
Secure Database Commitments and

Universal Arguments of Quasi Knowledge

Melissa Chase
Microsoft Research
Redmond, USA

melissac@microsoft.com

Ivan Visconti∗

University of Salerno
ITALY

visconti@dia.unisa.it

Abstract

In this work we focus on a simple database commitment functionality where besides
the standard security properties, one would like to hide the size of the input of the
sender. Hiding the size of the input of a player is a critical requirement in some applica-
tions, and relatively few works have considered it. Notable exceptions are the work on
zero-knowledge sets introduced in [MRK03], and recent work on size-hiding private set
intersection [ADCT11]. However, neither of these achieves a secure computation (i.e., a
reduction of a real-world attack of a malicious adversary into an ideal-world attack) of
the proposed functionality.

The first result of this submission consists in defining “secure” database commitment
and in observing that previous constructions do not satisfy this definition. This leaves
open the question of whether there is any way this functionality can be achieved.

We then provide an affirmative answer to this question by using new techniques
that combined together achieve “secure” database commitment. Our construction is
in particular optimized to require only a constant number of rounds, to provide non-
interactive proofs on the content of the database, and to rely only on the existence of
a family of CRHFs. This is the first result where input-size hiding secure computation
is achieved for an interesting functionality and moreover we obtain this result with
standard security (i.e., simulation in expected polynomial time against fully malicious
adversaries, without random oracles, non-black-box extraction assumptions, hardness
assumptions against super-polynomial time adversaries, or other controversial/strong
assumptions).

A key building block in our construction is a universal argument enjoying an improved
proof of knowledge property, that we call quasi-knowledge. This property is significantly
closer to the standard proof of knowledge property than the weak proof of knowledge
property satisfied by previous constructions.
Keywords: ZK sets, universal arguments, input-size hiding computation.

1 Introduction
Secure computation. The standard notion of “security” for any multi-party compu-
tation [GMW87] involves describing an ideal model where parties have access to a trusted

∗Work partially done while visiting University of California at Los Angeles, USA.

1

functionality which will carry out the desired computation without revealing any information
about the parties’ secret inputs and outputs. Then, very informally, given a communication
network in the real world, without any trusted functionality, a protocol π securely realizes
a multi-party computation if any successful attack by an adversary of π can be translated
into a successful attack in the ideal world. Since the latter is trivially secure then π is secure
in the real world as well.

Therefore, the real-world/ideal-world paradigm [GMW87] allows one to prove the secu-
rity of protocols in a simulation-based fashion, with strong security guarantees. This turns
out to be very useful when protocols are used as subprotocols and provides robust secu-
rity when the ideal functionality is correctly designed. All the fundamental primitives have
been defined in terms of ideal functionalities and thus they can be securely realized in the
real-world/ideal-world paradigm using the general results of [GMW87].

However the current state-of-the art still does not properly address the issue of consider-
ing the size of the input of a player as information to be kept private. Here we consider the
problem of hiding the input size in one of the most basic primitives: a commitment scheme.

Secure Database Commitments. Here we address the case where a player wants to
commit to a large set of data, and then to partially open that commitment, both without
revealing the size of the committed set. More specifically, we consider the setting where a
party (the sender) may want to commit to a large elementary database composed by key-
value pairs, without revealing its size. Then in the opening phase, the sender might want
to reveal part of his database one item at a time depending on queries of the receiver. In
particular, the receiver will ask for some keys, and the sender wants to convince the receiver
of the value associated to each requested key. These partial opening queries should reveal
no information about the rest of the database, including the size.

The main question: feasibility of Secure Database Commitments. Following the
above discussion, and the fact that we have general results for achieving secure multi-party
computation, one could ask the following natural question: “Why should we focus on the
design of protocols for secure database commitments if we can use the known constructions
for secure two-party computation?”. There is a crucial difference between this problem, and
the one considered in [GMW87] and in all subsequent work (to the best of our knowledge).
Our notion of secure database commitment critically requires that the size of the prover’s
input must be hidden. In contrast, the [GMW87] definition, according to [Gol04] and to the
known constructions, allows a party either at the beginning of or during the computation, to
learn the size of the other party’s input. This information is actually revealed in all known
protocols, mainly because many of the tools used to allow extraction of the adversary’s
implicit input (e.g., zero-knowledge proofs of knowledge) have communication that depends
(polynomial) on the size of the input.

Consequently, traditional results for secure two-party computation cannot be used to
obtain secure database commitments, and we need to develop new tools and a significantly
new approach. This presents the following interesting open problem: Is the notion of secure
database commitment and more generally a meaningful notion of input-size hiding secure
computation achievable?

2

Difficulties in achieving input-size hiding secure computation with standard as-
sumptions. We stress that the main challenge in size-hiding secure computation is as
follows: when proving security against a real world adversarial prover, we need to design a
simulator which can extract the input from the adversary so that it can provide it to the
ideal functionality. At the same time, we can not assume any fixed polynomial upper bound
for the size of the input (the protocol should work for any polynomial sized input), and we
can not allow the amount of communication to vary with the size of the input.

The real difficulties lie in obtaining a standard security notion (showing an efficient ideal
adversary from an efficient real-world adversary), therefore avoiding controversial (some-
times not even falsifiable) conjectures such as random oracles, non-black-box extraction
assumptions (e.g., the Diffie-Hellman knowledge of exponent assumption and its varia-
tions [HT98]), complexity leveraging (i.e., hardness assumptions against super-polynomial
time adversaries) and other non-standard assumptions.

Relationship to Zero-Knowledge Sets. We note that the requirements described for
secure database commitments are essentially those given in [MRK03] where Micali, Rabin
and Kilian introduced the concept of a zero-knowledge set (ZKS). This primitive allows
a party to first commit to a database, and later to answer queries on that database and
to prove that the responses are consistent with the original commitment, as in the secure
database commitments described above.

However, the definition given by [MRK03] and by all subsequent papers is a property-
based definition that requires: 1) soundness: the commitment should be binding, i.e., for
each query there should be only one response for which the prover can give a convincing
proof; and 2) zero-knowledge: both the commitment and the proofs should not reveal any
information about the rest of the database (beyond the information that is asked in the
query), not even the number of elements it contains.

Furthermore, we argue that the constructions they provide (and later constructions for
ZKS, see [CHL+05, CDV06, GM06, CFM08, PX09, LY10]) do not satisfy a typical real-
world/ideal-world definition in the spirit of “secure computation”. To see this, note that
all previous schemes for ZKS included a non-interactive commitment of the set. As men-
tioned above, we do not consider non-black-box extraction assumptions; moreover, standard
non-black-box techniques introduced in [Bar01] so far have been successfully used only in
conjunction with interaction.

However, we argue that black-box extraction is impossible for a scheme which is size
hiding and has a non-interactive commitment phase. This follows because such a scheme
must allow for sets of any polynomial size, which means there will be at least 2superpoly(k)

possible sets; at the same time, the length of the non-interactive commitment must be
bounded by a fixed polynomial in k. Thus, a simple counting argument shows that there is
no way (based on standard assumptions and security notions) that a simulator can correctly
identify the committed set given only the single commitment message. Note that this
argument also holds in the CRS model, as long as the CRS is of length polynomial in
k, as even in this case the simulator still gets only poly(k) bits of information to identify
one database out of 2superpoly(k). Therefore, no previous construction of zero-knowledge sets
can be proved to be a secure realization of the database commitment functionality (with a
black-box simulator).

3

Looking ahead, in our construction we will avoid these limitations by allowing an interac-
tive commitment phase. The possibility of using interaction was already mentioned in some
previous work, but only for the query/proof phase, thus without making any contribution
towards addressing this extraction problem. Instead, our goal is to use interaction in the
commitment phase, still keeping the query/answer phase non-interactive.

Other related work. Recently similar issues have been considered by Ateniese et al.
in [ADCT11] for the problem of Private Set Intersection. However their solution uses random
oracles, and obtains security with respect to semi-honest adversaries only. The goal of our
work is to obtain security against malicious players as required in secure computation, and
we will obtain this result in the standard model using only standard complexity-theoretic
assumptions.

Timing attacks. We note that there may be some cases in which any attempt to hide
the size of inputs is vulnerable to timing attacks as discussed in [IP07] (in which an adver-
sary can guess the size of the input depending on the amount of time required to perform
computations). However, there are many settings where these attacks will have only limited
impact. Indeed, notice that since the adversary does not necessarily know the amount of
resources of the other player (the committer could perform his computation by distributing
the workload among computing devices in number proportional to the size of the input) the
timing may in fact give very little information.

1.1 Our Results

In this work we first put forth the notion of secure database commitment. Following the
traditional notion of “secure computation” we define the natural ideal functionality for
database commitment FDbCom and observe that it implies all required security guarantees
needed by zero-knowledge sets.

We then present a constant-round protocol that securely realizes the FDbCom function-
ality. The protocol is interactive, and is secure in the standard model (i.e., we do not
require any set-up assumptions) based on the existence of families of collision-resistant
hash functions (CRHFs, for short) (notice that CRHFs are implied by the existence of
ZK sets [CDV06]).

We stress that our protocol has optimal amortized round complexity, as queries and
answers are non-interactive. In addition, the use of the real-world/ideal-world paradigm,
and the simulation in polynomial time should make it much easier to use this primitive as
part of a larger protocol.

Our construction is based on a special universal argument that enjoys a new proof of
knowledge property which is closer to the traditional proof of knowledge property. We define
this new property, give a construction which satisfies it based on CRHFs, and show how it
can be used to implement secure database commitments. (However, we stress that there
were many other subtle issues to address, and our stronger notion of universal argument
alone is not sufficient for directly obtaining input-size hiding secure computation.)

Techniques. As described above, the biggest challenge is in defining a simulator that
can extract a witness whose length can be any polynomial, from only a fixed polynomial

4

amount of communication. Note that the standard approach does not work in this setting:
it might seem that a simple solution would be to ask the sender to give a commitment to the
database, and an interactive zero-knowledge proof of knowledge of the database contained
in the provided commitment. However, in general such proofs may reveal the size of the
witness, which in this case means the size of the database.

Instead, we use a different tool, namely a witness indistinguishable universal argument of
quasi knowledge (UAQK). A universal argument is a (computationally-sound) proof system
which guarantees that the communication is only proportional to the size of the statement.
At the same time, it guarantees that the honest prover can run in time polynomial in the
size of the witness, which is the best that we can hope for.

Universal arguments were introduced by Barak [Bar01] as part of the design of a non-
black-box simulator. Barak showed a construction based on CRHFs which satisfied a weak
proof of knowledge property. However, there are some inherent challenges in defining a
standard proof of knowledge for universal arguments, and the extraction guarantees of his
definition do not seem to be sufficient for our application. To deal with this we define a new
proof of knowledge property which we call “quasi knowledge” which provides a functionality
somewhat closer to that of a standard proof of knowledge. We show that it can be used in
our application to implement the traditional commitment and proof of knowledge strategy
described above. (Of course we are glossing over many issues here, and the application is
not straightforward at all - see Section 4 for details.)

Finally, we note that this is of additional interest, because we use universal arguments
for a completely different purpose than the one that motivated Barak’s original construction
[Bar01], which was the design of a non-black-box simulator.

Universal arguments: from weak proof of knowledge to proof of quasi knowledge.
Very informally, the standard proof of knowledge property guarantees that if a prover can
convince a verifier of the truthfulness of a theorem with non-negligible probability, then
one can efficiently obtain an NP witness for that theorem in expected polynomial time with
overwhelming probability.

When one focuses instead on universal languages (i.e., when one would like to prove that
a Turing machine accepts the provided input within a given — not necessarily polynomial —
number of steps), then one can not always efficiently obtain a corresponding witness since
its length can be superpolynomial. In this case a restricted proof of knowledge property
might instead focus on extracting an implicit representation of the witness, in the form of a
polynomial-sized circuit that when evaluated on input i provides the i-th bit of the witness.

Unfortunately there is no known construction of a universal argument with such a prop-
erty. The current state of the art, [BG02], shows how to get a weak proof of knowledge
property that includes one more restriction: when a prover proves a theorem with probabil-
ity 1/q, one can efficiently get an implicit representation of a circuit with probability 1/q′

that is polynomially related to 1/q. This essentially means that one can efficiently get a
candidate implicit representation of a witness, with non-negligible probability when 1/q is
non-negligible. However, there is no guarantee that the candidate implicit representation is
actually correct (one can not simply test the circuit asking for all bits of the witness since
the size of a witness can be superpolynomial).

Furthermore, there is an additional subtlety in the way this weak proof of knowledge

5

property is defined. For any polynomial q, there is guaranteed to be a polynomial time
extractor that can extract candidate representations of the witness from any prover that
proves a theorem with probability 1/q, and this extractor is guaranteed to succeed with
the related probability 1/q′; however, the choice of this extractor and its running time may
depend on q. This has two disadvantages: (1) in order to use an extractor, we must first
determine which q we are interested in, and (2) an efficient extractor is required to exist
only for polynomials q, while nothing is required when q is super polynomial. (In fact, in
the construction given in [BG02], the running time of the extractor is roughly qd where
d is some constant greater than 1, therefore when q is superpolynomial the running time
of the extractor increases quickly and its expected running time is not polynomial). As
a result of these disadvantages, converting a weak proof of knowledge system into a proof
system with the standard proof of knowledge property is very non-trivial, even when one is
happy with the extraction of an implicit representation of the witness. (This is because the
standard proof of knowledge property requires that, regardless of the success probability of
the adversarial prover, the extractor must run in expected polynomial time.)

In this paper we remove the above additional restriction of the weak proof of knowledge
property and replace it with a more standard proof of knowledge property, requiring that
an extractor outputs in expected polynomial time a correct implicit representation of the
witness. The only caveat is that, while we require that the extracted implicit representation
must correspond to some true witness, we do allow it to contain a few errors, as long as those
errors are unlikely to be noticed by any polynomial time process. (Note that if the witness is
polynomial sized, then this still implies the standard proof of knowledge property.) We will
say that an argument system is an argument of “quasi” knowledge if it enjoys this property.

Finally, we construct a constant-round witness-indistinguishable universal argument of
quasi-knowledge under standard complexity-theoretic assumptions.

2 Universal Arguments of Quasi Knowledge

A universal argument [BG02] is an interactive argument system for proving membership in
NEXP that satisfies a weak proof of knowledge property. For the formal definition, see
Appendix A.3. We will use the following result.

Theorem 1 ([BG02, Bar04b], informal) Suppose there exists a hash function ensemble that
is collision-resistant against polynomial-sized circuits. Then there exists a universal argu-
ment system that is constant-round, public-coin and witness indistinguishable.

Moreover, there exists a construction for which there exists a weak proof of knowledge
extractor satisfying two additional properties. First, the construction of this extractor is
parameterized by a lower bound α on the success probability of the adversarial prover P ?n .
There exists a fixed constant d (independent of P ∗) such that the resulting extractor, that
we denote by EP

?
n (α, ·, ·) has expected running time at most (nα)d for any n-bit instance y.

Furthermore, it has the property that there is a fixed known polynomial q? such that
for any polynomial-sized prover P ?n that succeeds in causing verifier V (y) to accept with
probability q(n) for an n-bit instance y, and for any α < q(n), the probability that the
extractor EP

?
n (α, y, ·) succeeds in extracting bits of a valid witness is at least α

q?(n) . For

details of the construction and proof, see the proof of Lemma A.2.5 in [Bar04b].

6

2.1 A New Notion: Quasi-Knowledge

As described in Section 1.1, we aim to construct a universal argument with a more standard
proof of knowledge property. The resulting proof of knowledge will resemble the standard
proof of knowledge property with two exceptions.

The first is that the extractor will produce only an implicit representation of a witness.
This is necessary since UAs are used to prove statements that are not necessarily in NP,
therefore the length of the witness may not be polynomial, but still we want our extractor
to run in (expected) polynomial time. We formalize this saying that the extractor on input
i will produce a candidate for the i-th bit of the witness w.

The second difference is that even when the extractor is successful, we do not require
that the extracted witness be perfectly correct. We may allow some small fraction of the
extracted bits to be incorrect, as long as this will have a negligible effect when used in any
polynomial-time process. We formalize this by saying that for any (potentially adversarially
and adaptively generated) polynomial sized set of indices I, it must be the case that with
all but negligible probability, all of the associated bits produced by the extractor will be
correct with respect to some valid witness.

Thus, our definition requires an extractor which satisfies two properties. The first is
that, for any PPT (and potentially adversarial) sampling algorithm S which chooses a set of
indices I, with all but negligible probability over the choice of random tape r, the extractor
Er with oracle access to P ? will output a set of bits {wi}i∈I that are consistent with some
valid witness w. Note that we allow S to choose these indices adaptively, after querying E
on indices of it’s choice. This allows for the fact that in a larger application, which positions
of the witness need to be extracted may depend on the values of the bits which have been
seen so far.

The second property requires that the expected running time of E be at most a polyno-
mial factor (in |y|) larger than 1

p(|y|) where p(|y|) is the success probability of the adversarial

prover P ∗. There is a slight issue here in that, even if the expected running time of E(y, i)
was guaranteed to be polynomial for each i, it might still be possible that for any choice of
random tape r, an adversarial and adaptive sampling algorithm S could find at least one
index that causes Er(y, i) to run in super-polynomial time. Thus we also require that the
running time be independent of i; this implies that the expected running time of E on any
set of inputs (even those that are chosen adversarially and adaptively) will also be at most
a polynomial factor larger than 1

p(|y|) . For our application this will be particularly useful, as
it implies that E can be converted into a circuit which implicitly describes the witness and
whose expected size is at most poly(|y|)

p(|y|) . (We will see more details in Section 4.)

Definition of universal argument of quasi knowledge (UAQK). We construct a
universal argument 〈P (·, ·), V (·)〉 such that the efficient verification, completeness and com-
putational soundness properties hold as usual, but the weak proof of knowledge property is
replaced as follows.

Definition 1 A universal argument system 〈P (·, ·), V (·)〉 for the universal language LU is a
universal argument of quasi knowledge (UAQK) if there exists an algorithm E and negligible
functions ν1, ν2 such that for any y ∈ LU∩{0, 1}n, and for any polynomial-size circuit family
{P ?n}n∈N there exists a polynomial poly such that the following two properties hold.

7

1. For any family {Sn}n∈N of polynomial-sized circuits, for sufficiently large n, for any
y ∈ LU ∩ {0, 1}n, if Prob[outV (〈P ?n , V (y)〉) = 1] > ν1(n), then

Probr[I ← SE
P?n
r (y,·)

n (y); {wi ← EP
?
n

r (y, i)}i∈I :

∃ŵ = ŵ1, . . . ŵs, (ŵ, y) ∈ RU ∧ (wi = ŵi ∀i ∈ I)] ≥ 1− ν2(n).

where the probability is over the choice of the coins r used by E (indeed by Er we mean
a run of E with coins r). Note that the same coins are used for all i ∈ I.1

2. For any n ≥ 2, for any y ∈ LU ∩{0, 1}n: The running time of EP
?
n (y, i) is independent

of the choice of i, and if we let p = Prob[outV (〈P ?n , V (y)〉) = 1] > 0, then the expected

running time of EP
?
n (y, ·) is at most poly(n)

p , where again the expectation is over the
choice of the coins r used by E.

Note that if LU is a language with polynomial-size witnesses, then this property im-
plies proof of knowledge property [FFS88]. The proof of knowledge extractor will first run
〈P ?n , V (y)〉 once: if V rejects, it will output ⊥, otherwise it will choose a random string r to
be used as randomness to run EP

?

r (y, i) for each bit i of the witness, and then output the
result when the obtained witness is correct, aborting otherwise. This extractor will have
overwhelming success probability when p(y) is non-negligible, and expected running time

p(y) · |y|
c

p(y) = |y|c, which is clearly polynomial.
Note also that we could have given a definition that explicitly requires the extractor

to run in expected polynomial time, essentially resembling the definitions of the proof of
knowledge [FFS88] and weak proof of knowledge [BG02] properties. However, we prefer
the above formulation as it makes clear that we can differentiate between (item 1) runs on
which the extractor inadvertently produces a bad witness (recall that when the witness is
not polynomial-sized, it may not be possible to efficiently identify invalid witnesses) and
(item 2) runs on which the extractor aborts (e.g., when the interaction with P ?n produces an
invalid proof or when the extractor gives up in order to keep polynomial is expected running
time).

2.2 CRHFs ⇒ Constant-Round UAQK

Our approach will be to construct a UAQK out of a regular UA (i.e., enjoying just the weak
proof of knowledge property). As mentioned in Section 1.1, there are two difficulties when
using the weak proof of knowledge property: (1) we must somehow estimate a lower bound
on the success probability of the prover in order to determine which extractor to use, and
(2) the running time of the extractor may grow faster than what we would like as compared
with the success probability of the prover (here we will use the UA construction of [BG02],

which gives an extractor with running time (|y|α)d where α is a lower bound on the success
probability of P ?).

The first issue we will deal with within the design of our extractor; it essentially requires
balancing the accuracy of the estimate with the need to compute it in expected polynomial
time. In order to address the second issue, we will attempt to increase the success probability

1Here we assume for simplicity that if a witness w is expanded by appending any sequence of zeros, the
resulting value is still a valid witness, so that ŵi is always defined for all i ∈ I.

8

of the adversarial prover. Essentially, we will run some instances of that UA sequentially,
and accept only if all instances are accepted by the verifier. Then, if the prover succeeds in
all instances with probability p, we will argue that there must be at least one instance in
which it succeeds with significantly higher probability. If we use this instance, then we can
run the extractor with a higher lower bound, and thus obtain a more efficient extractor.

The resulting construction goes as follows. We first ask the prover to commit to a Merkle
hash of its witness, and then we run the UA several times sequentially. In each UA, the
prover proves both that the statement is true, and that the witness used is consistent with
the given commitment, i.e., it proves weak knowledge of a witness and an authentication
chain for each bit of the witness. (This will allow us to verify that parts of the witness are
consistent with the initial commitment without having to extract the entire witness.)

The actual UAQK. Our construction uses as a subprotocol a universal argument 〈PUA(·, ·), VUA(·)〉
satisfying the conditions described in Theorem 1 for the universal language LU . Let ` = d+2
where d is the value of the constant defined in Theorem 1 for this UA. We construct a UAQK
〈Pnew(y, w), Vnew(y)〉 for language LU as depicted in Fig. 1.

2.3 Proving the Quasi-Knowledge Property

Intuition. At a high level, the proof proceeds as follows: Let p be the probability that
the adversarial prover P ? convinces Vnew to accept. Then for j = 1, . . . , `, let pj be the
probability that Vnew accepts the j-th internal UA instance conditioned on the event that
it accepted all previous instances. Then the key observation is that p =

∏`
j=1 pj , so we

are guaranteed that for some j∗, pj∗ ≥ p1/`. Now, if we could estimate pj∗ , and identify
a UA instance where P ? succeeds with probability roughly pj∗ , then we could run the UA
extractor with this lower bound, and obtain an extractor with success probability roughly
p1/`

q(|y|) (here q is the polynomial referred to as q? in the discussion in Theorem 1), and running

time roughly (|y|pj∗
)d = |y|d

pd/`
. Then, because we need an extractor with overwhelming success

probability, we will run this extractor approximately q(|y|)
p1/`

times, to ensure that at least

one run will produce bits of a valid implicit witness.2 The final result will have success

probability nearly 1, and running time roughly |y|d
pd/`
· q(|y|)
p1/`

= |y|dq(|y|)
p(d+1)/` = |y|dq(|y|)

p (the last

equality follows from our choice of `). 3

The main challenge in this process is finding a UA instance where P ? has success prob-
ability roughly p1/`, and estimating this probability. Essentially, for each j, we want to find
a starting state where P ? is about to begin the j-th UA, and where P ?’s success probability
in that proof is roughly pj ; then we need to identify and take the best of these states (i.e.,

2There is some subtlety here in that we must guarantee that we can always recognize which set of extracted
bits is the correct one (the one which is consistent with some valid witness). To do this we make use of the
prover’s initial commitment to the witness - if the extracted bits are consistent with the initial commitment,
then we assume that they are the correct ones.

3In fact this is slightly inaccurate, as we also need to guarantee, even when we run this extractor many
times and boost P ?’s success probability a bit more, none of these times takes too long. We do this by
estimating a reasonable upper bound for the running time of E based on our estimate of P ∗’s success
probability, and stopping E early if it runs more than this number of steps. As a result, we have to run E a
few more times, and we set ` = d+ 2.

9

Players: prover Pnew, verifier Vnew.
Common input: the statement y ∈ LU , such that |y| = n.
Input of Pnew: witness w for y ∈ LU .
Tools: a family {Hn} of CRHFs, a statistically hiding trapdoor commitment
scheme (SHTGen, SHCom,SHVer, SHTCom,SHTDec), a constant-round statistical ZKAoK
〈Pszk(·, ·), Vszk(·)〉, a constant-round WI universal argument 〈PUA(·, ·), VUA(·)〉 (as defined in
Theorem 1) with parameter d.

1) Vnew → Pnew: Vnew picks h
R← {Hn}, computes (η, t)

R← SHTGen(1n) and sends (h, η) to
Pnew.

2) Vnew ↔ Pnew: Vnew runs Pszk to prove to Pnew running Vszk knowledge of a trapdoor t
for η.

3) Pnew → Vnew: Pnew encodes the witness w as follows: Let s = |w| be the length of the
original witness w, and let w = w1, . . . , ws be the bitwise representation of w. Then
Pnew uses h to form a Merkle hash tree over all the bits of w treating each bit as a
leaf node in the tree. Let root be the root of this tree, and for bit wi of witness w, let
authi be the appropriate authentication chain (i.e., all of the values on the path from
wi to root, and all of the siblings of those values).

Next Pnew computes (Cs, decs)← SHComη(s) and (Croot, decroot)← SHComη(root).

Finally, Pnew forms the new witness w′ = s◦decs◦root◦decroot◦w1◦auth1◦. . .◦ws◦auths.
Now, let y′ = Cs ◦ Croot ◦ y and let L′U be the language which accepts (y′, w′) iff
w′ = s ◦ decs ◦ root ◦ decroot ◦ w1 ◦ auth1 ◦ . . . ◦ ws ◦ auths such that (1) s < 2|y|, (2)
(s, decs) is a valid decommitment for Cs and (root, decroot) is a valid decommitment
for Croot with parameter η, (3) for all i = 1 . . . s, authi is a valid authentication chain
for wi with respect to root and hash function h, and (4) w = w1 . . . , ws is such that
(y, w) ∈ LU .

Pnew sends (Cs, Croot) to the verifier.

4) Pnew ↔ Vnew:

For j = 1, . . . , ` = d+ 2, sequentially:

4.j) Pnew and Vnew run the universal argument 〈PUA(·, ·), VUA(·)〉 for this new lan-
guage L′U . Pnew will run PUA(y′, w′) while Vnew will run VUA(y′), where
y′ = Cs ◦ Croot ◦ y.

Vnew outputs 1 iff all instances of VUA(y′) accept.

Figure 1: Universal Argument of Quasi Knowledge 〈Pnew(·, ·), Vnew(·)〉.

pj∗). We do this as follows: First, for each j, we record many states for P ? where P ? has
successfully completed the first j−1 UAs and has a reasonable chance of completing the next
UA. In Appendix B we show that with overwhelming probability, one of these states will be
such that P ? has probability at least pj/2 of successfully completing the next UA, and at the

10

same time that the time required to collect all these states is at most O(poly(|y|)/p). Next,
we attempt to identify one such state, and to estimate the corresponding success probability.
We do this by running P ? from each state many times, and counting how long it takes for
P ? to complete |y| proofs starting from that state. We interleave the counting for all of
the states corresponding to the j-th proof to ensure that we can stop as soon as one has
resulted in |y| successful proofs. (This allows us to avoid running for too long just because
one candidate state was bad.) Finally, we consider the best states for j = 1, . . . , `, select
the one with the highest estimated success probability, and use it as described above.

Our extractor. To summarize, our extractor works as follows:

1. For each j = 1, . . . , `:

(a) Collect n = |y| candidate states, where P ? has successfully completed the first
j− 1 proofs and has a reasonable chance of successfully completing the next one.

(b) Repeatedly run the next UA from all the above n states, and identify the state
beststatej that is the first one that reaches n accepting executions of the next
〈PUA(·, ·), VUA(·)〉. Let mj be the number of such executions from that state.

2. Given the above mj for j = 1, . . . , `, let ĵ be the index of the UA where mĵ is minimal.
n

2mĵ
is an estimate of a lower bound on the adversarial prover’s success probability pĵ

in state beststateĵ .

3. Run approximately q(|y|)/pĵ instances of the UA extractor. Return the result that
agrees with the initial commitment sent by the prover.

A more formal description of the extractor and a more detailed analysis can be found in
the Appendix B. We also note that for technical reasons, we also need a statistically hiding
trapdoor commitment scheme and a statistical zero-knowledge argument of knowledge of
the trapdoor, which help us to prove the witness indistinguishability of our construction.

Theorem 2 Under the assumption that a family of collision-resistant hash functions exists,
then the protocol depicted in Fig. 1 is a constant-round witness-indistinguishable UAQK.

Similarly to our construction, one can also obtain a zero-knowledge UAQK by relying
on our techniques on top of the zero-knowledge UA of [Bar04a].

3 Secure Database Commitments

We consider the notion of a secure database commitment such that each element x appears
at most once. As in [MRK03], we will consider a formulation that captures both sets and
databases. For a set S, we can define Db[x] to be 1 if x appears in the set and ⊥ if it does
not. More generally, for a database of pairs (x, y) (such that each x appears in at most one
pair), we define Db[x] to be y if a pair (x, y) appears in the database, and ⊥ if no pair (x, ·)
appears. Since the difference between the two primitives is almost cosmetic, we will use the
terms of sets and database interchangeably. We will assume that each element x belongs
to {0, 1}L and L is polynomial in the security parameter k. Thus, by the requirements

11

above, this means that the database contains at most 2L entries. We will make no other
requirement on the size of the database.

The functionality in question is FDbCom and is the natural extension of the standard
commitment functionality, but in FDbCom we must hide the size of the committed message.
Furthermore, we will allow for partial openings, in which a verifier can choose a value x, and
the the prover will reveal the value of Db[x]. (These partial openings must hide all other
information about the database, thus there are also similarities with the zero-knowledge
functionality.)

Ideal functionality FDbCom . The database commitment functionality consists of two
phases: one in which a prover commits to a database, and a second in which the prover
answers queries about that database. Here we will generalize this definition to say that
the prover can commit to any database for which he knows an implicit representation. In
particular, we will allow the prover to commit to a circuit which evaluates the desired
database: it takes as input a string x, and returns Db[x] (which will be ⊥ if x is not in the
database).

The formal specification is given in Fig. 2. For simplicity we assume that all queries
made by the honest verifier V are fixed in advance. The definition can be generalized to
adaptive queries, where the next query depends on the output of the previous ones. Our
construction will satisfy this stronger definition as well.

Remark. Note that our definition of FDbCom does not exclude the possibility that a player
is able to commit to a very large (e.g., superpolynomial sized) set, for which he only knows
some implicit representation. However, we argue that this does not violate any intuitive
security requirement of secure database commitments since the critical requirement is that
the prover is committed to some database (whose size is not a priori upperbounded by any
fixed polynomial) at the end of the commitment phase, and that it must answer correctly
according to this database during the query phase. The construction that we present in
Section 4 will require that the honest sender knows an explicit representation of the database
he is committing to (i.e., the honest sender runs on input a list of pairs representing the
database it wants to commit to).4 Obtaining a scheme where a real-world honest prover
is allowed to have as input a polynomial-sized implicit representation that corresponds to
a super-polynomial number of elements is also an interesting direction, and we defer it to
future research.

Defining security. In the ideal execution, when initiated with input, parties interact with
FDbCom . The adversary Sim has control of a party and thus can deviate from the prescribed
computation, while the other player HP follows the prescribed ideal computation. We
denote by IDEALFDbCom

HP ,Sim
(k, x, z) the output of Sim and HP where Sim runs on input an

auxiliary input z, and uniform randomness, while HP runs on input x. Moreover we denote
by {IDEALFDbCom

HP ,Sim
(k, x, z)} the corresponding ensemble of distributions, with k ∈ N and

z ∈ {0, 1}∗.
In the real execution parties run a given protocol π. Let HP be the honest party and A

be the adversary, which has control of the other party. We denote by EXECπHP ,A(k, x, z)

4Note that an explicit representation can always be efficiently converted into an implicit representation
CDb.

12

Functionality FDbCom

Players: Prover P , Verifier V .
Input of P : circuit CDb.
Inputa of V : x1, . . . , xm with m = poly(k).
Computation of FDbCom :

1. Upon receiving (Commit, CDb) from P , if (Commit, CDb) was already received or if
CDb does not describe a circuit with the appropriate number of input and output
wires then ignore, otherwise record (CDb), send (Receipt) to V .

2. Upon receiving (Query, x) from V , if (Commit, CDb) was previously received from
P , then send (Query, x) to P , otherwise ignore.

3. Upon receiving (Open, 1, x) from P , if (Query, x) was not previously sent to P then
ignore, otherwise evaluate the circuit CDb on input x to obtain output Db[x], and
send (Open, x,Db[x]) to V .

4. Upon receiving (Open, 0, x) from P , if (Query, x) was not previously sent to P then
ignore, otherwise send (Open-Abort, x) to V .

5. Upon receiving (Halt) from V , if the same message was previously received from
V then ignore, otherwise send (Halt) to P .

Computation of P :

1. Upon activation, send (Commit, CDb) to FDbCom .

2. Upon receiving (Query, x) from FDbCom , send (Open, 1, x) to FDbCom .

3. Upon receiving (Halt) from FDbCom go to Output.

Computation of V :

1. Upon receiving (Receipt) from FDbCom send (Query, x1) to FDbCom .

2. Upon receiving (Open, xi, yi) from FDbCom , if 0 < i < m then send (Query, xi+1) to
FDbCom .

3. Upon receiving (Open, xm, ym) or (Open-Abort, x) from FDbCom , send (Halt) to
FDbCom and go to Output.

Output:

P : Output (x1, . . . , xt) where t = poly(k) and xi for 0 < i ≤ t is such that (Query, xi)
is the i-th message received from FDbCom .

V : Output ((x1, y1), . . . , (xm′ , ym′)), where x1, . . . , xm was the verifier’s input, and each
yi for 0 < i ≤ m′ was part of a message (Open, xi, yi) received from FDbCom while
yi is the empty string in case (Open-Abort, xi) has been received from FDbCom .

aWe stress that inputs can also be computed adaptively.

Figure 2: Ideal computation of functionality FDbCom .

13

the output of A and HP where A runs on input an auxiliary input z, and uniform random-
ness, while HP runs protocol π on input x and uniform randomness. Moreover we denote
by {EXECπHP ,A(k, x, z)} the corresponding ensemble of distributions, with k ∈ N , x ∈
{0, 1}poly(k) and z ∈ {0, 1}∗.

Definition 2 A protocol π securely realizes the functionality FDbCom if for any real-world
adversary A there exists an ideal-world adversary Sim such that for every sufficiently large k,
for every x ∈ {0, 1}poly(k) and for every z ∈ {0, 1}∗, {EXECπHP ,A(k, x, z)} and {IDEALFDbCom

HP ,Sim
(k, x, z)}

are computationally indistinguishable.

4 Constant-Round Secure Database Commitments

In this section we present a constant-round protocol that securely realizes the FDbCom func-
tionality. Our construction uses a constant-round zero-knowledge argument of knowledge
(ZKAoK) for all NP, a constant-round WI universal argument of quasi knowledge, a 2-round
trapdoor commitment scheme, and a zero-knowledge set scheme with two additional prop-
erties. As all of these ingredients can be instantiated through CRHFs, this gives a secure
realization of FDbCom based only on CRHFs. An additional feature of our protocol is that the
amortized round complexity of a proof is optimal (i.e., proofs are actually non-interactive).

Zero-knowledge sets. We start by reviewing a major building block for our construc-
tion: zero-knowledge sets. At a high level, a non-interactive zero-knowledge set scheme
is composed of four algorithms as follows: an algorithm ZKSSetup, which generates some
parameters, an algorithm ZKSCom, which commits to a database in a size independent way,
an algorithm ZKSProve, which allows the owner of the database to prove that a particular
query response was consistent with the committed database, and an algorithm ZKSVerify
for verifying such proofs. We will also use “ZKS proof system” to refer to the interaction
between ZKSProve and ZKSVerify.

We will use non-interactive zero-knowledge sets as a building block in our construction
of secure database commitment. In Appendix A.4 we give a definition for zero-knowledge
sets which is similar to that in [CHL+05]. We also define a somewhat stronger hiding
property (which we call special zero knowledge), in which zero knowledge holds for all valid
parameters output by the simulator set-up algorithm, and the simulated commitment is an
honest commitment to an empty database. In Appendix C we will discuss how to achieve
these properties based on CRHFs. We finally stress that even though non-interactive zero-
knowledge sets have been defined in the common reference string model, we will use them
in the standard model by using interaction.

Intuition for our protocol. The basic idea behind this construction is fairly straight-
forward: we give a concise commitment to the database (using the ZKS commitment al-
gorithm), and use a universal argument of quasi knowledge to prove knowledge of a valid
opening. Then we can use the ZKS proof system to respond to queries.

However, we need an additional property from the ZKS proof system to make this work.
The issue is that when we are dealing with a corrupt prover, we need to be able to extract
a circuit representation of the committed database from the UAQK (by which we mean a

14

circuit which on input x returns Db[x]). On the other hand, recall that the UAQK only allows
us to query the witness one bit at a time. Thus, we need the ZKS to have the additional
property that the committer can generate a well-formed witness string. In particular, we
need to guarantee that the witness will be in a format such that we can efficiently extract
Db[x] for any x given only the UAQK extractor which allows queries to individual bits of
the witness. Furthermore, in order to argue that the responses in the query phase must
be consistent with the extracted database, we also need to be able to efficiently extract a
ZKS proof for each x. This must again be done by just querying the circuit representation.
Thus, we will define the notion of a ZKS scheme that allows local witnesses to capture these
requirements.

Definition 3 A ZKS proof system (ZKSSetup,ZKSCom,ZKSProve,ZKSVerify) allows local
witnesses if there exist additional polynomial-time deterministic algorithms FormWitness,TMVer,
Eval,PfGen such that the following properties hold:

Witness verifiability. For any sufficiently large k, for all polynomial sized Db, and random
strings r,

Pr[ZKSPAR← ZKSSetup(1k); zks ← ZKSCom(ZKSPAR,Db, r);

w ← FormWitness(ZKSPAR,Db, r) : TMVer(ZKSPAR, zks, w) = 1] = 1.

Local evaluation. There exists a polynomial q such that for any sufficiently large k, for any
x ∈ {0, 1}k and w ∈ {0, 1}2k , Eval(x,w) only accesses q(k) bits of w and runs in time
polynomial in k.

Local verification. There exists a polynomial q′ such that for any sufficiently large k, x ∈
{0, 1}k and w ∈ {0, 1}2k , PfGen(x,w) only accesses q′(k) bits of w and runs in time

polynomial in k. Moreover for any x ∈ {0, 1}k and w ∈ {0, 1}2k and polynomial sized
zks,

Pr[ZKSPAR← ZKSSetup(1k) : TMVer(ZKSPAR, zks, w) = 1∧
∧ ZKSVerify(ZKSPAR, zks, x,Eval(x,w),PfGen(x,w)) = 0] = 0.

The intuition of the above definition is that there must exist a procedure FormWitness

that transforms the witness while still preserving the content of the database; TMVer verifies
that this transformation has been correctly computed. Moreover one can extract the mem-
bership or non membership of an element and the corresponding proof by accessing only a
polynomial number of bits of this witness, according to the algorithms Eval and PfGen. The
reason why we allow w to be of superpolynomial size is that the adversary can bypass the
procedure FormWitness and produce a circuit that implicitly represent a superpolynomial
sized witness. The interesting property of our definition is that even in this case, Eval and
PfGen will be efficient.

Previous ZKS schemes allow local witnesses. We now show that standard construc-
tions of ZKS ([MRK03, CHL+05, CDV06]) have this property. We will use ideas from the
ZKS construction of [MRK03, CHL+05]. We summarize only the main properties we need.

The constructions work by building a tree. For each x in the database, we parse x as bits
b1, . . . , bL. Then at position b1, . . . , bL in the tree (where bi = 0 denotes the left branch and

15

bi = 1 denotes the right branch at level i), we store a commitment vx to the corresponding
y (all commitments here use a special commitment scheme). We construct the tree from the
bottom up. For every ancestor x′ = b1, . . . , bi of such an x, we compute a commitment to a
hash of the two children: vx′ = Com(h(vx′||0||vx′||1)). If one of the children has not yet been
specified (it is the root of a subtree with no leaves in the database), we set that child node
to Com(⊥).

Then a proof for value (x, y) ∈ Db can be formed by producing all sibling and ancestor
nodes and openings for all ancestor commitments. A proof for value x /∈ Db is more complex,
but it can be formed by first finding the root of the largest empty subtree containing x. The
value of this root node (call it x⊥) should be ⊥. Then the proof will include all sibling and
ancestor nodes of x⊥, special openings of all ancestor commitments, and an additional value
which can be constructed given x and the randomness used to form the commitment at x⊥.

More formally there exists a procedure PfGen∗ such that for every empty subtree, there
exists a polynomial sized string info, such that for all leaves x in this subtree, PfGen∗(x, info)
produces output identical to the part of the output of ZKSProve corresponding to such a
subtree. It is also possible to efficiently verify that info is a legitimate string for running
PfGen∗(x, info) on any leaf x belonging to the empty subtree.

We now sketch the necessary algorithms as defined in Definition 3:

FormWitness : will first form the ZKS tree as described above. Then we will transform
this into a single linear witness. For each nonempty, non-⊥ node x in the tree we will
form an entry consisting of the value of vx, the values of its children, the opening of
the commitment vx, and the positions in this witness string where the entries for each
of the children nodes begin. For each ⊥ node, we form an entry with the commitment
v⊥ and the extra info necessary to open the commitment. The witness will begin with
the bit position of the entry corresponding to the root commitment.

TMVer: will traverse the entire tree (stopping at the roots of empty subtrees), and verify
all commitments and hashes. This algorithm can easily be described by a polynomial
sized TM.

Eval(x): will follow the path through the tree corresponding to x, beginning with the root
and continuing until it reaches either ⊥ or a leaf node with value y, and return the
result.

PfGen(x,w): will follow the path through the tree corresponding to x until it reaches an
empty subtree or a leaf. If it is a leaf, it will return all of the ancestor and sibling
nodes and the openings, as described above. If it is an empty subtree, it reads the
accompanying value info, runs PfGen∗(x, info) → π and returns all the ancestor and
sibling nodes and openings, followed by π. In both cases the output for an honestly
generated witness will be identical to the output of ZKSProve.

Our construction. We will use a constant-round zero-knowledge argument of knowl-
edge (ZKAoK) 〈P(·, ·),V(·)〉, a constant-round WI UAQK 〈UAP(·, ·),UAV(·)〉, a special ZKS
(ZKSSetup,ZKSCom,ZKSProve,ZKSVerify) which allows local verification with zero knowl-
edge simulator (ZKSSimSetup,ZKSSimCom,ZKSSimProve) and a 2-round trapdoor commit-
ment scheme (TGen,Com,TCom,TDec,Ver). A description of our scheme is found in Fig. 3.

16

Security Parameter: k.
Input to P : Db = ((x1, y1), . . . , (xs, ys)) where s = poly(k), xi, yi ∈ {0, 1}L for 0 < i ≤ s.
Input to V : x′1, . . . , x

′
m, where m = poly(k) and x′i ∈ {0, 1}L for 0 < i ≤ m.

Commitment Phase:

1. V → P : set (ZKSPAR, ZKSTRAP) ← ZKSSimSetup(1k), (crs, aux) ← TGen(1k) and
send (ZKSPAR, crs) to P .

2. V ↔ P : V proves knowledge of ZKSTRAP, aux (i.e., V and P run
P((ZKSPAR, crs), (ZKSTRAP, aux)) and V((ZKSPAR, crs)) respectively). If P
rejects the proof, then it aborts.

3. P → V : pick r ∈ {0, 1}k, set (c, dec) = Com(crs, zks = ZKSCom(ZKSPAR,Db, r))
and send c to V .

4. P ↔ V : P execute FormWitness(ZKSPAR,Db, r) to generate witness w. Let
UAP,UAV be a UAQK that proves quasi knowledge of a witness of the form
zks||dec||w, where zks, dec is a valid opening for commitment c under crs, and
w is such that TMVer(ZKSPAR, zks, w) accepts. Then P will execute the code of
UAP on input c||ZKSPAR||crs with witness zks||dec||w while V executes the code of
UAV on input c||ZKSPAR||crs. If UAV rejects, V aborts.

5. P → V : open the commitment c by sending zks, dec to V . V runs
Ver(crs, c, dec, zks) and if the output is 0, it aborts.

Query/Answer Phase:

For i = 1, . . . ,m do:

6. V → P : send x′i to P .

7. P → V : send (y′i = Db[x′i], π = ZKSProve(ZKSPAR, x′i,Db[x′i],Db, r)) to V . V
outputs (x′i, y

′
i) if ZKSVerify(ZKSPAR, zks, x′i, y

′
i, π) = 1 and aborts otherwise.

Figure 3: Our scheme for secure database commitments.

Round optimality. Simply by inspection one can observe that the query/proof phase is
non-interactive (optimal).

Security. The protocol depicted in Fig. 3 securely realizes the FDbCom functionality, i.e.,
it is a constant-round protocol for secure database commitment. For lack of space the proof
is presented in Appendix D.

Theorem 3 If 〈P(·, ·),V(·)〉 is a ZKAoK, (ZKSSetup,ZKSCom,ZKSProve,ZKSVerify) is a
special zero-knowledge set scheme which allows local witnesses, 〈UAP(·, ·),UAV(·)〉 is a WI
UAQK and (TGen,Com,TCom,TDec,Ver) is a 2-round trapdoor commitment scheme, then
the protocol depicted in Fig. 3 securely realizes the FDbCom functionality.

Corollary 1 Under the assumption that there exists a family of CRHFs, then there exists

17

an efficient protocol which securely realizes the FDbCom functionality. This follows from the
fact that all of the primitives mentioned in Theorem 3 can be realized based on CRHFs.

References

[ADCT11] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters:
Size-hiding private set intersection. In PKC 2011, volume 6571, pages 156–173.
Springer, 2011.

[Bar01] Boaz Barak. How to Go Beyond the Black-Box Simulation Barrier. In Proceed-
ings of the 42nd Symposium on Foundations of Computer Science, (FOCS ’01),
pages 106–115. IEEE Computer Society Press, 2001.

[Bar04a] Boaz Barak. Non-Black-Box Techniques in Cryptography. PhD thesis, Depart-
ment of Computer Science and Applied Mathematics, Weizmann Institute of
Science, Rehovot, Israel, 2004.

[Bar04b] Boaz Barak. Non-Black-Box Techniques in Cryptography, Ph.D. Thesis. Weiz-
mann Institute of Science, 2004.

[Bel02] Mihir Bellare. A note on negligible functions. Journal of Cryptology, 15:271–284,
2002.

[BG02] Boaz Barak and Oded Goldreich. Universal Arguments and Their Applications.
In IEEE Conference on Computational Complexity (CCC ’02). IEEE Computer
Society Press, 2002.

[CDV06] Dario Catalano, Yevgeniy Dodis, and Ivan Visconti. Mercurial commitments:
Minimal assumptions and efficient constructions. In Third Theory of Cryptogra-
phy Conference, TCC 2006, volume 3876 of Lecture Notes in Computer Science,
pages 120–144. Springer, 2006.

[CFM08] Dario Catalano, Dario Fiore, and Mariagrazia Messina. Zero-knowledge sets
with short proofs. In EUROCRYPT, volume 4965 of Lecture Notes in Computer
Science, pages 433–450. Springer, 2008.

[CHL+05] Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and Leonid
Reyzin. Mercurial commitments with applications to zero-knowledge sets. In
Advances in Cryptology – Eurocrypt ’05, volume 3494 of Lecture Notes in Com-
puter Science, pages 422–439. Springer-Verlag, 2005.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. J.
Cryptology, 1(2):77–94, 1988.

[Fis01] Marc Fischlin. Trapdoor commitment schemes and their
applications, phd thesis. http://www.mi.informatik.uni-
frankfurt.de/research/phdtheses/mfischlin.dissertation.2001.pdf, 2001.

18

[FS90] Uriel Feige and Adi Shamir. Zero-Knowledge Proofs of Knowledge in Two
Rounds. In Advances in Cryptology – Crypto ’89, volume 435 of Lecture Notes
in Computer Science, pages 526–544. Springer-Verlag, 1990.

[GM06] Rosario Gennaro and Silvio Micali. Independent zero-knowledge sets. In ICALP,
volume 4052 of Lecture Notes in Computer Science, pages 181–234. Springer,
2006.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof-systems. SICOMP, 18(6):186–208, 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi. Wigderson. How to Play any Mental
Game - A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM Symposium on Theory of Computing (STOC ’87), pages 218–229, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography - Volume II - Basic Applications.
Cambridge press, 2004.

[HM96] Shai Halevi and Silvio Micali. Practical and provably-secure commitment
schemes from collision-free hashing. In Advances in Cryptology - Crypto ’96,
volume 1109 of Lecture Notes in Computer Science, pages 201–215. Springer-
Verlag, 1996.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-Round zero-knowledge
protocols. In Advances in Cryptology – Crypto ’98, volume 1462, 1998.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data.
In Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007,
Amsterdam, The Netherlands, February 21-24, 2007, Proceedings, volume 4392
of Lecture Notes in Computer Science, pages 575–594. Springer, 2007.

[LY10] Benôıt Libert and Moti Yung. Concise mercurial vector commitments and inde-
pendent zero-knowledge sets with short proofs. In TCC, volume 5978 of Lecture
Notes in Computer Science, pages 499–517. Springer, 2010.

[MRK03] Silvio Micali, Michael Rabin, and Joe Kilian. Zero-knowledge sets. In 44th IEEE
Symposium on Foundations of Computer Science (FOCS ’03), pages 80–91, 2003.

[PX09] Manoj Prabhakaran and Rui Xue. Statistically hiding sets. In CT-RSA, volume
5473 of Lecture Notes in Computer Science, pages 100–116. Springer, 2009.

A Definitions and Tools in Details

A polynomial-time relation R is a relation for which it is possible to verify in time polynomial
in |x| whether R(x,w) = 1. Let us consider an NP-language L and denote by RL the
corresponding polynomial-time relation such that x ∈ L if and only if there exists w such
that RL(x,w) = 1. We will call such a w a valid witness for x ∈ L. A negligible function
ν(k) is a non-negative function such that for any constant c < 0 and for all sufficiently

19

large k, ν(k) < kc. We will call a positive function non-negligible if it is not a negligible
function. We will call a positive function overwhelming if it can be described as 1 − ν for
some negligible function nu. We will denote by Probr[X] the probability of an event X
over coins r.

Indistinguishability.

Definition 4 Two ensembles of distributions X = {Xk} and Y = {Yk} ranging over
{0, 1}poly(k) are computationally indistinguishable if for any polynomial-sized circuit D there
exists a negligible function ν such that∣∣Prob[α← Xs : D(s, α) = 1]− Prob[α← Ys : D(s, α) = 1]

∣∣ < ν(k).

Chernoff Bounds. We use the following versions of Chernoff Bounds.
Let X1, . . . , Xn be independent Poisson trials with Prob[Xi = 1] = pi. Then if X is the

sum of all Xi and if µ is E[X], for any δ ∈ (0, 1] :

Prob[X < (1− δ)µ] <
(e−δ

(1− δ)(1−δ)

)µ
.

Let X1, . . . , Xn be independent Poisson trials with Prob[Xi = 1] = pi. Then if X is the
sum of all Xi and if µ is E[X], for any δ > 0 :

Prob[X > (1 + δ)µ] <
(eδ

(1 + δ)(1+δ)

)µ
.

Markov’s inequality. Let X be a non-negative discrete random variable, and let a be a
positive real number, then

Prob[X ≥ a] ≤ E(X)

a
.

A.1 Commitment Schemes

We now give definitions for several notions of commitment schemes. For readability we
will use “for all m” to mean any possible message m of length polynomial in the security
parameter. We start with the standard notion of commitment scheme with its two main
variants (i.e., unconditionally binding and unconditionally hiding). Note that all definitions
will use a commitment generator function that outputs the commitment parameters.

Definition 5 (Gen,Com,Ver) is a commitment scheme (CS, for short) if:

- efficiency: Gen, Com and Ver are polynomial-time algorithms;

- completeness: for all m it holds that

Prob
[
crs← Gen(1k); (com, dec)← Com(crs,m) : Ver(crs, com, dec,m) = 1

]
= 1;

20

- binding: for any polynomial-time algorithm committer there is a negligible function
ν such that for all sufficiently large k it holds that

Prob
[
crs← Gen(1k); (com,m0,m1, dec0, dec1)← committer(crs) :

m0 6= m1 and Ver(crs, com, dec0,m0) = Ver(crs, com, dec1,m1) = 1
]
≤ ν(k);

- hiding: for any polynomial-time algorithm receiver there is a negligible function
ν such that for all m0,m1 where |m0| = |m1| and all sufficiently large k it holds

that Prob
[
(crs, aux) ← receiver(1k); b ← {0, 1}; (com, dec) ← Com(crs,mb) : b ←

receiver(com, aux)
]
< 1

2 + ν(k).

If the binding property holds with respect to a computationally unbounded algorithm
committer, the commitment scheme is said statistically binding; if instead, the hiding prop-
erty holds with respect to a computationally unbounded algorithm receiver, the commitment
scheme is said statistically hiding. When crs is clear from context, we often say ”m, dec is
a valid opening for com” to mean that Ver(crs, com, dec,m) = 1.

We now give the definition of trapdoor commitment scheme. In particular we strengthen
the computational indistinguishability of the computed commitments so that it holds even
in case the distinguisher takes as input the trapdoor information. This allows one to use the
same commitment parameters for any polynomial number of commitments (and actually all
our results hold in this stronger setting).

Definition 6 (TGen,Com,TCom,TDec,Ver) is a trapdoor commitment scheme (TCS, for
short) if TGen(1k) outputs a pair (crs, aux), Gencrs is the related algorithm that restricts
the output of Gen to the first element crs, (Gencrs,Com,Ver) is a commitment scheme and
TCom and TDec are polynomial-time algorithms such that:
- trapdoorness: for all m and all pairs (crs, aux) given in the output space of TGen, the
probability distribution

{(com, dec)← Com(crs,m) : (crs, aux, com, dec,m)}

is statistically indistinguishable from

{(com′, auxcom′)← TCom(crs, aux); dec′ ← TDec(auxcom′ ,m) :

(crs, aux, com′, dec′,m)}

even when receiver and the distinguisher have access to aux.

A.2 Interactive proof/argument systems with efficient prover strategies.

An interactive proof (resp., argument) system for a language L is a pair of probabilistic
polynomial-time interactive algorithms P and V , satisfying the requirements of completeness
and soundness. Informally, completeness requires that for any x ∈ L, at the end of the
interaction between P and V , where P has as input a valid witness for x ∈ L, V rejects

21

with negligible probability. Soundness requires that for any x 6∈ L, for any (resp., any
polynomial-sized) circuit P ?, at the end of the interaction between P ? and V , V accepts
with negligible probability. We denote by outV (〈P (x,w), V (x)〉) the output of the verifier
V when interacting on common input x with prover P that also receives as additional input
a witness w for x ∈ L. Moreover we denote by outV (〈P ?, V (x)〉) the output of the verifier
V when interacting on common input x with an adversarial prover P ?. Given a security
parameter k, we will use inputs x of length n where n = poly(k).

Formally, we have the following definition.

Definition 7 A pair of interactive algorithms 〈P (·, ·), V (·)〉 is an interactive proof (resp.,
argument) system for the language L, if V runs in probabilistic polynomial-time and the
following properties hold.

Completeness: for every x ∈ L and for every NP witness w for x ∈ L

Prob[outV (〈P (x,w), V (x)〉) = 1] = 1.

Soundness (resp. computational soundness): for every (resp., every polynomial-sized)
circuit family {P ?n}n∈N there exists a negligible function ν(·) such that

Prob[outV (〈P ?n , V (x)〉) = 1] < ν(|x|).

for every x 6∈ L of size n.

Since all protocols we give are actually argument (rather than proof) systems, we will
now focus on argument systems only. Therefore even when we use the word “proof”, we
will actually mean “computationally-sound” proof. Also from now on we assume that all
interactive algorithms are probabilistic polynomial-time, including the honest prover.

Arguments of knowledge. Informally, an argument system is an argument of knowledge
if for any probabilistic polynomial-time interactive algorithm P ? there exists a probabilistic
algorithm called the extractor, such that 1) the expected running time of the extractor
is polynomial-time regardless of the success probability of P ?; 2) if P ? has non-negligible
probability of convincing a honest verifier for proving that x ∈ L, where L is an NP language,
then the extractor with overwhelming probability outputs a valid witness for x ∈ L.

Zero knowledge. The classical notion of zero knowledge has been introduced in [GMR89].
In a zero-knowledge argument system a prover can prove the validity of a statement to a
verifier without releasing any additional information. This concept is formalized by requiring
the existence of an expected polynomial-time algorithm, called the simulator, whose output
is indistinguishable from the view of the verifier.

We start by defining the concept of a view of an interactive Turing machine. Let A
and B be two interactive Turing machines that run on common input x and assume that A
and B have additional information zA and zB. We denote by ViewAB(x, zA, zB) the random
variable describing the view of B; that is, B’s random coin tosses, internal state sequence,
and messages received by B during its interaction with A.

We are now ready to present the notion of a zero-knowledge argument.

22

Definition 8 An interactive argument system 〈P (·, ·), V (·)〉 for a language L is compu-
tational (resp., statistical, perfect) zero-knowledge if for all polynomial-time verifiers V ?,
there exists an expected polynomial-time algorithm S such that the following ensembles are
computationally (resp., statistically, perfectly) indistinguishable:

{ViewPV ?(z)(x,w)}x∈L,w∈W (x),z∈{0,1}? and {S(x, z)}x∈L,z∈{0,1}? .

Witness Indistinguishability Let Π = 〈P (·, ·), V (·)〉 be an argument system for lan-
guage L. A witness indistinguishability adversary V ′ for Π receives as input x ∈ L,
w0, w1 ∈W (x) and auxiliary information z.

V ′ interacts with machine P ? that has a bit b ∈ {0, 1} wired-in. P ? receives as input
(x,w0, w1) and executes the code of the honest prover P on input (x,wb). For b ∈ {0, 1},
we denote by WIExptbP,V ′(x,w

0, w1, z) the random variable describing the output of V ′ when

interacting on input (x,w0, w1, z) with prover P ? running on input (x,w0, w1) and b is the
wired-in bit of P ?.

Definition 9 Argument system Π = 〈P (·, ·), V (·)〉 for the language L is witness indistin-
guishable if for all probabilistic polynomial-time witness indistinguishability adversaries V ′

there exists a negligible function ν such that for all x ∈ L, all pairs of valid NP witnesses
w0, w1 for x ∈ L and all z ∈ {0, 1}?

|Prob[WIExpt0P,V ′(x,w
0, w1, z) = 1]− Prob[WIExpt1P,V ′(x,w

0, w1, z) = 1]| < ν(|x|).

A.3 Universal Arguments

A universal argument is an interactive argument system for proving membership in NEXP.
We give now the formal definitions.

Definition 10 Given a description of a non-deterministic Turing machine M , a string x
and a number t we say that (〈M,x, t〉) ∈ LU if M accepts the input x within t steps. We can
also consider the witness-relation for LU denoted by RU : the pair (〈M,x, t〉, w) is in RU if
M is a two-input deterministic Turing machine that accepts the input (x,w) within t steps.
Moreover, we define TM (x,w) to be the number of steps made by M on input (x,w).

Definition 11 [BG02] A universal-argument system is an argument system 〈P (·, ·), V (·)〉
such that:

Efficiency: there exists a polynomial q such that for any y = 〈M,x, t〉, the total time
spent by the verifier strategy V , on input y, is at most q(|y|). In particular, all messages
exchanged in the protocol have length smaller than q(|y|).

Completeness: for every (〈M,x, t〉, w) ∈ RU ,Prob[outV (〈P (〈M,x, t〉, w), V (〈M,x, t〉)〉) =
1] = 1. Moreover, there exists a polynomial q such that for all (〈M,x, t〉, w) ∈ RU , it is
guaranteed that P (〈M,x, t〉, w) runs in at most q(TM (x,w)) ≤ q(t) steps.

Soundness: For every polynomial-size circuit family {P ?n}n∈N and every string y =
〈M,x, t〉 ∈ {0, 1}n\LU , it holds that Prob[outV (〈P ?n , V (y)〉) = 1] < ν(n) where ν is a
negligible function.

Weak Proof of Knowledge: For every positive polynomial q there exists a positive
polynomial q′ and a probabilistic polynomial-time algorithm E, called the extractor, such

23

that the following holds. For every polynomial-size circuit family {P ?n}n∈N , and every y =
〈M,x, t〉 ∈ {0, 1}n, if Prob[outV (〈P ?n , V (y)〉) = 1] ≥ 1/q(|y|) then

Prob[∃w = w1 · · ·ws ∈ RU (y) s.t. ∀i ∈ {1, . . . , s}, EP ?n (y, i) = wi] ≥ 1/q′(|y|),

where RU (y) is defined as {w : (y, w) ∈ RU}, EP
?
n (·, ·) denotes that E has oracle access to

P ?n and the above probability is over the coins used by E.

Loosely speaking, a universal argument is a computationally sound proof system for
NEXP.

A.4 Zero-Knowledge Sets

In [MRK03] zero-knowledge sets and elementary databases were defined. We now present
a definition for zero-knowledge sets which is similar to that in [CHL+05] but includes a
special hiding property, in which zero knowledge holds for all valid parameters output by
the simulator set-up algorithm. We also require that the simulated commitment is an honest
commitment to an empty database. These additional properties can be achieved still using
CRHFs which is the minimal assumption for ZK sets.

Definition 12 Algorithms ZKSSetup,ZKSCom,ZKSProve,ZKSVerify constitute a special zero-
knowledge set scheme if they satisfy the following properties:

Completeness. For all databases Db and for all x,

Pr[ZKSPAR← ZKSSetup(1k); zks ← ZKSCom(ZKSPAR,Db, r);π ← ZKSProve(ZKSPAR, x,Db[x],Db, r) :

ZKSVerify(ZKSPAR, zks, x,Db[x], π) = 1] = 1.

Soundness. For all x and for all probabilistic polynomial-time malicious provers P ?,

Pr[ZKSPAR← ZKSSetup(1k); (zks, y, y′, π, π′)← P ?(ZKSPAR) :

y 6= y′ ∧ ZKSVerify(ZKSPAR, zks, x, y, π) = 1 ∧ ZKSVerify(ZKSPAR, zks, x, y′, π′) = 1]

is negligible in k (note that y and y′ can be strings or ⊥).
Special Zero-Knowledge. There exists algorithms ZKSSimSetup,ZKSSimProve such

that: (1) the distributions {(ZKSPAR, ZKSTRAP)← ZKSSimSetup(1k) : ZKSPAR} and {ZKSPAR←
ZKSSetup(1k) : ZKSPAR} are indistinguishable, and (2) for all (ZKSPAR, ZKSTRAP)← ZKSSimSetup,
for all probabilistic polynomial-time malicious verifiers A, the absolute value of the following
difference is negligible in k.

Pr[(Db, stateA)← A(ZKSPAR, ZKSTRAP);

zks ← ZKSCom(ZKSPAR,Db, r) : AZKSProve(ZKSPAR,·,Db[·],Db,r)(stateA) = 1]−
Pr[(Db, stateA)← A(ZKSPAR, ZKSTRAP);

zks ← ZKSCom(ZKSPAR, {}, r) : AZKSSimProve(ZKSTRAP,·,Db[·],r)(stateA) = 1].

24

B Proof of Theorem 2

Theorem 2 Under the assumption that a family of collision-resistant hash functions exists,
then the protocol depicted in Fig. 1 is a constant-round WI UAQK.

We prove this statement in two steps. First, we demonstrate that the protocol is a witness
indistinguishable universal argument, then we show that it satisfies the quasi-knowledge
property.

B.1 〈Pnew(·, ·), Vnew(·)〉 Is a Universal Argument

Theorem 4 Under the assumption that a family of collision-resistant hash functions exists,
the protocol 〈Pnew(·, ·), Vnew(·)〉 depicted in Fig. 1 is a constant-round WI universal argument.

Proof. Efficiency and completeness follow from the corresponding properties of 〈PUA(·, ·), VUA(·)〉,
which are preserved under sequential composition and from the corresponding properties of
the commitment scheme and of the zero-knowledge argument of knowledge. The fact that
CRHFs suffice, follow from Theorem 1 which provides the underlying constant-round witness
indistinguishable universal argument with special properties under CRHFs, from the fact
that constant-round statistical zero-knowledge arguments of knowledge exist for all NP under
CRHFs, and from the fact that constant-round statistically hiding trapdoor commitments
can be instantiated using CRHFs (see Appendix C).

Witness indistinguishability. We prove the witness indistinguishability of 〈Pnew(·, ·), Vnew(·)〉,
by contradiction. We assume that there exists a pair of different witnesses w0, w1 such that
there exists a verifier V ?

new and a distinguisher D such that D distinguishes an execution of
〈Pnew(y, w0), V ?

new(y)〉 from an execution of 〈Pnew(y, w1), V ?
new(y)〉. We now show that hybrid

games connect the two executions and therefore the success of D produces a contradiction
of one of the underlying complexity-theoretic assumptions.

Game 1: this is the game where the prover is Pnew(y, w0). Here the witness w0 is used
both for producing the commitments Cs, Croot of s, root and for producing the actual witness
to be used in the executions of 〈PUA(·, ·), VUA(·)〉.

Game 2: this is similar to Game 1, but we also require that Pnew(y, w0) runs the
extractor of the proof of knowledge of the trapdoor given by V ?

new. The trapdoor however is
not used by Pnew(y, w0). It is easy to see that a distinguisher between Game 2 and Game 1
would contradict the proof of knowledge (specifically, the fact that the success probability
of the extractor essentially corresponds to the success probability of the prover) property of
the statistical zero-knowledge argument of knowledge in which the verifier proves knowledge
of the trapdoor.

Game 3: this is similar to Game 2, but we also require that commitments are per-
formed by using the trapdoor. Notice that commitments are compatible (in the statistical
sense) both with the ones of Pnew(y, w0) and with the ones of Pnew(y, w1). The experiment
continues still using w0 for producing a witness in 〈PUA(·, ·), VUA(·)〉. It is easy to see that
a distinguisher between Game 3 and Game 2 would contradict the statistical trapdoorness
of Cs, Croot.

25

Game 4: this is similar to Game 3, but this time w1 is used for producing a witness in
〈PUA(·, ·), VUA(·)〉. It is easy to see that a distinguisher between Game 3 and Game 4 would
contradict the witness indistinguishability of 〈PUA(·, ·), VUA(·)〉.

Game 5: this is similar to Game 4, but this time w1 is used both for producing the
commitments Cs, Croot of s, root and for producing the actual witness to be used in the
executions of 〈PUA(·, ·), VUA(·)〉. It is easy to see that a distinguisher between Game 5 and
Game 4 would break the statistical trapdoorness of the commitment scheme.

Game 6: this is similar to Game 5, but the trapdoor is not used and the commitments
therefore correspond to w1. It is easy to see that a distinguisher between Game 6 and Game
5 would break the statistical trapdoorness of the commitment scheme.

Game 7: this is similar to Game 6, but the trapdoor is not extracted. It is easy to see
that a distinguisher between Game 7 and Game 6 would contradict the proof of knowledge
(specifically, the fact that the success probability of the extractor essentially corresponds to
the success probability of the prover) property of the statistical zero knowledge argument
of knowledge in which the verifier proves knowledge of the trapdoor.

Since Game 7 corresponds to an execution of 〈Pnew(y, w1), V ?
new(y)〉, we have shown that

the existence of D contradicts the security of one of the complexity-theoretic assumptions
used in our construction.

Soundness. Assume by contradiction that an adversary P ? can prove to Vnew a false state-
ment y with non-negligible probability p. By succeeding with probability p in 〈PUA(·, ·), VUA(·)〉,
P ? also succeeds with probability at least p in proving the first UA 〈PUA(·, ·), VUA(·)〉. The
instance of this UA is y′ and is different than y, but it still includes the truthfulness of y.
Indeed, the instance y′ proves that the instance y is correct and moreover, one can also ex-
tract bits of the witness in expected polynomial time. Therefore, if y is a false instance then
y′ is a false instance too. It is therefore immediate the reduction from an adversary P ? that
breaks the soundness of 〈Pnew(·, ·), Vnew(·)〉 for a false instance y of its choice to an adversary
P ?UA that breaks the soundness of the underlying universal argument 〈PUA(·, ·), VUA(·)〉 for
a false instance y′ of its choice. 2

B.2 〈Pnew(·, ·), Vnew(·)〉 Is a Universal Argument of Quasi Knowledge

We focus here on showing that the new argument system is an argument of quasi knowledge.

Theorem 5 Under the assumption that a family of collision-resistant hash functions exists,
the protocol 〈Pnew(·, ·), Vnew(·)〉 depicted in Fig. 1 is an argument of quasi knowledge.

Proof. We must show that there exists an extractor Enew which satisfies the conditions
of Definition 1. (Recall that Enew on input y, running with randomness r and with access
to a polynomial-sized circuit P ? aims to provide an implicit representation of the witness.)
We first present some notation and a couple useful lemmas based on Chernoff bounds, then
describe our extractor Enew in detail in Fig. 4, and finally show in Propositions 1 and 2 that
it satisfies the properties described in Definition 1.

Notation: We let P ? ∈ {P ?n}n∈N be a potentially adversarial prover, y be an input
statement, and n = |y|. Let σ(n) be the combined bit length of s, decs, root, decroot, wi, authi.
(Note that this must be polynomial.) We also let Tnew(n) be the running time of the UAQK

26

verifier Vnew. As this is guaranteed to be polynomial in n (by definition of UA), we let cnew
be a constant such that Tnew(n) is O(ncnew).

Recall that step 4 of our UAQK protocol runs a UA protocol ` times sequentially. We
will define the output of step 4.j in an execution of our UAQK protocol to be ACCEPT iff
VUA outputs 1 in step 4.j.

For simplicity of notation, in what follows we denote by p(n, y) the success probability of
P ? when interacting with Vnew(y) where the probability is over the honest verifier’s random
coins. (We will omit n, y when it is clear from context.) Furthermore, let p1(n, y) be the
probability that when we run the honest Vnew algorithm with prover P ?, the output of step
4.1 is ACCEPT. For j = 2, . . . , `, let pj(n, y) be the probability that when we run Vnew with
P ?, the output of step 4.j will be ACCEPT, conditioned on the event that the output of
steps 4.1 - 4.(j − 1) was also ACCEPT. Note that Vnew accepts iff all ` instances of VUA

accept, i.e. if steps 4.1 - 4.` output ACCEPT, therefore p(n, y) =
∏`
j=1 pj(n, y) for all n, y.

Useful lemmas. The following lemmas will be useful in the analysis of our extractor.

Lemma 1 Let E be an experiment which succeeds with probability p. Then if we run in-
dependent trials of this experiment 2n/p times, the probability that we obtain fewer than n
successes is less than (e2)−n.

Proof. Let Xi be a variable which is 1 if the ith experiment succeeds, and 0 if it fails,

and let X =
∑2n/p

i=1 Xi. We want to show that Prob[X < n] < (e2)−n. Chernoff bounds tell
us that if µ is E[X], then for any δ ∈ (0, 1] :

Prob[X < (1− δ)µ] <
(e−δ

(1− δ)(1−δ)

)µ
In our case E[X] = p · 2n/p = 2n. So if we consider δ = 1/2, then we get

Prob[X < (1/2) · 2n] <
(e−1/2

(1/2)(1/2)

)2n

=⇒ Prob[X < n] < (
e

2
)−n

as desired. 2

Lemma 2 Let E be an experiment which succeeds with probability p. Then if we run inde-
pendent trials of this experiment n

2p times, the probability that we obtain at least n successes

is less than 2(4
e)−n/2.

Proof. Let Xi be a variable which is 1 if the ith experiment succeeds, and 0 if it fails, and

let X =
∑n/2p

i=1 Xi. We want to show that Prob[X > n − 1] < (4
e)−n/2. Chernoff bounds

tell us that if µ is E[X], then for any δ > 0 :

Prob[X > (1 + δ)µ] <
(eδ

(1 + δ)(1+δ)

)µ

27

In our case E[X] = p · n2p = n
2 . So if we consider δ = 2(n−1)

n − 1, then we get

Prob[X >
2(n− 1)

n
· n

2
] <

(e
2(n−1)
n
−1

(2(n−1)
n)(

2(n−1)
n

)

)n/2

=⇒ Prob[X > n− 1] <
(e

2(n−1)
n

) 2(n−1)
n
·n/2

e−n/2

=⇒ Prob[X > n− 1] <
(en

2(n− 1)

)n−1
e−n/2

=⇒ Prob[X > n− 1] <
(n

n− 1

)n−1(e
2

)n−1
e−n/2

=⇒ Prob[X > n− 1] < e ·
(e

2

)−1(e2

4

)n/2
e−n/2

=⇒ Prob[X > n− 1] < 2
(e

4

)n/2
as desired. Here the second to last implication follows because (1 + 1/x)x < e for all x ≥ 1.

2

Now we argue that Enew satisfies the UAQK property described in Definition 1. We must
show that (1) Enew

P ?(y, i) has running time that is independent of i, and expected running

time poly(n)
p , for some fixed polynomial poly, and (2) that there is some negligible function

ν such that whenever p > ν(n) , then for any polynomial-time generated set of indices I,
with overwhelming probability 1− ν(n), wi ← Enew

P ?(y, i) is such that all outputs {wi}i∈I
are consistent with some valid witness w.

Outline of the proof. The high level structure of our proof will be as follows. First we
will analyze the running time of our extractor. We will argue in Claim 1 that by Chernoff
bounds it will not take too long to find n successful states, so step 1a will have the appropriate
expected running time. Then we argue, again by Chernoff bounds, that the expected value
of mĵ (Lemma 4), and so the expected running time of step 1b will also be as desired
(Claim 2). Finally, some arithmetic shows that as long as all values mĵ are not too large,
the running time of step 2 will also be appropriate (Claim 3). Combining these three claims
proves that the running time is as desired (Proposition 1).

Next, we analyze the success probability of our extractor. First, we argue by Markov’s
inequality and the properties of the UA considered in Theorem 1, that if α = n

2mĵ
is in

fact a lower bound for the success probability of P ?, then with overwhelming probability we
will get at least one random tape r such that Er both finishes within γ steps and produces
valid bits when we try to extract wi and its associated authentication chain (Claim 5).
Next, we show again by Chernoff bounds that with overwhelming probability, α will be a
good lower bound for the success probability of P ? (Claim 6). Then we use these claims to
argue that, there a negligible function such that whenever p > ν(n) is non-negligible, Enew

will produce correct output on all indices chosen by S with probability 1− ν(n) (Claims 7,

28

Enew
P ?(y, i).

For j = 1 . . . ` repeat the following steps.

1. Run 〈Vnew(y), P ?〉, pausing after step 4.(j − 1) to record the state of P ∗ and Vnew
at that point. If steps 4.1 - 4.j all output ACCEPT, then store the recorded

state as state
(j)
1 . Rewind P ? and run 〈Vnew(y), P ?〉 again from the beginning

(using new random coins for Vnew), and continue this process until n states

state
(j)
1 , . . . , state

(j)
n have been collected.

If at any point the above step requires running the UAQK protocol more than
(e2)n times, then immediately halt and output ⊥.

2. Restart 〈Vnew(y), P ?〉 from state state
(j)
1 (which corresponds to the end of step

4.(j − 1) of the protocol), and complete the protocol (using new random coins for
steps 4.j - 4.`). Record whether step 4.j outputs ACCEPT, then repeat the same

task with P ? and Vnew starting from states state
(j)
2 , . . . , state

(j)
n . Restart P ∗ and

Vnew again from state
(j)
1 , and continue this process, keeping track of how many

times we restart from state
(j)
1 . For each u = 1, . . . , n, keep a counter which records

how many times state
(j)
u results an execution which outputs ACCEPT on step 4.j.

When the first of these counters reaches n, store the associated state state
(j)
u as

beststatej . Also store as value mj the number of times we had to restart P ∗ from

state state
(j)
1 .

If at any point the above step requires running the UAQK protocol more than
(e2)n/` times, then immediately halt, and output ⊥.

Let ĵ be such that mĵ is minimized. Let E be an extractor (given by the weak proof
of knowledge property) for 〈PUA(·, ·), VUA(·)〉, and let d, q be the associated constant
and polynomial as described in Theorem 1.a Compute α = n

2mĵ
, Θ = 4 ·mĵ · q(n), and

γ = 2(2mĵ)
`−1q(n). Let P ?best represent P ? restarted from state beststateĵ . Parse the

rest of the random tape r into Θ values r1, . . . rΘ, and repeat the following process Θ
times.
For each iteration θ = 1 . . .Θ: For each of the σ(n) values for x representing one of the
bit positions of s, decs, root, decroot, wi, authi, use coins rθ for E and run EP

?
best(α, y′, x) for

exactly γ stepsb. If for any of the σ(n) values, E does not halt in that time, consider the
output of this iteration to be ø. Otherwise, verify the extracted s, decs, root, decroot with
respect to Cs, Croot, and the extracted wi, authi with respect to root. If the verification
succeeds, consider the output of this iteration to be wi, otherwise consider it to be ø.
Once all iterations have been completed, if any two iterations produced wi 6= w∗i such
that wi 6= ø and w∗i 6= ø, or if all iterations produced ø, then output ø. Otherwise
output the unique wi 6= ø produced in one or more iterations.

aRecall that d is the constant which describes how the choice of α affects the running time of the
resulting extractor E, and q is the polynomial which relates the success probabilities of P ? and E.

bIf E runs for less time, we just wait until the equivalent amount of time has passed.

Figure 4: Extractor Enew
P ?(y, i) for the Universal Argument of Quasi Knowledge

〈Pnew(·, ·), Vnew(·)〉. 29

8). This follows from collision resistance of the hash function, the binding property of the
commitment scheme, and statistical zero knowledge property of the proof system used to
prove knowledge of the commitment trapdoor (and this is where we need S to be polynomial
time). Combining these claims demonstrates the necessary success probability (Proposition
2).

Running time of the proof of quasi-knowledge extraction procedure. We begin
by analyzing the running time of Enew.

Proposition 1 There exists a polynomial poly such that for all n ∈ N, for any y ∈ LU ∩
{0, 1}n, any i ∈ {0, 1}n, and any circuit P ?n , the running time of Enew

P ?(y, i) is independent
of i and if p(n) = Prob[outV (〈P ?n , Vnew(y)〉) = 1] > 0 then the expected value of this

running time is at most poly(n)
p(n) .

Proof.
First we define some additional notation, and prove two lemmas about the values mj

and state
(j)
u that Enew computes in step 1 that we will use in our analysis below.

Additional Notation: First, for any initial state state(j) corresponding to the end of step
4.(j−1), let ρstate(j) be the probability that when we restart the protocol from state state(j),
step 4.j outputs ACCEPT. Second, recall that Enew may halt in step 1a or 1b if it has to
run the UAQK too many times. For simplicity of notation, if for any j, Enew halts before
setting mj , we will consider mj to be d(e2)n/`/ne.

Lemma 3 For any j ∈ 1, . . . , ` and any u ∈ 1, . . . n, let state
(j)
u be generated as described

in step 1a of Fig. 1. Then Prob[maxu(ρ
state

(j)
u

) < pj/2] is at most 2−n. 5

Proof.
Fix a value of j. Let D(j) be the distribution over states that results from choosing

random coins for the verifier and outputting the state state of P ? after step 4.(j − 1) of the
protocol. Let E1, . . . , Ej be the event that steps 4.1, . . ., 4.j resp. output ACCEPT during a
given run of the UAQK. Now, the process in step 1a of the extractor Enew can be described
as choosing state ← D(j) conditioned on E1, . . . , Ej . Let bad be the set of states such that
ρstate < pj/2, and let D(j) be the distribution over states that results from step 1a of Enew.

Now, for any u ∈ 1, . . . , n:

Prob
state←D(j)

1a

[ρ
state

(j)
u
< pj/2]

= Prob
state←D(j)

1a

[state ∈ bad]

= Probstate←D(j) [state ∈ bad|E1 ∧ . . . ∧ Ej]

= Probstate←D(j) [state ∈ bad ∧ Ej |E1 ∧ . . . ∧ Ej−1]/Probstate←D(j) [Ej |E1 ∧ . . . ∧ Ej−1]

= Probstate←D(j) [Ej |state ∈ bad ∧ E1 ∧ . . . ∧ Ej−1] · Probstate←D(j) [state ∈ bad|E1 ∧ . . . ∧ Ej−1]

/Probstate←D(j) [Ej |E1 ∧ . . . ∧ Ej−1]

≤ Probstate←D(j) [Ej |state ∈ bad ∧ E1 ∧ . . . ∧ Ej−1]/Probstate←D(j) [Ej |E1 ∧ . . . ∧ Ej−1]

< pj/2/pj

= 1/2

5See notation section at the beginning of the proof of this section for a definition of pj .

30

where the first equality follows by the definition of bad, the second equality follows by the

definitions of D
(j)
1a and D(j), the third and fourth equalities follow by the rule of multipli-

cation when the intersection of two events is considered, the first inequality follows by the
observation that Probstate←D(j) [state ∈ bad|E1, . . . , Ej−1] is at most 1, and the second
inequality follows by definition of bad and the definition of pj .

Thus, if we consider the maximum over u = 1, . . . , n, we get that for any j:

Prob[maxu(ρ
state

(j)
u

) < pj/2]

= Prob[(ρ
state

(j)
1

< pj/2) ∧ (ρ
state

(j)
2

< pj/2) ∧ · · · ∧ (ρ
state

(j)
n
< pj/2)]

=

n∏
u=1

Prob[ρ
state

(j)
u
< pj/2]

< 1/2n.

2

Lemma 4 There exists a fixed constant cm (independent of P ?, y) such that if mj is com-
puted as described above, then for all j, E[m`

j] will be at most ncm/p`j.

Proof.
We prove the claim in two steps: the first step shows that with overwhelming probability,

for all j, Enew will compute values for mj such that mj ≤ minu(2n/ρ
state

(j)
u

). Then we can

use Lemma 3 to argue that when the states are chosen according to the process in step 1a,
this value is not too large.

We analyze mj as follows: by Chernoff bounds (see Lemma 2) and our above notation, it
follows that for any state state(j), the probability that Enew restarts the UAQK from state
state(j) a total of 2n/ρstate(j) times without obtaining n successes is less than (e2)−n. We

consider a total of n states (state
(j)
u for u = 1 . . . n), so by the union bound the probability

that for any of these states state(j) we could run P ? from state(j) a total of 2n/ρstate(j) times
without obtaining n successes is at most (e2)−nn.

Recall that Enew repeatedly runs the UAQK starting from state state
(j)
1 , . . . , state

(j)
n and

stops as soon as one state state
(j)
u results in n successful proofs. Thus, by our analysis, with

probability at least 1− (e2)−nn, the final mj value will be at most minu(2n/ρ
state

(j)
u

).

So we only need to consider minu(2n/ρ
state

(j)
u

) and show that with high probability, this

value is not too large. Recall that pj is the probability that when Enew runs Vnew with
P ?, step 4.j outputs ACCEPT, conditioned on the event that steps 4.1, . . . 4.(j − 1) output
ACCEPT. We showed in Lemma 3 that given that we use the process described in step 1a to

sample states state
(j)
u , we are guaranteed that Prob[maxu(ρ

state
(j)
u

) < pj/2] is at most 2−n.

This means that with probability at least 1− 2−n, we will get minu(2n/ρ
state

(j)
u

) ≤ 4n/pj .

Now we combine this with the above and observe that this implies that with probability
at least 1 − 2−n − (e2)−nn > 1 − 2(e2)−nn, it holds that mj ≤ minu(2n/ρ

state
(j)
u

) ≤ 4n/pj .

Furthermore, when this does not hold, the value of mj will be at most d(e2)n/`/ne. (Enew

will run the UAQK at most (e2)n/` times, but mj only counts the number of times we

restart from state state
(j)
1 . Enew repeatedly loops over state

(j)
1 , . . . , state

(j)
n , so it starts

31

from state state
(j)
1 at most d(e2)n/`/ne times.) Thus, we conclude that E[m`

j] ≤ (4n/pj)
` +

2(e2)−nn∗ (d(e2)n/`/ne)` < (4n/pj)
`+ 4 < 23(n/pj)

`, and we can easily set cm = 3 + ` so that
E[m`

j] ≤ ncm

p`j
for all n ≥ 2. 2

Now we are ready to analyze the running time Enew. We will consider the running time
of each step of the extraction procedure, then combine the results to prove the proposition.

Claim 1 The running time of Enew in step 1a is independent of i, and there exists a constant
c1a such that the expected running time of Enew in step 1a is at most nc1a

p(n) for all n ≥ 2.

Proof. Note that the value i is not used in step 1a, so it cannot affect the running time.
Thus, we focus on the second part of the claim.

For each value of j, Enew does the following: Enew runs Vnew with P ? and checks to
see whether steps 4.1 - 4.j output ACCEPT. Then Enew rewinds P ? to its initial state and
then repeats until it gets n runs in which this occurs. Recall that, by assumption, when
Vnew interacts with P ?, with probability p we are guaranteed that all of the steps 4.1 - 4.`
output ACCEPT (because this is exactly the condition where honest verifier algorithm Vnew
outputs 1). Thus, the probability that the first j steps output ACCEPT must be at least p.
Then by Chernoff bounds (see Lemma 1), the probability that Enew repeats the process 2n/p
times without obtaining n successes is less than (e2)−n. Finally, even if Enew does repeat
more than 2n/p times without n successes, we are guaranteed that it runs the protocol at
most (e2)n times before aborting and outputting ⊥.

Thus, the expected running time for each value of j is at most 2n/p · Tnew(n) + (e2)−n ·
(e2)n · Tnew(n) ≤ 3n/p · Tnew(n) < 3ncnew+1/p. We repeat this process for each value of
j ∈ {1, . . . , `}, so we conclude that the overall time spent in step 1a is at most 3`ncnew+1/p.
If we let c1a = cnew + log(3`), the claim follows. (Recall that ` is a fixed constant.) 2

Claim 2 The running time of Enew in step 1b is independent of i, and there exists a constant
c1b such that the expected running time of Enew in step 1b is nc1b

p(n) .

Proof. Again, the value i is not used in this step, so we only need to bound the expected
running time of Enew.

For each value of j, Enew goes as follows. Enew runs until one of the recorded states
produces n successful proofs. At that point, it records as mj , the number of times that it

restarted with state state
(j)
1 . Thus, for each j, Enew runs the UAQK at most nmj times,

and in total the expected running time in this step will be at most
∑`

j=1 nE[mj]Tnew which

is at most ncnew+1
∑`

j=1E[mj].
There is one additional detail, in that with some very small probability Enew halts before

obtaining n successful proofs. We still have to upper bound the running time in this case
so that we can argue about expected running time of this step. Note that in this case, Enew

runs the UAQK at most (e2)n/` times, which means it restarts from state state
(j)
1 at most

d(e2)n/`/ne times. We stated above that, if Enew halts before setting mj , we will consider

mj to be d(e2)n/`/ne, so we can guarantee that the running time of this step will always be

bounded by mjnTnew. Then we can say that
∑`

j=1 nE[mj]Tnew is an upper bound on the
expected running time in step 1b.

32

So all that remains is to bound
∑`

j=1E[mj]. We showed in Lemma 4 that there exists

a constant cm such that E[m`
ĵ
] ≤ ncm/p`j , which in particular implies that E[mĵ] ≤ n

cm/pj .

Putting this all together, we conclude that the total expected running time in step 1b will
be ncnew+1

∑`
j=1E[mj] ≤ ncnew+1+cm/pj ≤ ncnew+1+cm/p where the last relationship follows

by definition of pj and p. If we let c1b = cnew + 1 + cm, then our claim follows.
2

Claim 3 The running time of Enew in step 2 is independent of i, and there exists a constant
c2 such that the expected running time of Enew in step 2 is O(n

c2

p(n)).

Proof. In this step, Enew computes σ = σ(n), Θ = 4mĵq(n), and γ = 2(2mĵ)
`−1q(n), and

runs EP
?
best(α, y, x) on σ(n) values of x using Θ different random strings for each. In each

of these executions, EP
?
best runs for exactly γ steps. Thus, the total running running time

in this step will be Θγσ = 4mĵq(n) · 2(2mĵ)
`−1q(n) · σ(n) = 4(2mĵ)

`q(n)2σ(n). Note that
again, this quantity is independent of i, so we just have to show that in expectation it will
be nc2

p(n) for some fixed constant c2.

Recall that Enew computes mĵ by taking minjmj and so E[m`
ĵ
] ≤ minjE[m`

j]. Thus,

by Lemma 4 above, we know that there exists constant cm such that E[m`
ĵ
] ≤ minjn

cm/p`j .

Recall also that by our definition, p =
∏`
j=1 pj , which implies that maxjp

`
j ≥ p. This implies

that minjn
`/p`j ≤ n`/p, and so E[m`

ĵ
] ≤ ncm/p.

From above, we have that the expected running time for step 2 is E[4(2mĵ)
`q(n)2σ(n)] =

2`+2E[m`
ĵ
]q(n)2σ(n). Adding the bounds on E[m`

ĵ
] gives an upper bound of 2`+2σ(n)q(n)2ncm/p.

Both σ(n) and q(n) are guaranteed to be polynomial, so we can assume that there exists cσ, cq
such that σ(n) is at most ncσ and q(n) is at most ncq . Thus, if we let c2 = cσ+2cq+cm+`+2,
we get that the running time of this step is at most nc2/p as desired.

2

Combining the steps to prove the proposition: In each of these steps we have seen that
the running time is independent of i. Adding the running times for steps 1 and 2, we get
that the expected running time of Enew will be at most nc1a/p+nc1b/p+nc2/p for constants
c1a, c1b, c2. If we let c = c1a + c1b + c2, the proposition follows. 2

Success probability of the extraction procedure.

Proposition 2 There exist negligible functions ν1, ν2 such that for any polynomial-sized
circuit families {P ?n}n∈N and {Sn}n∈N , for sufficiently large n, for any y ∈ LU ∩ {0, 1}n,
if P ?n succeeds with probability greater than ν1(n), then with probability at least 1 − ν2(n),
Enew

P ? produces bits consistent with a valid witness on all positions chosen (potentially
adaptively) by Sn.

Proof.
For any circuit P ?n , and n-bit strong y, let faccept(P

?
n , y) be the probability that P ?n causes

the honest verifier V to accept on input y. For any pair of circuits P ?n , Sn, and n-bit string
y, let fvalid(P ?n ,Sn, y) be the probability that Enew

P ? produces bits consistent with a valid
witness on all positions chosen (potentially adaptively) by Sn.

33

We will Proposition 2 by proving that the extractor satisfies the following property:

Definition 13 For any polynomial-size circuit families {P ?n}n∈N and {Sn}n∈N , there ex-
ists negligible function ν such that for sufficiently large n, for any y ∈ LU ∩ {0, 1}n,
min(faccept(P

?
n , y), 1− fvalid(P ?n , Sn, y)) ≤ ν(n).

Claim 4 The property described in Definition 13 holds with respect to a given extraction
algorithm iff the first property in Definition 1 holds with respect to that extraction algorithm.

Proof. Recall that the original definition of UAQK (Definition 1) required that there
exist negligible functions ν1, ν2 such that for any poly-sized circuit families {P ?n}n∈N and
{Sn}n∈N , for sufficiently large n, for any y ∈ LU ∩ {0, 1}n, if faccept(P

?
n , y) > ν1(n) then

fvalid(P ?n , Sn, y) ≥ 1−ν2(n). First, note that we can equivalently combine ν1, ν2 into a single
negligible function ν. (If ν1, ν2 are both negligible, then max(ν1, ν2) is also a negligible
function.) Next, note that the statement ”if faccept(P

?
n , y) > ν(n) then fvalid(P ?n ,Sn, y) ≥

1 − ν(n)” is equivalent to saying ”min(faccept(P
?
n , y), 1 − fvalid(P ?n ,Sn, y)) ≤ ν(n).” Finally,

Definition 1 requires that the negligible functions work for all circuit families {P ?n}, {Sn},
while Definition 13 allows a different function for each pair of circuit families. However, we
can show these two notions are equivalent using the techniques from [Bel02]. 2

Now we need only show that the extractor we described satisfies Definition 13.
We begin by defining some shorthand. Let ρ be the probability that the honest verifier

accepts when running a UA 〈PUA(·, ·), VUA(·)〉 with P ?best, i.e., with P ? starting in state
beststateĵ . Let Rgood(P ?best, α, y) be the set of all random tapes r such that EP

?
best(α, y, ·) with

coins r produces bits consistent with some valid witness. Let Rfast(P
?
best, α, y, γ) be the set

of all random tapes r such that EP
?
best(α, y, ·)6 with coins r runs in time less than γ. (We

omit the parameters when they are clear from context and just refer to these sets as Rgood

and Rfast.)
For any P ?n , y, let failR(P ?n , y) be the event that when P ?best, α, and r1, . . . , rΘ are com-

puted according to E
P ?n
new(y, ·), for all θ ∈ {1, . . . ,Θ} it is the case that rθ /∈ Rgood ∩ Rfast.

Let fR(P ?n , y) be the probability that failR(P ?n , y) occurs (over the choice of Enew’s random
tape).

Next, we prove a useful claim about Rgood and Rfast.

Claim 5 There exists a negligible function ν such that for all {P ?n} and all y ∈ {0, 1}n, if
we condition on the event that Enew computes mĵ such that mĵ ≥

n
2ρ , then the probability of

failR(P ?n , y) is at most ν(n).

Proof.
Recall that Enew computes α = n

2mĵ
. Thus, the conditioning event means that we

consider the case where α ≤ ρ. Then, by the properties of the universal argument of
Theorem 1 for each random choice of rθ, with probability α/q(n) we are guaranteed that
EP

?
best(α, y, x) (using rθ as coins) produces bits w′x of a valid witness w′, i.e. rθ ∈ Rgood.
We have to guarantee that for one of our rθ, E

P ?best(α, y, x) both produces correct re-
sults and finishes within γ steps. Recall that Enew computes γ as 2 ∗ (2mĵ)

`−1q(n) =

6Recall that by the properties considered in Theorem 1, the running time of the oracle machine EO(α, ·, ·)
depends only on α

34

2(n/α)d+1q(n). By the properties considered in considered in Theorem 1, we know that
for all y, P ?, the expected running time of EP

?
best(α, y, ·) is (n/α)d. Thus, by Markov’s in-

equality, the probability (over choice of rθ), that EP
?
best(y, ·) will run in time more than

γ = 2(n/α)d+1q(n) is at most (n/α)d/(2(n/α)d+1q(n)) = α/(2nq(n)). Or equivalently, we
can say that the probability that rθ /∈ Rfast is at most α/(2nq(n)).

Combining these we find that the probability that a random rθ is in Rgood ∩ Rfast, i.e.
that EP

?
best(α, y, ·) runs in time less than γ and produces bits of a valid witness, is at least

ρ′ = α/q(n) − α/(2q(n)) = α/(2q(n)). We conclude that since we use Θ = 4mĵq(n) =
2nq(n)/α random choices of rθ, then by Chernoff bounds, with all but negligible probability
it is guaranteed that for at least one θ ∈ 1 . . .Θ, we will have rθ ∈ Rgood ∩Rfast, i.e. at least
one of the resulting extractors EP

?
best(α, y, ·) with E using rθ as coins, will always produce

bits consistent with some valid witness and will finish in less than γ steps on all the values
of x that we use. 2

Claim 6 There exists a negligible function ν such that for all {P ?n} and all y ∈ {0, 1}n, with
probability at least 1− ν(n), Enew computes mĵ ≥

n
2ρ .

Proof.
Recall that mĵ = minjmj , where mj is the number of times we had to restart P ?, Vnew

from state state
(j)
1 before some state state

(j)
u ∈ {state

(j)
1 , . . . , state

(j)
n } produced n successful

runs (runs in which step 4.j output ACCEPT).

We begin by considering each value of j separately. For a fixed j, let us again use ρ
(j)
state

to denote the probability that step 4.j outputs ACCEPT when P ? and Vnew start in state
state(j) corresponding to the end of step 4.(j − 1). By Chernoff bounds (see Lemma 2), it
is guaranteed that for any state, the probability that the number of repetitions is less than
n

2ρstate
and yet we obtain n successful runs is at most 2(4

e)−n/2, which is clearly negligible. We

run this experiment for n states state
(j)
1 , . . . , state

(j)
n so by the union bound, the probability

that for any of these states we obtain n successful runs in less than n
2ρstate

repetitions is
also negligible. This means that the probability that mj <

n
2ρbeststatej

(for any fixed j) is

negligible.
Now, we run this process for each j ∈ 1 . . . `. Since ` is a constant, again by the

union bound, the probability that Enew finds any mj , beststatej such that mj ≤ n
2ρbeststatej

is

negligible. Thus it must hold that, for the chosen value ĵ and state beststateĵ , with all but
negligible probability it will be the case that mĵ ≥

n
2ρbeststate

ĵ

= n
2ρ as desired. 2

Combining the two, we conclude that fR(P ?n , y) is negligible for all {P ?n} and {yn}, i.e.
with all but negligible probability, it will be the case that Enew gets a random tape such
that for at least one value of θ, rθ ∈ Rgood ∩Rfast.

Now, if there exists rθ ∈ Rgood ∩Rfast, that means that there exists at least one tape for
which Erθ(α, y, x) produces correct answers for all values of x. We argue that as long as
this happens, we will be guaranteed that with overwhelming probability, Enew will produce
correct answers on any sampleable set of inputs i. We show this based on the collision
resistance of the hash function and the binding property of the commitment scheme. The
intuition is that if this were not the case, then we could use Enew and S to build a polynomial
time adversary for either the commitment scheme or the hash function.

35

Recall that, for each rθ, Enew runs Erθ to extract all the bits of s, decs, root, decroot, wi, authi.
If it finds one rθ for which all the values extracted are consistent with one another and with
Croot and Cs, then there are only two possibilities. If at some point it finds another rθ which
produces another consistent set of values s′, dec′s, root′, dec′root, w

′
i, auth′i for which w′i 6= wi,

then it outputs ø. Otherwise it will output the value wi. Note that, if failR(P ?n , yn) does not
occur, then there is one rθ which will always produce consistent values, and these values
will correspond to a valid witness w. Thus, the only case where Enew will not output bits
of this witness is when there exists another r′θ such that Er′θ also produces values which are
consistent for some i ∈ I, but where wi 6= w′i. We argue that if S can find a set of bits I for
which this happens with probability that is not negligible, then we can build a polynomial
time adversary for either the hash function or the commitment scheme.

Let failhash be the event that S produces a set I such that for some i ∈ I, there is some
rθ, r

′
θ on Enew’s random tape such that Erθ produces values which are consistent but where

root = root′ and wi 6= w′i. Let fhash(P ?n , Sn, y) be the probability that failhash occurs (over
the choice of Enew’s random tape).

Let failcomm be the event that S produces a set I such that for some i ∈ I, there is some
rθ, r

′
θ on Enew’s random tape such that Erθ produces values which are consistent but where

root 6= root′. Let fcomm(P ?n ,Sn, y) be the probability that failcomm occurs (over the choice of
Enew’s random tape).

Finally, recall that faccept(P
?
n , y) is the probability that P ? causes the honest verifier V

to accept on input y.

Claim 7 Let f(P ?n ,Sn, y) = min(fhash(P ?n , Sn, y), faccept(P
?
n , y)), and for each n, let f?(P ?n , Sn)

be the maximum value of f(P ?n ,Sn, y) over all n-bit y ∈ LU . If Hn is a family of collision
resistant hash functions secure against non-uniform adversaries, then f?(P ?n ,Sn) is negligi-
ble.

Suppose there exist polynomial sized circuit families {P ?n} and {Sn} such that f?(P ?n ,Sn) is
not negligible. Then will we construct a polynomial sized circuit family {Bn} which attempts
to break the collision resistance property of the hash function.

In what follows, we will construct a non-uniform adversary B which runs in expected
polynomial time, and breaks the collision resistance property with some probability that is
not negligible. However, it is straightforward to convert such an adversary into a family
of circuits which has strict polynomial size and still succeeds with probability that is not
negligible.

For each value of n, let yn be an element of LU such that f(P ?n , Sn, y) is maximized, and
let pn = faccept(P

?
n , yn). Assume B is given pn, yn, P

?
n ,Sn as part of it’s non-uniform advice

string.
B will receive a hash function h∗ from it’s challenger. With probability pn, it will abort

immediately. (This will help guarantee expected polynomial time.)
Note that S gets to choose it’s set I adaptively, based on Enew’s responses. Thus, if we

want to use S to construct an adversary B for the collision resistance property, we need to
ensure that B can provide responses which from the view of S are indistinguishable from
what Enew would give. That means we need to somehow sample a state beststate from the
same distribution that Enew uses. To do this we will essentially run the algorithm of Enew.

36

The only issue is that we need to embed the challenge function h∗ into the first message
of one of the instances of 〈P ?, V 〉 in step 1a. Then, we can argue that with at least non-
negligible probability, this h∗ will be the one used in beststate, and so when the event failhash
occurs, that will imply a collision in our hash function h∗.

This is a bit tricky because we don’t know how many times 〈P ?, V 〉 will be restarted in
step 1a. To deal with this we will first choose a positive integer λ from a distribution where
each value λ′ is chosen with probability 1/2λ

′
. (Essentially, this corresponds to a guess that

there will be 2λ restarts in step 1a.) Then we will pick in integer β uniformly at random from
{1, . . . , 2λ}. (This corresponds to guessing which restart will lead to the chosen beststate.)

So, our final algorithm B will first choose λ and β as described above. Then it will run
Enew, but in the βth restart in step 1a, it will use h∗ instead of choosing a new h at random.
(Note that this produces an identical distribution.) It will run S to adaptive choose inputs
for this Enew. If at any point, in step 2 of Enew, there are a pair of tapes rθ and rθ′ such that
E produces sets of values (s, decs, root, decroot, wi, authi) and (s′, dec′s, root′, dec′root, w

′
i, auth′i)

such that root = root′ and wi, authi and w′i, auth′i both verify with respect to root but wi 6= w′i,
it will find and return the first pair of different values in the authentication chains authi and
auth′i.

Now we have to argue that B runs in expected polynomial time, and that B succeeds in
finding a collision with probability that is not negligible. First we consider the running time.
Let TE(n) be the expected running time of E

P ?n
new(yn), and let TS(n) be the (polynomial) size

of Sn. Then, the expected running time of B will be at most p(n)TE(n)TS(n). (Since the

probability that B aborts immediately is independent of the running time of E
P ?n
new.) Recall

that by Proposition 1, TE(n) ≤ nc

p(n) , so we can conclude that the expected running time of

B will be ncTS(n) which is a polynomial.
To analyze B’s success probability we note that, if it is in fact the case that the βth

restart results in state beststate, then B will succeed with exactly the same probability that
the event failhash occurs in the real game. Thus, we have only to argue that with non-
negligible probability, B guesses the correct value for β. First, let N be the number of
restarts that occur in step 1a in a given run of the protocol. Now, the probability that B
chooses λ such that N ≤ λ ≤ 4N is at least 1− 1

2N − (1− 1
N) = 1

2N . (To see this, note that
for any λ′, the probability that λ ≥ λ′ is between 1/2λ−1 and 1/2λ+1.) If B does choose λ
in this range, then the probability that B chooses the right restart β, is at least 1

4N . Thus,
B’s success probability is at least 1

8N2 fhash(P ?n , Sn, yn).
Finally, recall that we showed in Proposition 1 that Enew runs in expected time TE(n) ≤

nc/faccept(P
?
n , yn). Furthermore, by Markov’s inequality, on any given run the probability

that Enew runs in time greater than 2TE(n) is at most 1/2. So with probability at least 1/2,
N will be at most 2TE(n) (since N must be less than the running time Enew). Thus, B will
succeed with probability at least 1

2
1

32TE(n)2
fhash(P ?n ,Sn, yn) = 1

64(nc/faccept(P ?n ,yn))2
fhash(P ?n ,Sn, yn) =

1
64n2c faccept(P

?
n , yn)2fhash(P ?n ,Sn, yn) ≥ 1

64n2cmin(faccept(P
?
n , yn), fhash(P ?n , Sn, yn))3, which is

not negligible as long as f?(P ?n ,Sn) = min(faccept(P
?
n , yn), fhash(P ?n ,Sn, yn)) is not negligible.

Claim 8 If p(n) is polynomial, S is polynomial time, and 〈Pszk(·, ·), Vszk(·)〉 is a statistical
zero-knowledge argument of knowledge, and (SHTGen, SHCom,SHVer,SHTCom, SHDec, SHTDec)
is a commitment scheme, then the event failcomm can occur with at most negligible probability.

37

Proof. This proof is very similar to the one above for Claim ??. The only major
difference is that in addition to providing the challenge commitment parameters to P ∗, B
also has to simulate an argument of knowledge of the corresponding trapdoor. However,
because the argument is statistical zero knowledge, the resulting distribution is statistically
indistinguishable from the one produced by the real Enew, and so the lemma follows by the
same arguments as we used above. 2

Thus, we conclude that there exist negligible functions νhash, νcomm, νR such that for
all n, for all yn, fR(P ?n , yn) < νR(n), min(faccept(P

?
n , yn), fhash(P ?n ,Sn, yn)) < νhash(n) and

min(faccept(P
?
n , yn), fcomm(P ?n ,Sn, yn)) < νcomm(n). Combining these, implies that for all yn,

min(faccept(P
?
n , yn), fhash(P ?n ,Sn, yn)+fcomm(P ?n ,Sn, yn)+fR(P ?n , yn)) < νhash(n)+νcomm(n)+

νR(n). If neither failhash nor failcomm nor failR occurs, then the extractor succeeds on
all the indices produced by S, so if we set ν = νhash + νcomm + νR, this implies that
min(faccept(P

?
n , yn), 1− fvalid(P ?n , Sn, yn)) < ν(n) which is negligible as desired.

2

Thus, we have shown both propositions, which completes our proof of Theorem 5. 2

C Constructing a Special ZKS Scheme on CRHFs

Recall that we require a zero-knowledge property which is stronger than the standard defini-
tion [MRK03] in two ways: (1) it holds even for all the parameters output by the simulator
set-up algorithm, even when the adversary selects the randomness used for the set-up, and
(2) the simulated commitment algorithm just runs the honest commitment algorithm on an
empty database. Here we will show that we can construct such a ZKS scheme based on any
family of collision-resistant hash functions.

Trapdoor commitments. We begin by identifying a trapdoor commitment scheme with
the analogous properties. Here we consider a variant of the Feige and Shamir scheme [FS90],
as described by Fischlin [Fis01]. This construction is based on a non-trapdoor commitment
scheme, and a secure one-way function (OWF).

The idea is that we can use a OWF to identify a graph in which, with high probability,
it is hard to find a Hamiltonian cycle (by Karp reduction to Directed Hamiltonian Cycle).
This graph forms the parameters for the trapdoor commitment scheme (together with the
parameters for the non-trapdoor scheme). To commit to 0, the committer applies a random
permutation to the graph, and commits (using the non-trapdoor commitment scheme) to
the entries in the resulting adjacency matrix. To commit to 1, the committer forms an
adjacency matrix for a graph which has only a Hamiltonian cycle, and no other edges, and
uses the basic commitment scheme to commit to the entries in this matrix. Finally, to open
a commitment to 0, the committer opens all entries, and reveals the permutation, and to
open to 1, the committer opens only the entries in the cycle. Note that a commitment that
could be opened to both 0 and 1 would imply a Hamiltonian cycle on the original graph.
On the other hand, a simulator who knew such a cycle could easily form a commitment to
0 and then open it to 1. Our simulated set-up algorithm will therefore derive a graph for
which it can identify a cycle.

Now, we consider our stronger (i.e., statistically secure) properties. We will instantiate
the underlying non-trapdoor commitment with a two-round statistically hiding commitment

38

(which can be built from CRHFs [HM96]), where the first round (receiver to committer) is
treated as the set-up algorithm, and the second (committer to receiver) as the commitment
itself. Because of the statistical hiding property, we get that for all parameters, the resulting
commitment is statistically hiding, even given any auxiliary information. Moreover, this also
achieves statistical trapdoorness.

Next note that any graph derived from a OWF as described above will have a cycle.
Thus, for any parameters output by the simulation set-up algorithm, and for any relevant
auxiliary information, the simulator’s trapdoor decommitments will be identical to or indis-
tinguishable from valid decommitments. Note also that the simulated committer can just
form a commitment to 0, without knowing the trapdoor, and then later use the trapdoor
to open this commitment to 0 or 1. Thus we obtain a trapdoor commitment scheme with
properties analogous to those that we require from our ZKS instantiation.

Mercurial Commitments. At a high level, a mercurial commitment scheme is a trapdoor
commitment scheme which allows for two different types of commitments (hard and soft com-
mitments), and two different types of opening procedures (hard openings and soft openings).
It has been shown [CHL+05] that zero-knowledge sets can be built from any mercurial com-
mitment scheme. Thus, our next step is to find a mercurial commitment scheme with strong
zero-knowledge properties. The only mercurial commitment scheme given in [CHL+05] that
is built from general assumptions is based on non-interactive zero-knowledge proofs, which
require trapdoor permutations. Thus, we instead look at the results of [CDV06], who present
a mercurial commitment scheme based on any trapdoor commitment.

The basic construction proceeds as follows: The set-up algorithm generates the pa-
rameters for the trapdoor commitment scheme. A hard commitment to bit b is a pair of
commitments, the first to b, the second to 1 − b. A soft commitment is a pair of commit-
ments to 0. A soft opening opens commitment b to 0, while a hard opening opens both
commitments.

Note that, using the above trapdoor commitment scheme, (1) a simulator can form an
honest soft commitment (a pair of trapdoor commitments to 0), and then use the trapdoor to
open the component commitments to 0 or 1 as necessary, and (2) if the underlying trapdoor
commitment is hiding for all parameters output by the simulated set-up algorithm, even
when the adversary is given the trapdoor, then the same will hold for the resulting mercurial
commitment scheme.

Zero-knowledge sets. Finally, we will see that we can build a satisfactory zero-knowledge
sets scheme from the above mercurial commitment scheme, and a CRHF using the transfor-
mation of [CHL+05] (which is itself a generalization of the construction of [MRK03]). We
simply make the following observations about this transformation.

The ZKS set-up algorithm just runs the set-up algorithm of the underlying mercurial
commitment scheme and identifies a hash function. The ZKS commitment algorithm forms
a series of hard and soft commitments and combines them using a Merkle hash tree. A
commitment to an empty database is a single soft commitment. The ZKS proof algorithm
generates hard or soft openings for a combination of hard and soft commitments. (For
details, see [CHL+05].)

We note the following: (1) Our simulator can form a simulated ZKS commitment by
forming a single soft commitment, and this will be equivalent to an honest commitment to
an empty database. (2) Our ZKS simulator can generate the appropriate proofs by gener-

39

ating soft or hard openings for this commitment and subsequent commitments as necessary
using the simulator for the mercurial commitment scheme. Since the underlying mercurial
commitments are zero-knowledge for all parameters given the trapdoor, this ZKS simulator
will also have those properties.

D Proof of Theorem 3

We now give the proof of Theorem 3.

Corrupt verifier. When the real-world verifier A is corrupted, our ideal-world simulator
(i.e., the corrupt verifier in the ideal-world) upon receiving (Receipt) from FDbCom will
behave as follows:

Commitment Phase. Receive (ZKSPAR, crs) from A (step 1). Execute the code of V
on input (crs, ZKSPAR) (step 2). If V rejects then abort. Pick r ∈ {0, 1}k, set (c, dec) =
Com(crs, zks = ZKSCom(ZKSPAR, {}, r)) and send c toA (step 3). Executes FormWitness(ZKSPAR, {}, r)
to generate witness w, and then executes the code of UAP on input c||ZKSPAR||crs with wit-
ness zks||dec||w (step 4). Send (dec, zks) to A (step 5).

After the commitment phase has ended, run the extractor of the proof given by A in
step 2, thus obtaining aux, ZKSTRAP.

Query/Answer Phase. For i = 1, . . . ,m do: Receive x′i from A. Send x′i to FDbCom (step
6). Receive y′i from FDbCom . Send (y′i, π = ZKSSimProve(ZKSTRAP, x′i, y

′
i, r)) to A (step 7).

Finally outputs what A outputs.
We will show that EXECπHP ,A(k, x, z) and {IDEALFDbCom

HP ,Sim
(k, x, z)} are computationally

indistinguishable based on the zero-knowledge property of the ZKS scheme, the WI property
of the UAQK, and the trapdoorness property of the commitment scheme. Consider the
following sequence of games.

Game Real: run the honest prover algorithm. The output is EXECπHP ,A(k, x, z).

Game Hybrid a: (Trapdoor commitment) We proceed as in Game Real with the fol-
lowing exception. We run step 1 and step 2 according to the honest prover protocol. Then
we rewind to extract (aux, ZKSTRAP). In step 3, we generate (c, auxc)← TCom(crs, aux) and
send it to the adversary. Next, choose random r1, and generate zks1 = ZKSCom(ZKSPAR,Db, r1)
and dec1 ← TDec(auxc, zks1). Then we proceed with step 4-7 as in the honest protocol, using
dec = dec1 and zks = zks1.

Let {HybaA(k, x, z)} be the output of the above experiment. By the trapdoorness property
the two experiments are indistinguishable, i.e. {HybaA(k, x, z)} ≈ EXECπHP ,A(k, x, z).

Game Hybrid b: (Simulated WI witness) We proceed as in Game Hybrid a with the
following exception. In step 4, we choose random r2, and generate zks2 = ZKSCom(ZKSPAR, {}, r2)
and dec2 ← TDec(auxc, zks2). Then we use a witness formed using zks2, dec2 and the empty
database to run the UAQK. The rest of the game (steps 5-7) proceeds as in Game Hybrid
a, using dec = dec1 and zks = zks1, and the real Db. Let {HybbA(k, x, z)} be the output of
the above experiment.

Claim 9 {HybbA(k, x, z)} and {HybaA(k, x, z)} are indistinguishable by the WI property of
the UAQK.

40

Proof. If there exists a distinguisher between {HybaA(k, x, z)} and {HybbA(k, x, z)}, then
we can easily break the witness indistinguishability of the universal argument. We run step
1 and step 2, and then extract aux from the proof of knowledge. Then we use this to form
commitment c and decommitments dec1 to zks1 = ZKSCom(ZKSPAR,Db, r1) and dec2 to
zks2 = ZKSCom(ZKSPAR, {}, r2). In step 3 we send c to V . Then we run FormWitness twice,
with (ZKSPAR,Db, r1) and with (ZKSPAR, {}, r2) to obtain w1, w2. We give zks1||dec1||w1 and
zks2||dec2||w2 to the WI challenger of the UAQK. Now, in step 4 it is sufficient to forward
the messages to the external UAP that will use one of the two given witnesses. We complete
the game using zks1,Db, r1 as in the honest algorithm. In one case this will be equivalent
to {HybaA(k, x, z)} and in the other case it would be {HybbA(k, x, z)}, thus the distinguisher
will allow us to break the witness indistinguishability of UAP. 2

Game Hybrid c:(Simulated ZKS commitment and proofs) We proceed as in Game
Hybrid b with the following exception. In step 5, we choose a new random string r3,
and generate zks3 = ZKSCom(ZKSPAR, {}, r3) and dec3 = TDec(auxc, zks3), then we set
zks = zks3 and dec = dec3. In step 7, we use ZKSSimProve(ZKSTRAP, ·, ·, r3) to compute each
proof π. Let HybcA(k, x, z) be the output of the above experiment.

Claim 10 {HybcA(k, x, z)} ≈ {HybbA(k, x, z)} by the special ZK property of the ZKS scheme.

Proof. If there exists a distinguisher between {HybbA(k, x, z)} and {HybcA(k, x, z)} we can
easily break the special zero-knowledge property of (ZKSSetup,ZKSCom,ZKSProve,ZKSVerify).

Our reduction proceeds as follows. We run step 1-2 of the commitment phase using
the honest protocol. Then we rewind and extract ZKSTRAP, aux. We generate trapdoor
commitment c and decommitment dec2 to zks = ZKSCom(ZKSPAR, {}, r2), and use these
for the UAQK. We then send the value ZKSPAR received in step 1 to our challenge oracle
with database Db, and get back zks ′, which we send to the adversary in step 5 along with
decommitment dec′ (formed using auxc). Then, in the query phase, for each query we query
our challenge oracle, get back πi, and send Db[xi], πi, to the adversary as step 7.

Note that if the oracle returns ZKSCom(ZKSPAR,Db, r′), and ZKSProve(ZKSPAR, xi,Db[xi],Db, r′),
this will be identical to Game Hybrid b (with r1 = r′). If instead the oracle returns
ZKSCom(ZKSPAR, {}, r′) and ZKSSimProve(ZKSTRAP, xi, yi, r

′), this will be identical to Game
Hybrid c (with r3 = r′). 2

Game Hybrid d: (Same simulated zks in UAQK as for ZKS proofs) We proceed as
in Game Hybrid c with the following exception. In step 4, we use zks3, dec3, r3 (i.e. the
same values as in step 5-7) to form the witness for the UAQK. Let {HybdA(k, x, z)} be the
output of the above experiment.

Claim 11 {HybdA(k, x, z)} and {HybcA(k, x, z)} are indistinguishable by the WI property of
the UAQK.

The proof is very similar to the proof of Claim 9.

Game Ideal: run the simulator and the ideal functionality. Let IDEALA(k, x, z) be
the distribution of the output. Note that Game Ideal is identical to Game Hybrid d.
Thus, {IDEALA(k, x, z)} = {HybdA(k, x, z)}.

41

We conclude that {EXECπHP ,A(k, x, z)} ≈ {IDEALFDbCom
HP ,Sim

(k, x, z)}, and our construc-
tion satisfies Definition 12 in the corrupt verifier case.

Corrupt prover. When the real-world prover A is corrupted, our ideal-world simulator
(i.e., the ideal-world prover) will behave as follows.

Commitment Phase. Execute step 1-5 as described in the honest verifier protocol.
After commitment phase has ended successfully, and extract the circuit CDb which im-

plicitly determines the database. (This is the challenging step - we describe exactly how
this is done below.) Send CDb to the functionality.

Query/Answer Phase. When receiving a query xi from the functionality, send it in step
6 to A. When receiving a proof in step 7 for xi from A, if it is correct send (Open, 1, x) to
the functionality, otherwise send (Open, 0, x) to the functionality.

Finally, output what A outputs.
Extracting CDb. We now describe in more detail how the simulator generates the circuit

CDb. Let CA be a circuit that has the same behavior as A. (Note that CA is guaranteed
to have polynomial size.) Let A? be a PPT algorithm which behaves as follows: It runs
step 1-3 of the honest verifier algorithm interacting with CA, using the same coins that the
simulator used. Then, A? runs the prover side of the UAQK in step 4 by forwarding all
messages to and from CA. Construct a corresponding circuit - we refer to the result as P ?A.

By the definition of quasi knowledge, we know that there exists an algorithm E, which
when run on random string R and with oracle access to a UAQK prover P ?A that succeeds
with probability p, runs in expected time poly(k)/p (for some polynomial independent of
P ?A) and correctly extracts bits of a valid witness with overwhelming probability as long as
p is large enough.

We construct two other algorithms based on E
P ?A
R . The first, which we will call DbA

?
,

will proceed as follows. Let y be the statement corresponding to c||ZKSPAR||crs. On input x,
DbA

?
will run Eval on input x. Whenever Eval tries to access the ith bit of w, the algorithm

will run E
P ?A
R (y, i′) and use the resulting bit as wi. (Here we must adjust the position i and

use the adjusted value i′ to take into account the fact that the witness used for the UAQK
is prepended with zks||dec.) DbA

?
will then output whatever Eval outputs.

The second algorithm, which we will call PfA
?

will proceed similarly, but it will run
PfGen rather than Eval. This algorithm is not actually used by the simulator, but will be
necessary for our security arguments.

Note that the result is 2 deterministic oracle algorithms. Furthermore, we can compute

a fixed upper bound on the running time of these algorithms: if we run E
P ?A
R (y, 0), that tells

us the running time TE of the extractor for this randomness7, so the total running time will
be TE · |P ?A| · q(k) (or q′(k)), where q, q′ are the polynomials defined in the local witness
property of the ZKS scheme. Then we convert these algorithms into the equivalent circuits:
Suppose the running time of these algorithms is O(t(k)). Then there is a corresponding
circuit with size O(t(k) log(t(k))) with identical behavior. Our simulator will generate the
circuit corresponding to DbA

?
, which we will refer to as CDb, and send the result to FDbCom .

(If this process takes longer than 2k time, we abort.)

7Recall that the running time is the same for all i.

42

Claim 12 The simulator described above runs in expected polynomial time.

Proof. Recall that the simulator begins by running A with the honest verifier, and only
continues with extracting CDb if steps 1-5 execute successfully. First, consider just those
executions where the steps 1-3 are successful. After a given execution of step 1-3, let p be
the probability that A will cause the UAV to accept. At this point, we know that probability
1−p, the simulator will simply abort. If the simulator does not abort, then it will construct a
circuit using the oracle algorithm EA

?

R (y, ·), which by the UAQK property will have running
time kc/p for some fixed constant c (which is independent of A?, y, R).8 As discussed earlier,
we combine this with A? and with Eval, and the resulting algorithm will have fixed running
time kc/p · TA(k) · q(k) (where q is as defined in the local witness property, and TA is a
polynomial describing the running time of A). Thus, we can construct a corresponding
circuit of size kc

′
/p log(1/p) for appropriate constant c′ (where again, c′ is independent of

A?, y, R), and if this takes longer than 2k time, we abort. Now, we can say that at the point
when the first 3 steps have been successfully completed, and the adversary has probability p
of successfully completing the rest of the protocol, the expected running time of the rest of
the algorithm is p ·min(2k, kc

′
/p log(1/p)) = min(p ·2k, kc′ log(1/p)) ≤ kc′ ·k = kc

′+1 for fixed
constant c′. Note that c′ does not depend on the adversarial prover A? or the statement
y, which means it will be independent of the randomness used in steps 1-3. Thus, we can
conclude that the expected running time of the second half of the algorithm is always kc

′+1.
Finally, as running the first three steps takes only polynomial time, we can conclude that
the overall expected running time is at most polynomial. 2

Based on this, we can show that the output of the above simulator (i.e., the adversarial
prover in the ideal game) is computationally indistinguishable from the output of the corrupt
prover (i.e., the adversarial prover of the real game). Consider the following game:

Game Hybrid. Run as in the ideal-world game with the following two exceptions:
Compute A? as described above, and in addition to using EA

?

R to compute CDb, also use
it to extract the values zks, dec corresponding to the beginning of the witness. If the ZKS
commitment zks produced by the extractor does not match the value sent in step 5, output
“Commitment consistency error”. If for any i, the response yi sent by the prover in step 7
does not match the value produced by CDb, output “ZKS consistency error”.

Claim 13 For any A such that Game Hybrid outputs an error with negligible probability,
then {EXECπA,HV (k, x, z)} ≈ {IDEALFDbCom

Sim,HV
(k, x, z)}.

Note that, if the simulator does not abort, and the game does not output an error, then
the two games are identical. Thus, we need only show that simulator aborts with the same
probability as the honest verifier. Note that, if neither of the above errors occurs, then the
only time the simulator aborts when the honest verifier would not is when the process of
generating the extractor takes more than 2k time. However, as argued above, this process
should take O(poly(k)/p log(1/p)) time, where p is the probability that A? will produce a
valid proof. If this value is more than polynomial, that means p must be exponentially
small. Thus, any run on which the extractor takes more than 2k time is one where with

8Our statement y has length polynomial in k, so in fact the running time will be poly(k)c/p, but again,
this polynomial is fixed and independent of A, y, R, so we can just incorporate the extra exponent into c.

43

overwhelming probability step 4 of the commitment protocol will fail, and the honest verifier
would also have aborted. Thus, the probability of aborting differs by at most a negligible
amount, and we conclude that the two games are indistinguishable (as long as there are no
errors).

Claim 14 For all A, the probability that Game Hybrid outputs “Commitment consistency
error” is negligible by the binding property of the commitment scheme.

Proof. Suppose there exists an efficient A such that with non-negligible probability A
cause Game Hybrid to output “Commitment consistency error”, i.e., the zks extracted from
the UAQK is different from the zks that the adversary sends in step 5. Then we can easily
break the binding property of the commitment scheme. We are given challenge parameters
crs for the commitment scheme. In step 1 we generate ZKSPAR ← ZKSSimSetup(1k), and
send ZKSPAR, crs. In step 2 we use the ZK simulator to simulate the proof. Then we run step
3-5 honestly, and receive c, zks, dec. Finally, we define A? as above, choose random R, and
run EA

?

R (y, ·) on the first set of indices to extract zks ′, dec′. We output c, zks, dec, zks ′, dec′.
Note that the resulting algorithm will run in expected polynomial time, by a similar argu-
ment to claim 12. By assumption zks 6= zks ′ with non-negligible probability so this breaks
the binding property of the commitment scheme.9 2

Claim 15 Let zks ′ be the value that the simulator extracts from the UAQK, and let DbA
?
,

PfA
?

be the algorithms produced by the above process. For any polynomial sized set of inputs
x1, . . . , xm, for any adversary A, the probability that the simulator does not abort, and that
the resulting DbA

?
, PfA

?
will be such that for some i ∈ 1, . . . ,m, ZKSVerify(ZKSPAR, zks, xi,

DbA
?
(xi),Pf

A?(xi)) 6= 1 is negligible.

Proof. Note that by the local witness property, as long as EA
?

R returns the correct values
(i.e., bits consistent with some w such that TMVer(w) = 1) for all positions queried by Eval
and PfGen, it will be true that for all i ∈ 1, . . . ,m, ZKSVerify(ZKSPAR, zks, xi,DbA

?
(xi),Pf

A?(xi)) =
1.

Note that this process of querying bits of the witness based on Eval and PfGen together
can be seen as a polynomial time sampling algorithm S. (Recall that, by the local witness
property, they only access a polynomial number of bits in total.)

Let ν1, ν2 be the negligible functions defined in the definition of quasi knowledge.
Now, consider the situation after the simulator has run steps 1-3 of the commitment phase

with A. At this point, let p be the probability that the resulting A? successfully completes
the proof. Then, if p > ν1(k), the extractor will work as desired and we will obtain proofs
that verify for all xi with probability at least 1−ν2(k). Otherwise, we abort with probability
at least 1 − ν1(k). Thus, the probability that we do not abort, but do not produce DbA

?
,

PfA
?

that work for the positions queried by Eval,PfGen is at most max(ν1(k), ν2(k)), which
is negligible. 2

9The argument here gives an adversary which runs in expected polynomial time and breaks the binding
probability with non-negligible probability, but it is straightforward to convert this into an adversary which
runs in strict polynomial time.

44

Claim 16 For all A, the probability that Game Hybrid outputs “ZKS consistency error”,
but not “Commitment consistency error” is negligible by the soundness property of the ZKS
scheme.

Proof. Suppose that there exists an efficient A such that this probability is non-negligible,
i.e., with non-negligible probability, the zks extracted from the UAQK is the same as the
zks that the adversary sends in step 5, but at least one of the responses sent by A in step 7
is not consistent with the extracted circuit CDb. Then we can break the soundness property
of the ZKS protocol. We are given challenge parameters ZKSPAR for the zero-knowledge
sets scheme. In step 1 we send ZKSPAR to the adversary along with the parameters crs

for the commitment scheme. In step 2, we use the ZK simulator. After the commitment
phase, we define A?, choose a random R, run EA

?

R to extract zks, and use EA
?

R to construct
CDb, CZKSpf . (If the extracted value zks is different from the one received in step 5, we
abort.) Then in the query/answer phase, each time the adversary sends a response (yi, πi)
to query xi, we compute y′i = CDb(xi). If ZKSVerify(ZKSPAR, zks, xi, yi, πi) = 0, we continue
to the next query. Otherwise, if y′i 6= yi, we also compute PfA

?
(xi) to produce π′i, and output

(zks, xi, yi, πi, y
′
i, π
′
i). Note that the resulting algorithm will run in expected polynomial time,

by a similar argument to claim 12. By Claim 15, we are guaranteed that with overwhelming
probability ZKSVerify(ZKSPAR, zks, xi, y

′
i, π
′
i) = 1. Thus, with non-negligible probability we

succeed in finding valid proofs for xi and two different values yi, y
′
i, which contradicts the

soundness property of the ZKS.10 2

We conclude that {EXECπA,HV (k, x, z)} ≈ {IDEALFDbCom
Sim,HV

(k, x, z)}, and our construction
satisfies Definition 12 in the corrupt prover case as well.

10See footnote 9.

45

	Introduction
	Our Results

	Universal Arguments of Quasi Knowledge
	A New Notion: Quasi-Knowledge
	CRHFs Constant-Round UAQK
	Proving the Quasi-Knowledge Property

	Secure Database Commitments
	Constant-Round Secure Database Commitments
	Definitions and Tools in Details
	Commitment Schemes
	Interactive proof/argument systems with efficient prover strategies.
	Universal Arguments
	Zero-Knowledge Sets

	Proof of Theorem 2
	"426830A Pnew(,), Vnew()"526930B Is a Universal Argument
	"426830A Pnew(,), Vnew()"526930B Is a Universal Argument of Quasi Knowledge

	Constructing a Special ZKS Scheme on CRHFs
	Proof of Theorem 3

