FCLen(R1)FCLen(R1)FCLen(R1)). Denote the answer with c. Set regR := c. Append
(R 7→ R1) to the list plainN . Append c to cipherN . Send a programcs(R,m)-query
to CSN . Return c.
• If regR = “getdkch(N)”: Query CSN with getdkcs(). Store the answer in regR.

Return regR.
�

After the invocation m := FCRetrieve(R1) we have that regR1
= m. Thus FCLen(R1)

returns |m|. Since FCLen does not have side-effects, replacing |m| by FCLen(R1) does not
change anything, we have

Pr[A outputs 1 : Game 5] = Pr[A outputs 1 : Game 6]. (5)

We now describe a game in which all random choices are fixed in the beginning. This
will allow us to show that two games (Game 7 and Game 8) exhibit the same behavior
when running with the same randomness. In order to be able to show this, it is necessary to
make explicit, which component of the initially chosen randomness Rand is used at which
step of the respective games. E.g., Rand contains random tapes tRfakeenc that constitute the
randomness used during fakeenccs(R, ·)-queries to CSN . This ensures that even if that

16

4.3 Reordering 4 PROOF OF PROG-KDM SECURITY

fakeenccs(R, ·)-query occurs at completely different times in the two games, it will use
the same randomness in both games nevertheless. If, instead, we had just fixed a single
random tape t, and would use the first unused bits of t whenever we need randomness, then
changing the order of queries would change which random bits are used by which query.

Game 7. As Game 6, we initially pick a tuple Rand containing the following values:
• A key pair (ekN , dkN)← KKEM(1η) for each N ∈ N .
• Values ((kN,RMAC, k

N,R
IC), cN,RKEM)← EKEM(ekN) for each N ∈ N , R ∈ R.

• A random tape tRfakeenc for each R ∈ R.
• A random tape tA.
• A uniformly chosen function O0

IC : {+,−}× {0, 1}`KIC × {0, 1}`MIC → {0, 1}`MIC such that

O0
IC(+, k, ·) is a permutation for each k ∈ {0, 1}`KIC and O0

IC(−, k, ·) its inverse.

Then the adversary uses tA as its random tape, and the ideal cipher OIC is initialized as
O0

IC. (But OIC may change during the game due to reprogramming.)

And the ciphertext simulator CSN is modified as follows (in comparison with Definition 8):
• The initial key pair (ek , dk) is not chosen randomly, but instead set to (ek , dk) :=

(ekN , dkN).
• Upon query fakeenccs(R, l): Let n be the number of blocks returned by cbcpad(0l).

Set (kMAC, kIC, cKEM) := (kN,RMAC, k
N,R
IC , cN,RKEM). Set cCBC := c0‖ . . . ‖cn with c0 ← DIV

and ci
$← {0, 1}`MIC for i ≥ 1 and compute t ← MAC(kMAC, cCBC), but use the

randomness from tRfakeenc for the random choices involved in the computation of cCBC

and t. Return c := (cKEM, cCBC, t).

Additionally, the changes to FCRetrieve from Game 6 are also applied in Game 7. �
Notice that all random choices in Game 7 are contained in Rand . In particular, for fixed

Rand , Game 7 is deterministic.
Since the only difference between Game 6 and Game 7 is that the random choices are

performed earlier in Game 7, we have that

Pr[A outputs 1 : Game 6] = Pr[A outputs 1 : Game 7]. (6)

(Notice that for every R, FCRetrieve(R) is only executed once, afterwards it just reuses
the result of the previous execution. Thus none of kN,RMAC, k

N,R
IC , cN,RKEM, t

R
fakeenc is used twice.)

By (1,2,3,4,5,6), we immediately get the following lemma:

Lemma 11 There is a negligible function µ such that

|Pr[A outputs 1 : Game 1]− Pr[A outputs 1 : Game 7]| ≤ µ.

4.3 Reordering

Game 8. A interacts with FC, but FCRetrieve is modified as follows:

17

4.3 Reordering 4 PROOF OF PROG-KDM SECURITY

• If regR = “encch(N,R1)” and there was no getdkcs()-query to CSN yet: Query CSN
with fakeenccs(R, FCLen(R1)). Denote the answer with c. Set regR := c. Append
(R 7→ R1) to the list plainN . Append c to cipherN . Return c. (Do not compute
m := FCRetrieve(R1)m := FCRetrieve(R1)m := FCRetrieve(R1) and do not perform a programcs(R,m)programcs(R,m)programcs(R,m)-query.)
• If regR = “encch(N,R1)” and there was a getdkcs()-query to CSN : Compute m :=
FCRetrieve(R1). Query CSN with fakeenccs(R, FCLen(R1)). Denote the answer
with c. Set regR := c. Append (R 7→ R1) to the list plainN . Append c to cipherN .
Send a programcs(R,m)-query to CSN . Return c.
• If regR = “getdkch(N)”: Query CSN with getdkcs(). Store the answer in regR. If

this was the first getdkcs(N)getdkcs(N)getdkcs(N)-query for that value of NNN , do the following
for each (R′ 7→ R′1) ∈ plainN(R′ 7→ R′1) ∈ plainN(R′ 7→ R′1) ∈ plainN (in the order they occur in the list): Invoke
m := FCRetrieve(R′1)m := FCRetrieve(R′1)m := FCRetrieve(R′1) and send a programcs(R

′,m)programcs(R
′,m)programcs(R
′,m)-query to CSNCSNCSN . Finally, re-

turn regR.
And the randomness is fixed in the beginning as in Game 7. �

We will now show that in Game 7 and Game 8 the adversary will give the same
output unless certain events occur (such as accessing OIC at a location that will later be
reprogrammed). These events we will subsequently show to have negligible probability.
Proving the equivalence of Game 7 and Game 8 is, however, far from trivial. Although the
only difference between Game 7 and Game 8 is that certain FCRetrieve-calls are executed
lazily (that is, when their value is first needed), and that certain programcs-queries are
performed later, we have to deal with the fact that FCRetrieve-calls and programcs-queries
have side-effects. E.g., programcs-queries will program the oracle, and FCRetrieve-calls
may change the variables plainN , cipherN and may also produce further programcs-queries.
Also, doing an FCRetrieve-request later may move the point in time when a getdkcs()-
query is sent to CSN , which again moves further FCRetrieve-calls and programcs-queries.
Due to this complex reordering, it does not seem possible to translate the difference between
Game 7 and Game 8 into a sequence of simple transformations such as swapping two
operations. Instead, we will identify certain invariants (Definition 16 below) that relate an
execution of Game 7 with an execution of Game 8 (for fixed and identical randomness) and
that are strong enough to be able to inductively show that these invariants hold at any
point in the execution of the two games (unless the abovementioned events occur), even
though things are done in a different order in both games. The invariants will then directly
imply that the view of the adversary and hence his output is the same in both games.

For randomness Rand , we denote by Game 7Rand and Game 8Rand the games Game 7
and Game 8 in which the fixed randomness Rand is used (instead of choosing Rand
randomly in the beginning of the game as described in Game 7). Notice that for fixed Rand ,
Game 7Rand and Game 8Rand are deterministic.

Before continuing, we define various events that we will need in the remainder of this
section. We will later show that all these events have negligible probability.

Definition 12 (Event: Early ideal cipher queries) In an interaction between A and
FC (or a variant thereof), for any R, let kRIC denote the key kIC chosen in a fakeenccs(R, ·)-

18

4.3 Reordering 4 PROOF OF PROG-KDM SECURITY

query to some ciphertext simulator instance. kRIC = ⊥ if no such query was performed.
(Notice that by construction of FCRetrieve, there will be at most one such query for each R.)

EarlyIC denotes the event that for some R, there is an OIC(·, kRIC, ·)-query to the ideal
cipher after the fakeenccs(R, ·)-query but before any programcs(R, ·)-query occurred.

Definition 13 (Event: Very early ideal cipher queries) In the games Game 7 and
Game 8, VeryEarlyIC denotes the event that for some R ∈ R, N ∈ R, there is an
OIC(·, kR,NIC , ·)-query before any fakeenccs(R, ·)-query to CSN occurred.

We stress that in Definition 12 and Definition 13, we consider OIC-queries that occur
through oraclech-query made by A, as well as OIC-queries that occur indirectly through
the execution of the decryption algorithm by an instance of the ciphertext simulator.

Intuitively, VeryEarlyIC corresponds to the fact that kR,NIC is used before it is ever used.

We only define VeryEarlyIC for Game 7 and Game 8 (where kR,NIC is fixed in the beginning

as part of Rand) because in these games, we can explicitly refer to the value kR,NIC before
the fakeenccs(R, ·)-query.

Definition 14 (Event: Guessing a ciphertext) In Game 7 and Game 8, let GuessCipher
denote the event that A makes a decch(·, c)-query to FC with c = (cR,NKEM, ·, ·) and until that
point, no fakeenccs(R, ·)-query was sent to CSN .

Intuitively, this event implies that A guesses part of a ciphertext that has not even been
produced yet. We only define GuessCipher for Game 7 and Game 8 (where cR,NKEM is fixed in
the beginning as part of Rand) because in these games, we can explicitly refer to the value
cR,NKEM before the fakeenccs(R, ·)-query.

Definition 15 (Good randomness) We call Rand good if the following holds:
• The events EarlyIC, VeryEarlyIC, and GuessCipher do not occur in Game 7Rand nor

in Game 8Rand . (Notice that no probabilities are involved here because the games
Game 7Rand and Game 8Rand are deterministic.)

• For any R,R′ ∈ R and any N,N ′ ∈ N , if kR,NIC = kR
′,N ′

IC then R = R′ and N = N ′.

(Note: By definition, kR,NIC is a component of Rand.)

We will now proceed to show that for good Rand , A outputs 1 in Game 7Rand iff A
outputs 1 in Game 8Rand . In order to show this, we show a stronger invariant first, given
by the following definition:

Definition 16 (Consistent executions) Consider the execution of Game 7Rand (called
the left execution in the following). Consider the execution of Game 8Rand (called the right
execution in the following). We say that the Rand -executions are consistent if the following
conditions are satisfied:

(i) For any R, if there is a (finished) invocation of FCRetrieve(R) in the left and the
right execution, then both return the same value.

19

4.3 Reordering 4 PROOF OF PROG-KDM SECURITY

(ii) If in both executions, there was an i-th query to FC made by A, then that query is of
the same kind and has the same arguments in both executions. (E.g., if the i-th query
in the left execution is R := encch(N,R1), then the i-th query in the right execution,
if there was one, is R := encch(N,R1) with the same R,N,R1.)

(iii) If in both executions, there was a (finished) i-th query to FC made by A, then both
queries returned the same value.

(iv) For any R,N, l1, l2, if there are (finished) queries fakeenccs(R, l1) and fakeenccs(R, l2)
to CSN in the left and right execution, respectively, then they return the same value.

(v) For any R, if there are (finished) invocations FCLen(R) in the left and right execution,
then they return the same value.

(vi) For any R,m1,m2, N1, N2, if there is a programcs(R,m1)-query to CSN1 in the left
execution and a programcs(R,m2)-query to CSN2 in the right execution, then m1 = m2

and N1 = N2.

(vii) If (R 7→ R1) ∈ plainN1
at some point in the left execution, and (R 7→ R2) ∈ plainN2

at some point in the right execution, then R1 = R2 and N1 = N2.

(viii) For any d, k, x, y1, y2, if there are assignments OIC(d, k, x) := y1 and OIC(d, k, x) := y2
in the left and right execution, respectively, then y1 = y2.

(ix) For any R,m1,m2, if there is a programcs(R,m1)-query in the left execution and a
programcs(R,m2)-query in the right execution, then both queries program OIC at the
same locations.

Lemma 17 If Rand is good, then the Rand-executions are consistent.

Proof. We show this claim by induction over the length of the left and right execution.
More precisely, we show that for all n and m, conditions (i)–(ix) hold for prefixes of lengths
n and m of the left and right execution, respectively. (The length of a prefix is counted
in runtime steps.) To show this, we assume that conditions (i)–(ix) hold for all prefixes of
lengths n′,m′ with (n′ < n ∧m′ ≤ m) or (n′ ≤ n ∧m′ < m). In other words, when showing
conditions (i)–(ix), we assume as our induction hypothesis that they already hold if we
truncate at least one of the executions by at least one step.
Proof of (i): “For any R, if there is a (finished) invocation of FCRetrieve(R) in the left

and the right execution, then both return the same value.”
Since all invocations of FCRetrieve(R) in the same execution with the same R return
the same value (since the first invocation sets regR to its return value), it is sufficient
to consider the first invocation of FCRetrieve(R) in both executions.
We write reg lR and regrR for the value of regR at the beginning of the FCRetrieve(R)
invocation in the left and right execution, respectively. By induction hypothesis
(condition (ii)), at the beginning of the first FCRetrieve(R)-call, the list of queries

20

4.3 Reordering 4 PROOF OF PROG-KDM SECURITY

performed by A so far in one execution is a prefix of the list of queries performed by A
so far in the other execution. Since we consider the first invocation of FCRetrieve(R),
reg lR and regrR are not bitstrings. In this case, the values of reg lR and regrR are
determined by the sequence of queries made by A to FC. Thus reg lR = regrR.
By induction hypothesis (condition (i)) all FCRetrieve(R′)-invocations that termi-
nated before FCRetrieve(R) returned the same value in both executions. In particular,
the FCRetrieve(R′)-invocations performed by FCRetrieve(R) returned the same value
in both executions. If reg lR = regrR is one of “getekch(N)”, “evalch(C,R1, . . . , Rn)”, or
“getdkch(N)”, then this implies that FCRetrieve(R) returns the same value in both
executions. (Note that the encryption/decryption keys are fixed by Rand and thus
the answers in the cases “getekch(N)” and “getdkch(N)” are determined by Rand ,
too.)
Now consider the case reg lR = regrR = “encch(N,R1)”. In this case, the return value
of FCRetrieve(R) is that of the query fakeenccs(R, FCLen(R1)) sent to CSN . (Note
that although FCRetrieve is defined differently in Game 7 and Game 8, this holds
with respect to both definitions.) By induction hypothesis (condition (iv)), the
fakeenccs(R, FCLen(R1))-query returns the same value in both executions. Thus
FCRetrieve(R) returns the same value in both executions.

Proof of (ii): “If in both executions, there was an i-th query to FC made by A, then that
query is of the same kind and has the same arguments in both executions. (E.g., if
the i-th query in the left execution is R := encch(N,R1), then the i-th query in the
right execution, if there was one, is R := encch(N,R1) with the same R,N,R1.)”
By induction hypothesis (condition (iii)), we have that all earlier queries to FC
returned the same values in the left and right execution. Since A’s behavior depends
only on its random tape tA (which is part of Rand) and the return values of the
queries to FC, this implies that A makes the same query in both executions.

Proof of (iii): “If in both executions, there was a (finished) i-th query to FC made by A,
then both queries returned the same value.”
By induction hypothesis (condition (ii)), we know that the i-th query in both executions
is the same. Depending on that query, we distinguish the following cases:

– If the query is of the form R := . . . : Then FC does not return anything, hence
the same in both executions.

– If the query is revealch(R1): Then FC returns the return value of FCRetrieve(R1)
in both executions. By induction hypothesis (condition (i)), that value is the
same in both executions.

– If the query is oraclech(d, k, x): We say “OIC was programmed left” if there
was an assignment OIC(d, k, x) := y for some y in the left execution before
the oraclech(d, k, x)-query. Analogously “OIC was programmed right”. We
distinguish the following subcases:
∗ OIC was not programmed left nor programmed right: In this case, in both

executions OIC(d, k, x) = O0
IC(d, k, x) is returned. Since O0

IC is part of Rand ,
the same answer is given in both cases.

21

4.3 Reordering 4 PROOF OF PROG-KDM SECURITY

∗ OIC was programmed right but not programmed left: In the right execution,
programming occurs only within a programcs(R,m)-query to some CSN .
And that query will (due to the changes in Game 7) program only oracle
locations of the form OIC(·, kN,RIC , ·). Thus, since OIC was programmed right,

we have that k = kN,RIC for some N ∈ N and R ∈ R.
Since OIC was not programmed left, we have that at some point in the
left execution, there was an OIC(d, kN,RIC , x)-query and until that point

OIC(d, kN,RIC , x) had not been programmed. We claim that until that point,
there was no programcs(R, ·)-query in the left execution. If there had been
a programcs(R, ·)-query, by induction hypothesis (condition (ix)) and due to
the fact that OIC(d, kR,NIC , x) has been programmed by the programcs(R, ·)-
query in the right execution, it follows that that programcs(R, ·)-query would
also have programmed OIC(d, kR,NIC , x) in the left execution. Thus the query

to OIC(d, kR,NIC , x) occurred before a programcs(R, ·)-query happened in the
left execution. Thus the event EarlyIC or VeryEarlyIC occurs in the left exe-
cution. This is a contradiction to the assumption that Rand is good. Thus
the case that OIC was programmed right but not programmed left does not
occur.
∗ OIC was programmed left but not programmed right: Analogously to the

case that OIC was programmed right but not programmed left, we show that
this case does not occur (just exchange “left” and “right” in the proof).
∗ OIC was programmed both right and left: By induction hypothesis (condition

(viii)), OIC(d, k, x) was assigned the same value in both executions. Thus
the same answer is given in both cases.

– If the query is decch(N, c): The return value of a decch(N, c)-query to FC depends
on the three things (besides its arguments N, c): On whether c ∈ cipherN (in
which case decch(N, c) returns forbidden). On the decryption key dk used by
CSN . And on the results to the oracle queries performed by the decryption
algorithm DOIC

hyb (dk , c).
Due to the modifications from Game 7, the decryption key used by CSN is dkN
(part of Rand) in both executions.
Assume now that c ∈ cipherN in the left execution and c /∈ cipherN in the right
execution. A value c is appended to cipherN by FCRetrieve only after some
fakeenccs-query to CSN returned c (this holds both in Game 7 and Game 8).
Thus in the left execution, there was a fakeenccs(R, l)-query to CSN for some
R,N, l that returned c. By definition of fakeenccs (see Game 7), this implies that
c = (cN,RKEM, ·, ·). If in the right execution, there had been a fakeenccs(R, l

′)-query
to CSN for some l′ before the decch(N, c)-query, then, by induction hypothesis
(condition (iv)), that fakeenccs-query would also have returned c, and we would
have c ∈ cipherN . Thus there was no such query to CSN . Thus, in the right
execution, there was a deccs(·, c)-query to FC with c = (cN,RKEM, ·, ·) without a
prior fakeenccs(R, ·)-query to CSN . Thus the event GuessCipher occurred in the

22

4.3 Reordering 4 PROOF OF PROG-KDM SECURITY

right execution, in contradiction to the fact that Rand is good. Thus the case
that c ∈ cipherN in the left execution and c /∈ cipherN in the right execution
does not occur.
The case that c /∈ cipherN in the left execution and c ∈ cipherN in the right
execution is excluded analogously.
It remains to show that the results to the oracle queries performed by the
decryption algorithm DOIC

hyb (dkN , c) are the same in both executions. This is
shown analogously to the fact that oraclech(d, k, x)-queries to FC return the same
value in both executions (see the proof of condition (iii), subcase oraclech(d, k, x),
page 21).

Proof of (iv): “For any R,N, l1, l2, if there are (finished) queries fakeenccs(R, l1) and
fakeenccs(R, l2) to CSN in the left and right execution, respectively, then they return
the same value.”
First, note that in both executions, all fakeenccs-queries are of the form fakeenccs(R, FCLen(R)).
By induction hypothesis (condition (v)), this implies that for queries fakeenccs(R, l1)
and fakeenccs(R, l2) in the left and right execution (to the same CSN), respec-
tively, we have l1 = l2. By construction of CSN (Definition 8), the return value
c = (cKEM, cCBC, t) of a fakeenccs(R, l)-query depends only on l and the random-
ness used by CSN in that query. In Game 7 and Game 8, that randomness is
kN,RMAC, k

N,R
IC , cN,RKEM, t

R
fakeenc. All these values are determined by Rand . Hence the return

value of fakeenccs(R, l1) and fakeenccs(R, l2) is the same.
Proof of (v): “For any R, if there are (finished) invocations FCLen(R) in the left and right

execution, then they return the same value.”
We write reg lR and regrR for the value of regR when FCLen(R) is invoked in the left and
right execution, respectively. Since FCLen(R) is never invoked for undefined regR, we
have that reg lR and regrR are defined. For any R′, by r̃egR′ we denote the initial value
of regR′ , i.e., the value of regR′ directly after the R′ := . . . -query to FC that assigned
a value to it. Notice that the value r̃egR′ is completely determined by the sequence of
queries made by A to FC. By induction hypothesis (condition (ii)) these queries are
the same in both executions. Thus r̃eg lR′ = r̃egrR′ whenever both are defined (where
r̃eg lR′ = r̃egrR′ denote the value of r̃egR′ in the left and right execution, respectively).

Let F̃CLen be defined like FCLen, but using the values r̃egR′ instead of the values

regR′ . Then F̃CLen(R) has the same value in both executions (since regR and thus
also r̃egR is defined in both executions). Furthermore, notice that by construction,

within the same execution, for all R′, F̃CLen(R′) = FCLen(R′). (This is due to the fact
that FCRetrieve assigns to regR′ only bitstrings m with |m| = FCLen(R′).) Hence
also FCLen(R) returns the same value in both executions.

Proof of (vi): “For any R,m1,m2, N1, N2, if there is a programcs(R,m1)-query to CSN1 in
the left execution and a programcs(R,m2)-query to CSN2 in the right execution, then
m1 = m2 and N1 = N2.”
Both in the left and in the right execution, a programcs(R,m)-query is only performed
if for some R′, N , the bitstring m was the result of FCRetrieve(R′) and (R 7→ R′) ∈

23

4.3 Reordering 4 PROOF OF PROG-KDM SECURITY

plainN . Thus m1 was returned by FCRetrieve(R1) in the left execution and m2 by
FCRetrieve(R2) in the right execution, and we have (R 7→ R1) ∈ plainN1

in the left
execution and (R 7→ R2) ∈ plainN2

in the left execution. By induction hypothesis
(condition (vii)), we have that R1 = R2 and N1 = N2. Hence, by induction hypothesis
(condition (i)), m1 = m2.

Proof of (vii): “If (R 7→ R1) ∈ plainN1
at some point in the left execution, and (R 7→ R2) ∈

plainN2
at some point in the right execution, then R1 = R2 and N1 = N2.”

Both in Game 7 and Game 8, plainN is only modified by FCRetrieve(R) with
regR = “encch(N,R

′)”, and in this case (R 7→ R′) is appended to plainN . It follows
that there was an FCRetrieve(R) call in the left and in the right execution, and in
the left execution, we had regR = “encch(N1, R1)” and in the right execution, we had
regR = “encch(N2, R2)”. This implies that there was R := encch(N1, R1)-query and
an R := encch(N2, R2)-query to FC by A in the left and right execution, respectively.
By induction hypothesis (condition (ii)) and using the fact that A does not perform
two R := . . . -queries with the same R, it follows that N1 = N2 and R1 = R2.

Proof of (viii): “For any d, k, x, y1, y2, if there are assignments OIC(d, k, x) := y1 and
OIC(d, k, x) := y2 in the left and right execution, respectively, then y1 = y2.”
Since OIC(d, k, x) is only programmed within programcs(R,m)-queries to CSN with
k = kN,RIC , it follows that in the left and the right execution, we have queries

programcs(Rl,ml) to CSNl
and programcs(Rr,mr) to CSNr , respectively, with kNl,Rl

IC =

kNr,Rr

IC . Since Rand is good, this implies that Rl = Rr. Thus, by induction hy-
pothesis (condition (vi)), we have that ml = mr. The value cCBC used by the
programcs(Rl,ml)-query and the programcs(Rr,mr)-query, respectively, is the same
by induction hypothesis (condition (iv), using the fact that cCBC is part of the return
value of fakeenccs). Since the values assigned to OIC in programcs(R,m)-queries
only depend on R,m and cCBC, it follows that OIC(d, k, x) is assigned the same value
in the left and the right execution.

Proof of (ix): “For any R,m1,m2, if there is a programcs(R,m1)-query in the left execution
and a programcs(R,m2)-query in the right execution, then both queries program OIC

at the same locations.”
By induction hypothesis (condition (vi)), we have m1 = m2. The value cCBC used
by the programcs(R,m1)-query and the programcs(R,m2)-query, respectively, is the
same by induction hypothesis (condition (iv), using the fact that cCBC is part of the
return value of a fakeenccs(R, ·)-query). By induction hypothesis (condition (vi)),
both programcs-queries are sent to a ciphertext simulator CSN with the same index
N . Thus the value kIC used by the programcs-query is kIC = kR,NIC in both executions.
Since the locations at which OIC is assigned in programcs(R,m)-queries only depend
on kIC, m and cCBC (cf. Definition 8), it follows that OIC is assigned at the same
locations in the left and the right execution.

This concludes the proof of Lemma 17. �

24

4.3 Reordering 4 PROOF OF PROG-KDM SECURITY

Lemma 18 There is a negligible function µ such that∣∣∣Pr[A outputs 1 : Game 1]− Pr[A outputs 1 : Game 8]
∣∣∣ ≤ Pr[EarlyIC : Game 8] + µ.

Proof. For good Rand , Lemma 17 implies that condition (iii) from Definition 16 holds for
executions of Game 7Rand and Game 8Rand . Thus A gets the same answers to all its queries
in both executions. Since the output of A only depends on its randomness (which is tA,
contained in Rand) and the answers to its queries, it follows that for good Rand , A outputs 1
in Game 7Rand iff A outputs 1 in Game 8Rand . By averaging over all randomnesses Rand ,
we get

|Pr[A = 1 : Game 7]− Pr[A = 1 : Game 8]| ≤ Pr[Rand is not good]. (7)

We thus have to bound Pr[Rand is not good]. By definition of good randomness, we have

Pr[Rand is not good] ≤ Pr[EarlyIC : Game 7] + Pr[EarlyIC : Game 8]

+ Pr[VeryEarlyIC : Game 7] + Pr[VeryEarlyIC : Game 8]

+ Pr[GuessCipher : Game 7] + Pr[GuessCipher : Game 8]

+ Pr[KCollision]. (8)

where KCollision denotes the event that a randomly chosen Rand satisfies kR,NIC = kR
′,N ′

IC for
some R,R′ ∈ R, N,N ′ ∈ N with (R,N) 6= (R′, N ′).

Since the values kR,NIC are chosen uniformly from {0, 1}`KIC , and `KIC is superpolynomial,
and R and N are of polynomial size, we have that Pr[KCollision] is negligible.

In Game 7 and Game 8, the values kN,RMAC, kR,NIC , and cR,NKEM are only accessed within a

fakeenccs(R, ·)-query to CSN . Thus, the event VeryEarlyIC would imply that kN,RIC occurs in

an oracle query before kN,RIC (or the derived values kN,RMAC and cR,NKEM) have been accessed for the

first time. Since kN,RIC is chosen uniformly and has superpolynomial length `KIC, this happens
with negligible probability. Thus Pr[VeryEarlyIC : Game 7] and Pr[VeryEarlyIC : Game 8]
are negligible.

Similarly, we analyze the probability of GuessCipher (in both Game 7 and Game 8).
Since kN,RIC has superlogarithmic min-entropy, and since from cN,RKEM one can, given ekN ,

compute kN,RIC , we get that cN,RKEM has superlogarithmic min-entropy. Thus the probability

that cN,RKEM occurs in a decch-query before kN,RMAC, kR,NIC , or cR,NKEM have been accessed is
negligible. Since these values are only accessed in a fakeenccs(R, ·)-query to CSN , it follows
that Pr[GuessCipher : Game 7] and Pr[GuessCipher : Game 8] are negligible.

In Game 7, for each R, the programcs(R, ·)-query immediately follows the corresponding
fakeenccs(R, ·)-query. Thus, no OIC-queries occur in between. Thus the event EarlyIC does
not occur. Hence Pr[EarlyIC : Game 7] = 0. Notice that this reasoning does not apply to
Game 8.

25

4.4 Cleaning up 4 PROOF OF PROG-KDM SECURITY

Thus all summands on the right hand side of (8) except for Pr[EarlyIC : Game 8] are
negligible. Hence Pr[Rand is not good] ≤ Pr[EarlyIC : Game 8] + µ1 for some negligible µ1.
With (7), we get

|Pr[A = 1 : Game 7]− Pr[A = 1 : Game 8]| ≤ Pr[EarlyIC : Game 8] + µ1.

With Lemma 11, it follows that

|Pr[A = 1 : Game 1]− Pr[A = 1 : Game 8]| ≤ Pr[EarlyIC : Game 8] + µ1 + µ2

for some negligible µ2. With µ := µ1 + µ2, Lemma 18 follows. �

4.4 Cleaning up

We undo the changes from Game 7. That is, Game 8 is like Game 7, but instead of using
the randomness Rand , the fake challenger FC and the adversary A again use their own
randomness. More precisely, we have the following game:

Game 9. A interacts with FC, but FCRetrieve is modified as follows:
• If regR = “encch(N,R1)” and there was a getdkcs()-query to CSN : Compute m :=
FCRetrieve(R1). Query CSN with fakeenccs(R, FCLen(R1)). Denote the answer
with c. Set regR := c. Append (R 7→ R1) to the list plainN . Append c to cipherN .
Send a programcs(R,m)-query to CSN . Return c.

The randomness of AAA and FCFCFC is not fixed at the beginning. �
Notice that we omitted the case “regR = ‘encch(N,R1)’ and there was no getdkcs()-

query to CSN yet” and the case “regR = ‘getdkch(N)’ ” in the description of Game 9
because already in Game 8, these cases were as in the original description of FCRetrieve
(Definition 4). Thus the only change between Game 8 and Game 9 is that the randomness
is not fixed any more. Analogously to (6), we thus have

Pr[A outputs 1 : Game 8] = Pr[A outputs 1 : Game 9] (9)

and Pr[EarlyIC : Game 8] = Pr[EarlyIC : Game 9] (10)

Game 10. A interacts with FC, but FCRetrieve is modified as follows:
• If regR = “encch(N,R1)” and there was a getdkcs()-query to CSN : Compute m :=
FCRetrieve(R1). Query CSNCSNCSN with enccs(R,m)enccs(R,m)enccs(R,m). Denote the answer with c. Set
regR := c. Append (R 7→ R1) to the list plainN . Append c to cipherN . (Do not
perform a programcs(R,m)programcs(R,m)programcs(R,m)-query.) Return c.

�
Afterm := FCRetrieve(R1), regR1

= m and hence FCLen(R1) = |m|. Thus fakeenccs(R, FCLen(R1))
is the same as fakeenccs(R, |m|). By definition of CSN (Definition 8), an enccs(R,m)-query
has the same effect as a fakeenccs(R, |m|)-query followed by a programcs(R,m)-query. Thus

26

4.5 Analyzing FC 4 PROOF OF PROG-KDM SECURITY

an enccs(R,m)-query (as in Game 10) has the same effect as a fakeenccs(R, FCLen(R1))-
query followed by a programcs(R,m)-query (as in Game 9). Hence

Pr[A outputs 1 : Game 9] = Pr[A outputs 1 : Game 10] (11)

and Pr[EarlyIC : Game 9] = Pr[EarlyIC : Game 10]. (12)

Game 11. A interacts with FC (without any modifications). �
Since Game 10 and Game 11 are the same game (the modifications listed in Game 10 match
what FCRetrieve does anyway in Definition 4), we have

Pr[A outputs 1 : Game 10] = Pr[A outputs 1 : Game 11] (13)

and Pr[EarlyIC : Game 10] = Pr[EarlyIC : Game 11]. (14)

By Lemma 18 and (9,11,13) we have that∣∣∣Pr[A outputs 1 : Game 1]− Pr[A outputs 1 : Game 11]
∣∣∣ ≤ Pr[EarlyIC : Game 8] + µ

for some negligible µ. With (10,12,14) the following lemma immediately follows:

Lemma 19 There is a negligible function µ such that∣∣∣Pr[A outputs 1 : A interacts with RC]− Pr[A outputs 1 : A interacts with FC]
∣∣∣

≤ Pr[EarlyIC : A interacts with FC] + µ.

4.5 Analyzing FC

Lemma 20 In an interaction of A and FC, we have that Pr[EarlyIC] is negligible.

Proof. Again, we analyze a sequence of games:

Game 12. A interacts with FC. �
Our goal is to show that Pr[EarlyIC : Game 12] is negligible.

Game 13. As Game 12, but we initially pick R∗
$← R and N∗

$← N . (But R∗ and N∗ are
never used afterward.) �

Using the notation of Definition 12, let EarlyIC∗ denotes the event that there is an
OIC(·, kR∗IC , ·)-query to the ideal cipher after the fakeenccs(R

∗, ·)-query to CSN∗ but before
any programcs(R

∗, ·)-query occurred.
Comparing this to the definition of EarlyIC (Definition 12), we see that EarlyIC is the

event that EarlyIC∗ occurs for some R∗, N∗. Thus

Pr[EarlyIC : Game 12] = Pr[EarlyIC : Game 13] ≤ |R| · |N | · Pr[EarlyIC∗ : Game 13].

27

4.5 Analyzing FC 4 PROOF OF PROG-KDM SECURITY

Since |R| and |N | are of polynomial size, we have

Pr[EarlyIC∗ : Game 13] is negligible =⇒ Pr[EarlyIC : Game 12] is negligible. (15)

Game 14. As Game 13, but the game aborts when a getdkcs()-query is sent to CSN∗

(before executing that query). �
We will show that

Pr[EarlyIC∗ : Game 13] = Pr[EarlyIC∗ : Game 14]. (16)

To show this, it is sufficient to show that in Game 13, if EarlyIC∗ occurs, then it already
occurs before the first getdkcs()-query to CSN∗ (if there is one). Assume this is not the
case. Then we distinguish the following cases:

• The first OIC(·, kR∗IC , ·)-query occurs after the first getdkcs()-query to CSN∗ , and there
was a fakeenccs(R

∗, ·)-query to CSN∗ before the first getdkcs()-query to CSN∗.

By definition of FCRetrieve, if FCRetrieve sent a fakeenccs(R
∗, ·)-query to CSN∗

prior to sending getdkcs() to CSN∗ , then (R∗ 7→ R1) ∈ plainN∗ for some R1. Again
by definition of FCRetrieve, the first getdkcs()-query to CSN∗ is followed by a
programcs(R

′, ·)-query for each (R′ 7→ ·) ∈ plainN∗ (with no OIC-queries in between
as these are only performed by FC during decch- and oraclech-queries). In particular,
there is a programcs(R

∗, ·)-query to CSN∗ after the first getdkcs()-query to CSN∗ with
no OIC-queries in between. Thus the first OIC(·, kR∗IC , ·) occurs after a programcs(R

∗, ·)-
query, hence by definition the event EarlyIC∗ does not occur.

• The first OIC(·, kR∗IC , ·)-query occurs after the first getdkcs()-query to CSN∗ , and there
was no fakeenccs(R

∗, ·)-query to CSN∗ before the first getdkcs()-query to CSN∗.

Since kR
∗

IC is only defined after a fakeenccs(R
∗, ·)-query, the first OIC(·, kR∗IC , ·)-query

occurs after a fakeenccs(R
∗, ·)-query. Since there was no fakeenccs(R

∗, ·)-query to
CSN∗ before the first getdkcs()-query to CSN∗ , fakeenccs(R

∗, ·) occurs after the first
getdkcs()-query to CSN∗ . By definition of FCRetrieve, this can only happen as part
of an enccs(R

∗, ·)-query to CSN∗ . And in that case, the fakeenccs(R
∗, ·)-query is

immediately followed by a programcs(R
∗, ·)-query to CSN∗ (with no OIC-queries in

between). Thus, since the first OIC(·, kR∗IC , ·)-query occurs after fakeenccs(R
∗, ·), it

occurs after a programcs(R
∗, ·)-query. Hence the event EarlyIC∗ does not occur.

Thus, we know that in Game 13, if EarlyIC∗ occurs, then it occurs before the first getdkcs()-
query to CSN∗ (if there is one). Thus aborting at the first getdkcs()-query does not change
the probability of EarlyIC∗ and (16) follows.

In the following, by a KEM-oracle, we mean an oracle that initially picks a key pair
(ek , dk) ← KKEM(1η). This oracle supports the following queries: Upon getekkem(), re-
turn ek . Upon enckem(), compute (k, c)← EKEM(ek) and return (k, c). Only the first such

28

4.5 Analyzing FC 4 PROOF OF PROG-KDM SECURITY

query is answered. Upon deckem(c), if (k∗, c∗) with c = c∗ was returned by an enckem()-query,
return k∗. Otherwise compute k ← DKEM(dk , c) and return k.

We also define the fake KEM-oracle which is defined like the KEM-oracle, except that

upon an enckem()-query, it computes (k′, c) ← EKEM(ek), picks k
$← {0, 1}`KMAC+`

K
IC , and

returns (k, c).
Notice that it follows directly from the definition of a CCA-secure KEM (see [CS03])

that no polynomial-time adversary can distinguish between the KEM-oracle and the fake
KEM-oracle.

Game 15. As Game 14, but the ciphertext simulator CSN∗ (but not CSN with N 6= N∗)
is changed as follows:
• At the beginning, it initializes a KEM-oracle and performs a getekkem()getekkem()getekkem()-

query on the KEM-oracle to initialize ekekek . dkdkdk is not initialized.
• Upon query fakeenccs(R, l) with R = R∗ (the case R 6= R∗ is unchanged): Let n be the

number of blocks returned by cbcpad(0l). Query enckem()enckem()enckem() from the KEM-oracle

and parse the result as ((kMAC, kIC), cKEM)((kMAC, kIC), cKEM)((kMAC, kIC), cKEM). Choose cCBC
$← ({0, 1}`MIC)n+1. Let

t← MAC(kMAC, cCBC). Return c := (cKEM, cCBC, t).
• Upon query deccs(c): Parse c as (cKEM, cCBC, t). Query deckem(cKEM)deckem(cKEM)deckem(cKEM) from the

KEM-oracle and parse the result as (kMAC, kIC)(kMAC, kIC)(kMAC, kIC). Check whether t = MAC(kMAC, cCBC).
Compute m← DOIC

CBC(kIC, cCBC). If parsing, the deckem(cKEM)-query, DCBC, or the
MAC-check fails, return ⊥. Otherwise, return m.

�
In the following, by n∗, k∗MAC, k

∗
IC, c

∗
KEM, c

∗
CBC, t

∗, c∗ we denote the corresponding values
n, kMAC, kIC, cKEM, cCBC, t, c from the (unique) fakeenccs(R

∗, ·)-query to CSN∗ .
In Game 15, we have outsourced invocations to KKEM, EKEM, and DKEM to the

KEM-oracle. Notice that CSN∗ does not need to access the decryption key dk any more,
since we abort before sending a getdkcs()-query to CSN∗ . Furthermore, by construction
of FCRetrieve, there is only one fakeenccs(R, ·)-query with R = R∗ (since FCRetrieve

caches its results), thus only one enckem-query will be sent to the KEM-oracle. Thus

Pr[EarlyIC∗ : Game 14] = Pr[EarlyIC∗ : Game 15]. (17)

Game 16. As Game 15, but we use the fake KEM-oracle instead of the KEM-oracle. �
Since Game 15 and Game 16 run in polynomial-time, and since (KKEM, EKEM, DKEM)

is a CCA-secure KEM, we get

Pr[EarlyIC∗ : Game 15] ≈ Pr[EarlyIC∗ : Game 16] (18)

where ≈ means that the difference is negligible.

Game 17. As Game 16, but we further modify CSN∗ : Upon a query deccs(c), it parses c as
(cKEM, cCBC, t). If cKEM = c∗KEM and t 6= MAC(k∗MAC, cCBC), the deccs(c)-query returns ⊥.
Otherwise, the deccs(c)-query proceeds as described in Game 15. �

29

4.5 Analyzing FC 4 PROOF OF PROG-KDM SECURITY

Notice that in Game 16, if cKEM = c∗KEM, the deckem(cKEM)-query to the fake KEM-
oracle returns (kMAC, kIC) = (k∗MAC, k

∗
IC). Thus, if t 6= MAC(k∗MAC, cCBC), we also have

t 6= MAC(kMAC, cCBC), and the deccs(c)-query to CSN∗ would return⊥. Thus the additional
check introduced in Game 17 only returns ⊥ if deccs(c) would have returned ⊥ in Game 16
anyway. Notice also that the deccs(c)-query does not perform queries to OIC, thus the
probability of EarlyIC∗ does not change. Hence

Pr[EarlyIC∗ : Game 16] = Pr[EarlyIC∗ : Game 17]. (19)

Let DecChall denote the event that a deckem(c
∗
KEM)-query is sent to the fake KEM-oracle.

By definition, EarlyIC∗ implies that an OIC(·, k∗IC, ·)-query is performed. Notice, however,
that in Game 17, k∗IC is only ever accessed by programcs(R

∗, ·)-queries to CSN∗ and by
deckem(c

∗
KEM)-queries to the fake KEM oracle. (The ciphertext c∗KEM produced by the

fake KEM oracle is independent of k∗IC.) Furthermore, by definition of FCRetrieve, a
programcs(R

∗, ·)-query to CSN∗ only occurs after a getdkcs()-query to CSN∗ . Due to
the change from Game 14, we abort when a getdkcs()-query is sent to CSN∗ , thus no
programcs(R

∗, ·)-query is sent to CSN∗ . Thus, unless DecChall occurs, k∗IC is never accessed.
Since k∗IC has superpolynomial length, it follows that there is a negligible µ such that

Pr[EarlyIC∗ : Game 17] ≤ Pr[DecChall : Game 17] + µ. (20)

We proceed to bound Pr[DecChall : Game 17]. Thus, assume that DecChall occurs in an
execution of Game 17. By definition of DecChall, this implies that a deckem(c

∗
KEM)-query

is sent the fake KEM-oracle. This, again, implies that there was a deccs((cKEM, cCBC, t))-
query to CSN∗ with with cKEM = c∗KEM. Due to the additional check introduced in
Game 17, the deckem(c

∗
KEM)-query to the fake KEM-oracle is only reached if additionally

t = MAC(k∗MAC, cCBC). Furthermore, FCRetrieve only sends a deccs((cKEM, cCBC, t))-
query to CSN∗ if (cKEM, cCBC, t) /∈ cipherN∗ . Since (c∗KEM, c

∗
CBC, t

∗) ∈ cipherN∗ (the
fakeenccs(R

∗, ·)-query to CSN∗ added that ciphertext to cipherN∗), it follows that (cKEM, cCBC, t) 6=
(c∗KEM, c

∗
CBC, t

∗). Assume that cCBC = c∗CBC. Then t∗
(∗)
= MAC(k∗MAC, c

∗
CBC) = MAC(k∗MAC, cCBC) =

t where (∗) follows from the way t∗ is chosen in the fakeenccs(R
∗, ·)-query. This contradicts

(cKEM, cCBC, t) 6= (c∗KEM, c
∗
CBC, t

∗). Thus we have cCBC 6= c∗CBC.
Summarizing, whenever DecChall occurs, we have that cCBC 6= c∗CBC, but t = MAC(k∗MAC, cCBC).

Furthermore, k∗MAC is only used to compute t∗ := MAC(k∗MAC, c
∗
CBC) (this occurs only once),

and to perform checks of the form t
?
= MAC(k∗MAC, cCBC). (The ciphertext c∗KEM produced

by the fake KEM oracle is independent of k∗MAC.) Hence the adversary has produced as
forgery (t, cCBC) with respect to the MAC-key k∗MAC. Since we assumed that MAC is a
one-time MAC (as defined in [CS03]), a polynomial-time adversary produces such a forgery
only with negligible probability. Thus Pr[DecChall : Game 17] is negligible.

With (20), we get that Pr[EarlyIC∗ : Game 17] is negligible. From (16)–(19), we get
Pr[EarlyIC∗ : Game 13] ≈ Pr[EarlyIC∗ : Game 17]. Hence Pr[EarlyIC∗ : Game 13] is negligible.
With (15), this implies that Pr[EarlyIC : Game 12] is negligible. By definition of Game 12,
this means that in an interaction of A and FC, Pr[EarlyIC] is negligible. �

From Lemmas 19 and 20, we immediately get our final result:

30

REFERENCES REFERENCES

Theorem 21 The hybrid encryption scheme (Khyb, Ehyb,Dhyb) is PROG-KDM secure
with respect to the ciphertext simulator from Definition 8.

References

[BDPR98] Mihir Bellare, Amit Desai, David Pointcheval, and Phillip Rogaway. Relations
among notions of security for public-key encryption schemes. In Hugo Krawczyk,
editor, Advances in Cryptology, Proceedings of CRYPTO ’98, volume 1462
of Lecture Notes in Computer Science, pages 26–45. Springer-Verlag, 1998.
Extended version online available at http://eprint.iacr.org/1998/021.ps.

[BDU08] Michael Backes, Markus Dürmuth, and Dominique Unruh. Oaep is secure under
key-dependent messages. In ASIACRYPT 2008, volume 5350 of LNCS, pages
506–523. Springer, December 2008.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-
secure encryption from decision diffie-hellman. In David Wagner, editor, Pro-
ceedings of CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science,
pages 108–125. Springer, 2008.

[BHK12] Florian Böhl, Dennis Hofheinz, and Daniel Kraschewski. On definitions of
selective opening security. In Marc Fischlin, Johannes Buchmann, and Mark
Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 522–539. Springer,
2012.

[BPS07] Michael Backes, Birgit Pfitzmann, and Andre Scedrov. Key-dependent message
security under active attacks – BRSIM/UC-soundness of symbolic encryption
with key cycles. In Proc. of 20th IEEE Computer Security Foundation Symposium
(CSF), June 2007. Preprint on IACR ePrint 2005/421.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In ACM Conference on Computer and Com-
munications Security, pages 62–73, 1993.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Advances
in Cryptology: EUROCRYPT ’94, volume 950 of LNCS, pages 92–111. Springer,
1994.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme
security in the presence of key-dependent messages. In Proc. 9th Annual
Workshop on Selected Areas in Cryptography (SAC), pages 62–75, 2002.

[CCS09] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption
scheme secure against key dependent chosen plaintext and adaptive chosen
ciphertext attacks. In Antoine Joux, editor, Eurocrypt 2009, volume 5479 of
LNCS, pages 351–368. Springer, 2009.

31

http://eprint.iacr.org/1998/021.ps

REFERENCES REFERENCES

[CFGN96] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively secure
multi-party computation. In Twenty-Eighth Annual ACM Symposium on Theory
of Computing, Proceedings of STOC 1995, pages 639–648. ACM Press, 1996.
Extended version online available at http://www.wisdom.weizmann.ac.il/

~oded/PS/tr682.ps.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Advances in
Cryptology: EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer,
2001.

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The random oracle
model and the ideal cipher model are equivalent. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 1–20. Springer, 2008.

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key
encryption schemes secure against chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167–226, 2003. Online available at http://shoup.net/

papers/cca2.ps.

[DNRS03] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stockmeyer. Magic
functions. Journal of the ACM, 50(6):852–921, 2003. Extended version online
available at http://www.wisdom.weizmann.ac.il/~naor/PAPERS/magic.ps.

[EMST76] William F. Ehrsam, Carl H. W. Meyer, John L. Smith, and Walter L. Tuchman.
Message verification and transmission error detection by block chaining. US
Patent 4074066, 1976.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28(2):270–299, April 1984.

[Nie02] Jesper B. Nielsen. Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In Moti Yung, editor, Advances
in Cryptology, Proceedings of CRYPTO ’02, volume 2442 of Lecture Notes in
Computer Science, pages 111–126. Springer-Verlag, 2002.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Joan Feigenbaum, editor, Advances
in Cryptology, Proceedings of CRYPTO ’91, volume 576 of Lecture Notes in
Computer Science, pages 433–444. Springer-Verlag, 1992. Online available at
http://research.microsoft.com/crypto/dansimon/me.htm.

[Sha49] C. E. Shannon. Communication theory of secrecy systems. Bell System Technical
Journal, 28(4):656–715, 1949.

32

http://www.wisdom.weizmann.ac.il/~oded/PS/tr682.ps
http://www.wisdom.weizmann.ac.il/~oded/PS/tr682.ps
http://shoup.net/papers/cca2.ps
http://shoup.net/papers/cca2.ps
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/magic.ps
http://research.microsoft.com/crypto/dansimon/me.htm

REFERENCES REFERENCES

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, EUROCRYPT ’97, volume 1233 of LNCS, pages 256–266.
Springer, 1997.

Symbolindex

η Security parameter
ek Encryption key
dk Decryption key
x← A Pick x according to algorithm/distribution A

x
$← S Pick x uniformly from set S

regR Register R (in real/fake challenger)
O Denotes some oracle (usually the random oracle) 7
|x| Absolute value of x
A Usually denotes the adversary
N Set of natural numbers 1, 2, . . . 7
RC Real challenger 9
cipherN Set of ciphertexts produced in real/fake challenger in

session N
9

R := getekch(N) Real/fake challenger query: Load encryption key
(session N)

9

R := getdkch(N) Real/fake challenger query: Load decryption key
(session N)

9

R := evalch(C,R1, . . . , Rn) Real/fake challenger query: Evaluate circuit C 9
R := encch(N,R1) Real/fake challenger query: Encrypt regR1

(session
N)

9

oraclech(x) Real/fake challenger query: Oracle query 9
decch(N, c) Real/fake challenger query: Decrypt c (session N) 9
forbidden Output denoting attempted decryption of challenge

ciphertext
9

revealch(R1) Query type of the real/fake challenger 9
fakeenccs(R, l) Ciphertext simulator query: Produce fake encrytion 9
deccs(c) Ciphertext simulator query: Decrypt 9
enccs(R,m) Ciphertext simulator query: Encryption (non-fake) 9
getekcs() Ciphertext simulator query: Get encryption key 9
getdkcs() Ciphertext simulator query: Get decryption key 9
programcs(R,m) Ciphertext simulator query: Program the oracle 9
CS Ciphertext simulator 9
FC Fake challenger 10
FCRetrieve Retrieve function of FC 11

33

REFERENCES REFERENCES

plainN Plaintexts of fake encryptions from CSN (part of
state of FCRetrieve)

11

`ek (η) Length of an encryption key 11
`dk (η) Length of a decryption key 11
`c(η, l) Length of the encryption of a ciphertext of length l 11
FCLen Length function of FC 11
MAC Algorithm computing a MAC 12
`KMAC Length of the key of MAC 12
`TMAC Length of tag produced by MAC 12
`KIC Key length of the ideal cipher 12
`MIC Message length of the ideal cipher 12
OIC Ideal cipher 12
KKEM Key generation of the KEM 12
EKEM Encryption algorithm of the KEM 12
DKEM Decryption algorithm of the KEM 12
kMAC Key for MAC 12
kIC Key for ideal cipher OIC 12
cbcpad Padding function for CBC 12
ECBC Code block chaining mode (encryption function) 12
DCBC Code block chaining mode (decryption function) 12
DIV Distribution of initialization vectors in CBC mode 12
Khyb Key generation of hybrid encryption scheme 13
Ehyb Encryption algorithm of hybrid encryption scheme 13
Dhyb Decryption algorithm of hybrid encryption scheme 13
OIC,lazy Lazy ideal cipher 13

ÕIC,lazy Intermediate lazy ideal cipher 14
N Set of all N used by adversary 14
R Set of all R used by adversary 14
≈ Negligibly close 15
Rand Fixed randomness used in some games 17
ekN Encryption key for CSN (fixed at beginning) 17
dkN Decryption key for CSN (fixed at beginning) 17

kN,RMAC MAC-key used by CSN for register R (fixed at
beginning)

17

kN,RIC Ideal cipher key used by CSN for register R (fixed at
beginning)

17

cN,RKEM KEM-ciphertext chosen by CSN for register R (fixed
at beginning)

17

tRfakeenc Random tape used by CSN in fakeenccs-queries 17
tA Random tape used by the adversary (fixed at

beginning)
17

O0
IC The ideal cipher before any reprogramming 17

34

REFERENCES REFERENCES

EarlyIC Event (early ideal cipher query) 18
VeryEarlyIC Event (very early ideal cipher query) 19
GuessCipher Event (guessing a ciphertext) 19

KCollision Event: kR,NIC = kR
′,N ′

IC with (R,N) 6= (R′, N ′) 25
EarlyIC∗ Event: EarlyIC holds for R = R∗, N = N∗ 27
getekkem() KEM-oracle query: Get encryption key 28
enckem(m) KEM-oracle query: Encryption 28
deckem(c) KEM-oracle query: Decryption 29
DecChall Event: Decryption of KEM-oracle challenge

ciphertext
30

35

Index

adKDM, 6

challenger
fake, 10
real, 9

ciphertext simulator, 9
consistent

(executions), 19

DKDM, 6

encryption scheme
length-regular, 11

execution
left, 19
right, 19

fake challenger, 10
function

length, 11
retrieve, 11

good
(randomness), 19

IND-CCA2, 2
IND-CPA, 2
IND-KDM, 4
IND-SO-CPA, 5

KDM, see key-dependent messages
KDM-CCA2, 4
KEM-oracle, 28
key-dependent messages, 2

left execution, 19
length function, 11
length-regular

encryption scheme, 11

NCE, see non-committing encryption
NINCE, see non-interactive non-committing

encryption

non-committing encryption, 4
non-interactive, 4

non-interactive non-committing encryption,
4

oracle
KEM-, 28

PROG-KDM, 12

real challenger, 9
receiver selective opening problem, 3
receiver-NINCE, 4
retrieve function, 11
right execution, 19

selective decommitment problem, 3
selective opening problem

receiver, 3
sender, 3

semantic security, 2
sender selective opening problem, 3
sender-NINCE, 4
SIM-SO-CPA, 5
simulator

ciphertext, 9

36

	Introduction
	The problem
	Prior approaches
	Our contribution

	Definition of PROG-KDM
	PROG-KDM via hybrid encryption
	Proof of PROG-KDM security
	Basic definitions
	Preparing the ground
	Reordering
	Cleaning up
	Analyzing FC

	References
	Symbolindex
	Index

