
Dynamic Credentials and Ciphertext Delegation for

Attribute-Based Encryption

Amit Sahai∗, UCLA Hakan Seyalioglu†, UCLA

Brent Waters‡, University of Texas at Austin

August 1, 2012

Abstract

Motivated by the question of access control in cloud storage, we consider the problem using
Attribute-Based Encryption (ABE) in a setting where users’ credentials may change and cipher-
texts may be stored by a third party. We find that a comprehensive solution to our problem
must simultaneously allow for the revocation of ABE private keys as well as allow for the ability
to update ciphertexts to reflect the most recent updates. Our main result is obtained by pairing
two contributions:

• Revocable Storage. We ask how a third party can process a ciphertext to disqualify revoked
users from accessing data that was encrypted in the past, while the user still had access.
In applications, such storage may be with an untrusted entity and as such, we require
that the ciphertext management operations can be done without access to any sensitive
data (which rules out decryption and re-encryption). We define the problem of revocable
storage and provide a fully secure construction. Our core tool is a new procedure that we
call ciphertext delegation. One can apply ciphertext delegation on a ciphertext encrypted
under a certain access policy to ‘re-encrypt’ it to a more restrictive policy using only public
information. We provide a full analysis of the types of delegation possible in a number of
existing ABE schemes.

• Protecting Newly Encrypted Data. We consider the problem of ensuring that newly en-
crypted data is not decryptable by a user’s key if that user’s access has been revoked. We
give the first method for obtaining this revocation property in a fully secure ABE scheme.
We provide a new and simpler approach to this problem that has minimal modifications
to standard ABE. We identify and define a simple property called piecewise key genera-
tion which gives rise to efficient revocation. We build such solutions for Key-Policy and
Ciphertext-Policy Attribute-Based Encryption by modifying an existing ABE scheme due
to Lewko et al. [13] to satisfy our piecewise property and prove security in the standard
model.

∗Research supported in part from a DARPA/ONR PROCEED award, NSF grants 1136174, 1118096, 1065276,
0916574 and 0830803, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant
from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense
Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0389.
The views expressed are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
†Research supported by a NSF Graduate Research Fellowship.
‡Supported by NSF CNS-0915361 and CNS-0952692, AFOSR Grant No: FA9550-08-1-0352, DARPA through the

U.S. Office of Naval Research under Contract N00014-11-1-0382, DARPA N11AP20006, Google Faculty Research
award, the Alfred P. Sloan Fellowship, and Microsoft Faculty Fellowship, and Packard Foundation Fellowship. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Department of Defense or the U.S. Government.

1

It is the combination of our two results that gives an approach for revocation. A storage
server can update stored ciphertexts to disqualify revoked users from accessing data that was
encrypted before the user’s access was revoked. This is the full version of the Crypto 2012
(c©IACR) paper.

Keywords. Revocation, attribute-based encryption, delegation

1 Introduction

The need to store information externally has never been higher: With users and organizations
expecting to access and modify information across multiple platforms and geographic locations,
there are numerous advantages to storing data in the cloud. However, there is a natural resistance
to the idea of handing over sensitive information to external storage. Since these databases are
often filled with valuable data, they are high value targets for attackers and security breaches in
such systems are not uncommon, especially by insiders. In addition, organizations with access to
extremely sensitive data might not want to give an outside server any access to their information
at all. Similar problems can easily arise when dealing with centralized storage within a single
organization, where different users in different departments have access to varying levels of sensitive
data.

A first step in addressing this problem of trust is to only store information in encrypted form.
However, data access is not static – as employees are hired, fired or promoted, it will be necessary to
change who can access certain data. A natural solution to this problem is to have users authenticate
their credentials before giving them access to data; but such an approach requires a great deal of
trust in the server: a malicious party may be able to penetrate the server and bypass authentication
by exploiting software vulnerabilities. A solution that avoids this problem is to use cryptographi-
cally enforced access control such as attribute-based encryption (ABE) [23]. However, this fails to
address the problem that the credentials of a user may change with time. This problem motivated
the study of revocation [5] where a periodic (e.g., nightly) key update would only allow non-revoked
users to update their keys to decrypt newly encrypted data. Dynamic credentials in the context of
stored data, however, present novel challenges that have not been considered in previous studies on
revocation. Take the following example.

A Motivating Story. Consider an employee with access to sensitive documents necessary
for his work1. One day, this employee is terminated and has his access revoked. Now, this employee
with insider knowledge of the organization’s systems, and who has retained his old key, may attempt
to penetrate the database server and decrypt all the files that he once had access to. How can we
deal with this type of attack? At first glance, there appears to be an inherent intractability to this
problem. Any encrypted file that the user could decrypt with his old key will still be decryptable,
after all.

Despite these problems, we believe this situation presents a very real security threat to the or-
ganization and is important to address. One method to handle this problem is to decrypt and
re-encrypt all stored data every time some employee’s credentials are revoked. However, the involve-
ment of secret key information in this process both makes this process cumbersome and opens up the
overall system to problematic new vulnerabilities. In general, we want to limit the use of secret key
information to only key generation and not to database upkeep as the database is handling constant
two way communication in our system and is therefore modeled as the most vulnerable party.

1While gainfully employed, the worker may have incentives to exercise discretion by only accessing the files necessary
for his work and not download all files he has access to. Such discretion may be enforced, for example, through access
logs.

2

We propose a novel method to deal with this problem: We devise a revocable ABE system where
the database, using only publicly available information, can periodically update the ciphertexts
stored on the system, so that as soon as access is revoked for a user U , all stored files (no matter
how old) immediately become inaccessible to U after the update process. The database does not
even need to know the identities of users whose access was revoked. We emphasize that this is
a significant security improvement over decrypting and re-encrypting (which cannot be done with
only public information) since in our solution, the database server never needs access to any secret
keys. Furthermore, secret key holders do not have to interact with the database for the purpose of
maintaining access control.

We also note in passing that while re-encrypting each ciphertext after every revocation (in a
repeated nesting fashion) can also be applied to solve the problem of access control, this solution is
inefficient when a ciphertext needs to be updated many times. In such a solution, decryption time
will increase linearly and the ciphertext may grow significantly upon each invocation (Even using
hybrid encryption, this would add a potentially large ABE header each time).

1.1 Our Results

In this work, we provide the first Revocable ABE scheme that deals with the problem of efficiently
revoking stored data. This result is obtained through two main technical contributions:

Revocable Storage Attribute-Based Encryption

We provide ABE encryption schemes with a new property we call revocable storage. Revocable
storage allows a third party storing ciphertexts to revoke access on previously encrypted data.
Additionally, our scheme satisfies strong efficiency guarantees with regard to the lifetime of the
database.

We realize revocable storage by introducing a notion of ciphertext delegation. In ABE, ci-
phertext delegation is the ability to restrict a ciphertext with access policy P to a more restrictive
policy P ′ using only publicly available information, but without causing the ciphertext size to in-
crease. We initiate the first systematic study of ciphertext delegation for both Key-Policy ABE
(KP-ABE) and Ciphertext-Policy ABE (CP-ABE) by analyzing the type of delegation possible in a
variety of existing schemes [11, 23, 24, 13].

Protecing Newly Encrypted Data

To utilize revocable storage we need a method for efficiently revoking users credentials such that
newly encrypted data will not be decryptable by a user’s key if that user’s access has been revoked.
This topic of revoking credential was considered by Boldyreva et al. [5] in the context of Identity-
Based Encryption (and to restricted notions of security for ABE); however was not paired with the
revocation of ciphertexts. In addition, ours is the first fully (vs. selectively) secure system2.

While the Boldyreva et al. system needed to be proven “from scratch”, we provide a methodology
to obtain a simple construction and proof. We propose a natural modification to standard ABE which
we call Piecewise Key Generation. Informally (KP-)ABE with piecewise key generation is similar
semantically to a standard ABE scheme, except decryption takes as input two keys K(0)

P0,U
and K(1)

P1,U

from a user U such that decryption only succeeds if both key policies P0 and P1 are authorized to
decrypt the challenge ciphertext. The scheme is ‘piecewise’ in that a user may query two different key
generation oracles KeyGen0 or KeyGen1 in order to get either side of the key adaptively. This allows

2Note that a related work [22] proposes a “fully” secure Revocable ABE scheme under a significantly different
model, where the revocation list is given as an input to the encryption algorithm. This requirement makes such a
scheme unsuitable for the main application of secure storage, since we cannot expect users who create documents to
know the credentials of all other users in the system. Indeed, the exact credentials of any user may be a secret meant
to be protected.

3

the user to build his key in a piecewise fashion, after having already seen other pieces of his key.
This requirement is close to standard ABE requirements and many existing proof methods extend
to prove piecewise security, however, unlike standard ABE, it suffices to imply full revocability in a
black-box fashion.

We then show that variants of a method used previously in the context of revocability against
stateless receivers in Naor et al. [18] and more closely to our setting in Revocable IBE in Boldyreva
et al. [5] succeed in converting any ABE scheme with piecewise key generation to a revocable ABE
scheme. We give a modification of Lewko et al.’s fully secure ABE scheme [13] that satisfies our
requirement and prove its security. Combined with our new techniques for dealing with revocable
storage, this yields our Revocable Storage KP-ABE and CP-ABE schemes. Note that we believe our
techniques are also compatible with a number of other attribute based encryption schemes [11, 12].

Related Work

Originally proposed by Sahai and Waters [23], attribute-based encryption [11, 21, 24, 13, 20] has
been an active research area in cryptography in part since it is a primitive with interesting functional
applications [10, 5] and can be implemented efficiently [4]. In a key-policy attribute-based encryption
(KP-ABE) scheme every secret key is generated with a policy P and ciphertexts are generated
with a set of attributes U and decryption is only possible if P (U) = True. The parallel notion
where ciphertexts are associated with policies and keys with sets of attributes is called ciphertext-
policy attribute-based encryption (CP-ABE). While the problem of delegating a key to a more
restrictive key has been considered [11], it is analyzed only in the context of the scheme proposed
in the paper. The problem of revocation is also a well studied problem, both for general PKI
[16, 19, 2, 17, 18, 7, 9], identity based encryption [5, 14] and attribute-based encryption [22]. At
a high level, our revocable storage results can be seen as taking methods from forward secure
signatures and encryption [6, 3, 1, 15] which were introduced for key management and applying
them to ciphertext management by noticing that the key delegation infrastructure can be replicated
for the ciphertext through the delegation mechanism we introduce.

2 Preliminaries and Notation

We will assume e : G × G → GT is a non-degenerate bilinear pairing whenever it is used. We will
use ~v notation for vectors and [i, j] to denote the set of all integers from i to j inclusive or [i] as
shorthand for [1, i]. We will use l(~v) to denote the dimension of the vector. Throughout this paper,
log(x) will denote the logarithm of x to the base 2. The notation V (T) for a tree T will denote the
set of nodes of this tree. The notation x← X for X a randomized algorithm may denote by context
either that x is a possible output of that algorithm with positive probability or that x is drawn from
the distribution X.

Attribute-Based Encryption

Attribute-based encryption schemes are generally divided into two types depending on if the access
policy is embedded in the keys or ciphertexts. We now define KP-ABE, where keys have a access
policies incorporated within while ciphertexts are associated with sets of attributes:

Definition 2.1. (Key-Policy ABE) A KP-ABE scheme with attribute set Ω that supports policies
P with message space M is defined by the following polynomial time algorithms:

• Setup(1λ) → (PK,MSK): Setup takes as input the security parameter and outputs the
public key and master secret key.

4

• KeyGen(MSK,P)→ SKP : Key generation outputs a secret key with policy P ∈ P.

• Encrypt(PK,M,S)→ CS : Encrypts a message M ∈M under the attribute set S ⊆ Ω.

• Decrypt(SKP , CS) → M : Decryption successfully recovers the encrypted message if and
only if P (S) = 1 (in other words, the attribute set satisfies the policy).

The security game requires that an adversary queries keys corresponding to policies, and in the
challenge phase requests the encryption of one of two adaptively chosen messages with an attribute
set of its choice (generated during the challenge phase). The adversary succeeds if it correctly outputs
the encrypted message without ever querying a key for a policy that is satisfied by the attribute set of
the challenge ciphertext (we defer a formal security guarantee until we also introduce revocability).
A more restrictive notion of selective security is also present in the literature in which the adversary
must commit to the challenge policy before the security game begins. In a Ciphertext-Policy
ABE scheme the placement of the policy is reversed, the key generation algorithm takes a set of
attributes as input while encryption takes a policy.

Revocable Attribute-Based Encryption

A revocable attribute-based encryption scheme [5] has the added functionality that a user may be
placed on a revocation list that will make him unable to decrypt any message encrypted after he was
revoked. Such a scheme has a periodic broadcast by a trusted key generation authority that allows
the un-revoked users to update their keys and continue decryption. In such a scheme we assume
that the total number of users and the number of key updates the scheme can survive are both very
large and therefore the scheme’s parameters should only depend polylogarithmically on the total
number of non-revoked users and time bound.

From this point on we will use the convention that a set of credentials S satisfies a policy P if
and only if P (S) = 1.

Definition 2.2. (Revocable KP-ABE) A Revocable KP-ABE scheme with attribute set Ω that
supports policies P with message space M, time bound T and identity length I consists of the following
algorithms:

• Setup(1λ) → (PK,MSK): Setup takes as input the security parameter and outputs the
public key and master secret key.

• KeyGen(MSK,P, ID)→ SKP,ID: Key generation outputs a secret key with policy P ∈ P
for the user ID ∈ {0, 1}I .

• Encrypt(PK,M,S, t)→ CS,t: Encrypts M ∈M with attribute set S ⊆ Ω at time t ≤ T .

• KeyUpdate(MSK, rl, t)→ Kt: The update phase takes as input a revocation list rl (a set
of strings in {0, 1}I) and the master secret key and outputs the key update information for
time t.

• Decrypt(SKP,ID,Kt′ , CS,t) → M : Decryption successfully recovers the encrypted message
if and only if P (S) = 1, t′ ≥ t and ID was not revoked at time t (it was not present on rl
when Kt′ was generated).

Before we define the security game, we first define the oracles that will be used in its definition.

Security Game Oracles. Define the following oracles to use in the security game. These
oracles are given access to (PK,MSK) that are generated at the beginning of the security game.

5

1. The Secret Key Generation oracle SK(·, ·) takes as input (P, ID) and returns SKP,ID gener-
ated from:

SKP,ID ← KeyGen(MSK,P, ID).

2. The Key Update Generation oracle K(·, ·) takes as input t and a revocation list rl and returns
Kt generated from:

Kt ← KeyUpdate(MSK, t, rl).

For a p.p.t. adversary A define the following experiment (some additional constraints on the adver-
sary’s actions will be enumerated after the experiment’s definition). We use the term challenger for
an internal agent in the security game who participates in the experiment. The challenger’s behavior
is described in the security game.

RKP-SecurityA(1λ):

1. The challenger runs Setup(1λ)→ (PK,MSK) and returns PK to A;

2. A is given oracle access to SK(·, ·), K(·, ·) until it signals the query phase is over;

3. After the query phase, A returns (M0,M1, S
∗, t∗) to the challenger;

4. The challenger picks b a random bit and returns to A:

CS∗,t∗ ← Encrypt(PK,Mb, S
∗, t∗);

5. A is once again given oracle access to the two oracles above;

6. A returns a bit b′. The experiment returns 1 if and only if b′ = b and the conditions
below concerning A’s query history are satisfied.

The condition placed on the adversary’s queries is as follows: If the adversary makes a query
SK(P, ID) that has sufficient credentials to decrypt the challenge ciphertext (in other words,
P (S∗) = 1), then this ID is revoked for all key generation queries with time at least t∗ (in other
words, for all queries K(t, rl) with t ≥ t∗, ID ∈ rl).

Definition 2.3. A Revocable KP-ABE scheme is secure if for any polynomial time adversary A the
advantage of this adversary in the RKP-Security game:

2 Pr
[
RKP-SecurityA(1λ) = 1

]
− 1

is negligible in λ.

Remark. Note that in previous works on revocation [5] the security definition is presented a
little differently. Their definition is much more in line with an actual implementation in which an
attacker is not given the authority to query key-updates in a non-sequential order in time (in other
words, after seeing a key-update for time t, it can not ‘go back in time’ and query one for time t−1).
Their definition corresponds more closely to attacking the scheme in practice, while ours is stronger.
We choose our definition both because it is stronger and because it’s more straightforward to prove
using our techniques. However, for most practical applications (unless there is threat of an attacker
being able to generate key updates out of order, or with a time component of his choice), showing
the weaker version in [5] would suffice.

6

3 Revocable Attribute-Based Encryption

The Revocable ABE and IBE constructions given by Boldyreva et al. [5] are built from an underlying
ABE scheme through a new transformation they introduce. However, security of the underlying ABE
scheme does not imply security of the transformation, and their resulting scheme was proven secure
(in the ABE case, in the restricted selective security model) from scratch. In this work we aim to
both extend and simplify previous work by investigating the additional properties an ABE scheme
needs to satisfy to imply a Revocable ABE scheme following their transformation. Using our result,
we modify the fully secure scheme due to Lewko et al. [13] to satisfy our requirement in both the
KP-ABE and CP-ABE setting. This yields the first fully secure Revocable KP-ABE and CP-ABE
schemes.

The Requirement: Piecewise Key Generation

In our framework the necessary condition an ABE scheme should satisfy in order to imply a revocable
ABE scheme is that key generation can be done in a dual componentwise fashion. In the KP-
ABE setting keys will have two separate policies P0 and P1 such that decryption succeeds for an
encryption with attribute set S if and only if P0(S) = 1 and P1(S) = 1. The adversary in the
security game is allowed to query these components separately with access to two oracles KeyGen0

and KeyGen1 which take as input a policy and an identifier U such that a key KeyGen0(MSK,P0, U)
and KeyGen1(MSK,P1, U

′) can only be combined if U = U ′ (in our applications this U value will
be related to, but will not exactly be a user’s identity. For this reason, we switch notation from
identities ID to identifiers U at this point).

This security definition is stronger than the standard ABE definition because these components
may be queried in an adaptive manner, allowing the adversary to build his key piece by piece. Note
the actual notation we use in our scheme is slightly different than the way it is presented above.

Definition 3.1. (Piecewise Key Generation) A KP-ABE scheme is said to have piecewise key
generation with attribute set Ω, supporting policies in P, message space M and identifier length I if
key generation and encryption are modified to the following syntax:
KeyGen takes as input the master key MSK, a bit b a policy P ∈ P and an identifier U ∈ {0, 1}I :

• KeyGen(MSK, b, P, U)→ K
(b)
P,U .

Decrypt takes two outputs of KeyGen as the key input instead of one:

• Decrypt(CS ,K0,K1)→M.

We now define correctness of the scheme:

Definition 3.2. (Correctness) A KP-ABE scheme with piecewise key generation is correct if for
any S ⊆ Ω and:

• (PK,MSK)← Setup(1λ)

• CS ← Encrypt(PK,M,S)

• P0, P1 ∈ P such that P0(S) = P1(S) = 1:

If KeyGen(MSK, 0, P0, U)→ K
(0)
P0,U

and KeyGen(MSK, 1, P1, U)→ K
(1)
P1,U

, then,

Decrypt(CS ,K
(0)
P0,U

,K
(1)
P1,U

) = M.

7

The definition for security for a scheme with piecewise key generation is now defined as one would
expect: Unless the adversary has queried a single identifier U to

KeyGen(MSK, 0, P0, U) and KeyGen(MSK, 1, P1, U)

such that P0(S) = P1(S) = 1, he should not be able to distinguish which message has been en-
crypted. We formalize this through the following game:

Piecewise KPABE SecurityA(1λ):

1. The challenger runs Setup(1λ)→ (PK,MSK) and sends PK to A;
2. A makes queries of the type (b, P, U) for b ∈ {0, 1}, P ∈ P and U ∈ {0, 1}I . The

challenger runs KeyGen(MSK, b, P, U) and returns the key to A;
3. A signals the query phase is over and returns (M0,M1, S);

4. The challenger picks b $←− {0, 1} and returns Encrypt(PK,Mb, S) to A;
5. A has another query phase as previously;
6. A sends a bit b′ to the challenger;
7. If for any U , A has queried KeyGen(MSK, 0, P0, U) and KeyGen(MSK, 1, P1, U)

such that P0(S) = P1(S) = 1 return 0;
8. If b′ = b return 1, otherwise return 0.

Definition 3.3. A KP-ABE scheme with piecewise key generation is secure if for any polynomial
time adversary A the advantage of this adversary in the Piecewise KPABE Security game:

2 Pr
[
Piecewise KPABE SecurityA(1λ) = 1

]
− 1

is negligible in λ.

3.1 Revocability from Piecewise KP-ABE

Our final construction in Theorem 7.1 will incorporate not only revocability but also the ability to
efficiently delegate stored ciphertexts. In this section we will state a restricted corollary of this more
robust result that only addresses revocability. We state this result separately to draw attention to
the fact that the piecewise key generation is the only necessary condition to achieve revocability.
We defer the proof to the more general result. Further intuition as to how piecewise key generation
is used will be provided later in the paper.

For our result we will need to make a requirement on exactly what types of policies we are
assuming our piecewise KP-ABE scheme can support. Since our ultimate goal is to apply our result
to the construction of [13], we will state our result if the KP-ABE scheme supports access policy
formatted as LSSS matrices (as in [13]).

Linear Secret Sharing Schemes

We begin with a brief overview of LSSS matrices. A LSSS (linear secret sharing scheme) policy is
of the type (A, ρ) where A is an n× l matrix over the base field F (whose dimensions may be chosen
at the time of encryption) and ρ is a map from [n] to Ω, the universe of attributes in the scheme.
A policy (A, ρ) satisfies an attribute set S ⊆ Ω if and only if 1 = (1, 0, 0, . . . , 0) ∈ Fl is contained in

8

SpanF(Ai : ρ(i) ∈ S) where Ai is the ith row of A. An LSSS policy (A, ρ) is called injective if ρ is
injective.

We now state our result on a black-box reduction between KP-ABE schemes with piecewise key
generation supporting LSSS policies to Revocable KP-ABE supporting LSSS policies.

Theorem 3.4. Let E be a KP-ABE scheme with piecewise key generation supporting injective LSSS
matrices with attribute set of size ω. Then there exists a Revocable KP-ABE scheme F supporting
injective LSSS matrices with time bound T under the same complexity assumptions as E with an
attribute set of size ω − 2 log(T).

4 Revocable-Storage Attribute Based Encryption

Motivated by settings in which a third party is managing access on encrypted data, we now present
a new direction for revocability. We call the property we achieve revocable storage - the ability for a
ciphertext to be updated using only the public key so that revoked users can no longer decrypt the
refreshed ciphertexts. This is an additional functionality that is added onto standard revocability,
allowing an untrusted third party storing ciphertexts to update them in a way to make revoked
users unable to decrypt messages they were once authorized to access. This can be thought of as an
adaptation of forward security [6] which is used to manage keys, to managing ciphertexts.

Definition 4.1. (Revocable Storage) A Revocable KP-ABE scheme has Revocable Storage if it
has the following additional algorithm:

• CTUpdate(CS,t, PK) → CS,t+1: The update procedure transforms a ciphertext encrypted
at time t to an independent encryption of the same message under the same set S at time t+1.

Formally, the requirement is:

For any attribute set S ⊂ Ω, time t ∈ [T − 1] and message M ∈ M, if PK and C are such that
KeyGen(1λ)→ (MSK,PK) and Encrypt(PK,M,S, t)→ C then,

Encrypt(PK,M,S, t+ 1) ≡ CTUpdate(C,PK).

Where ≡ denotes equality in distribution. Note that this is a very strong distributional re-
quirement, as we are insisting that starting from any ciphertext allows complete resampling from
the output of the encryption algorithm. This is in contrast to merely requiring that the updated
ciphertext be a valid ciphertext under the new time component. Having this strong distributional
guarantee will be vital in applications where we may be delegating multiple times from the same
base ciphertext.

We will call a Revocable KP-ABE scheme with Revocable Storage, a Revocable Storage KP-
ABE scheme for brevity. Notice that the above procedure allows us to accomplish our motivating
applications; it allows a third party storing ciphertexts to update the ciphertexts after revocation
has been done at time t so that only the non-revoked users can continue decrypting. We will impose
the restriction that all parameters should only depend polylogarithmically on T , the upper bound
for the time component and n, the total number of users in the scheme. It is worth observing that
there are simple inefficient ways (without the independence guarantee) to satisfy this requirement
assuming a vanilla KP-ABE scheme (i.e. by having CS,t = {Encrypt(PK,M,S, t′) : t′ ≥ t} and
having the update procedure simply delete the lowest indexed ciphertext) that depend polynomially
on T .

9

5 Ciphertext Delegation

Revocable storage centers around allowing an untrusted third party to manage access on ciphertexts
by incrementing the time component. To accomplish this, we need a process by which a ciphertext
can be made harder to decrypt using only public operations in a more efficient way than simply
re-encrypting under the more restrictive policy.

We call this problem ciphertext delegation - where a user who has access to only the ciphertext and
public key may process this information into a completely new encryption under a more restrictive
access policy. We consider this problem for attribute based encryption and show a simple method
to classify delegation made possible in existing ABE schemes. We say that a ciphertext with a given
access policy can be delegated to a more restrictive policy if there is a procedure that given any
valid encryption of a message under the first policy produces a independent and uniformly chosen
encryption of the same message under the new access policy. We again stress that delegation is
required to produce a new encryption of the same message that is independent of the randomness
and access policy of the the original ciphertext being delegated from. This requirement is crucial
if multiple delegations from the same base ciphertext are ever used in a scheme. Without this
guarantee, multiple delegations may have correlated randomness and the security of the underlying
scheme would not imply any security in these applications.

Remark. Note that we only consider CPA security in this paper as the re-randomizability guar-
antee makes CCA2 security unattainable (as the challenge ciphertext can simply be re-randomized
and sent to the decryption oracle). An analysis of possible relaxations of CCA2 security that are
possible in our model is an interesting question for future work.

KP-ABE Ciphertext Delegation

For monotone access policies (as are generally considered in the literature [8, 13, 23]), the natural
way to restrict access is by removing attributes from the ciphertext’s attribute set. Note that for
non-monotone access policies, delegation is not achievable without severely limiting the key policies
permitted as any change in attribute set will make the ciphertext decryptable to certain simple
policies not previously authorized, implying that delegation would violate security if these policies
are supported.

Definition 5.1. (KP Delegation) A KP-ABE scheme E with message space M and attribute
space Ω is said to have ciphertext delegation if there is an algorithm Delegate with the follow-
ing guarantee: For any S′ ⊆ S ⊆ Ω and any (PK,MSK) ← E .Setup(1λ), M ∈ M and CS ←
E .Encrypt(PK,M,S):

E .Delegate(PK,CS , S′) ≡ E .Encrypt(PK,M,S′).

We show briefly how ciphertext delegation is possible in the KP-ABE scheme due to Goyal et
al. [8] as the delegation procedures in the other listed schemes follow similarly. In this scheme, a
ciphertext CS with attribute set S is encrypted as:

CS = (S,MY s, {T si : i ∈ S})

where s is chosen uniformly in Zp and {Ti : i ∈ S}, Y are part of the public key. To delegate this to an
encryption under attribute set S′ ⊆ S, we first modify the ciphertext to be (S′,MY s, {T si : i ∈ S′})
by replacing S with S′ and deleting elements in the third component. While this is a valid cipher-
text under attribute set S′ notice that it is not a valid delegation since we require the delegated
ciphertext to be a completely independent encryption. By generating Y s

′
, {T s′i : i ∈ S′} with s′

uniformly chosen from Zp, the ciphertext can be modified to (S′,MY s+s
′
, {T s+s

′

i : i ∈ S′}) which
is a fresh uniform encryption of M with attribute set S′. A similar analysis also holds for [13, 23]
which allows us to conclude:

10

Theorem 5.2. The KP-ABE schemes defined in [8, 13, 23] have ciphertext delegation.

5.1 Ciphertext Policy Delegation

The more involved analysis for delegation comes when considering CP-ABE schemes as the cipher-
texts may be associated with complex access policies. The most prominent CP-ABE schemes in the
literature are built upon an underlying secret sharing scheme corresponding to their access policy:
[23, 4] take their policies input as threshold trees while [24, 13] take their policies as LSSS matrices.
The first step in the encryption procedure in these schemes is to share a uniformly chosen secret
according to the implied secret sharing scheme (as either Shamir secret sharing applied to threshold
trees, defined shortly, or according to a LSSS matrix) with the shares of the secret embedded into
certain components of the ciphertext. The encryption scheme is said to be based on a given secret
sharing scheme if it falls into the above paradigm for this secret sharing scheme. Before we continue,
we remind the reader of the syntax for LSSS matrices and threshold trees. Note that LSSS based
access structures contain all threshold tree based access structures.

Linear Secret Sharing Notation

We recall some of the basic notation defined previously. A linear secret sharing scheme over F for
a set of players P is defined through a pair (A, ρ) with A the share generating matrix of dimension
n × l and ρ the assignment function from [n] → P. To evaluate the shares of a secret, the vector
w = (s, r1, . . . , rl−1) is constructed where s is the secret to be shared and r1, . . . , rl−1 ∈ F are
uniformly chosen at random. The share vector is then defined as ~v = Aw with party i receiving all
~v[j] such that ρ(j) = i.

Threshold Trees

An access tree is defined as a tree T where every non-leaf node x has assigned a number nx (corre-
sponding to the threshold level of that node) and every leaf x is assigned a (not necessarily unique)
player i ∈ [n] (call this value β(x)). Whether or not an access tree is satisfied by a set of players
A ⊆ [n] is determined by first assigning each leaf x, the boolean true if β(x) ∈ A and setting all
other leaves assigned to players not in A to false. A non-leaf node x on the second level of the tree
is now assigned the value true if at least nx of its children are true and set to false otherwise.
This process is recursed through all levels of the tree and A is said to satisfy T if the root of T is
finally assigned true. Implementing a secret sharing scheme with the access structure defined by a
threshold tree is straightforward using a simple generalization of Shamir secret sharing. The secret
to be shared is first assigned to the root node of the tree - every descendent of a fixed node x is
then recursively assigned the evaluation of a random polynomial p of degree nx − 1 at the node’s
index - a non-zero number assigned to the node so that no two children of the same node share the
same index and is part of the description of the tree such that the polynomial such that p(0) is the
value assigned to x. After this process has recursed through the tree, the player i is returned all leaf
values labeled i (note that the labeling and indexing are two different operations). Call this secret
sharing scheme, Shamir secret sharing applied to threshold trees.

For our applications we will use slightly non-standard notation for secret sharing schemes for
notational efficiency. We say that a secret sharing scheme S is made of two probabilistic polynomial
time algorithms Share and Rec. The reconstruction algorithm Rec behaves as expected by recon-
structing the shares returned by the parties. The sharing function Share takes as input a secret
in S as well as a policy P such that a group of users P are authorized to reconstruct the secret if
and only if P (P) = 1. Instead of the Share functionality returning one share to each party, it will
output (~v, α) where the components of ~v are elements in the share space and the second output α
is an assignment of indices of ~v to [n] (where n is the number of players) that determines which

11

components of ~v should be sent to which player (if α(i) = j, then ~v[i] is sent to player Pj ; note there
may be multiple elements sent to some or all players).

Delegation Procedures

In this section we analyze policy delegation in CP-ABE, the process by which a ciphertext CP (en-
crypted with policy P) can be delegated into a new CP ′ . To this end, we observe that most known
CP-ABE schemes actually have the access structure ‘built in’ to the ciphertext in the form of a
secret sharing scheme. Informally, these schemes work as follows: The encryption algorithm will
first generate some secret s ∈ S at random and internally share it according to the policy it is being
encrypted under. In the decryption phase, the decryptor is then able to ‘use’ all the shares that
correspond to attributes he possesses to reconstruct the underlying secret, succeeding in recovering
the message if he does. Unfortunately formally defining this intuition is somewhat difficult. It is
with this motivation that we define F , the share-extractor that recovers the shares embedded in
the ciphertext. We will call a ciphertext valid if it is a possible encryption of some message in the
message space M under some supported policy.

We say a CP-ABE scheme is based on a specific secret sharing scheme S with share space S if there
is a (possibly inefficient) share-extractor F that on input any valid ciphertext CP outputs (s, (~v, α))
where s ∈ S, (~v, α) ← S. Share(s, P). The guarantee is that the shares the extractor recovers
correspond correctly to a secret shared under the ciphertext access structure: If F (C) = (s, (~v, α))
with (~v, α) ← S. Share(s, P) then C is a valid ciphertext with policy P . We assume F outputs ⊥
on any invalid ciphertext input.

Elementary Ciphertext Manipulations

We will define a CP-ABE scheme as having ciphertext delegation if it allows for certain operations to
be performed on its ciphertext that manipulate the shares of the underlying secret sharing scheme
in a fixed way. A CP-ABE scheme allows elementary ciphertext manipulations if there exist the
following efficient public operations on valid ciphertexts. As the first requirement does not change
the underlying structure of the ciphertext but refreshes the encryption, we call this Property 0.

Property 0. Any well-formed ciphertext under a given access policy can be re-randomized to
an independent encryption of the same message under the same policy.

In addition, there are the following four efficient operations on valid ciphertexts (for all examples
below let C be a valid ciphertext with F (C) = (s, (~v, α)) and [n] the set of attributes):

Property 1. Linearly combining shares with the same label: There is a p.p.t. algorithm
Combine such that for any i, j ≤ l(~v) with α(i) = α(j) we have Combine(C, i, j, ai, bj , d) = C ′ with
F (C ′) = (s, (~v′, α)) where:

~v′[k] =
{
~v[k], for all k 6= i;
ai~v[i] + bj~v[j] + d, if k = i.

Property 2. Deleting components of ~v: There is a p.p.t. algorithm Delete such that for any
i ≤ l(~v) we have Delete(C, i) = C ′ where F (C ′) = (s, (~v′, α′)), l(~v′) = l(~v)− 1 and:

(~v′[k], α′(k)) =
{

(~v[k], α(k)) for k < i;
(~v[k + 1], α(k + 1)) if k ≥ i.

12

Property 3. Adding new entries to ~v: There is a p.p.t. algorithm Add such that for any i ∈ [n]
we have Add(C, i) = C ′ where F (C ′) = (s, (~v′, α′)), l(~v′) = l(~v) + 1 and:

(~v′[k], α′(k)) =
{

(~v[k], α(k)) for i ≤ l(~v);
(0, i) if k = l(~v) + 1.

Property 4. Swapping entries in ~v: There is a p.p.t. algorithm Swap such that for any
i, j ≤ l(~v) we have Swap(C, i, j) = C ′ where F (C ′) = (s, (~v′, α′)) and:

(~v′[k], α′(k)) =

 (~v[k], α(k)) for k 6∈ {i, j};
(~v[i], α(i)) if k = j;
(~v[j], α(j)) if k = i.

We now state our observation on known CP-ABE schemes that fall under the framework we have
just described. Consulting the constructions for each scheme, it is immediate to observe where the
underlying secret sharing scheme is embedded during encryption and how the operations above can
be performed.

Theorem 5.3. The CP-ABE schemes given in SW05 [23], BSW07 [4], Waters11 [24] and LOSTW10
[13] allow for elementary ciphertext manipulations. These schemes are based on Shamir secret shar-
ing, Shamir secret sharing generalized to threshold trees and linear secret sharing schemes respec-
tively.

The method of allowing ciphertext manipulation in each case is straightforward, and consists of
deleting, adding or linearly combining certain elements of the ciphertext (similarly to the method
given before Theorem 5.2). We omit the details here as the statement is straightforward to check in
each instance.

These elementary ciphertext manipulations are our basic tools for ciphertext delegation - Notice
that if a CP-ABE scheme allows delegation of any well-formed ciphertext under policy P to be
processed into a well-formed ciphertext under policy P ′ using the elementary delegation operations,
this implies that any ciphertext encrypted with policy P may be delegated to a uniformly random
encryption of the same message under policy P ′ by the re-randomization guarantee. Depending on
what secret sharing scheme the CP-ABE scheme is based on, the elementary delegation operations
may have significantly different capabilities which we outline below.

Theorem 5.4. Let E be a CP-ABE scheme based on Shamir secret sharing generalized to threshold
trees that allows for elementary ciphertext manipulations. A ciphertext CT encrypted under threshold
tree T can be delegated to a ciphertext CT ′ if T ′ can be derived from T by any sequence of the
following operations:

1. Inserting a node x along an edge with nx = 1 (In other words, splitting an edge into two,
connected by a node x). Note that this does not affect the access structure, but does change the
structure of the tree.

2. For any node x, increasing its threshold, nx → nx + 1 while optionally adding another leaf y
labeled arbitrarily with index not equal to that of any sibling.

3. Deleting a subtree.

Proof. Properties 1. and 3. are trivial as a valid secret sharing under one tree will also be valid
under the second after 1. is performed and 3. only requires repeated invocations of Delete. We now
give the full proof of 2. A similar method was used for key delegation in [11].

Proof of 2. Take C with F (C) = (s, (~v, α)) where (~v, α)← Share(s, T) for the threshold tree
T . We will show how to increase the threshold of a node x while inserting the leaf node labeled i ∈ [n]

13

with index µ, if this leaf node is not desired it can simply be deleted by the Delete functionality after
the delegation. We will insert this new share to be the last entry of the share vector, which can be
changed with the Swap functionality if desired.

Let q(X) be the nx−1 degree polynomial associated with the node x (recall that in threshold trees,
each node is associated with a polynomial). We will show how to change the implied polynomials
in the tree so that the polynomial at this node is actually changed to q′(X) = (1 − X/µ)q(X).
This will add 1 to the degree of the polynomial at x, corresponding to incrementing nx while still
interpolating to the same point as q at 0. To change the polynomial to the above value with an
additional leaf y assigned to i added as a child to x:

1. Use Add(C, i) to set the share at this new vector component to 0.

2. The remaining net effect of changing the polynomial as above will be to multiply the shares
of leaves that are descendants of a child z of x by (1− index(z)/µ) where the multiplication is
done using Combine to scale entries of ~v. This is implicitly changing the value assigned to the
node z and all descendants of z by multiplying the previous value with (1− index(z)/µ).

Note that the delegation allowed through the elementary ciphertext manipulations on Shamir
threshold tree based schemes can be elegantly quantified, the effect on the access structure of each of
the operations we discuss above can be immediately seen. Similar delegation properties are possible
for general LSSS schemes in a straightforward application of the manipulations.

Theorem 5.5. Let E be a CP-ABE scheme based on linear secret sharing matrices that allows for
elementary ciphertext manipulations. A ciphertext CA encrypted under policy (A, ρ) can be delegated
to a ciphertext CA′ with policy (A′, ρ′) if (A′, ρ′) can be derived from (A, ρ) through any sequence of
the following operations:

1. Swapping rows: The output of the function ρ remains unchanged except for at these rows,
where it is also swapped. Note that this does not affect the access structure.

2. Deleting rows: The output of ρ′ on a row of A′ corresponds to the output of ρ on the corre-
sponding row of A (before it was shifted by deletion).

3. Adding a new row : Let A be m × n, then A′ is m + 1 × n + 1 with A the upper left m × n
submatrix of A′ equal to A and m+ 1× n+ 1 entry equal to 1. The remaining entries in the
n + 1st column are set 0, but ρ(m + 1) and the remaining entries in the m + 1st row may be
assigned arbitrarily.

4. Linearly combining rows: If ρ(i) = ρ(j), A′ may be achieved from A by multiplying row i by a
constant and adding it to row j to get a new value for row j.

Proof. Deleting, swapping and combining rows can be easily achieved by using the Delete,Swap and
Combine operations respectively as doing these operations on the rows of A and then sharing the
secret is equivalent to first sharing the secret and then performing these operations on the resulting
shares.

To add a new row as described in 3 it is sufficient to use Add(C, j) = C ′ on the ciphertext
C where j is the new labeling of m + 1st row. To see that this achieves the valid delegation let
F (C) = (s, (~v, α)). Then there is some implied vector w = (s, r1, r2, . . . , rn−1) such that ~v = Aw.
Then, (s, (~v ◦ 0, α′)) where α′ agrees with α on the first m rows, and has α′(m+ 1) = j satisfies the
property that ~v◦0 = A′w′ where w′ = (s, r1, r2, . . . , rn,−(a1s+a2r1+. . . , anrn−1) and (a1, a2, . . . , an)
are the new values for the first n entries of the newly added m+1st row (recall, these can be assigned
arbitrarily). This implies that the ciphertext returned by the Add procedure is valid under the desired
access policy.

14

Key Delegation. Note that the methods we propose for ciphertext delegation can also be
applied to delegation of key policies in some existing KP-ABE schemes [8, 23]. Some key delegation
techniques possible for a KP-ABE scheme based on threshold trees are given in [8].

6 Managing the Time Structure Efficiently

To solve the problem of managing time efficiently we use a binary tree Q of depth log(T) = r (from
now on we will assume T is a perfect power of 2 for notational convenience, if not then the r will
just be taken to log(T) rounded up to the next integer), in a method used in previous forward secure
literature [6, 3, 1, 15]. Nodes of this tree will correspond to different attribute sets, while a single
encryption of the delegatable scheme, interestingly, will be comprised of multiple encryptions from
the underlying KP-ABE scheme, each one corresponding to an attribute set from a different node
of the tree. While only one of these ciphertext components may be necessary for a secret key holder
to decrypt, the ciphertexts include multiple components for delegation purposes. We stress again
that the construction we present, as well as the properties we use are in present in the cited works,
we present a full proof here mainly for self-containment and to present the result in a form more
compatible with our application.

Labeling Nodes of the Tree

Associate with each leaf of Q a string corresponding to its path from the root with 0’s denoting
that the path traverses the left child of the previous node and 1’s indicating traversing through the
right child. As an example, the string 0r corresponds to the leftmost leaf of the tree while 0r−1 ◦ 1
corresponds to its right sibling. Associate non-leaf nodes to strings by the path from the root by
using ∗ values to pad the string to r bits. For example, the root node will be referred to by the
string ∗r while 0 ◦ ∗r−1 refers to its left child. The string associated with a node v will be labeled
b(v). We refer to the node associated with a string x as vx; notice this gives a bijection between the
time components t ∈ {0, 1}r, and the leaves of the tree Q.

Managing the access structure will require associating each time t ∈ [T] with a set of nodes
in the tree through a process we describe below. The following theorem will be the main method
through which we will handle the time component of our final revocable storage construction. For
the theorem statement we will replace the time bound T with q to avoid confusing it with the trees,
that will be called T . The value r is now log(q). Below the term ‘efficiently computable’ means in
time linear in r. We will also use the convention that a node v is considered to be both an ancestor
and descendant of itself.

Theorem 6.1. Let Q be a tree of depth r for r ∈ N and let q = 2r. There are efficiently computable
subsets of V (Q) (the node set of Q), {Ti : i ∈ [q]} such that for all t ∈ {0, 1}r:

• Property 1. Tt contains an ancestor of vt′ if and only if t ≤ t′;

• Property 2. If u ∈ Tt+1 then there is an ancestor of u in Tt;

• Property 3. |Tt| ≤ r.

We first give some intuition of how this sequence of trees will be used in the scheme. A secret key
for time t will be associated with the leaf vt of Q while a ciphertext at time t′ will be associated with
the set of nodes Tt′ . A key for time t will succeed in decryption (by using the underlying KP-ABE
scheme) if and only if vt is a descendant of a node corresponding to the ciphertext. Property 1.
above will then imply that a key at time t will only succeed in decrypting ciphertexts from earlier
times.

15

Additionally, in our implementation delegation will be possible by traversing down the tree - a
ciphertext associated with a set of nodes will be delegatable to a ciphertext associated with another
set if and only if for every node in the target set (for the ciphertext being delegated to), one of its
ancestors is in the first set (the set associated with the ciphertext being delegated from). Property
2. allows us to conduct linear delegation. Property 3. guarantees that this process can be done
efficiently.

Proof. We now describe the process to construct Tt. Let T0 consist only of the root of Q. For all
t ∈ [1, q], let vt be as before and Patht be the set of nodes from vt to the root of Q (including vt
and the root). Then, Tt will be the set of right children of Patht−1 that are not included in Patht−1.
Notice that since the number of elements in Tt is at most the number of elements in Patht−1 (which
is of size r), we have Property 3. immediately.

Proof of Property 1. We begin by showing that if t ≤ t′ then Tt contains an ancestor of vt′ . Notice
the statement is trivial if t = 0 since all nodes are descendants of T0. We can therefore consider only
t > 0 to complete the analysis.

Let w be the lowest common ancestor of vt−1 and vt′ . Notice the node vt′ is to the right of vt−1

(by the naming convention the nodes on the bottom layer are arranged in ascending order from left
to right). Therefore vt′ is a descendant of the right child of w while vt−1 is a descendant of its left
child. Since w is in Patht−1 and its right child isn’t (since vt−1 is a descendant of the left child of
w), the right child of w is in Tt. Since we already established that vt′ is a descendant of the right
child of w, this implies vt′ is a descendant of a node in Tt.

We now show the other direction of Property 1. Let t > t′ and we will show Tt does not contain
an ancestor of vt′ . First notice that if t = t′ + 1 the statement is trivial since Tt does not contain
any elements in Patht−1 = Patht′ by construction.

So we can assume t > t′ + 1. Similarly to the other direction, if Patht′ and Patht−1 diverge after
some node w, Patht−1 follows the right child, while Patht′ follows the left. This implies Patht′ never
overlaps with the right child of a member of Patht−1 unless this child is also in Patht−1. This implies
that Patht′ ∩ Tt = ∅ as desired.

Proof of Property 2. Take any u ∈ Tt+1 and we will show that u has an ancestor in Tt. If t = 0 the
statement is trivial since T0 is the root node. We therefore can assume that t > 0 to conclude the
proof.

By construction u is the right child of its parent p(u) ∈ Patht and u 6∈ Patht. Note that u is
never the root node by construction. Let w be the lowest common ancestor of vt−1 and vt. Then,
similarly to the proof of the previous property, vt is a descendant of the right child of w. There are
then two cases to consider, depending whether or not p(u) ∈ Patht−1:

1. We first address the case when p(u) ∈ Patht−1. If u 6∈ Patht−1 then this implies u ∈ Tt as it is
the right child of a node in Patht−1 that is not also in Patht−1. This implies u has an ancestor
in Tt as desired.

On the other hand, consider the case where u ∈ Patht−1. This implies vt−1 is a descendent of
u. However, since u ∈ Tt+1 we know that u 6∈ Patht by the construction of Tt+1. Therefore,
p(u) = w as we have assumed it is in Patht and Patht−1 and only Patht−1 continues through
u. However, similarly to the proof of the previous property, Patht−1 continues down the left
child of w. But by assumption u is the right child of p(u) = w, a contradiction.

16

2. We next address the case when p(u) 6∈ Patht−1. Since p(u) ∈ Patht, p(u) is a descendant of w
since p(u) must be a descendant of the node where the paths join if it is not on both paths.
Notice p(u) 6= w since p(u) 6∈ Patht−1. Since Patht continues down the right child of w and
p(u) is on a lower level than w, this implies p(u) is a descendant of the right child of w. The
right child of w is a member of Tt since it is a right child of a node in Patht−1 and is not a
member of Patht−1 (since Patht−1 continues down the left child of w). This implies p(u) and
therefore u is a descendant of a member of Tt.

7 Revocable Storage KP-ABE

By combining the method above for achieving linear delegation with our fully secure KP-ABE scheme
with piecewise key generation and ciphertext delegation (given in Section 8), we will now show the
following theorem. We defer the construction of our KP-ABE scheme with the required guarantees
until after this section as the specific construction and security proof is involved and unnecessary for
understanding the connection between piecewise key generation, delegation and revocable storage.

Theorem 7.1. Let E be KP-ABE scheme with ciphertext delegation and piecewise key generation
that supports injective LSSS matrices with attribute set size ω. Then there exists a Revocable Storage
KP-ABE scheme F that supports injective LSSS matrices with time bound T with attribute set size
ω − 2 log(T).

To prove the above theorem, we will use a second tree U for revocation management (as in [18, 5])
with the identities {0, 1}I labeling the leaves. For a set of leaves V , the function U(V) returns 3 a
(deterministically chosen) collection of nodes of U such that some ancestor of a leaf v is included in
U(V) if and only if v 6∈ V . That such a function exists and can be computed in polynomial time
in the size of V and I is shown in [18, 5]. Define Path(ID) for a string ID (where the name of the
node identifies the path from the root to this node, as in Section 6) as the set of nodes from the root
of U to the leaf vID (including the root and leaf).

We separate the attribute set of E , reserving some attributes to only be used to manage the time
component. Write the attribute set of E as Ω′ ∪ Ω where |Ω′| = 2 log(T) and label the components
of Ω′ as:

Ω′ = {ωi,b : i ∈ [log(T)], b ∈ {0, 1}}

and for each node y define (where the string b(y) is comprised of 0, 1 and ∗’s defined in Section 6
corresponding to the path from the root to this node with ∗’s padding the string to length log(T))
the set sy as follows. For all i ∈ [log(T)]:

• If b(y)[i] = 0, ωi,0 ∈ sy and if b(y)[i] = 1, ωi,1 ∈ sy,

• If b(y)[i] = ∗, then ωi,0 and ωi,1 are both included in sy.

we will shortly explain the significance of defining this set. Next let Pt be the policy defined by 4:

Pt(S) = 1 if and only if ωi,t[i] ∈ S ∀ i ∈ [log(T)]

where t[i] is the ith bit of t. The important observation about Pt and sy is that Pt(sy) = 1 if and
only if y is an ancestor of the leaf corresponding to t and that injective LSSS matrices suffice to
express the policies Pt. The encryption and key generation procedures of F operate over Ω (which

3The variable U is overloaded here, when used as a function, it returns a subset of nodes of the tree U
4Depending on the specific implementation of the access structure in the underlying scheme there may be many

ways to represent the policy Pt. Any access structure that realizing this policy may be used in these instances.

17

removes 2 log(T) attributes from the scheme). We now describe how to construct our Revocable
Storage KP-ABE scheme F from E defined above. We use Tt as defined in Theorem 6.1.

• Setup(1λ) : Return E . Setup(1λ) = (PK,MSK)

• KeyGen(MSK,P, ID): For all x ∈ Path(ID) set

SK
(0)
P,x = E .KeyGen(MSK, 0, P, x).

Return:
SK

(0)
P,ID = {SK(0)

P,x : x ∈ Path(ID)}.

• Encrypt(PK,M,S, t) where S ⊆ Ω: For all x ∈ Tt set:

CS,x = E .Encrypt(PK,M,S ∪ sx).

Return:
CS,t = {CS,x : x ∈ Tt}.

• KeyUpdate(MSK, rl, t): For all x ∈ U(rl) set:

SK
(1)
Pt,x

= E . KeyGen(MSK, 1, Pt, x).

Return:
Kt = {SK(1)

Pt,x
: x ∈ U(rl)}.

• Decrypt(SKP,ID,Kt′ , CS,t): If ID 6∈ rl when Kt′ was generated, there is some x ∈ U(rl) ∩
Path(ID) (by the definition of U(V)). For this x there is:

SK
(0)
P,x ∈ SKP,ID and SK

(1)
Pt′ ,x

∈ Kt′ .

Additionally, if t′ ≥ t there is some y ∈ Tt such that y is an ancestor of the leaf vt′ , which
implies Pt′(sy) = 1. For this y, take CS,y ∈ CS,t and return:

E .Decrypt(SK(0)
P,x, SK

(1)
Pt′ ,x

, CS,y).

If P (S) = 1 then P (S ∪ sy) = Pt′(S ∪ sy) = 1 implying decryption succeeds.

• CTUpdate(PK,CS,t): For all x ∈ Tt+1 find y ∈ Tt such that y is an ancestor of x. Then
there is a CS,y component in CS,t. For all such x set:

CS,x = E .Delegate(PK,CS,y, S ∪ sx)

Which is possible since y being an ancestor of x implies sx ⊂ sy. Return:

CS,t+1 = {CS,x : x ∈ Tt+1}

We now describe how security of the underlying E implies security of F in the Revocable KP-
ABE security game. That CTUpdate is correct can be observed simply and it therefore only remains
to argue that the above is a secure Revocable KP-ABE scheme.

18

Proof. Let A be such that RKP-SecurityA is non-negligible, we will construct an A′ such that
Piecewise KP-ABEA′ is non-negligible. We will modify the Piecewise security game slightly and
give an A′ with non-negligible advantage when instead of a single challenge query, the adversary
gives a pair of messages (M0,M1) as well as a tuple of sets (S∗1 , S

∗
2 , . . . , S

∗
ρ) and is returned the tuple:

{Encrypt(PK,Mb, S
∗
i) : i ∈ [ρ]} by the challenger with the restriction that all S∗i obey the restriction

placed on S∗ in the standard game. This implies security in the standard Piecewise KP-ABE
security game by a standard hybrid argument.

A′ begins by initializing the Piecewise KP-ABE security game and forwarding PK to A.
To respond to an SK(P, ID) query A′ sends a query (0, P, x) to its key generation oracle for all
x ∈ Path(ID) which drawn from the same distribution as the construction above. Similarly, for all
queries K(t, rl), A′ sends a query (1, Pt, x) for all x ∈ U(rl) to its key generation oracle to simulate
the key update information.

When A makes a challenge query (M0,M1, S
∗, t∗) in order the simulate this, A′ in the modified

game we described above will send as its challenge query (M0,M1) and the tuple S∗ ∪ sx for al
x ∈ Tt∗ . Notice that by responding to the queries in this fashion we have perfectly simulated the
expected distribution for A. It remains only to show that as long as A does not submit an invalid
query that causes the experiment to automatically output 0 our A′ has not submitted an invalid
query to the Piecewise KP-ABE oracle in the modified game.

Take any S∗ ∪ sx in the challenge query that A′ makes as described above. Take any y ∈ U we
now claim that either for either b = 0 or b = 1 all queries of the type (b, P, y) that A′ makes while
simulating the queries of A, P (S∗ ∪ sx) = 0.

First consider the case where for some descendent leaf ID of y (which is a I bit string) that A
makes a query to SK(P, ID) with P (S∗) = 1. In this case by the guarantee on the queries of A
for all K(t, rl) queries with t ≥ t∗, ID ∈ rl. This implies that for all queries of the type (1, Pt, z)
that A′ makes, either t < t∗ (in which case Pt(S∗ ∪ sx) = 0 since Pt does not depend on S∗ and
Pt(sx) = 0 since x is not an ancestor of t because x ∈ Tt∗) or ID ∈ rl which implies no ancestor of
ID is contained in U(rl) and therefore, z is not an ancestor of ID and therefore z 6= y. So we have
established that in this case, all (1, P, y) queries have the property that P (S∗ ∪ sx) = 0 as desired.

Next, consider the case where A does not make a query to a descendent leaf ID of y with
SK(P, ID) = 1. Then, in simulating A′ only makes (0, P, y) queries where P (S∗) = 0 which implies
P (S∗∪sx) = 0 (since the policies for the Revocable scheme are only over Ω). This shows the desired
statement in both cases, proving the theorem.

Using the construction given in Section 8 we conclude:

Theorem 7.2. Under Assumptions 1. 2. and 3. (defined below), when E is set to be the scheme
given in Section 8 the above F is a secure Revocable Storage KP-ABE scheme supporting injective
LSSS Matrices.

8 Piecewise KP-ABE Construction

We now introduce the assumptions we will be using to build our scheme. These are the same as-
sumptions from the fully secure ABE construction due to Lewko et al. [13]. The notation of giving
G as input will imply that this includes a description of the group, the bilinear pairing operation and
the order of the group. We first describe a stateful construction where the key generation algorithm
is allowed to maintain state between various invocations for ease of exposition. Through standard
methods, we will briefly outline at the end how this state requirement can be removed by using a
PRF.

Assumption 1.Let G be a cyclic group of size N = p1p2p3 with bilinear map e selected according
to the group generator G(1λ). Consider the event that we generate g ← Gp1 , X3 ← Gp3 , T1 ←

19

Gp1,p2 , T2 ← Gp1 uniformly at random. Assumption 1. states that for any probabilistic polynomial
time A:

|Pr[A(G, g,X3, T1) = 0]− Pr[A(G, g,X3, T2) = 0]

is negligible in λ.

Assumption 2. Let G be a cyclic group of size N = p1p2p3 with bilinear map e selected according
to the group generator G(1λ). Consider the event that we generate g,X1 ← Gp1 , X2, Y2 ← Gp2 ,
X3, Y3 ← Gp3 , T1 ← G and T2 ← Gp1p3 uniformly at random. Assumption 2. states that for any
probabilistic polynomial time A (if we let D = (G, g,X1X2, X3, Y2Y3):

|Pr[A(D,T1) = 0]− Pr[A(D,T2) = 0]|

is negligible in λ.

Assumption 3. Let G be a cyclic group of size N = p1p2p3 with bilinear map e selected according
to the group generator G(1λ) with target group GT . Consider the event that we generate g ← G,
α, s ← ZN , X2, Y2, Z2 ← Gp2 , X3 ← Gp3 uniformly at random. Finally select T1 = e(g, g)αs and
T2 ← GT . Assumption 3. states that for any probabilistic polynomial time A, if we let D denote
D = (G,GT , g, g

αX2, X3, g
sY2, Z2), then:

|Pr[A(D,T1) = 0]− Pr[A(D,T2) = 0]|

is negligible in λ.

Theorem 8.1. The KP-ABE scheme given below has piecewise key generation, supports injective
LSSS policies and has ciphertext delegation if Assumptions 1, 2, 3. hold.

Since G is cyclic, it has unique subgroups of size p1, p2 and p3 which we call Gp1 ,Gp2 and Gp3

respectively.
Note that the proof of security requires significant divergence from [13] but the construction is a

fairly straightforward adaptation. For our construction and security proof we will assume that the
access policy (A, ρ) has A a n × l matrix where n and l are fixed for convenience and the obvious
adaptation of the construction and proof suffices to cover the more general case where the dimensions
are allowed to vary. We let the vector 1 stand as shorthand for 1 ◦ 0 ◦ 0 . . . 0 when the dimension is
specified by context. Note that below we will assume the decryption algorithm has the public key
as input, which was not part of our original definition. Our construction below can be modified to
fit our formal definition by including the public key as part of all secret keys, however we produce
it where they are separate to give the leanest instantiation.

Setup(1λ)→ (PK,MSK): Choose a bilinear group of order N = p1p2p3 (three distinct primes)
according to G(1λ). Then choose α ← ZN and g ← Gp1 uniformly. For each i ∈ Ω, si ← ZN
uniformly at random. Pick X3 ∈ Gp3 uniformly with X3 6= 1 and set:

PK = (N, g, e(g, g)α, X3, Ti = gsi for all i ∈ Ω) , MSK = (α, PK).

KeyGen(MSK, b, (A, ρ), U, PK). If αU has not been generated yet, generate it uniformly from
ZN and store it. For each row of Ai of A choose a random ri ← ZN and Wi, Vi ∈ Gp3 . If b = 0 let u
be a random l dimensional vector over ZN such that 1 · u = αU otherwise, sample it subject to the
restriction that 1 · u = α− αU . For all i ∈ [n] set:

K
(1)
i = gAi·uT riρ(i)Wi , K

(2)
i = griVi

and return SK
(b)
U,(A,ρ) = {K(1)

i ,K
(2)
i : i ∈ [n]}.

20

Encrypt(PK,M,S). Choose s← ZN at random. Return:

CTS = (C = Me(g, g)αs, C0 = gs, (Ci = T si : i ∈ S)) .

Decrypt(CTS , SK
(0)
U,(A,ρ), SK

(1)
U,(B,β), PK). Let ωi ∈ ZN be such that

∑
i ωiAi = 1.

Label the components of SK(0)
U,(A,ρ) as K(1)

i ,K
(2)
i for i ∈ [n] and set:

∏
ρ(i)∈S

e(C0,K
(1)
i)ωi

e(Cρ(i),K
(2)
i)ωi

=
∏

ρ(i)∈S

e(g, g)sωiAi·ue(g, T sriωiρ(i))

e(g, Tρ(i))sriωi
= e(g, g)sαU

And using the identical procedure with SK
(1)
U,(B,β) recovers e(g, g)s(α−αU) allowing recovery of

e(g, g)sα and M as C/e(g, g)sα.

8.1 Removing State

Notice that in our construction above the only place that we use the fact that the key generation
algorithm retains state between invocations is keeping track of the αU values which are generated
uniformly from ZN . It is possible to remove this requirement in a standard manner by using a
PRF F by setting αU = F (U). The security of this scheme follows from the security of the one we
describe by the security of F as a PRF. For the proof of security we will stick to the above definition
where αU is generated uniformly and retained between invocations for ease of notation.

8.2 Proof of Security

We now define semi-functional ciphertexts and keys for our purposes. While the ciphertext modi-
fication is unchanged from the original scheme, the semi-functional key description is significantly
changed. We will use the notation X := f(X) to mean the value of a variable X is changed to be
f(X) (where the input to X is the old value of X). Throughout this section the notation x ← X
for a set X will mean x is uniformly sampled from X unless there is further qualification.

Semi-Functional Ciphertext. Let g2 be a generator of Gp2 (the generation procedure is the
same no matter which generator is chosen). Generation for a semi-functional ciphertext generates
Encrypt(PK,M,S) = (C,C0, (Ci : i ∈ S)) and then generates c ← ZN and zi ← ZN for all i ∈ S
and sets:

C0 := C0g
c
2 , Ci := Cig

zi
2 ∀ i ∈ S.

and returns (C,C0, (Ci : i ∈ S)). This is equivalent to generating s, c, zi ← ZN uniformly for all
i ∈ S and setting:

C = Me(g, g)αs , C0 = gsgc2 , Ci = T si g
zi
2 for all i ∈ S.

In general we will use the ‘updating the values’ notation used in the first definition above as we
believes it gives the clearest intuition as to how the generation process is modified.

Semi-Functional Key. An identifier U has keys generated semi-functionally if the key gener-
ation process is modified as follows. Generate βU,0, βU,1 ← ZN uniformly at random once for this U
(if this U has had a semi-functional key generated earlier, re-use those β values). A key SK(b)

U,(A,ρ)

is generated semi-functionally by first calling the real generation procedure

KeyGen(MSK, b, (A, ρ), U, PK)

21

then sampling a random vector v ∈ ZlN subject to the restriction that v · 1 = βU,b and setting:

K
(1)
i := K

(1)
i × g

Ai·v
2

for all i ∈ [n].

Definition 8.2. (GameReal) An adversary in Gamereal is interacting with the actual functionality
as described in Piecewise KPABE SecurityA.

Definition 8.3. (Game0) The response to the adversary’s queries in Game0 will differ from
GameReal only in the challenge ciphertext phase. In Game0, the challenge ciphertext will be gen-
erated as a semi-functional ciphertext.

Lemma 8.4. Let εReal, ε0 be the advantage of an adversary A in GameReal and Game0 respectively
. If Assumption 1. holds then |εReal − ε0| is negligible in λ.

Proof. Let (G, g,X3, T) be a uniform instance from Assumption 1. where T is either from Gp1p2

or Gp1 with equal probability, we will show how to reply to the adversary’s queries given only this
information such that if it comes from the first distribution we are responding as a uniform instance
of GameReal and otherwise, we are responding as a uniform instance of Game0.

Having a generator of Gp3 ,X3, and g suffices to reproduce the honest Setup and KeyGen queries
completely by choosing α, si ← ZN uniformly at random for all i ∈ Ω. The challenge ciphertext will
be generated with the following modification:

On input M0,M1, S the algorithm will choose b← {0, 1} at random. It will then set:

C = Mbe(gα, T) , C0 = T , Ci = T si , ∀i ∈ S

Then, if T ∈ Gp1 this is a properly distributed normal ciphertext but if T ∈ Gp1p2 the above is a
property distributed semi-functional ciphertext (the Gp1 and Gp2 subgroups are orthogonal to each
other in e), as desired since the value of any si value modulo p2 is completely undetermined from
the point of view of a distinguisher since it’s only used as an exponent for elements in Gp1 in the
public key.

Definition 8.5. (Gamek) For this game, the keys corresponding to the first k identifiers that are
queried by the adversary have keys generated semi-functionally and the challenge ciphertext is semi-
functional.

Notice that above we are not concerned with the strict order in which the adversary makes his
queries, but instead with the first k unique identifiers he queries. This means that if an identifier was
among the first k that A has made a key generation query to, all subsequent keys for this identifier
are generated semi-functionally. We let q be an upper bound on the number of queries the adversary
makes.

Lemma 8.6. Let εk be the advantages of an adversary A in game Gamek. For any k ∈ [q], if
Assumption 2. holds then |εk − εk+1| is negligible in λ.

This statement will require a sequence of hybrids. We define an adversary A to be Type 1. if for
the kth identifier that it queries a key for (call this identifier U) and any KeyGen(MSK, b, (A, ρ), U)
query it makes in the security game with b = 0, (A, ρ)(S∗) = 0 where S∗ is the attribute set of
the challenge ciphertext. Similarly, we define A to be Type 2. if (A, ρ)(S∗) = 0 whenever b = 1.
Note that while the adversary’s queries must fall in one of the above categories in order for the
security game to not automatically output 0, the actual adversary does not fall in either of these
cases. However, we will use this analysis to conclude our result for general adversaries.

22

Definition 8.7. We define the game Hi as follows. The challenge ciphertext and keys for the first
k − 1 identifiers queried are generated semi-functionally while the keys for the identifiers after and
including the k+ 1st identifier are generated normally. The keys to the kth identifier U are modified
as follows:

For the first i−1 queries to KeyGen(MSK, 0, (A, ρ), U), after generating the key from the normal
distribution and then generate u2 ← ZlN and set for all j ∈ [n]:

K
(1)
j := K

(1)
j × g

Aj ·u2
2

For the ith query to KeyGen(MSK, 0, (A, ρ), U), generate the key from the normal distribution and
then generate u2 ← ZlN , γj ← ZN and set for all j ∈ [n]:

K
(1)
j := K

(1)
j × g

Aj ·u2+γjsρ(j)
2 K

(2)
j := K

(2)
j g

γj
2

Following the ith query, or to KeyGen(MSK, 1, (A, ρ), U) for the kth identifier U , no modification
is made to the normal key generation algorithm.

Definition 8.8. Define the game Ii as Hi where the ith query to KeyGen(MSK, 0, (A, ρ), U) is
modified by setting γi = 0 rather than generating it uniformly over ZN .

For the following analysis let νi denote the advantage of the adversary in the security game Hi
and µi the advantage of the adversary in Ii:

Lemma 8.9. If A is of Type 1. then |µi−1 − νi| is negligible in λ if Assumption 2. holds.

Proof. We will describe how to embed an instance of the security game from Assumption 2. into
either Ii−1 or Hi depending on the distribution chosen in the Assumption 2. experiment. In the
security game for Assumption 2. we are given G, g,X1X2, X3, Y2Y3, T where T is either in G or
Gp1p3 . Generate α ← ZN and si ← ZN for each attribute i ∈ Ω. As the public key, generate and
send to the adversary:

PK = {N, g, e(g, g)α, Ti = gsi for all i ∈ Ω}

The challenge ciphertext with attribute set S will be generated as:

C = Mβe(g, gsX2)α , C0 = gsX2 , Ci = (gsX2)si ∀i ∈ S.

• The first k−1 identifiers queried to KeyGen(MSK, b, U, (A, ρ)). If αU , βU,0, βU,1 has not
yet been generated, choose them uniformly in ZN . For all such queries choose a random value
rj ∈ ZN , and uniformly generate Wj , Vj ∈ Gp3 (using X3) for each row, and choose u ∈ ZlN
uniformly subject to the restriction that if b = 0, u · 1 = αU and otherwise u · 1 = α − αU .
Generate additionally u2 ← ZlN so that u2 · 1 = βU,b and set:

K
(1)
j = gAj ·uT riρ(j)Wi(Y2Y3)Aj ·u2 , K

(2)
j = grjVj

• The kth identifier where b = 0 . If αU has not yet been generated, choose it uniformly in
ZN . The first i− 1 times KeyGen(MSK, 0, (A, ρ), U) is called, choose u a random vector over
ZlN subject to the restriction that u · 1 = αU and u2 ← ZlN , Vj ,Wj ← Gp3 , rj ← ZN for all
j ∈ [n] and set:

K
(1)
j = gAj ·uT

rj
ρ(j)Wj(Y2Y3)Aj ·u2 , K

(2)
j = grjVj

For the ith query, choose u a random vector over ZlN subject to the restriction that u · 1 = αU
and generate v randomly over ZlN so that v · 1 = 0 and Vj ,Wj ← Gp3 , rj ← ZN for all j ∈ [n]
and set:

K
(1)
j = gAj ·uTAj ·vWjT

rjsρ(j) , K
(2)
j = T rjVj

23

For queries after the ith query choose u a random vector over ZlN subject to the restriction
that u · 1 = αU and Vj ,Wj ← Gp3 , rj ← ZN for all j ∈ [n] set:

K
(1)
j = gAj ·uT

rj
ρ(j)Wj , K

(2)
j = grjVj

• After the kth identifier or the kth identifier with b = 1. If αU has not yet been generated,
choose it uniformly in ZN . Choose u a random vectors over ZlN subject to the restriction that
u · 1 = αU if b = 0 or u · 1 = α− αU if b = 1 and Vj ,Wj ← Gp3 , ri ← ZN for all j ∈ [n] set:

K
(1)
j = gAj ·uT

rj
ρ(j)Wj , K

(2)
j = grjVj

Note that when T ∈ Gp1p3 the above method is distributed identically to an instance of Ii−1.
However, when T ∈ G it is modified in that for the ith query rather than each K(1)

j component being

multiplied by gAj ·u2+rjsρ(j)
2 for a randomly generated u2 it is multiplied by TGp2 (the Gp2 part of T)

raised to Aj · u′ + rjsρ(j) where u′ is generated uniformly at random subject to the restriction that
1 · u′ = 0 (notice that the fact that u′ is used as an exponent in Gp1 does not affect this analysis as
its value as an exponent in Gp2 is independent of its value as an exponent in Gp1). This is different
from the actual generation procedure in Ii where u′ is generated as a truly uniform vector, however
we will show that these distributions are actually identical from the point of view of A because of
the queries the adversary is allowed to make.

Notice that since sρ(i) is not used as an exponent in Gp2 for attributes not in the challenge
ciphertext, this is equivalent as when all j such that ρ(j) is not in the challenge ciphertext is simply
multiplied by a uniform element in Gp2 and all rows that do have ρ(j) in the challenge ciphertext
are multiplied by TGp2 raised to Ai · u′ + risρ(j), since 1 is not in the span of these Ai values,
generating the challenge ciphertext by this procedure is equivalent to generating it by generating u′

to be uniformly chosen vector as we demonstrate below.
We now argue that for a set of rows J , if 1 6∈ Span(Aj : j ∈ J), then the distributions on

(Aj · u′ : j ∈ J) is equivalent when either u′ is chosen as a uniformly random l dimensional vector
over ZN or as one subject to the restriction that u′ · 1 = 0. This will suffice to prove that in the case
that T ∈ G that the above generation process is equivalent to the process from Ii.

Notice that for any |J | dimensional vector ~z, if we let S be the set of vectors u′(β) such that
~z[j] = Aj · u′ for all j ∈ J and u′ · 1 = β, then by using f an l dimensional vector orthogonal to all
Aj such that 1 · Aj 6= 0, there is a one-to-one correspondence between u′(β) and any other u′(β′).
Then we have that the probability that Aj · u′ takes a fixed set of values for all j ∈ J restricted
to the condition that u′ · 1 = 0 is u′(0)/pl−1

2 . Similarly, the probability it takes this set of values
with no restrictions is

∑
β∈Zp2

u′(β)/pl2. By our previous observation on the equivalence of u′(β)
and u′(β′) for any β 6= β′ these quantities are equal, as desired. We note that a similar argument is
presented in [13].

Lemma 8.10. If A is of Type 1. then |µi − νi| is negligible in λ if Assumption 2 holds.

Proof. The only step that changes from the previous reduction is for the ith query with b = 0 to the
kth identifier which is now generated as follows:

• The kth identifier. For the ith query where b = 0, choose u a random vector over ZlN subject
to the restriction that u · 1 = αU and generate v ← ZlN and Vj ,Wj ← Gp3 , ri ← ZN for all
j ∈ [n] set:

K
(1)
j = gAj ·u(Y2Y3)Aj ·vWjT

rjsρ(j) , K
(2)
j = T rjVj

The above is a uniform instance of Hi if T ∈ G and Ii if T ∈ Gp1p3 as desired.

24

Definition 8.11. Define the game J as a modification of Iq as follows. For the kth identifier
U , rather than generating u2 as a random vector for every KeyGen(MSK,PK, 0, (A, ρ), U) query,
generate a fixed value βU,0 ∈ ZN randomly for U (to be re-used across all such queries) and generate
u2 uniformly over ZlN subject to the restriction that u2 ·1 = βU,0 rather than generating it completely
uniformly.

Let η be the advantage of the advantage of the adversary A in J .

Lemma 8.12. If A is of Type 1. then |µq − η| is negligible in λ if Assumption 2 holds.

We remind the reader of the generation procedure in Iq and J . In Iq and J the ciphertext and
keys for the first k−1 identifiers are all semi-functional and the keys corresponding to the k+1st and
following identifiers are generated according to the true distribution. In Iq and J the kth identifier
has keys generated as below:

• The kth identifier in Iq. For b = 1 the standard key generation algorithm is used. For b = 0,
after the standard key generation algorithm, u2 ← ZlN (new for every query to this identifier)
and after the normal key generation, the Kj components are modified as:

K
(1)
j := K

(1)
j × g

Aj ·u2
2

• The kth identifier in J . For b = 1 the standard key generation algorithm is used. For b = 0,
if βU,0 has not yet been generated, it is generated uniformly from ZN . After the standard
key generation algorithm u2 is generated uniformly over ZlN subject to the restriction that
u2 · 1 = βU,0 and the Kj components are modified as:

K
(1)
j := K

(1)
j × g

Aj ·u2
2

For this we will define modified versions of Ii and Hi. In both modifications, the net change is
only to the K(1)

j components of the keys for the kth identifier where b = 0. In I ′i and H′i the values
are all drawn as in Ii and Hi except that an additional value βU,0 is chosen uniformly from ZN once
when the kth identifier U is queried to the key generation algorithm and the below modification is
made:

• Queries to the kth identifier with b = 0 for I ′i or H′i. Generate the key as in the Ii or
Hi respectively. Generate v uniformly over ZlN subject to the restriction that v · 1 = βU,0 and
set for all j ∈ [n]:

K
(1)
j := K

(1)
j g

Aj ·v
2

Notice that I ′0 = H′0 = J and Iq = I ′q since the completely random u2 factor subsumes the
additional v factor introduced in I ′q. Define similarly to before, ν′i to be the advantage of A in H′i
and µi to be its advantage in I ′i.

Lemma 8.13. If A is of Type 1. then |µ′i−1 − ν′i| is negligible in λ if Assumption 2. holds.

Proof. The proof proceeds identically to the proof for µi−1 and νi with the following modification:
At the beginning of the security game generate β uniformly from ZN . For all queries to the kth

identifier where b = 0, generate a uniform v such that v · 1 = β and after generating the K
(1)
j

component as in the previous proof, modify it as:

K
(1)
j := K

(1)
j (Y2Y3)Aj ·v

It’s simple to check using the argument from the previous lemma that this provides the same
indistinguishability guarantee between I ′i−1 and H′i.

25

Similarly, by reproducing the argument from the next lemma we get:

Lemma 8.14. If A is of Type 1. then |µ′i − ν′i| is negligible in λ if Assumption 2. holds.

Combining these lemmas with the previous two allows us to conclude that I0 is indistinguishable
from I ′0 = J . Let η be the advantage of A in J . We can now conclude:

Corollary 8.15. If A is of Type 1. then |εk−1 − η| is negligible in λ if Assumption 2. holds.

We now are ready to connect our hybrids to Gamek:

Lemma 8.16. If A is of Type 1. then |η − εk| is negligible in λ if Assumption 2 holds.

Proof. At a high level, we will be using the Gp1 part of T as gαU . We generate the public key and
challenge ciphertext as in the previous two reductions.

• The first k − 1 identifiers queried to KeyGen(MSK, b, U, (A, ρ)). If αU , βU,0, βU,1 have
not yet been generated, choose them uniformly in ZN . For all such queries pick rj ← ZN ,
Wj , Vj ← Gp3 for each row, and choose u ∈ ZlN uniformly subject to the restriction that if
b = 0 u · 1 = αU and otherwise u · 1 = α−αU . Generate additionally u2 uniformly over ZlN so
that u2 · 1 = βU,b, and set for all j ∈ [n]:

K
(1)
j = gAj ·uT

rj
ρ(j)Wj(Y2Y3)Aj ·u2 , K

(2)
j = grjVj

• The kth identifier.If βU,0 has not yet been generated, choose it uniformly in ZN . For queries
to KeyGen(MSK, 0, (A, ρ), U). Generate u at random over ZlN so that u · 1 = 1 and generate
u2 uniformly so that u2 · 1 = βU,0 generate Vj ,Wj ← Gp3 for all j ∈ [n] and set:

K
(1)
j = TAj ·uT

rj
ρ(j)Wj(Y2Y3)Aj ·u2 , K

(2)
j = grjVj

• For queries to KeyGen(MSK, 1, (A, ρ), U), Generate u, u2 at random over ZlN so that u · 1 = α
and u2 · 1 = −1 generate Vj ,Wj ← Gp3 for all j ∈ [n] and set:

K
(1)
j = gAj ·uTAj ·u2T

rj
ρ(j)Wj , K

(2)
j = grjVj

• After the kth identifier. If αU has not yet been generate, choose it uniformly in ZN .
Generate u at random over ZlN so that u ·1 = αu if b = 0 and u ·1 = α−αU if b = 1. Generate
rj ← ZN , Vj ,Wj ← Gp3 for all j ∈ [n] and set:

K
(1)
j = gAj ·uT

rj
ρ(j)Wj , K

(2)
j = grjVj

When T ∈ Gp1p3 the above is a uniform instance of J where the Gp1 part of T is implicitly set
to be αU for the kth identifier U . Similarly, if T ∈ G it is a uniform instance of Gamek where the
Gp1 part of T is set to be αU , the βU,0 value for the kth identifier U is actually set to be the Y2

logarithm of the Gp2 part of T plus the βU,0 value in the construction and −βU,1 is implicitly set to
be the Y2 logarithm of the Gp2 part of T .

Therefore we have that Gamek−1 is indistinguishable from Gamek to Type 1. adversaries - and
through a symmetric repetition of the above argument that it is also indistinguishable to Type 2.
adversaries (where the Hi, Ii,H′i, I ′i hybrids now modify the generation procedure when b = 1). If
there was a general adversary A that could distinguish between Gamek and Gamek+1 it would be
possible to create either a Type 1. or Type 2. adversary that could also distinguish by creating the
two adversaries A1 and A2 where A1 aborts is A ever makes a query that violates the condition of
being Type 1. and guesses randomly and similarly for A2. Therefore the above implies that Gamek
and Gamek+1 is indistinguishable for general adversaries. By a hybrid argument we have:

26

Corollary 8.17. |ε0 − εq| is negligible in λ if Assumption 2. holds.

We briefly remind the reader of the modified key and ciphertext generation in Gameq.

• Setup and the Public Key. Choose a bilinear group of order N = p1p2p3 and α ← ZN
and g ← Gp1 , g2 ← Gp2 uniformly. For each i ∈ Ω pick si ← ZN , X3 ← Gp3 uniformly and
set:

PK = (N, e(g, g)α, X3, Ti = gsi)

• Key Generation. On a query to KeyGen(MSK, b, U, (A, ρ), PK) proceed as follows: If αU
or βU,b has not been generated yet, generate it and store it. Pick u and v random vectors over
ZlN so that u · 1 = αU if b = 0 and u · 1 = α − αU if b = 1 and v so that v · 1 = βU,b. Pick
Wi, Vi randomly for all i ∈ [n] from Gp3 and set, for all i ∈ [n]:

K
(1)
i = gAi·ugAi·v2 T riρ(i)Wi , K

(2)
i = griVi

• The Challenge Ciphertext. With challenge message M and attribute set S. Pick
s, c, zi ← ZN at random for all i ∈ S and return:

C = Me(g, g)αs , C0 = gsgc2 , Ci = T si g
zi
2 ∀i ∈ S

Definition 8.18. GameFinal Let GameFinal be a modification of Gameq where a random message
is encrypted in the challenge phase rather than the challenge message.

Lemma 8.19. For any A, |εq − εFinal| is negligible if Assumption 3. holds.

Proof. Recall that in the Assumption 3. security game the distinguisher is given g, gαX2, X3, g
sY2, Z2, T

where α, s ← ZN , X2, Y2, Z2 ← Gp2 , X3 ∈ Gp3 and T is either e(g, g)αs or randomly chosen from
GT . Our reduction proceeds as follows:

• Setup and the Public Key. Generate the public key as:

PK = (N, g,X3, e(g, g)α = e(g, gαX2))

• Private Key Queries. On a query to generate KeyGen(MSK, b, (A, ρ), U) proceed as follows:
If βU,b or αU hasn’t been chosen yet, generate it uniformly from ZN and pick u, u2 uniformly
over ZlN subject to the restriction that u · 1 = 1 and u2 · 1 = βU,b and pick Vj ,Wj randomly in
Gp3 for all j ∈ [n]. If b = 0 set for all j ∈ [n]:

K
(1)
j = g

∑l
j′=2 Aj [j

′]u[j′] (gαU)Aj [1] ZAj ·u2
2 T

rj
ρ(j)Wj , K

(2)
j = grjVj

If b = 1 follow the same procedure but set:

K
(1)
j = g

∑l
j′=2 Aj [j

′]u[j′] (g−αU (gαX2)
)Aj [1]

Z
Aj ·u2
2 T

rj
ρ(j)Wj , K

(2)
j = grjVj

• The Challenge Ciphertext. To generate the challenge ciphertext with messages (M0,M1)
and attribute set S pick a random bit b and set:

C = MbT , C0 = gsX2 , Ci = (gsX2)si∀i ∈ S

In the case where T = e(g, g)αs let us analyze the distribution of the exponent in K
(1)
j ,K

(2)
j

when b = 0. In this case (if we call X2 = gc2 and Z2 = gd2) the above generation process is equivalent
to generating a key from Gameq where v is chosen so that the βU,b value is set to be βU,b + c in the
new generation procedure. Similarly, if T is a random target group element this is an encryption of
a randomly chosen message.

As the advantage of any adversary in GameFinal is clearly negligible (it has no dependence on
b) we have εFinal is negligible which proves security by connecting our previous lemmas.

27

9 Revocable Storage CP-ABE

We now describe the requirement needed for a CP-ABE scheme to imply a revocable CP-ABE scheme
and provide a construction. We first formally define security for a revocable CP-ABE scheme. Once
again we begin by defining some oracles for use in the security game:

Security Game Oracles. Define the following oracles to use in the security game. These
oracles are given access to (PK,MSK) that are generated at the beginning of the security game,
and may have been modified since, at the time of the oracle’s invocation.

1. The Secret Key Generation oracle SK(·, ·) takes as input (S, ID) and return SKS,ID generated
from:

SKS,ID ← KeyGen(MSK,S, ID).

2. The Key Update Generation oracle K(·, ·) takes as input t and a revocation list rl and returns
Kt:

Kt ← KeyUpdate(MSK, t, rl)

The security definition now is similar to the key-policy case.

RCP-SecurityA(1λ):

1. The challenger runs Setup(1λ)→ (PK,MSK) and returns PK to A;

2. A is given oracle access to SK(·, ·), K(·, ·) until it signals the query phase is over;

3. After the query phase, A returns (M0,M1, P
∗, t∗) to the challenger;

4. The challenger picks b a random bit and returns to A:

CP∗,t∗ ← Encrypt(PK,Mb, P
∗, t∗);

5. A is once again given oracle access to the three oracles above;

6. A returns a bit b′. The Experiment returns 1 if and only if b′ = b and the conditions
below concerning the adversary’s query history are satisfied.

The conditions placed on the adversary’s queries is as follows: For any query, SK(S, ID) such that
P ∗(S) = 1, ID ∈ rl for every query K(t, rl) with t ≥ t∗.

Definition 9.1. A Revocable CP-ABE scheme is secure if for any polynomial time adversary A the
advantage of this adversary in the RCP-Security game:

2 Pr
[
RCP-SecurityA(1λ) = 1

]
− 1

is negligible in λ.

Definition 9.2. (Piecewise Key Generation) A CP-ABE scheme is said to have piecewise key
generation with attribute set Ω supporting policies in P, message space M and identifier length I if
key generation and encryption are modified to the following syntax:

28

KeyGen takes as input the master key MSK, a bit b, a set S ⊂ Ω and an identifier U ∈ {0, 1}I
and returns:

• KeyGen(MSK, b, S, U)→ K
(b)
S,U .

Decrypt takes two outputs of KeyGen as input instead of one:

• Decrypt(CS ,K0,K1)→M

Definition. (Correctness) A CP-ABE scheme with piecewise key generation is correct if
for any P ∈ P:

• (PK,MSK)← Setup(1λ)

• CP ← Encrypt(PK,M,P)

• S, T ⊂ Ω such that P (S) = 1 and P (T) = 1:

If KeyGen(MSK, 0, S, U)→ K
(0)
S,U and KeyGen(MSK, 1, T, U)→ K

(1)
T,U , then,

Decrypt(K(0)
S,U ,K

(1)
T,U , C(A,ρ)) = M.

Security for a scheme with piecewise key generation now follows similarly to the KP-ABE defi-
nition:

Piecewise CPABE SecurityA(1λ):

1. The challenger runs Setup(1λ)→ (PK,MSK) and sends PK to A;
2. A makes queries of the type (b, S, U) for b ∈ {0, 1}, S ⊂ Ω and U ∈ {0, 1}I ;

The challenger runs KeyGen(MSK, b, S, U) and returns the key to A;
3. A signals the query phase is over and returns (M0,M1, P);

4. The challenger picks b $←− {0, 1} and returns Enc(PK,Mb, P) to the adversary;
5. A has another query phase as previously;
6. A sends a bit b′ to the challenger;
7. If for any U , P (S) = P (T) = 1 for some S, T ⊂ Ω s.t. A has queried

KeyGen(MSK, 0, S, U) and KeyGen(MSK, 1, T, U) return 0.
8. If b′ = b return 1, otherwise return 0.

Definition 9.3. A CP-ABE scheme with piecewise key generation is secure if for any polynomial
time adversary A the advantage of this adversary in the Piecewise CPABE Security game:

2 Pr
[
Piecewise CPABE SecurityA(1λ) = 1

]
− 1

is negligible in λ.

Revocable Storage CP-ABE from Piecewise CP-ABE with Delegation

Using a CP-ABE scheme with piecewise key generation E that supports elementary ciphertext ma-
nipulations and policies that include injective LSSS matrices, we will build a Revocable Storage
CP-ABE scheme F . First, we will split the attribute set of E as Ω ∪ Ω′ where:

Ω′ = {ωi,b : i ∈ [log(T)], b ∈ {0, 1}}

29

The construction of F is as follows. Let the tree U be defined as before of depth I with all
identifiers corresponding to leaf nodes and U(rl) defined as before, and T the tree with leaves
numbered [T] with the subsets Tt also defined as before. We now show how to handle the policy and
delegation by constructing the ‘time-policy’ in a delegatable fashion from injective LSSS matrices.
Once again we let r = log(T) and assume for notational convenience that T is a power of two.

Let B be the 2r × r matrix such with 2 × 2 blocks of the all ones matrix cascading along the
diagonal with all zeros elsewhere. Below is an example of this construction when r = 3.

B =

1 1 0
1 1 0
0 1 1
0 1 1
0 0 1
0 0 1

Label the rows of the matrix B as b1,0, b1,1, b2,0, b2,1, . . . , br,0, br,1 in descending order. The

relevant property of the construction of B and this ordering that we will need is that the vector 1
will be in the span of a set of the rows S if and only if for each i ∈ [r] either bi,0 ∈ S or bi,1 ∈ S. We
now define the labeling β as taking β(bi,d)→ ωi,d for all rows of B. Note that (B, β) now describe
an LSSS policy that is satisfied by a set of attributes S if and only if for each i ∈ [r], ωi,b ∈ S for
some b ∈ {0, 1}. Notice that (B, β) is injective.

We now describe the time policies corresponding to nodes of the tree. Recall each y ∈ T admits
a natural string representation of length r where ∗ values are used to pad the description of the path
from the root to this node to r bits. We describe the policy (By, βy) now. For each index i ∈ [r] if
i is not ∗ we will eliminate the row bi,y[i] from the rows of B (keeping the output of βy the same
as β on all non-deleted rows). As an example if r = 3 and y = 01∗, the matrix B and labeling βy
(represented by the arrows below) are set to be:

By =

1 1 0 0
0 1 1 0
0 0 1 1
0 0 1 1

→ ω1,0

→ ω2,1

→ ω3,0

→ ω3,1

Notice that (By, βy) is satisfied by a set of attributes S if and only if for all i such that y[i] 6= ∗,
ωi,y[i] ∈ S and for each i such that y[i] = ∗ either ωi,0 or ωi,1 is in S. Additionally, any scheme
that allows elementary ciphertext manipulations can delegate any (By, βy) → (By′ , βy′) for any
descendent y′ of y (as shown in Section 5 by use of the Delete operation). Additionally, notice that
(By, βy)(sz) = 1 (as defined in Section 7) if and only if y is an ancestor of z.

We now begin the description of our scheme. We use the notation (A, ρ) ∨ (B, β) for two LSSS
policies to mean the LSSS policy that is made by sequentially adding the rows of B with assignment
β to the matrix A (and padding both to the same length). Furthermore, if (A, ρ) and (B, β) are
injective with disjoint ranges, (A, ρ) ∨ (B, β) is injective as well and if y′ is a descendent of y,
(A, ρ) ∨ (By′ , βy′) can be delegated from (A, ρ) ∨ (By, βy). Notice that in contrast to our use of ∨
in the definition, this policy may be satisfied by a set of attributes even if this set doesn’t satisfy
either of the policies individually, but in our application below we will assign attributes relevant to
each half disjointly and therefore, a set will only satisfy the entire policy if it satisfies one of the two
halves.

• Setup(1λ): Return E . Setup(1λ)→ (PK,MSK).

• KeyGen(MSK,S, ID): For all x ∈ Path(ID) run E . KeyGen(MSK, 0, S, x) → SK
(0)
S,x. Re-

turn:
SK

(0)
S,ID = {SKS,x : x ∈ Path(ID)}.

30

• Encrypt(PK,M, (A, ρ), t): For each y ∈ Tt, set:

C(A,ρ),y = E . Encrypt(PK,M, (A, ρ) ∨ (By, βy)).

Return:
C(A,ρ),t = {C(A,ρ),y : y ∈ Tt}.

• KeyUpdate(MSK, rl, t): For all x ∈ U(rl) set:

SK(1)
st,x = E . KeyGen(MSK, 1, st, x) where st = {ωi,t[i] : i ∈ [r]}

Return Kt = {SK(1)
t,x : x ∈ U(rl)}.

• Decrypt(C(A,ρ),t, SKS,ID,Kt′): If user ID 6∈ rl when Kt′ was created there is some node of
x ∈ U(rl) ∩ Path(ID). For this x there is:

SK
(0)
S,x ∈ SK

(0)
S,ID and SKst′ ,x ∈ Kt′

Additionally if t′ ≥ t this implies there is some y ∈ Tt such that y is an ancestor of t′ and
therefore (By, βy)(st′) = 1. For this y, take C(A,ρ),y ∈ C(A,ρ),t and return:

E .Decrypt(SK(0)
S,x, SKst′ ,x, C(A,ρ),y)

If (A, ρ)(S) = 1 then (A, ρ) ∨ (By, βy)(S) = (A, ρ) ∨ (By, βy)(st′) = 1 which implies that
decryption succeeds.

• CTUpdate(PK,C(A,ρ),t): For all x ∈ Tt+1 find y ∈ Tt such that y is an ancestor of x and
such that there is a C(A,ρ),y component in C(A,ρ),t. For all such x set:

C(A,ρ),x = E .Delegate(PK,C(A,ρ),y, (A, ρ) ∨ (Bx, βx))

And finally return:
C(A,ρ),t+1 = {C(A,ρ),x : x ∈ Tt+1}

Theorem 9.4. If E is a secure CP-ABE with piecewise key generation that allows elementary
ciphertext manipulations, F described above is a secure CP-ABE scheme with revocable storage
supporting injective LSSS matrices.

Proof. Let A be an adversary such that RCP-SecurityA(1λ) is non-negligible and we will con-
struct an A′ such that Piecewise CP-ABEA(1λ) is non-negligible. Once again, similar to the
KP-ABE case we consider a modified security game where the adversary returns a tuple of policies
(P ∗1 , P

∗
2 , . . . , P

∗
ρ) along with two messages (M0,M1) and a random bit b is chosen and the adver-

sary receives an encryption of Mb under each of these policies. Security should hold as long as the
identities for any key with sufficient credentials to decrypt any of the challenge policies is on every
revocation list equal to or exceeding the challenge time.

A′ initializes the Piecewise CP-ABEA security game and forwards PK to A (note that the
attribute set of the Revocable CP-ABE scheme that A is interacting with is Ω and therefore all
keys and policies sent by A do not involve Ω′). To respond to a SK(S, ID) query, A′ queries (0, S, x)
to its key generation oracle for all x ∈ Path(ID), simulating the oracle of A. Similarly for all queries
K(t, rl), A′ sends a query (1, st, x) for all x ∈ U(rl) and combined them to answer the key update
query of A.

To respond to the challenge query of A, which we call (M0,M1, P
∗, t∗), A′ sends as its challenge

query (M0,M1) and the tuple of policies P ∗ ∨ (By, βy) for all y ∈ Tt∗ in the modified security game

31

we described above. It now remains to only show that for any x ∈ U and any P ∗ ∨ (By, βy) queried
in the challenge phase, A′ does not query its oracle on two values (0, S, x) and (1, S′, x) such that
P ∗ ∨ (By, βy)(S) = P ∗ ∨ (By, βy)(S′) = 1.

Fix any y ∈ Tt, we will analyze each P ∗ ∨ (By, βy) separately. Begin by considering an x such
that no descendent leaf ID of this node is queried on a set SK(S, ID) such that P ∗(S) = 1. In this
case, (0, S, x) is only queried on sets by A′ such that P ∗(S) = 0 and therefore, since (By, βy) does
not depend on the attributes in Ω, P ∗ ∨ (By, βy)(S) = 0 as desired.

Next, consider an x such that a descendent leaf ID of x is queried on a set SK(S, ID) such that
P ∗(S) = 1. Then, ID must be included on rl for all queries by A to K(t, rl) where t ≥ t∗. Therefore,
for all the (1, st, z) queries that A′ makes, either t < t∗ (in which case P ∗ ∨ (By, βy)(st) = 0 because
y is from Tt∗ which does not contain an ancestor of t), or z 6= x since no ancestor of ID is included
on these queries when ID ∈ rl. Therefore, for all queries (1, S, x) we have P ∗ ∨ (By, βy)(S) = 0,
completing the proof.

10 Piecewise CP-ABE Construction

In this section we give our construction of a CP-ABE scheme with piecewise key generation from
Assumptions 1,2 and 3. Throughout this construction we assume the size of all queried policies are
n× l for notational convenience but this can be extended in a straightforward manner.

Setup(1λ) → (PK,MSK): Choose a bilinear group of order N = p1p2p3 (from the definition
of Assumptions 1, 2 and 3) according to G(1λ). Then choose α, a ← ZN and g ← Gp1 uniformly.
For each i ∈ Ω, pick si ← ZN and set MSK = (α,X3) with X3 ← Gp3 such that X3 6= 1:

PK = (N, g, ga, e(g, g)α, {Ti = gsi for all i ∈ Ω})

KeyGen(MSK, b, S, U). If αU has not been generated yet, select it uniformly from ZN ; if it
has been for a previous query, re-use this value. Generate tU ← ZN and V,Z ← Gp3 and Wi ← Gp3

for each i ∈ S. Let γ = αU if b = 0 and α−αU if b = 1. Return SK(b)
S,U = (KU ,KS,U ,K

∗
U) generated

as:
KU = gtUV , KS,U = {KU,i = T tUi Wi : i ∈ S} , K∗U = gγgatUZ.

Encrypt(PK,M, (A, ρ)). Choose v ← ZlN and ri ← ZN for all i ∈ [n], label the components as
v = (s, v2, . . . , vn) and set:

C = Me(g, g)αs , C ′ = gs

Ci = gaAi·vT−riρ(i) , Di = gri for all i ∈ [n]

Return:
C(A,ρ) = (C,C ′, (Ci, Di : i ∈ [n]))

Decrypt(C(A,ρ), SK
(0)
S,U , SK

(1)
T,U). The decryption algorithm first computes ωi ∈ ZN such that∑

ρ(i)∈S ωiAi = 1. Then, writing SK(0)
S,U = (KU ,KS,U = (Ki,U : i ∈ S),K∗U) It generates:∏

ρ(i)∈S

(e(Ci,KU)e(Di,KU,ρ(i)))ωi = e(g, g)satU

e(K∗U , C
′) = e(gαU , gs)e(gatU , gs)

Which allows us to recover e(gαU , gs). Similarly, with SKT,U we can recover e(gα−αU , gs) which
allows us to recover e(g, g)sα and M as C/e(g, g)sα.

The property that the key generation algorithm must retain state between invocations above can
be removed through the use of a PRF, as described in the KP-ABE case in Section 8.1.

32

10.1 Proof of Security

We now begin the proof of security. For this we once again define notions of semi-functionality for
ciphertexts and keys.

Semi-Functional Ciphertext. For a semi-functional ciphertext, we add a multiplicative factor
to some of the components according to the below algorithm. After computing the ciphertext hon-
estly through Encrypt(PK,M, (A, ρ)) = (C,C ′, (Ci, Di : i ∈ [n])), make the following modifications.
First, generate c← ZN at random and set:

C ′ := C ′gc2

Next generate a random vector u← ZlN and for all i ∈ [n] generate γi ← ZN and set:

Ci := Ci × g
Ai·u−γisρ(i)
2 , Di := Di × gγi2

The semi-functional ciphertext is now set as C(A,ρ) = (C,C ′, (Ci, Di : i ∈ [n])).
Semi-Functional Key. An identifier U has keys generated semi-functionally if the following

change is made to all queries to KeyGen. Generate dU,0, dU,1 ← ZN once for this U . A key SK
(b)
S,U

is generated semi-functionally by first calling the real generation procedure:

KeyGen(MSK, b, S, U, pk) = (KU ,KS,U ,K
∗
U)

and making the modification:
K∗U := K∗U × g

dU,b
2

Notice that for all queries to the same U for the same b value, the K∗U component is offset by
the same multiplicative factor in Gp2 .

Definition 10.1. (GameReal) An adversary in Gamereal is interacting with the actual functionality
as described in Piecewise CPABE SecurityA.

Definition 10.2. (Game0) The response to the adversary’s queries in Game0 will differ from
GameReal only in the challenge ciphertext phase. In Game0, the challenge ciphertext will be gen-
erated as a semi-functional ciphertext.

Throughout the rest of the proof we will let εi denote the advantage of A in Gamei.

Lemma 10.3. If Assumption 1. holds then |εReal − ε0| is negligible in λ.

Proof. Recall in Assumption 1. the challenger is given g ← Gp1 and X3 ← Gp3 and T that
either comes from Gp1p2 or from Gp1 . We simulate either GameReal or Game0 depending on the
distribution T is drawn from as follows. Choose a, α ← ZN andsi ∈ ZN for all i ∈ Ω. Then, sends
A the public parameters:

PK = {N, g, ga, e(g, g)α, {Ti = gsi : i ∈ Ω}}

which is drawn from the correct distribution and internally set MSK = {α,X3}. This suffices to
simulate honest key generation keys perfectly. The only difficulty lies in generating the challenge
ciphertext. On input (M0,M1, P) for the challenge ciphertext, generate b← {0, 1} and sets:

C = Mbe(gα, T) , C ′ = T

We are implicitly setting the Gp1 part of T to be gs. Then, pick a random vector v ∈ ZnN such that
v · 1 = 1 and generate ri ← ZN for all i ∈ [n] and sets:

Ci = T aAi·vT−risρ(i) , Di = T ri

Notice that if T = gs then the above is a properly generated normal ciphertext where the v value in
the real encryption algorithm is set to be s× v and the ri values in the actual scheme are set to be
s× ri which are both drawing from the correct distribution.

33

Definition 10.4. (Gamek) For this game, the keys corresponding to the first k identifiers that
are queried by the adversary are generated semi-functionally and the challenge ciphertext is semi-
functional.

Lemma 10.5. For any k ∈ [q] if Assumption 2. holds, |εk − εk+1| is negligible in λ.

We will analyze two restricted types of adversaries separately and later show that we can use
this analysis to conclude the final result. A is Type 1 if for the kth identifier U it only queries a
attribute sets S to KeyGen(MSK, 0, S, U) such that (A∗, ρ)(S) = 0 where (A∗, ρ) is the policy for
the challenge ciphertext.

Similarly, A is Type 2 if for the kth identifier U it only queries attribute sets S to KeyGen(MSK, 1, S, U)
such that (A∗, ρ)(S) = 0.

We will show that for either type of A has advantage |εk−1 − εk| negligible. Note that this does
not immediately imply the theorem statement as the actual A does not fall in either class, but we
will use it to prove our lemma.

Definition 10.6. We define the game Hi as follows. The challenge ciphertext and keys for the first
k − 1 identifiers queried are generated semi-functionally while the keys for the identifiers after and
including the k+ 1st are generated normally. The keys for the kth identifier are modified as follows:

For the first i − 1 queries to KeyGen(MSK, 0, S, U) generate (KU ,KS,U ,K
∗
U) from the normal

distribution, generate dU ← ZN (new for each query) and set:

K∗U := K∗U × g
dU
2 .

For the ith query to KeyGen(MSK, 0, S, U) generate (KU ,KS,U ,K
∗
U) from the normal distribution

and then generate eU , fU ← ZN and set:

KU := KU × geU2 , KU,i := KU,i × geUsi2 , K∗U := K∗U × g
fU
2

Following the ith query, or to KeyGen(MSK, 1, (A, ρ), U) for the kth identifier U , no modification
is made to the normal key generation algorithm.

Definition 10.7. Define Ii as a modification to Hi where instead of eU being generated uniformly
for the ith query with b = 0 to the kth identifier, set eU = 0.

Let νi be the advantage of A in the security game Hi and µi its advantage in Ii.

Lemma 10.8. If A is of Type 1. then |µi−1− νi| is negligible in λ for any i ∈ [q] if Assumption 2.
holds.

Proof. Let g,X1X2, X3, Y2Y3, N, T be generated from the indistinguishability instance of Assump-
tion 2. - Recall then that either T ← G or T ← Gp1p3 . We generate the public key by generating
a, α← ZN and si ← ZN for all i ∈ Ω and setting:

PK = (N, g, ga, e(g, g)α, {Ti = gsi∀i ∈ Ω})

We first describe the generation of the semi-functional challenge ciphertext with policy (A, ρ):

• Challenge Ciphertext Generation. Generate the vectors u uniformly over ZlN subject to
the restriction that u · 1 = a and generate ri ← ZN for each i ∈ [n] set:

C = Me(gα, X1X2) , C ′ = X1X2

Ci = (X1X2)Aiu(X1X2)−risρ(i) , Di = (X1X2)ri

We next describe how to generate semi-functional keys for the first k − 1 identifiers.

34

• The first k − 1 identifiers queried to KeyGen(MSK, b, S, U ′): If αU ′ or dU ′,b has not
been generated yet, generate it randomly from ZN . Generate tU ′ ← ZN and V,Z ← Gp3 and
Wi ← Gp3 for all i ∈ S and set where γ = αU if b = 0 and α− αU if b = 1:

KU ′ = gtU′V , KU ′,S = {T tU′i Wi : i ∈ S} K∗U ′ = gγgatU′Z(Y2Y3)dU′,b

• The kth identifier where b = 0: Let U be the kth identifier. For the first i − 1 queries
to KeyGen(MSK, 0, S, U) If αU has not been generated yet, generate it randomly from ZN .
Generate tU , dU ← ZN and V,Z ← Gp3 and Wi ← Gp3 for all i ∈ S and set:

KU = gtUV , KU,S = {T tUi Wi : i ∈ S} KV = gαU gatUZ(Y2Y3)dU

For the first ith queries to KeyGen(MSK, 0, S, U): If αU has not been generated yet, generate
it randomly from ZN . Generate V,Z ← Gp3 and Wi ← Gp3 for all i ∈ S and set:

KU = TV , KU,S = {T siWi : i ∈ S} KV = gαUT aZ

For the queries after the ith or where b = 1 to KeyGen(MSK, b, S, U): If αU has not been
generated yet, generate it randomly from ZN . Generate V,Z ← Gp3 and Wi ← Gp3 for all
i ∈ S and set where γ = αU if b = 0 and α− αU if b = 1:

KU = gtUV , KU,S = {T tUi Wi : i ∈ S} KV = gγgatUZ

Generating the fully functional keys for the identifiers numbered k′ > k from the correct distri-
bution is simple since we have the master secret key (α,X3) as they are generated identically to the
first k − 1 identifiers where dU,b is set to be 0.

If T ∈ Gp1p3 the above is a uniform instance of Ii−1. On the other hand, if T ∈ G then the above
procedure is almost equivalent to the procedure from Hi except for the fact that the Ci components
of the challenge ciphertext are multiplied by a new XAi·u

2 factor where instead of u being generated
uniformly at random, it is uniform subject to the restriction that u · 1 = a. However, for all i such
that ρ(i) 6∈ T (where T is the attribute set for the ith query to the kth identifier with b = 0) notice
the Gp2 components of Ci are independent from all other parts of the scheme (as for these values
sρ(i) is nowhere else used as an exponent in Gp2 , note this statement requires the injectivity of ρ).

Therefore, the additional restriction that u·1 = a is only present in the ciphertext components for
i with ρ(i) 6∈ S where S is the attribute set for the ith query to the kth identifier when b = 0. Since
1 6∈ Span(Ai : ρ(i) ∈ T) this generation procedure is identical to when u is generated completely
uniformly (this argument is identical to that presented in the KP-ABE proof for indistinguishability
between Ii−1 and Hi) which is the correct distribution.

Lemma 10.9. If A is Type 1. then |µi − νi| is negligible in λ for any i ∈ [q] if Assumption 2. holds.

Proof. The only divergence from the above proof is for the ith query with b = 0 to the kth identifier
which we give below:

• The ith query to the kth identifier with b = 0: KeyGen(MSK, 0, S, U). If αU has not
been generated, sample it uniformly from ZN . Sample dU uniformly at random from ZN and
V,Z ← Gp3 and Wi ← Gp3 for all i ∈ S and set:

KU := TV , KU,S := {T siWi : i ∈ S} K∗U := T agαUZ(Y2Y3)dU

Notice that the key generation above is actually independent of the Gp2 part of T a (if T ∈ G) to
the additional re-randomization by Y dU2 and therefore the additional analysis in the previous case
is not needed since sampling u subject to the restriction u · 1 = a is equivalent to generating it
randomly if a is not used as an exponent in Gp2 anywhere else in the scheme. It’s therefore a simple
observation that if T ∈ Gp1p3 the above is a uniform instance of Ii and if T ∈ G the above is a
uniform instance in Hi, as desired.

35

Now, by a hybrid argument and the observation that I0 = Gamek−1:

Corollary 10.10. If A is of Type 1. then |µq − εk−1| is negligible in λ if Assumption 2. holds.

We still have not proven our desired result however as Iq differs from Gamek in two ways. First,
each KeyGen with b = 0 query to the kth identifier has the Gp2 component of K∗U re-randomized sep-
arately (whereas in a semi-functional identifier, the Gp2 component is constant for all such queries).
Second, KeyGen queries with b = 1 to U should have the K∗U component offset by a constant geU2
amount. For this we need another sequence of hybrids.

Definition 10.11. Define J as a modification of Iq as follows. For the kth identifier U , rather
than generating fU ← ZN for each query KeyGen(MSK, 0, S, U), the value fU is generated uniformly
once for U and re-used across all such queries.

Let η be the advantage of the adversary in J .

Lemma 10.12. If A is of Type 1. then |µq − ν| is negligible in λ if Assumption 2. holds.

To show this we use another series of games:

Definition 10.13. We define I ′i and H′i as modifications of Ii and Hi respectively where for the
kth identifier U an additional value dU,0 is generated uniformly at random and all queries to U of
the form KeyGen(MSK, 0, S, U) after being generated from Ii or Hi respectively are modified by:

K∗U := K∗U × g
dU,0
2

Note that in the above definition dU,0 is only generated once for U . We call the advantage of the
adversary in I ′i and H′i, µ′i and ν′i respectively.

Notice first that I ′q = Iq as the independent fU factor in each of these queries in Iq completely
subsumes the additional gdU,02 factor. Additionally, through repeating the proofs of the previous
two lemmas with the only modification being that for the kth identifier U , dU,0 is generated and all
responses to KeyGen(MSK, 0, S, U) are modified as K∗U := K∗U×g

dU,0
2 , we can conclude the following

two lemmas:

Lemma 10.14. If A is of Type 1. then |µ′i−1 − ν′i| is negligible in λ for any i ∈ [q] if Assumption 2.
holds.

and,

Lemma 10.15. If A is of Type 1. then |µ′i − ν′i| is negligible in λ for any i ∈ [q] if Assumption 2.
holds.

Since I ′0 = J , this allows us to combine these two lemmas and indistinguishability between I ′q
and Gamek−1 to conclude:

Corollary 10.16. If A is of Type 1. then |η − εk−1| is negligible in λ if Assumption 2. holds.

Now we have indistinguishability of Gamek−1 form J which is much closer to Gamek. Like
Gamek, J has all KeyGen(MSK, 0, S, U) queries for the kth identifier U have the K∗U value offset
by a constant amount in Gp2 . However, the KeyGen(MSK, 1, S, U) values are not yet offset. For
this, we will need one final lemma.

Lemma 10.17. If A is of Type 1. then |εk − η| is negligible in λ if Assumption 2. holds.

Proof. Let g,X1X2, X3, Y2Y3, N, T be generated from the indistinguishability instance of Assump-
tion 2. - Recall then that either T ← G or T ← Gp1p3 . We generate the public key by generating
a, α← ZN and setting:

PK = (N, g, ga, e(g, g)α, {Ti = gzi∀i ∈ Ω})
First we demonstrate how to simulate semi-functional challenge ciphertext generation (A, ρ):

36

• Challenge Ciphertext Generation. On a query (M0,M1, (A, ρ)), generate the vector
u ∈ ZlN uniformly subject to the restriction that u · 1 = a. Then choose b← {0, 1} uniformly
and ri ← ZN for all i ∈ [n] and set:

C = Mbe(gα, X1X2) , C ′ = X1X2

Ci = (X1X2)Ai·u(X1X2)−risρ(i) , Di = (X1X2)ri

Next we show how to generate semi-functional keys for the first k − 1 identifiers.

• The first k− 1 identifiers: On a query KeyGen(MSK, b, S, U): If αU or dU,b have not yet
been generate them uniformly over ZN . Generate tU ← ZN , V,Z ← Gp3 and Wi ← Gp3 for
all i ∈ S. Let γ = αU if b = 0 and α− αU if b = 1 and set:

KU = gtUV , KU,S = {T tUi Wi : i ∈ S} K∗U = gαU gatUZ(Y2Y3)dU,b

The key for the identifiers following kth are also generated according to the above distribution
where dU,b is set to 0. We now detail the generation for the kth identifier.

• The kth identifier: On a query KeyGen(MSK, 0, S, U): If dU,0 has not yet been generate
it uniformly over ZN . Generate tU ← ZN , V,Z ← Gp3 and Wi ← Gp3 for all i ∈ S. Set:

KU = gtUV , KU,S = {gtUsiWi : i ∈ S} K∗U = TgatUZ(Y2Y3)dU,0

On a query KeyGen(MSK, 1, S, U): Generate tU ← ZN , V,Z ← Gp3 and Wi ← Gp3 for all
i ∈ S. Set:

KU = gtUV , KU,S = {gtUsiWi : i ∈ S} K∗U = gαT−1gatUZ

Here if we write TGp1 (the Gp1 part of T) as gt we are implicitly setting αU = t. If T ∈ Gp1p3

then the keys for the kth identifier have dU,0 as in I ′0. Similarly, if T ∈ Gp1p2p3 , gdU,02 is set to be the
g
dU,0
2 value generated in the above simulation plus the Gp2 part of T and g

dU,1
2 is set to be the Gp2

part of T−1. As these are both uniform, independent and reused across all queries to this identifier
with the same value for b, this draws from the correct distribution for Gamek as desired.

Now combining all the lemmas we have shown we can conclude:

Lemma 10.18. If A is of Type 1. then |εk − εk−1| is negligible in λ for any k ∈ [q] if Assumption
2. holds.

Through a symmetric argument, the above also holds for Type 2. adversaries (where the
Hi, Ii,H′i, I ′i hybrids now modify the generation procedure when b = 1). If there was a general
adversary A (not Type 1. or Type 2. that could distinguish between Gamek and Gamek+1 notice
that it would be possible to make two adversaries A1 and A2 such that A1 is Type 1. and Type 2.
using A (such that Ai aborts and guesses randomly is A ever makes a query to violate being Type i.
that either A1 or A2 would have a non-negligible advantage if A did, violating the above lemma.

Therefore, Gamek and Gamek+1 are indistinguishable for general adversaries and through a
hybrid argument we have:

Corollary 10.19. |ε0 − εq| is negligible in λ if Assumption 2. holds.

Let GameFinal denote the game identical to Gameq with the only exception that rather than
choosing the challenge message to be Mc where c ← {0, 1}, the message is chosen uniformly over
GT .

Lemma 10.20. If Assumption 3. holds, |εFinal − εq| is negligible.

37

Proof. Recall that in Assumption 3. we are given N, g, gαX2, X3, g
sY2, Z2 and T which either is

e(g, g)αs or a uniform element over GT . We now describe how to simulate either an instance of
Gameq or GameFinal depending on which distribution T comes from.

• To generate the public key, choose a← ZN and zi ← ZN for all i ∈ Ω and set:

PK = (N, g, ga, e(g, gαX2) = e(g, g)α, (Ti = gzi : i ∈ Ω))

We next describe how to generate keys for semi-functional identifiers:

• Semi-Functional Identifiers. To queries to KeyGen(MSK, b, S, U) If dU,b or αU has not
been generated yet, sample it uniformly from ZN and store it. Generate tU ← ZN , V,Z ← Gp3

and Wi ← Gp3 for all i ∈ S. Set G = gαU if b = 0 and G = gαX2g
−αU if b = 1 and set:

KU = gtUV , KU,S = {T tUi Wi∀i ∈ S} , K∗U = GgatUZ
dU,b
2 Z

• The Ciphertext. Generate v ∈ ZlN uniformly subject to the restriction that v · 1 = a and
ri ← ZN for all i ∈ [n] and s← ZN and set:

C = McT , C ′ = gsY2

Ci = (gsY2)Ai·v(gsY2)−risρ(i) , Di = (gsY2)ri

When T = e(g, g)α the above is a correctly distributed semi-functional ciphertext, whereas when
T is a random element in GT it is an encryption of a random message. Since εFinal must be negligible,
as the challenge bit c is completely independent of anything in the challenge ciphertext, this proves
security of our scheme.

Acknowledgements

We gratefully thank Thomas King and Daniel Manchala of Xerox for stimulating discussions regard-
ing ABE with dynamic credentials. In particular, Thomas King and Daniel Manchala suggested to
us that the problem of revoking access to stored data that had not yet been accessed could be of
significant interest in practice, and their suggestion inspired us to consider this problem. We also
thank the anonymous reviewers for their helpful comments on our writeup.

References

[1] Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature scheme. In Tatsuaki
Okamoto, editor, ASIACRYPT, volume 1976 of Lecture Notes in Computer Science, pages 116–
129. Springer, 2000.

[2] William Aiello, Sachin Lodha, and Rafail Ostrovsky. Fast digital identity revocation (extended
abstract). In CRYPTO, pages 137–152, 1998.

[3] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Michael J.
Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 431–448.
Springer, 1999.

[4] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In IEEE Symposium on Security and Privacy, pages 321–334. IEEE Computer Society,
2007.

38

[5] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with ef-
ficient revocation. In ACM Conference on Computer and Communications Security, pages
417–426, 2008.

[6] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. Advances
in CryptologyEurocrypt 2003, pages 646–646, 2003.

[7] Craig Gentry. Certificate-based encryption and the certificate revocation problem. In EURO-
CRYPT, pages 272–293, 2003.

[8] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In Proceedings of the 13th ACM conference on Computer and
communications security, page 98. ACM, 2006.

[9] Vipul Goyal. Certificate revocation using fine grained certificate space partitioning. In Financial
Cryptography, pages 247–259, 2007.

[10] Vipul Goyal, Steve Lu, Amit Sahai, and Brent Waters. Black-box accountable authority
identity-based encryption. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM
Conference on Computer and Communications Security, pages 427–436. ACM, 2008.

[11] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In ACM Conference on Computer and Commu-
nications Security, pages 89–98, 2006.

[12] A. Lewko and B. Waters. New Proof Methods for Attribute-Based Encryption: Achieving Full
Security through Selective Techniques. CRYPTO, 2012.

[13] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer
Science, pages 62–91. Springer, 2010.

[14] Benôıt Libert and Damien Vergnaud. Adaptive-id secure revocable identity-based encryption.
In CT-RSA, pages 1–15, 2009.

[15] Tal Malkin, Daniele Micciancio, and Sara K. Miner. Efficient generic forward-secure signatures
with an unbounded number of time periods. In Lars R. Knudsen, editor, EUROCRYPT, volume
2332 of Lecture Notes in Computer Science, pages 400–417. Springer, 2002.

[16] S. Micali. Efficient certificate revocation. LCS/TM 542b, Massachusetts Institute of Technology,
1996.

[17] S. Micali. NOVOMODO: Scalable certificate validation and simplified PKI management. In
Proc. of 1st Annual PKI Research Workshop, 2002.

[18] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless
receivers. Electronic Colloquium on Computational Complexity (ECCC), (043), 2002.

[19] M. Naor and K. Nissim. Certificate revocation and certificate update. IEEE Journal on Selected
Areas in Communications, 18(4):561–560, 2000.

[20] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption. In Tal Rabin, editor, CRYPTO, volume 6223
of Lecture Notes in Computer Science, pages 191–208. Springer, 2010.

39

[21] R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-monotonic access
structures. In Proceedings of the 14th ACM conference on Computer and communications
security, page 203. ACM, 2007.

[22] J. Qian and X. Dong. Fully secure revocable attribute-based encryption. Journal of Shanghai
Jiaotong University (Science), 16(4):490–496, 2011.

[23] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, volume 3494,
pages 457–473. Springer, 2005.

[24] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and prov-
ably secure realization. In Public Key Cryptography, pages 53–70, 2011.

40

