
On the Impossibility of Constructing Efficient Key
Encapsulation and Programmable Hash Functions

in Prime Order Groups?

Goichiro Hanaoka, Takahiro Matsuda, and Jacob C.N. Schuldt

Research Institute for Secure Systems,
National Institute of Advanced Industrial Science and Technology
{hanaoka-goichiro, t-matsuda, jacob.schuldt}@aist.go.jp

Abstract. In this paper, we focus on the problem of minimizing ciphertext overhead, and
discuss the (im)possibility of constructing key encapsulation mechanisms (KEMs) with low
ciphertext overhead. More specifically, we rule out the existence of algebraic black-box re-
ductions from the (bounded) CCA security of a natural class of KEMs to any non-interactive
problem. The class of KEMs captures the structure of the currently most efficient KEMs
defined in standard prime order groups, but restricts an encapsulation to consist of a single
group element and a string. This result suggests that we cannot rely on existing techniques
to construct a CCA secure KEM in standard prime order groups with a ciphertext overhead
lower than two group elements. Furthermore, we show how the properties of an (algebraic)
programmable hash function can be exploited to construct a simple, efficient and CCA
secure KEM based on the hardness of the decisional Diffie-Hellman problem with the ci-
phertext overhead of just a single group element. Since this KEM construction is covered
by the above mentioned impossibility result, this enables us to derive a lower bound on the
hash key size of an algebraic programmable hash function, and rule out the existence of
algebraic (poly, n)-programmable hash functions in prime order groups for any integer n.
The latter result answers an open question posed by Hofheinz and Kiltz (CRYPTO’08) in
the case of algebraic programmable hash functions in prime order groups.

Keywords: key encapsulation, chosen ciphertext security, programmable hash functions,
algebraic black-box reductions

1 Introduction

The development of efficient and secure public key encryption has long been a central research
area in cryptography, and in particular, achieving security against chosen ciphertext attacks (CCA
security) while maintaining practical efficiency has been the focus of many papers in the literature.
One of the most commonly used performance measures for public key encryption schemes, and
the measure that we are going to focus on in this paper, is ciphertext overhead which expresses
the additional cost in terms of storage and bandwidth when operating with encrypted data as
opposed to unencrypted data.

The currently most efficient encryption schemes are based on hybrid encryption [14]. In this
approach, a public key component, referred to as a key encapsulation mechanism (KEM), is used
to encapsulate (i.e. encrypt) a random session key, and the actual message is then encrypted using
a symmetric cipher which is referred to as a data encapsulation mechanism (DEM). The ciphertext
overhead of this type of construction is dominated by the KEM. More specifically, if the KEM
achieves CCA security, a redundancy-free DEM can be used since, in this case, only one-time CCA
security is required of the DEM to obtain a CCA secure hybrid encryption scheme (i.e. a strong
pseudo-random permutation can be used as a DEM [38]). If the KEM achieves the slightly weaker
notion of constrained CCA security [28], an authenticated DEM is required, which will introduce an
additional overhead of a message authentication code (MAC) assuming the authenticated DEM is

? An extended abstract of this paper will appear in the proceedings of CRYPTO 2012.

1

Table 1. The currently most efficient KEMs in terms of ciphertext overhead. The scheme Kiltz [33]† is
identical to Kiltz [33], except that no hash function is used to derive the session-key (see Sect. 4.2 of [33]). In
the table, CCCA denotes constrained CCA [28] and q-CCA denotes q-bounded CCA [13]. Furthermore, DDH
denotes the decisional Diffie-Hellman assumption, CDH the computational Diffie-Hellman assumption,
GDH the gap Diffie-Hellman assumption, GHDH the gap hashed Diffie-Hellman assumption, and DBDH
the decisional bilinear Diffie-Hellman assumption.

Scheme Security Hardness Ciphertext
assumption overhead

CS [14] IND-CCA DDH 3|G|
HaKu [22, Sect. 5] IND-CCA CDH 3|G|
HaKu [22, Sect. 4.1] OW-CCA CDH 3|G|
KD [34] IND-CCCA DDH 2|G|
HoKi [28] IND-CCCA DDH 2|G|
HaKu [22, Sect. 6] IND-CCCA DDH 2|G|
Kiltz [33] IND-CCA GHDH 2|G|
Kiltz [33]† OW-CCA GDH 2|G|
BMW [8] IND-CCA DBDH 2|G|
CHH+ [13] IND-q-CCA DDH 1|G|

implemented using the encrypt-then-mac approach [3]. Alternatively, the KEM can be generically
converted to a CCA secure KEM [2, 24], but this will likewise introduce an additional overhead
of a MAC. Hence, when comparing the ciphertext overhead of CCA secure and constrained CCA
secure KEMs, this additional overhead should be taken into account.

State-of-the-art Schemes. The currently most efficient (constrained) CCA secure KEMs, which
are provably secure in the standard model, are defined in prime order groups [14, 34, 8, 33, 28, 10,
22, 25, 42, 24]. The ciphertext overhead in these schemes consists of at least two group elements.
Note that for KEMs defined in prime order groups, each group element in the ciphertext overhead
will contribute with at least 2λ bits for a security level of λ bits, since the order p of the group
will have to satisfy p > 22λ to prevent generic attacks against the underlying assumptions of the
security of the KEMs. On the other hand, an additional overhead of a MAC, which must be taken
into account when considering constrained CCA secure schemes, contributes with only λ bits.

Table 1 shows an overview of the security level achieved, security assumption used, and the
ciphertext overhead of the currently most efficient schemes in terms of ciphertext overhead. Note
that to obtain a ciphertext overhead of just two group elements while maintaining full CCA
security, the current schemes require either interactive assumptions, e.g. Kiltz [33], or special
groups equipped with a pairing, e.g. Boyen-Mei-Waters [8]. Furthermore, note that the DDH-
based KEM by Cramer et al. [13] achieves a ciphertext overhead of just a single group element,
but can only be shown to be q-bounded CCA secure (for a predetermined number of decryption
queries q).

Besides being defined in prime order groups, the schemes in Table 1 share some structural
properties. More specifically, all of the schemes include a random group element as part of the
ciphertext which will be used to derive the key in the decapsulation. The remaining element(s)
(except in the scheme KD [34], but see the footnote1) are used to decide whether the ciphertext
should be accepted as “valid” or not, but does not otherwise contribute to the computation of the
decapsulated key.

More Efficient Schemes? Given the existing KEMs, it would be natural to ask: Is it possible
to construct a CCA secure KEM with a ciphertext overhead of less than two group elements?

1 While the KEM component of the original Kurosawa-Desmedt scheme in [34] makes use of “implicit
rejection” and does not explicitly check the validity of a KEM ciphertext, it is relatively straightforward
to make the scheme use explicit rejection through a validity check. This KEM will be IND-CCCA secure
under the DDH assumption, and will fit the description mentioned here (i.e. the session-key will only
depend on the random group element in the corresponding ciphertext).

2

Considering the structure of the currently most efficient schemes mentioned above, one might
consider implementing a more space-efficient validity check, using MACs and hash functions, as a
potential strategy for reducing the ciphertext overhead in these schemes.

To illustrate this approach, consider the KEM by Cramer and Shoup [14]. In this scheme,
a public key is of the form pk = (g,X1, X2 = gx1Xx2

1 , X3 = gy1Xy2
1 , X4 = gz), where g,X1

are group generators, and the private key is sk = (x1, x2, y1, y2, z). A ciphertext is of the form
(c1 = gr, c2 = Xr

1 , c3 = Xr
2X

rα
3) and the corresponding key is K = Xr

4 , where r is picked at
random from Zp, p is the order of the group, α = H(c1, c2), and H is a target collision resistant
hash function. The decapsulation first checks if

cx1+y1α
1 cx2+y2α

2 = c3,

and if this is the case, outputs the session-key K = cz1. Otherwise, the ciphertext is rejected.
To reduce the ciphertext overhead, we might consider a slightly modified scheme in which the

validity check is performed on the hash of the group elements instead of on the group elements
themselves i.e. a ciphertext is of the form (c1 = gr, c2 = Xr

1 , c
′
3 = H(Xr

2X
rα
3)), and the validity

check is implemented as H(cx1+y1α
1 cx2+y2α

2) = c′3. Somewhat surprisingly, this leads to a CCA
secure scheme as noted in [15]. This reduces the ciphertext overhead to match that of the other
schemes defined in standard prime order groups and based on non-interactive assumptions, when
taking into account the additional overhead of a MAC required by these schemes e.g. Kurosawa-
Desmedt [34], Hofheinz-Kiltz [28] and Hanaoka-Kurosawa [22, Sect. 6].

A similar approach can be used to reduce the ciphertext overhead of the schemes Hofheinz-
Kiltz [28], Hanaoka-Kurosawa [22], and Kurosawa-Desmedt [34] with explicit rejection. This yields
KEMs with the ciphertext overhead of just a single group element and a hash value, which is lower
than the currently most efficient schemes. However, unlike the modified version of the Cramer-
Shoup scheme, the security proofs of these schemes do not immediately extend to the modified
versions. Hence, it is not obvious what level of security these schemes provide.

1.1 Our Contribution

In this paper, we discuss the impossibility of constructing CCA secure KEMs in standard prime
order groups with low ciphertext overhead. More specifically, as our main result, we show that
it is impossible to construct an algebraic black-box reduction from the q-bounded one-way non-
adaptive CCA security (OW-n-CCA1) of a class of KEMs in which the ciphertext consists only of a
single (random) group element and a string, to the hardness of any non-interactive problem defined
in the group, where n is the number of group elements in the public key of the KEM. Since the
majority of standard model security reductions are algebraic black-box reductions, this result sheds
light on the question regarding the minimal ciphertext overhead achievable while maintaining CCA
security by ruling out a natural class of KEMs with similar structure to the currently most efficient
KEMs defined in standard prime order groups. Furthermore, the result holds even for security
against adversaries who are restricted to make a single parallel decryption query. Hence, we can
additionally rule out the existence of algebraic black-box reductions from the non-malleability of
the captured KEMs due to the implications shown in [4, 26]. These results imply that the approach
of minimizing ciphertext overhead in the above mentioned schemes [28, 22, 34], by compressing
group elements using a target collision resistant hash function (or a similar primitive), will not
yield CCA secure or non-malleable KEMs based on non-interactive assumptions. Additionally,
since the DDH-based KEM by Cramer et al. [13] is contained in the KEM class, the results imply
that this scheme cannot be shown fully CCA secure or non-malleable based on any non-interactive
assumption. See Section 3 for a definition of the class of KEMs we consider, Section 4 for our main
impossibility result, and Section 6 for further discussion about the implications and limitations of
our results.

Secondly, we show a simple construction of a CCA-secure KEM using programmable hash
functions introduced by Hofheinz and Kiltz [30]. These hash functions capture, to some extent,
the “programmability” achieved by a random oracle, and have been shown useful, for example,

3

in the construction of short signatures in the standard model [30, 27]. We show that an algebraic
(q, 1)-programmable hash function allows the construction of a q-bounded CCA (IND-q-CCA2)
secure KEM based on the hardness of the DDH problem, with a ciphertext overhead of just a
single group element (see Section 5.1 for the definition of a (α, β)-programmable hash function).
Since this construction is covered by the above impossibility result, we can derive a lower bound on
the level of programmability provided by a hash function with a given hash key size. Specifically, we
show that a hash function with n group elements in the hash key cannot be (α, 1)-programmable
for any α > n. Furthermore, we rule out the existence of algebraic (poly, β)-programmable hash
functions in prime order groups for any integer β. This result answers an open question posed
by Hofheinz and Kiltz [30] in the case of algebraic programmable hash functions in prime order
groups. We note that all known constructions of programmable hash functions are algebraic [30,
27], and that the properties of these hash functions suggest that this may be inherent [30, Sect.
1.5].

1.2 Used Techniques and Related Work

The type of impossibility results we show is commonly known as a black-box separation [31]. More
specifically, a black-box reduction from the security of a cryptographic scheme to the hardness of
a problem is an algorithm which, given (black-box) access to any successful adversary against the
scheme, successfully breaks any instance of the problem. A black-box separation result shows that
such a black-box reduction cannot exist.

Two main lines of techniques have been used for showing black-box separations: oracle sepa-
rations [31, 39] and meta-reductions [7, 12]. The former technique is typically used to show sepa-
rations between primitives, e.g. [31, 40, 19, 21, 20, 6, 32], and is based on showing the existence of
an oracle under which the primitive acting as a building block exists, but any instantiation of the
“target” primitive is broken. The latter technique is somewhat more direct, and aims at showing
that if there exists a reduction which, for example, reduces the security of a primitive to a compu-
tational assumption, then there exists a meta-reduction which uses the reduction as a black-box
to break a (possibly different) computational assumption. Meta-reductions have successfully been
used in [7, 12, 36, 16, 18, 37, 1]. For an overview of these definitions and techniques, see [39, 43].

While we are not considering a primitive-to-primitive reduction, we make use of a variant of
the oracle separation technique. In particular, we show the existence of a distribution of oracles
under which, on average over the choice of oracle, the non-interactive problem remains hard,
while the CCA security of any of the considered KEMs can be broken. We show that such a
distribution of oracles is sufficient to rule out a fully black-box reduction (in the taxonomy by
Reingold et al. [39]) from the security of a KEM in the considered class of KEMs, to the hardness
of any non-interactive problem. Since almost all security reductions for cryptographic primitives
are of this type, ruling out the existence of fully black-box reduction gives strong evidence that
the currently used techniques are not sufficient to prove the security of the KEMs in question.
Our proof techniques, especially our formal treatment of the distribution of oracles, might be of
independent interest.

The type of (fully) black-box reductions we are going to consider are algebraic reductions [7, 12,
36, 1]. Essentially, the algebraic property requires that the reduction only creates group elements
by means of the group operation, and does not map arbitrary bit strings to group elements e.g.
by applying a hash function to some string to obtain a group element. More specifically, for an
algebraic algorithm, it is required that it is possible to compute the representation of a group
element output by the algorithm in terms of the group elements which is given as input. For
example, if an algebraic algorithm takes as input the group elements g1, g2 and outputs the element
h, it should be possible to compute x1, x2 such that gx1

1 · g
x2
2 = h, given access to the randomness

used by the algorithm. As argued in previous papers [7, 1], considering algebraic reductions is not
overly restrictive, and almost all known security reductions for CCA secure KEMs in the standard
model are algebraic. In particular, the security reduction for the KEMs shown in Table 1 are all
algebraic.

4

2 Preliminaries

In this section, we review our basic notation and several basic definitions. The standard definition
of a KEM and the corresponding security notions (such as OW-n-CCA1, IND-n-CCA2 etc.), as well
as the definition of concrete computational problems, are given in Appendix A.

2.1 Basic Notation

In this paper, we use the following basic notations and terminology. N denotes the set of all
natural numbers, and if n ∈ N then [n] = {1, . . . , n}. “PPTA” denotes a probabilistic polynomial
time algorithm. If S is a set, “x ← S” denotes picking x uniformly from S. If D is a probability
distribution, then “x← D” denotes choosing x according to D, and [D] denotes the “support” of D,
that is, [D] = {x|Prx′←D[x′ = x] > 0}. If A is a probabilistic algorithm then y ← A(x; r) denotes
that A computes y as output by taking x as input and using r as randomness, and AO denotes
that A has access to the oracle O. Unless otherwise stated, λ denotes the security parameter. A
function f(λ) : N → [0, 1] is said to be negligible (resp. noticeable) if for all positive polynomials
p(λ) and all sufficiently large λ ∈ N, we have f(λ) < 1/p(λ) (resp. f(λ) ≥ 1/p(λ)). Let X be a
vector, then we denote by X[i] the i-th component of X and by |X| the length of X.

2.2 Group Description

In this paper, we consider non-interactive problems with respect to a family of prime-order groups
{Gλ}λ∈N indexed by the security parameter λ. For convenience, we consider the following PTA,
which we call a group scheme, with which we will define such problems. (When λ is easily inferred
from the context, we will usually leave out the subscript λ and just write G.)

Definition 1 A group scheme GS is a deterministic PTA which takes a security parameter 1λ

as input, and outputs a group instance Λ consisting of a description of a group G, a prime p
that corresponds to the order of the group G, and a generator g ∈ G. This process is denoted by
Λ = (g, p,G)← GS(1λ).

Note that since GS is assumed to be deterministic, there is a one-to-one correspondence between
a security parameter λ and the group description Λ generated by GS(1λ).

2.3 Algebraic Algorithms

Intuitively, an algorithm R is called algebraic if there exists a corresponding algorithm, called
the extractor, such that for any group element output by R, the extractor can compute the
representation of the group element with respect to the group elements given to R as input.

Formally, we adopt a similar approach to [1] and define the notion of algebraic algorithms as
follows:

Definition 2 Let R be a PPTA that takes Λ = (g, p,G) (output by GS), a string aux ∈ {0, 1}∗,
and group elements X ∈ Gn for some n ∈ N as input, and outputs a group element Y ∈ G and
a string ext ∈ {0, 1}∗. R is called algebraic with respect to GS if there exists a PPTA E receiving
the same input as R (including the same random coins r) such that for any Λ ← GS(1λ), all
polynomial size X, and any string aux ∈ {0, 1}∗, the following probability is negligible in λ:

Pr[(Y, ext)← R(Λ,X, aux; r); (y, ext)← E(Λ,X, aux, r) : Y 6= Xy]

where the probability is over the choice of r and the randomness used by E, and Xy is defined by∏
i∈[|X|] X[i]y[i].

Note that the definition of an algebraic algorithm does not exclude the possibility that the
auxiliary information aux contains group elements of G, but the representation of the output
element Y computed by the extractor must be with respect to X.

5

Algebraic Oracle Algorithms. The above definition of algebraic algorithms can naturally be ex-
tended to algebraic “oracle” algorithms, which play an important role in our result.

Definition 3 Let R be an oracle PPTA that takes Λ = (g, p,G) (output by GS), a string aux ∈
{0, 1}∗, and group elements X ∈ Gn for some n ∈ N as input, and outputs a group element
Y ∈ G and a string ext ∈ {0, 1}∗. Furthermore, let q be the number of queries made by R to
the oracle. We say that R is an algebraic oracle algorithm if there exists an algebraic algorithm
R̂ (which we denote the decomposition of R) such that executing RO(Λ,X, aux) is equivalent to
performing the following sequence of computations: First set X0 ← X and aux0 ← aux. Run
(Y1, (ext||st1))← R̂(Λ,X0, aux0) and repeat

(X′i, aux
′
i)← O(Λ,Yi, exti); Xi+1 ← (Xi||X′i); auxi+1 ← (sti||aux′i);

(Yi+1, (exti+1||sti+1))← R̂(Λ,Xi+1, auxi+1)

for i = 1, . . . , q. The last vector Yq+1 output by R̂ is assumed to contain the single element Y .

Note that since the decomposition R̂ of an algebraic oracle algorithm R is defined as an
algebraic algorithm, the representation of any group element output by R or included in the
oracle queries made by R, can be calculated by appropriately using the extractor Ê for R̂. In
this case, the representation is with respect to all group elements that are given as input to R or
returned in response to R’s oracle queries.

The above definition can easily be extended to algorithms outputting multiple group elements.
Note that we will regard any algorithm whose output does not contain any group elements, as
an algorithm which outputs the “identity element” 1G. Hence, this type of algorithm will also be
considered to be algebraic.

2.4 Non-interactive Problems with Respect to a Prime Order Group

A non-interactive problem (NIP) P with respect to a group scheme GS consists of a tuple of
algebraic PPTAs, (I,V,U), that are defined as follows:

Instance generator I: This algorithm takes a group description Λ = (g, p,G) (output from
GS(1λ)) as input, and outputs a pair of a problem instance and a witness (y, w). (Without
loss of generality we assume that the problem instance y contains the information on Λ.)

Verification algorithm V: This algorithm takes a problem instance y, and a string x, and a
witness w as input (where (y, w) are output by I(Λ)), and outputs > or ⊥. We say that x is a
valid solution to the problem instance y if V (y, x, w) = >, and otherwise we say that x is an
invalid solution.

Threshold algorithm U: This algorithm takes a problem instance y as input, and outputs a
string x.

For a NIP P = (I,V,U) with respect to GS and an algorithm A, define the experiment ExptPGS,A(λ)
as:

ExptPGS,A(λ) :
[
(g, p,G)← GS(1λ); (y, w)← I(Λ); x← A(1λ, y); Return 1 iff V(y, x, w) = >

]
Furthermore, define the threshold δ(λ) = Pr[ExptPGS,U(λ) = 1]. Then, for an algorithm A, we define
the advantage of A in solving P by:

AdvPGS,A(λ) = Pr[ExptPGS,A(λ) = 1]− δ(λ)

Definition 4 Let P be a NIP with respect to a group scheme GS. We say that P is hard if, for
any PPTA A, there exists a negligible function µ(·) such that AdvPGS,A(λ) ≤ µ(λ).

6

Intuitively, the algorithm U represents a trivial solution strategy for the problem P, and any
successful algorithm is required to be better than this U. Typically, U always returns an invalid
answer for “search” problems i.e. δ(λ) = 0, and returns a random bit for “decision” problems i.e.
δ(λ) = 1/2.

The above definition of a non-interactive problem essentially captures all the non-interactive
problems defined for prime order groups, which are used to prove the security of existing crypto-
graphic primitives. Specifically, the definition includes the standard computational and decisional
Diffie-Hellman problems as well as their q-type variants (q-SDH [5], q-ABDHE [17], etc.), and will
even capture the CPA security of a KEM.

2.5 Algebraic Black-Box Reductions

In this paper, we will consider the following type of reduction algorithms which reduces the security
of a KEM to the hardness of a non-interactive problem.

Definition 5 Let GS be a group scheme, and let Γ be a KEM and P be a NIP with respect to GS.
Furthermore, let GOAL-ATK be a security notion for a KEM. We say that there is an algebraic
black-box reduction from the GOAL-ATK security of Γ to P if there exists an algebraic oracle
PPTA R with the following property: For any (possibly computationally unbounded) algorithm
A, if AdvGOAL-ATKΓ,A (λ) is non-negligible, then so is AdvPGS,RA(λ).

We note that this type of reduction is categorized as a “fully” black-box reduction in the taxonomy
by Reingold et al. [39]. In particular, note that the (algebraic) reduction algorithm is required to
work universally for all successful (possibly inefficient) algorithms.

3 A Class of Simple and Space Efficient KEMs

The class of KEMs we consider essentially captures the structure of the existing KEMs defined
in standard prime order groups like Cramer-Shoup [14], Kurosawa-Desmedt [34] (with explicit
rejection), Hofheinz-Kiltz [28], Hanaoka-Kurosawa [22], and Cramer et al. [13], but requires the
ciphertexts to consist of a single random group element and a string i.e. a ciphertext is required
to be of the form (gr, f̃(pk, r)) where r ← Zp, p is the order of the group, pk is the public key

of the scheme, f̃ : PK × Zp → {0, 1}∗ is a scheme-dependent function, and PK is the public
key space.. This captures the approach highlighted in the introduction of replacing the group
elements used for validity checking in the above KEMs with the output of a hash function or
similar primitive. However, we note that f̃(pk, r) is not limited to be used in a potential validity
check, but might also be used when deriving the session-key. The session-keys encapsulated by
the ciphertexts are assumed to be group elements, but can be derived from all the information
available in the encapsulation in any “algebraic” way. Note that this captures the key derivation
in the above KEMs, and does not rule out the use of target collision resistant hash function, or
the use of a Waters hash function [41] (and similar constructions).

We consider a class of KEMs KGS,n defined with respect to a group scheme GS and a parameter
n ∈ N.

Definition 6 A KEM Γ = (KG,Enc,Dec) with respect to a group scheme GS belongs to KGS,n,
where n ∈ N, if it has the following properties:

1. The public key space PK is {Λ} × {0, 1}µ(λ) × Gn, where µ is a scheme-dependent function
and Λ = (g, p,G) ← GS(1λ) i.e. a public key pk returned by KG(Λ) is of the form pk =
(Λ, aux,X1, . . . , Xn).

2. A ciphertext and the corresponding session-key are of the form

C = (c, d) = (gr, f̃(pk, r)) ∈ G× {0, 1}∗ and K = gf0(pk,r)
∏
i∈[n]

X
fi(pk,r)
i ∈ G

where r ← Zp, and f̃ : PK × Zp → {0, 1}∗ and f0, . . . , fn : PK × Zp → Zp are efficiently
computable scheme-dependent functions.

7

3. For any pk = (Λ, aux,X1, . . . , Xn) ∈ PK, the session-key obtained by decapsulating a cipher-
text C = (c, d) generated by Enc(pk) is of the form

K = gψ0(pk,C,y1,...,yn)cψ1(pk,C,y1,...,yn) (1)

where ψi(pk, C, y1, . . . , yn) = ψi,0(pk,C) +
∑
j∈[n] ψi,j(pk,C) · yj for i ∈ {0, 1}, yk = loggXk

for k ∈ [n], and {ψi,j : PK×G×{0, 1}∗ → Zp}i∈{0,1},j∈[n] are efficiently computable scheme-
dependent functions.

4. For any pk = (Λ, aux,X1, . . . , Xn) ∈ PK, the second component d ∈ {0, 1}∗ of a ciphertext

C = (c, d) generated by Enc(pk) can be re-computed as follows: d = ψ̃(pk, c, y1, . . . , yn), where

yi = loggXi for i ∈ [n] and ψ̃ : PK ×G× Znp → {0, 1}∗ is a scheme-dependent function.

We would like to note the following:

– The values y1, . . . , yn defined above might not correspond to the private key of the scheme,
and the decapsulation might not be done as shown in (1), but it is required that any valid
session-key K output by Dec satisfy equation (1).

– If a KEM in KGS,n satisfies correctness, it must hold that

f0(pk, r) +
∑
i∈[n]

fi(pk, r) · yi = ψ0(pk,C, y1, . . . , yn) + r · ψ1(pk,C, y1, . . . , yn)

for any r ∈ Zp. Hence, the requirement that the functions ψ0 and ψ1 are linear functions in
y1, . . . , yn is arguably a very mild restriction.

– That the component d of a ciphertext can be recomputed using ψ̃, is natural if d is used as a
part of a validity check. Note, however, that no requirements are made regarding how a KEM
in KGS,n implements validity checking, and d might, for example, also be used to compute the
session-key K.

– That aux and d = f̃(pk, r) are strings imply that the representation of a group element output
by any algebraic algorithm taking a public key or a ciphertext as input, cannot depend on
group elements derived from aux or d.

– There are no restrictions on the scheme-dependent functions f̃ , {fi}i∈{0,...,n}, ψ̃, {ψi,j}i∈{0,1},j∈[n]
(other than that they are efficiently computable), and these might use non-linear functions
like cryptographic hash functions and MACs, which is not allowed in “structure-preserving”
encryption [9].

4 Main Impossibility Result

In this section, we will show the following theorem which captures our main result.

Theorem 7 For any group scheme GS, for any KEM Γ ∈ KGS,n where n ∈ N, and for any NIP P
with respect to GS, if P is hard, then there is no algebraic black-box reduction from the OW-n-CCA1
security of Γ to P.

We will show this theorem by using a variant of the oracle separation technique [31, 39]. Specifically,
the theorem follows from the following lemma (the full proof of this lemma can be found in
Appendix B).

Lemma 8 Let GS be a group scheme, Γ ∈ KGS,n be a KEM where n ∈ N, and P be a NIP with
respect to GS. Furthermore, let GOAL ∈ {OW, IND} and ATK ∈ {CPA, q-CCA1, CCA1, q-CCA2, CCA2}
(with q ∈ N). Assume there exists a distribution D of oracles O satisfying the following two
conditions:

1. There exists an algebraic oracle PPTA A such that EO←D[AdvGOAL-ATKΓ,AO (λ)] is non-negligible.
2. For any algebraic oracle PPTA A, there exist PPTAs B1 and B2, a polynomial Q(λ), and a

negligible function µ(λ) such that

E
O←D

[AdvPGS,AO (λ)] ≤ Q(λ) · AdvDLGS,B1
(λ) + AdvPGS,B2

(λ) + µ(λ).

Then, if P is hard, there is no algebraic black-box reduction from the GOAL-ATK security of Γ to P.

8

Proof Sketch. The lemma is proved by contradiction. We assume simultaneously that the NIP
P = (I,V,U) is hard and that there is an algebraic black-box reduction from the GOAL-ATK security
of the KEM Γ to P. The latter guarantees that there exists an algebraic oracle PPTA R that
satisfies Definition 5. We consider two separate cases: the discrete logarithm (DL) problem with
respect to GS is hard, and the DL problem with respect to GS is not hard. For each case we will
show a contradiction.

The second case is fairly easy to show and does not require the use of the oracle O. Specifically,
that the DL problem is not hard implies the existence of an adversary A′ that successfully breaks
the KEM Γ in the sense of the GOAL-ATK security considered in the lemma, by simply recovering
the randomness r from the challenge ciphertext. Then, the definition of R implies that RA′ can
solve P with non-negligible advantage. Here, note that RA′ can be implemented by a single PPTA
R′ which internally runs A′ since both R and A′ are PPTAs. However, the existence of such R′
contradicts that P is hard.

The first case, in which the DL problem is hard, has some similarities with the above case,
but is more interesting and more involved. We make use of the oracle O chosen according to D.
The first condition of the lemma guarantees the existence of an algebraic oracle PPTA A which,
given access to O, has non-negligible “expected” advantage in breaking the GOAL-ATK security of
the KEM Γ , where the expectation is over the choice of O according to D.

Now, in order to reach a contradiction, we would like to construct an algebraic oracle PPTA
R̂ which, given access to O (chosen according to D), has non-negligible “expected” advantage in
solving P, by using A and the reduction algorithm R as building blocks. One might think that

just running RAO on input the problem instance y given to R̂ is enough for that purpose, but
this is not the case. Recall that R is only guaranteed to work when AO successfully breaks the
GOAL-ATK security of Γ . Furthermore, only the “expected” advantage of A is guaranteed to be
non-negligible. Hence, there is a possibility that a particular choice of O is “bad,” and that A’s
advantage under this O is not non-negligible. If the oracle O is bad, then nothing is guaranteed

about the success probability of RAO in solving P. In particular, the advantage of R might even
be negative, and the overall expected advantage in solving P might not be non-negligible.

To deal with this issue, R̂ first tests whether the given oracle O is “good” by running RA(·)

many times with independently generated problem instances. If the success probability of RAO

(measured by R̂) sufficiently exceeds the threshold δ(λ), then R̂ labels the oracle “good” and runs

RAO with the given instance y. Otherwise, R̂ runs the threshold algorithm U on input y to avoid
a heavy negative contribution to the expected advantage. Constructed as above, R̂’s expected
advantage (over the choice of O according to D) can be shown to be non-negligible. Then, the
existence of such an algebraic oracle algorithm, together with the second condition given in the
lemma and the assumption that the DL problem is hard, implies the existence of a PPTA B2
that solves P with non-negligible advantage, which again contradicts that P is hard. Hence, we
can conclude that either P is not hard or there exists no algebraic black-box reduction from the
GOAL-ATK security of Γ to the hardness of P. ut

To make use of the above Lemma 8, we will first define a distribution of oracles, and then
proceed to show that the conditions 1 and 2 are satisfied for this distribution. This will complete
the proof of Theorem 7.

4.1 The Oracle and the Distribution

The oracle we consider is associated to a KEM which belongs to the class KGS,n. More specifically,
for any KEM Γ ∈ KGS,n and corresponding public key space PK, consider an oracle O = {O1,O2}
defined by a function F : PK → Znp × {0, 1}λ where n indicates the number of group elements in

a public key of Γ (i.e. pk = (Λ, aux,X1, . . . , Xn) and Λ = (g, p,G)← GS(1λ)):

– O1 takes as input a public key pk, and returns ⊥ if pk 6∈ PK. Otherwise, O1 computes
(r1, . . . , rn, σ) ← F (pk) and the ciphertexts {(Ci,Ki) ← Enc(pk; ri)}i∈[n]. Lastly, O1 returns
(C1, . . . , Cn, σ).

9

– O2 takes as input a public key pk, session-keys (K1, . . . ,Kn) ∈ Gn, and a tag σ ∈ {0, 1}λ. If
pk 6∈ PK, then O2 returns ⊥. Otherwise, O2 computes (r1, . . . , rn, σ

′)← F (pk) and (Ci,K
′
i)←

Enc(pk; ri) for each i = 1, . . . , n, and then checks if Ki = K ′i for all i ∈ [n] and σ = σ′. If the
check fails, then O2 returns ⊥. Otherwise, O2 computes {ui = ψ1(pk,Ci, y1, . . . , yn)}i∈[n] and
returns these values, where ψ1 is the scheme-dependent function of Γ .

Note that O defined above is deterministic.
By picking the function F : PK → Znp×{0, 1}λ uniformly at random from all possible functions

with the proper domain and range, we obtain a distribution of the above defined oracles. In the
following, this distribution will be denoted D.

4.2 Breaking a KEM using the Oracle

We will now show that an oracle O chosen according to the distribution D defined in Section 4.1
can be used to break the OW-n-CCA1 security of a KEM in KGS,n. The full proof of the following
lemma can be found in Appendix C.

Lemma 9 Let GS be a group scheme, Γ ∈ KGS,n be a KEM where n ∈ N, and let D be the
distribution of the oracles O = (O1,O2) described above. Then there exists an algebraic oracle
PPTA A such that EO←D[AdvOW-n-CCA1Γ,AO (λ)] ≥ 3

4n2 .

Proof Sketch. In the following, we consider the OW-n-CCA1 experiment in which we take into
account the choice of oracle O according to D. Note that the success probability of an adversary
A in this experiment will be given by EO←D[AdvOW-n-CCA1Γ,AO (λ)].

Recall that the session-key K of a ciphertext C = (c, d) of the KEM Γ is of the form K =
gψ0(pk,C,y1,...,yn)cψ1(pk,C,y1,...,yn) where ψ1(pk,C, y1, . . . , yn) = ψ1,0(pk,C) +

∑
i∈[n] ψ1,i(pk,C) · yi.

Therefore, from a OW-n-CCA1 adversary’s viewpoint, the difficulty of recovering a session-key K
from a ciphertext C must lie in the calculation of the component c

∑
i∈[n] ψ1,i(pk,C)·yi . However, we

construct an algebraic oracle PPTA A that makes use of the oracle O ∈ [D] and the decapsulation
oracle Odec to calculate this component for the challenge ciphertext C∗, and thereby break the
OW-n-CCA1 security of Γ . A is constructed as follows:

Given a public key pk = (Λ, aux,X1, . . . , Xn) for Γ , A simply submits this to O1 to obtain n
randomly generated ciphertexts (C1, . . . , Cn) under pk, and a tag σ. Then A submits the ciphertext
(C1, . . . , Cn) to Odec to obtain the corresponding decapsulations (K1, . . . ,Kn). Lastly, A will
submit (K1, . . . ,Kn, σ) to O2 to obtain the values {uj = ψ1,0(pk,Cj)+

∑
i∈[n] ψ1,i(pk,Cj)·yi}j∈[n],

where yi = loggXi for i ∈ [n].
For a ciphertext C, let ψ(pk,C) = (ψ1,1(pk, C), . . . , ψ1,n(pk,C)) ∈ Znp be a row vector. Fur-

thermore, let yT = (y1, . . . , yn) ∈ Znp and let u′j = uj − ψ1,0(pk,Cj) for all j ∈ [n]. Then, using
the values returned by O2, A can construct a system of equations {ψ(pk,Cj) · y = u′j}j∈[n]. If
the vectors {ψ(pk,Cj)}j∈[n] are linearly independent, this system will have the unique solution
yT = (y1, . . . , yn), and A will be able to recover this by solving the equation system. Obtaining y
allows A to trivially calculate K∗.

The tricky part is the case in which the vectors {ψ(pk,Cj)}j∈[n] are linearly dependent. Recall
that the ciphertexts (C1, . . . , Cn) are generated randomly by the oracle O1, and that the challenge
ciphertext C∗ is likewise randomly generated by the OW-n-CCA1 experiment. The key observation,
which we will show in the full proof, is that if the vectors {ψ(pk, Cj)}j∈[n] are linearly dependent,
then there is a high probability that the vector ψ(pk, C∗) is linearly dependent on the n−1 vectors
{ψ(pk, Cj)}j∈[n−1]. Hence, ψ(pk,C∗) · y =

∑
i∈[n] ψ1,i(pk, C

∗) · yi can be represented as a linear

combination of the n − 1 values {u′j = ψ(pk,Cj) · y}j∈[n−1], where the latter are known to A.
Therefore, in this case, A can calculate ψ1(pk,C∗) = ψ1,0(pk, C∗) +

∑
i∈[n] ψ1,i(pk,C

∗) · yi, from
which A can recover K∗.

In the full proof, we will show that regardless of the probability that the n vectors {ψ(pk,Cj)}j∈[n]
are linearly dependent, A will have an expected success probability with the claimed lower bound.

ut

10

Breaking Non-malleability. Inspecting the proof of the above lemma reveals that the n decapsula-
tion queries made by the defined adversary A are independent i.e. the decapsulation queries can be
made as a single parallel decapsulation query containing n ciphertexts. Since indistinguishability
against a parallel chosen ciphertext attack is equivalent to the notion of non-malleability [4, 26, 35],
this implies that the constructed adversary can be used to successfully attack the non-malleability
of the KEM Γ as well. Hence, our impossibility result can easily be extended to rule out the
existence of an algebraic black-box reduction from the non-malleability of a KEM Γ ∈ KGS,n to a
NIP P with respect to GS.

4.3 Simulating the Oracle while Solving a NIP

In this subsection, we will show that the oracles defined in Section 4.1 are essentially useless for
an algebraic algorithm trying to solve a NIP. The full proof of the following lemma can be found
in Appendix D.

Lemma 10 Let GS be a group scheme, Γ ∈ KGS,n be a KEM where n ∈ N, and P be a NIP with
respect to GS. Furthermore, let D be the distribution of the oracles O = (O1,O2) (corresponding
to Γ) defined as above. Then, for any algebraic oracle PPTA A, there exist PPTAs B1 and B2, a
polynomial Q(λ), and a negligible function µ(λ) such that

E
O←D

[AdvPGS,AO (λ)] ≤ Q(λ) · AdvDLGS,B1
(λ) + AdvPGS,B2

(λ) + µ(λ).

Proof Sketch. In the following, we consider the NIP hardness experiment ExptPGS,A(λ) in which
we take into account the choice of the oracle O according to D. Note that the advantage of an
adversary A in this experiment is given by EO←D[AdvPGS,AO (λ)].

To prove the lemma, we show that for any algebraic oracle PPTA A with access to O and
which attempts to solve the NIP P, it is possible to construct another PPTA B2 which has almost
the same advantage as A in solving the same P without access to O.

More specifically, B2 will make use of A as a building block and simulate the oracle O =
(O1,O2) chosen according to D for A. B2 takes a problem instance y (of P) as input, and generates
an empty list L which is used to simulate O. Then B2 picks randomness rA and runs A with input
y and randomness rA.

The main difficulty of simulating the oracle O = (O1,O2) is that A may use O1 and O2

multiple times in any order. Recall, however, that when chosen according to D, the function F
used in O1 and O2 is a random function, and the tag σ ∈ {0, 1}λ, which is contained in the output
of F , works like an information-theoretically secure MAC. Therefore, when A asks an O2-query
with a fresh pk (that has not appeared in any of A’s previous queries), B2 can immediately return
⊥, which will be an almost perfect simulation of O2 for this type of query. B2 simulates O1 by
“lazy-sampling” of the random function F and generating ciphertexts {Ci = (ci, di)}i∈[n] using
Enc. All values returned to A in an O1-query, as well as the encapsulated session-keys, are stored
by B2 in the list L. Furthermore, when A makes a valid O2-query (pk,K1, . . . ,Kn, σ) (for which O2

will not return ⊥), B2 can run the extractor corresponding to (the decomposition of) A to obtain
values {ui}i∈[n] such that Ki = cuii g

zi for some value zi ∈ Zp unknown to B2. Lastly, B2 returns
(u1, . . . , un). Whether the values {Ki}i∈[n] are correct decapsulation results can be checked using
the list L. Note that since the randomness rA is chosen by B2, B2 is able to run the extractor for
A.

Here, however, we have to be careful because the above simulation could fail if either of the fol-
lowing events occurs: (1) the extractor fails, or (2) there is an index i ∈ [n] such that the extracted
value ui is different from ψ1(pk,Ci, y1, . . . , yn). Fortunately, the probability of (1) occurring is
negligible by the definition of an algebraic oracle algorithm. Moreover, the probability of (2) oc-
curring for an index i ∈ [n] in one of A’s O2-queries can be bounded by the advantage AdvDLGS,B1

(λ)
of another PPTA B1 which solves the DL problem. Put differently, B2 succeeds in simulating the
oracle O for A almost perfectly. Furthermore, since B2 succeeds in solving P whenever A does,
the lemma follows. ut

11

5 Impossibility Results for Programmable Hash Functions

In this section, we show lower bounds on the “programmability” of an algebraic programmable
hash functions defined in a prime order group. We will do this indirectly, by first showing how to
construct a CCA secure KEM based on DDH, with a ciphertext consisting of just a single group
element, from an algebraic programmable hash function. Since this KEM construction is captured
by the class considered in the previous sections, we can derive the lower bounds by combining this
with the previous impossibility result.

5.1 Programmable Hash Functions

Definition 11 Let α, β ∈ N. A (α, β)-programmable hash function H with respects to a group
scheme GS and with input length `(λ), consists of the following four algorithms (HGen,Eval,
HTrapGen,HTrapEval)

– HGen takes a group description Λ = (g, p,G) (output from GS(1λ)) and returns a hash key κ.
– Eval takes κ and a string s ∈ {0, 1}`(λ) as input, and returns a group element of G.
– HTrapGen takes Λ and group elements h1, h2 as input, and returns a hash key κ and a trapdoor
τ .

– For all group elements h1, h2 ∈ G, the statistical difference between the keys κ← HGen(Λ) and
the first component κ of the output from HTrapGen(Λ, h1, h2) is negligible.

– On input a string s ∈ {0, 1}`(λ) and trapdoor τ , HTrapEval returns as, bs ∈ Zp such that

Eval(κ, s) = has1 h
bs
2 .

– For all group elements h1, h2 ∈ G and (κ, τ)← HTrapGen(Λ), and for all strings s1, . . . , sα ∈
{0, 1}`(λ) and s′1, . . . , s

′
β ∈ {0, 1}`(λ) such that si 6= s′j for all i, j, we have

Pr[as1 = · · · = asα = 0 ∧ as′1 , . . . , as′β 6= 0]

is noticeable in λ, where (asi , bsi) ← HTrapEval(τ, si), (as′j , bs′j) ← HTrapEval(τ, s′j), and the
probability is taken over the randomness used by HTrapGen.

IfH is (q(λ), β)-programmable for every polynomial q(λ), we say thatH is (poly, β)-programmable.
Furthermore, we say that a programmable hash function is algebraic if all algorithms of H are
algebraic algorithms2.

In the following, we will make explicit use of the extractors for HGen and Eval. More specifically,
let κ← HGen(Λ) be given by κ = (aux,X1, . . . , Xn) where Xi ∈ G for all i ∈ [n] and it is assumed
that aux does not contain any elements of G. Let h ∈ G be an element returned by Eval on input
a string s. Then, if HGen and Eval are algebraic algorithms, there exist extractors EHGen and EEval
with the following properties:

– On input Λ = (g, p,G) and randomness rHGen used to run HGen, EHGen returns values (y1, . . . , yn)
such that Xi = gyi for all i ∈ [n].

– On input κ = (aux,X1, . . . , Xn) and a string s ∈ {0, 1}`(λ), EEval returns values (a1, . . . , an)
such that h =

∏
i∈[n]X

ai
i = Eval(κ, s).

We note that all known constructions of programmable hash functions [30, 27] are algebraic.

5.2 A Simple KEM Based on a Programmable Hash Function

We will now show how to construct an IND-q-CCA2 secure KEM with ciphertexts consisting of
just a single group element, from an algebraic (q, 1)-programmable hash function.

Let H = (HGen,Eval,HTrapGen,HTrapEval) be an algebraic programmable hash function with
respect to GS. Let `(λ) be the input length of H. We also assume that any group element of G
where Λ = (g, p,G) ← GS(1λ) can be described with `(λ) bits. Using H as a building block, we
construct a KEM Γ as follows:
2 Note that HTrapEval is trivially an algebraic algorithm since it does not output any group elements of
G.

12

KG : On input Λ = (g, p,G), pick randomness rHGen for HGen and run κ = (aux,X1, . . . , Xn) ←
HGen(Λ; rHGen). Furthermore, run EHGen(Λ, rHGen) to obtain (y1, . . . , yn) such that Xi = gyi for
all i ∈ [n], and set pk ← (Λ, κ) and sk ← (κ, y1, . . . , yn).

Enc : On input pk = (Λ, κ), pick randomness r ∈ Zp, and compute the ciphertext c = gr and the
session-key K = Eval(κ, c)r. (Here, c is treated as an `(λ)-bit string.)

Dec : On input sk = (κ, y1, . . . , yn) and c = gr, compute h← Eval(κ, c), run the extractor EEval to

obtain (a1, . . . , an) satisfying h =
∏
i∈[n]X

ai
i , and compute the session-key K = c

∑
i∈[n] aiyi .

The correctness of the KEM follows from the properties of the extractors EHGen and EEval:

K = Eval(κ, c)r = hr = (
∏
i∈[n]

Xai
i)r =

∏
i∈[n]

(gr)aiyi = c
∑
i∈[n] aiyi

Note that the DDH-based KEM by Cramer et al. [13] can be seen as a concrete instantiation of
the above KEM in which we use the concrete programmable hash function proposed in [27, Sect.
3.3].

Theorem 12 Assume that H is an algebraic (q, 1)-programmable hash function with respect to
GS. Then there exists an algebraic black-box reduction from the IND-q-CCA2 security of the above
KEM Γ to the hardness of the DDH problem with respect to GS.

The proof of the above theorem is given in Appendix E. We note that using an almost iden-
tical proof, we can show that the above KEM is OW-q-CCA2 secure under the hardness of the
computational Diffie-Hellman (CDH) problem via an algebraic black-box reduction.

Note that due to the assumed algebraic property of the programmable hash function, the above
KEM Γ falls into the class KGS,n described in Section 3, where n is the number of group elements
in the hash key of the programmable hash. Furthermore, the DDH problem is captured by the
definition of a non-interactive problem described in Section 2.4. Hence Theorem 7 implies that
there exists no algebraic black-box reduction from the OW-n-CCA1 security of the KEM Γ to the
hardness of any non-interactive problem3. On the other hand, the above Theorem 12 shows that
such a reduction (from the stronger security notion IND-n-CCA2) is possible assuming the existence
of an algebraic (n, 1)-programmable hash function. Since any (n, β)-programmable hash function
is (n, β′)-programmable if β ≥ β′, this immediately gives us the following theorem.

Theorem 13 For any group scheme GS and any integer β ∈ N, there exists no algebraic (n, β)-
programmable hash function with respect to GS whose hash key contains less than n group elements
of G, where G is the group described by Λ which is output by GS.

Considering the case in which the parameter n for the programmable hash functions is considered
to be any polynomial in λ, we obtain the following theorem, which answers the open question
posed by Hofheinz and Kiltz [30] in the case of algebraic programmable hash function defined in
prime order groups.

Theorem 14 For any group scheme GS and any integer β ∈ N, there exists no algebraic (poly, β)-
programmable hash functions with respect to GS.

6 Discussion

We have shown that there exists no algebraic black-box reduction from the OW-n-CCA1 security
of a KEM in the class KGS,n, to the hardness of any non-interactive problem with respect to GS.
The class KGS,n essentially captures the structure of the efficient KEMs [14, 28], [22, Sect. 4.1],
and [34] (with explicit rejection), but requires the ciphertext to consist of just a single random
group element and a string.

3 Note that this does not contradict the results by Cramer et al. [13]. More specifically, while the KEM
defined in [13] was shown to be IND-n-CCA under the DDH assumption via an algebraic black-box
reduction, the scheme requires a public key containing O(n2λ) group elements.

13

Our results leave several open problems. Specifically, it remains an open problem to prove
the (non-)existence of a CCA secure KEM based on a non-interactive assumption, defined in a
standard prime order group, and with a ciphertext overhead of just two group elements. Another
interesting question is whether our results can be extended to rule out constrained CCA [28] secure
KEMs based on non-interactive assumptions.

Furthermore, we have focused on simple KEMs defined in standard prime order groups, in
which the session-key lies within the group. More precisely, the KEM class KGS,n does not capture
the structure of schemes which make use of a pairing to derive the session-key like [8], or apply a
type of key-derivation function, such as the hardcore bit-based schemes like [22, Sect. 5], [25, Sect.
3], and [42, Sect. 3], the HDH-based versions of [22, Sect. 4.2] and [10, Sect. 6.2], or a combination
of these like [25, Sect. 5.2 and 5.3] and [42, Sect. 5]. Note, however, that these schemes apply the
key-derivation function (and/or the pairing) to one or more “seed” group elements to obtain a
session-key. Here, it might be interesting to investigate the security provided by the “core part” of
the schemes, in which the seed group element(s) is considered to be the session-key. Note that for
all of the above mentioned schemes, these “core parts” can be shown to be OW-CCA2 secure under
an appropriate non-interactive assumption. Furthermore, the structure of these “core parts” is
captured by KGS,n if the ciphertext is reduced to consist of a single random group element and a
string, for example, by applying the approach of compressing the group elements used for validity
checking. In this case, our results imply that these “core parts” cannot be shown OW-n-CCA1 secure
based on a non-interactive problem via an algebraic black-box reduction. This observation might
provide some insight into the (im)possibility of constructing more efficient KEMs that make use
of key-derivation functions, but drawing any formal conclusions regarding this, remains an open
problem.

Since our results are restricted to KEMs defined in prime order groups, it is natural to ask
whether similar results will hold in composite order groups. Note, however, that in composite order
groups, it is possible to achieve a KEM with a ciphertext overhead of just a single group element
[29, Sect. 5]. While this KEM only achieves constrained CCA security (based on a non-interactive
assumption), it can be converted to a fully CCA secure KEM using the techniques from [2, 24]
which will result in an additional ciphertext overhead of a MAC.

Lastly, we have shown lower bounds on the programmability of algebraic programmable hash
functions in prime order groups. Note that all known constructions of programmable hash functions
are algebraic [30, 27]. Furthermore, the definition of a programmable hash function requires the
hash function to have some “algebraic properties” (see also the discussion in [30, Sect. 1.5]), which
seems to suggest that standard model constructions of programmable hash functions are inherently
algebraic.

Acknowledgement

We would like to thank Shota Yamada for suggesting looking at KEMs based on programmable
hash functions, Masayuki Abe for sending a preliminary version of [1], and the anonymous reviewers
for helpful comments. The second and third authors are support by JSPS Research Fellowships
for Young Scientists.

References

1. M. Abe, J. Groth, and M. Ohkubo. Separating short structure-preserving signatures from non-
interactive assumptions. In ASIACRYPT, pages 628–646, 2011.

2. J. Baek, D. Galindo, W. Susilo, and J. Zhou. Constructing strong kem from weak kem (or how to
revive the kem/dem framework). In SCN, pages 358–374, 2008.

3. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of
the generic composition paradigm. In ASIACRYPT, pages 531–545, 2000.

4. M. Bellare and A. Sahai. Non-malleable encryption: Equivalence between two notions, and an
indistinguishability-based characterization. In CRYPTO, pages 519–536, 1999.

14

5. D. Boneh and X. Boyen. Short signatures without random oracles. In EUROCRYPT, pages 56–73,
2004.

6. D. Boneh, P. A. Papakonstantinou, C. Rackoff, Y. Vahlis, and B. Waters. On the impossibility of
basing identity based encryption on trapdoor permutations. In FOCS, pages 283–292, 2008.

7. D. Boneh and R. Venkatesan. Breaking rsa may not be equivalent to factoring. In EUROCRYPT,
pages 59–71, 1998.

8. X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from identity-based techniques.
Cryptology ePrint Archive, Report 2005/288, 2005.

9. J. Camenisch, K. Haralambiev, M. Kohlweiss, J. Lapon, and V. Naessens. Structure preserving cca
secure encryption and applications. In ASIACRYPT, pages 89–106, 2011.

10. D. Cash, E. Kiltz, and V. Shoup. The twin diffie-hellman problem and applications. Cryptology
ePrint Archive, Report 2008/067, 2008. http://eprint.iacr.org/. This is the full version of [11].

11. D. Cash, E. Kiltz, and V. Shoup. The twin diffie-hellman problem and applications. In EUROCRYPT,
pages 127–145, 2008.

12. J.-S. Coron. Optimal security proofs for pss and other signature schemes. In EUROCRYPT, pages
272–287, 2002.

13. R. Cramer, G. Hanaoka, D. Hofheinz, H. Imai, E. Kiltz, R. Pass, A. Shelat, and V. Vaikuntanathan.
Bounded cca2-secure encryption. In ASIACRYPT, pages 502–518, 2007.

14. R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. SIAM J. Computing, 33(1):167–226, 2003.

15. K. Emura, G. Hanaoka, T. Matsuda, G. Ohtake, and S. Yamada. Keyed-homomorphic public-key en-
cryption: How to simultaneously achieve cca security and homomorphic operation, 2012. Manuscript.

16. M. Fischlin and D. Schröder. On the impossibility of three-move blind signature schemes. In EURO-
CRYPT, pages 197–215, 2010.

17. C. Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT, pages
445–464, 2006.

18. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable assump-
tions. In STOC, pages 99–108, 2011.

19. Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The relationship between
public key encryption and oblivious transfer. In FOCS, pages 325–335, 2000.

20. Y. Gertner, T. Malkin, and S. Myers. Towards a separation of semantic and cca security for public
key encryption. In TCC, pages 434–455, 2007.

21. Y. Gertner, T. Malkin, and O. Reingold. On the impossibility of basing trapdoor functions on trapdoor
predicates. In FOCS, pages 126–135, 2001.

22. G. Hanaoka and K. Kurosawa. Efficient chosen ciphertext secure public key encryption under the
computational diffie-hellman assumption. Cryptology ePrint Archive, Report 2008/211, 2008. http:

//eprint.iacr.org/. This is the full version of [23].
23. G. Hanaoka and K. Kurosawa. Efficient chosen ciphertext secure public key encryption under the

computational diffie-hellman assumption. In ASIACRYPT, pages 308–325, 2008.
24. G. Hanaoka and K. Kurosawa. Between hashed dh and computational dh: Compact encryption from

weaker assumption. IEICE Transactions, 93-A(11):1994–2006, 2010.
25. K. Haralambiev, T. Jager, E. Kiltz, and V. Shoup. Simple and efficient public-key encryption from

computational diffie-hellman in the standard model. In Public Key Cryptography, pages 1–18, 2010.
26. J. Herranz, D. Hofheinz, and E. Kiltz. Some (in)sufficient conditions for secure hybrid encryption.

Inf. Comput., 208(11):1243–1257, 2010.
27. D. Hofheinz, T. Jager, and E. Kiltz. Short signatures from weaker assumptions. In ASIACRYPT,

pages 647–666, 2011.
28. D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsulation. In CRYPTO,

pages 553–571, 2007.
29. D. Hofheinz and E. Kiltz. The group of signed quadratic residues and applications. In CRYPTO,

pages 637–653, 2009.
30. D. Hofheinz and E. Kiltz. Programmable hash functions and their applications. J. Cryptology,

25(3):484–527, 2012.
31. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations. In

STOC, pages 44–61, 1989.
32. J. Katz and A. Yerukhimovich. On black-box constructions of predicate encryption from trapdoor

permutations. In ASIACRYPT, pages 197–213, 2009.
33. E. Kiltz. Chosen-ciphertext secure key-encapsulation based on gap hashed diffie-hellman. In Public

Key Cryptography, pages 282–297, 2007.

15

34. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In CRYPTO, pages
426–442, 2004.

35. T. Matsuda and K. Matsuura. Parallel decryption queries in bounded chosen ciphertext attacks. In
Public Key Cryptography, pages 246–264, 2011.

36. P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be equivalent to discrete log. In
ASIACRYPT, pages 1–20, 2005.

37. R. Pass. Limits of provable security from standard assumptions. In STOC, pages 109–118, 2011.
38. D. H. Phan and D. Pointcheval. About the security of ciphers (semantic security and pseudo-random

permutations). In Selected Areas in Cryptography, pages 182–197, 2004.
39. O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between cryptographic primitives.

In TCC, pages 1–20, 2004.
40. D. R. Simon. Finding collisions on a one-way street: Can secure hash functions be based on general

assumptions? In EUROCRYPT, pages 334–345, 1998.
41. B. Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT 2005, pages

114–127, 2005.
42. S. Yamada, Y. Kawai, G. Hanaoka, and N. Kunihiro. Public key encryption schemes from the (b)cdh

assumption with better efficiency. IEICE Transactions, 93-A(11):1984–1993, 2010.
43. A. Yerukhimovich. A study of separation in cryptography: New results and new models, 2011. PhD

thesis, the University of Maryland. Available at http://www.cs.umd.edu/˜arkady/thesis/thesis.pdf.

A Omitted Definitions and Descriptions

A.1 Basic Facts

In this paper, we will use the following facts.

Lemma 15 (The Hoeffding bound) Let X1, . . . , Xt be independent random variables between 0
and 1, so that Pr[Xi = 1] = µ for all i ∈ [t]. Let χ = 1

t

∑
i∈[t]Xi. Then, for any 0 < ν < 1,

Pr[χ < (1− ν)µ] < e−ν
2µt/2.

Lemma 16 (Linear dependency) Let n = n(λ) be a positive polynomial, and p be a prime such
that |p| is polynomial in λ. Furthermore, let a1, . . . ,an−1,b ∈ Znp be n-dimensional vectors. Then
there is a deterministic polynomial time algorithm (in λ) that takes as input a1, . . . ,an−1,b, and
returns coefficients (α1, . . . , αn−1) ∈ Zn−1p satisfying b =

∑
i∈[n−1] αiai if such coefficients exist,

and otherwise returns ⊥.

Note that the algorithm mentioned in Lemma 16 could be implemented by performing Gauss-
Jordan elimination on the matrix obtained by letting the vectors a1, . . . ,an−1,b correspond to
the columns the matrix.

A.2 Key Encapsulation

Here, we review the definitions for a key encapsulation mechanism (KEM). Since in this paper we
will only treat KEMs based on a group with prime order, for convenience we define a KEM with
respect to a group scheme GS.

A KEM Γ with respect to a group scheme GS consists of the following three PPTAs (KG,Enc,Dec):

KG: (Key Generation) This algorithm takes a group description Λ = (g, p,G) (output from GS(1λ))
as input, and outputs a public/secret key pair (pk, sk). (Without loss of generality, we assume
that pk and sk contain the information on Λ.)

Enc: (Encapsulation) This algorithm takes pk as input, and outputs a ciphertext c and a session-
key K ∈ K (where K is a session-key space specified by pk).

Dec: (Decapsulation) This algorithm takes sk and c as input, and outputs a session-key K which
could be a special symbol ⊥ meaning “invalid”.

We require Dec(sk, c) = K for all (pk, sk) output by KG(Λ) and all (c,K) output by Enc(pk).

16

ExptIND-ATKΓ,A (λ) :

Λ← GS(1λ);
(pk, sk)← KG(Λ);

st← AO1
1 (pk);

(c∗,K∗1)← Enc(pk);
K∗0 ← K;
b← {0, 1};
b′ ← AO2

2 (st, c∗,K∗b);

Return (b′
?
= b)

ExptOW-ATKΓ,A (λ):

Λ← GS(1λ);
(pk, sk)← KG(Λ);

st← AO1
1 (pk);

(c∗,K∗)← Enc(pk);

K′ ← AO2
2 (st, c∗);

Return (K′
?
= K∗)

Definitions of Oracles

ATK O1(·) O2(·)
CPA ⊥ ⊥

q-CCA1, CCA1 Dec(sk, ·) ⊥
q-CCA2, CCA2 Dec(sk, ·) Dec(sk, ·)(†)

(†) c∗ cannot be submitted.

Fig. 1. The security experiments for a KEM (with respect to a group scheme GS): The experiment for
indistinguishability (IND-ATK security) (left), that for one-wayness (OW-ATK security) (center), and the
definitions of oracles (right).

Security Notions for KEMs. Typically, security notions for KEMs are expressed by the combi-
nation of a security goal (GOAL) and an adversary’s attack type (ATK). In this paper, we will
treat indistinguishability (IND) and one-wayness (OW) as security goals GOAL, and chosen plaintext
attacks (CPA), non-adaptive chosen ciphertext attacks (CCA1), adaptive chosen ciphertext attacks
(CCA2), and their q-bounded analogues [13] (q-CCA1 and q-CCA2) as an adversary’s attack types
ATK.

For a KEM Γ = (KG,Enc,Dec) with respect to GS, we define the experiment ExptIND-ATKΓ,A (λ) in
which an adversary A = (A1,A2) attacks the indistinguishability of Γ under the attack type ATK,
and the experiment ExptOW-ATKΓ,A (λ) in which A = (A1,A2) attacks the one-wayness of Γ under ATK,
as shown in Fig. 1. In the experiments, if ATK ∈ {q-CCA1, q-CCA2}, then A is allowed to use O1

and O2 at most q times in total.
For a KEM Γ , an adversary A, and ATK ∈ {CPA, q-CCA1, CCA1, q-CCA2, CCA2} (with q ∈ N), we

define A’s IND-ATK advantage AdvIND-ATKΓ,A (λ) and OW-ATK advantage AdvOW-ATKΓ,A (λ) as follows:

AdvIND-ATKΓ,A (λ) = Pr[ExptIND-ATKΓ,A (λ) = 1]− 1

2

AdvOW-ATKΓ,A (λ) = Pr[ExptOW-ATKΓ,A (λ) = 1]

Definition 17 Let GOAL ∈ {IND, OW} and ATK ∈ {CPA, q-CCA1, CCA1, q-CCA2, CCA2} (with q ∈ N).
We say that a KEM Γ is GOAL-ATK secure if for any PPTA A, there exists a negligible function
µ(·) such that AdvGOAL-ATKΓ,A (λ) ≤ µ(λ).

A.3 Concrete Non-interactive Problems

In this paper, we make use of the (hardness of the) following concrete non-interactive problems.
Although these problems are special cases of a NIP, it is convenient for us to define them separately,
and thus we review them below for completeness. As usual, the following problems are said to be
hard if the advantage functions are negligible in the security parameter λ for any PPTA.

Discrete Logarithm Problem. Let GS be a group scheme and let A be an algorithm. We define the
advantage AdvDLGS,A(λ) of A in solving the discrete logarithm (DL) problem with respect to GS as
follows:

AdvDLGS,A(λ) = Pr[Λ = (g, p,G)← GS(1λ); α← Zp : A(Λ, gα) = α]

Decisional Diffie-Hellman Problem. Let GS be a group scheme and let A be an algorithm. We
define the advantage AdvDDHGS,A(λ) of A in solving the decisional Diffie-Hellman (DDH) problem
with respect to GS as follows:

AdvDDHGS,A(λ) = Pr[Λ = (g, p,G)← GS(1λ); α, β, γ ← Zp;

b← {0, 1}; Z0 ← gγ ; Z1 ← gαβ : A(Λ, gα, gβ , Zb) = b]− 1

2

17

B Proof of Lemma 8

Proof. Let GS, Γ , and P = (I,V,U) be as stated in the lemma. Fix GOAL ∈ {OW, IND} and ATK ∈
{CPA, q-CCA1, CCA1, q-CCA2, CCA2} (with q ∈ N). Towards a contradiction, assume simultaneously
that P is hard and that there exists an algebraic black-box reduction from the GOAL-ATK security
of Γ to the hardness of P. The latter guarantees that there exists an algebraic oracle PPTA R
that satisfies the condition of Definition 5.

We first consider the case in which the DL problem with respect to GS is not hard. That is,
we assume there exists a PPTA algorithm A such that AdvDLGS,A(λ) is non-negligible. Consider the
following (trivial) adversary A′ that uses A as a subroutine and attacks the OW-CPA security of Γ :

On input a public key pk = (Λ, aux,X1, . . . , Xn) (where Λ = (g, p,G)) and the challenge
ciphertext C∗ = (c∗, d∗) ∈ G × {0, 1}∗, A′ runs A with input (Λ, c∗). When A terminates with

output r, A′ returns the session-key K = gf0(pk,r)
∏
i∈[n]X

fi(pk,r)
i , where {fi}i∈{0,...,n} are the

scheme-dependent functions defined by Γ .
It is easy to see that A′ succeeds in breaking the OW-CPA security of Γ whenever A succeeds

in calculating the discrete logarithm r = logg c
∗, and thus AdvOW-CPAΓ,A′ (λ) = AdvDLGS,A(λ) is non-

negligible. Then, since any GOAL-ATK security considered in this lemma implies OW-CPA security,
A′ can be easily modified so that it has non-negligible advantage in breaking GOAL-ATK security
of Γ . Hence, by the definition of an algebraic black-box reduction, AdvPGS,RA′ (λ) must also be

non-negligible. Since both R and A′ are PPTAs, RA′ can be rewritten as a single PPTA R′ which
will have non-negligible advantage in solving P. However, this contradicts the fact that P is a hard
NIP, and thereby the existence of R.

We will now consider the case in which the DL problem with respect to GS is hard. The proof
makes use of the distribution D of the oracles O provided by the assumption in the lemma. More
specifically, by the first property of D, there exists an algebraic oracle PPTA A and some positive
polynomial p(λ) such that for infinitely many λ’s,

E
O←D

[
AdvGOAL-ATKΓ,AO (λ)

]
= E
O←D

[
Pr[ExptGOAL-ATKΓ,AO (λ) = 1]− ρ

]
≥ 1

p(λ)
,

where ρ = 0 if GOAL = OW and ρ = 1
2 if GOAL = IND. Then, by a simple averaging argument, we

have (for infinitely many λ’s):

Pr
O←D

[
AdvGOAL-ATKΓ,AO (λ) ≥ 1

2p(λ)

]
>

1

2p(λ)

Call O ∈ [D] good if AdvGOAL-ATKΓ,AO (λ) ≥ 1
2p(λ) . Then, by definition we have

Pr
O←D

[O is good] >
1

2p(λ)
(2)

Define the algebraic oracle PPTA R̃O by RAO . Note that such algebraic oracle PPTA R̃ must
exist because R and A are both algebraic oracle PPTAs. The corresponding extractor for R̃ can
be easily constructed by appropriately combining the extractors of R and A.

Then, we know that under a good oracle Ô, AÔ has non-negligible advantage (at least 1
2p(λ)) in

breaking the GOAL-ATK security of Γ . Therefore, by definition of an algebraic black-box reduction,
AdvP

GS,R̃Ô (λ) = AdvP
GS,RAÔ

(λ) is non-negligible. That is, there exists another positive polynomial

p′(λ) such that, for infinitely many λ’s, we have

AdvP
GS,R̃Ô (λ) = Pr[ExptP

GS,R̃Ô (λ) = 1]− δ(λ) ≥ 1

p′(λ)

Here, let us introduce some notation for convenience. For an oracle algorithm M that has

access to an oracle in [D], we denote by Ẽxpt
P

GS,MD(λ) the following experiment:

Ẽxpt
P

GS,MD(λ) : [O ← D; Return ExptPGS,MO (λ)]

18

Note that by definition, for an oracle algorithm M, it holds that

E
O←D

[AdvPGS,MO (λ)] = E
O←D

[
Pr[ExptPGS,MO (λ) = 1]− δ(λ)

]
= Pr[Ẽxpt

P

GS,MD(λ) = 1]− δ(λ)

Now, in order to reach a contradiction with the assumption that P is hard (using the second
property of D and the assumption that the DL problem is hard), we would like to show the

existence of an algebraic oracle PPTA R̂ such that the “expected advantage” EO←D[AdvP
GS,R̂O (λ)]

is non-negligible. One might think that the algorithm R̃ can be used for that purpose. However, R̃
is only guaranteed to have non-negligible advantage in solving P when the given oracle O causes
A to have non-negligible advantage in breaking the GOAL-ATK security of Γ . When this is not the
case, nothing is guaranteed about the success probability of R̃ which might even be negative. Note
that this might cause the expected advantage EO←D[AdvP

GS,R̃O (λ)] to be not non-negligible.

Instead, we consider the following algebraic oracle algorithm R̂ that uses R̃ and U as building

blocks, and runs in the experiment Ẽxpt
P

GS,R̂D(λ). Intuitively, R̂ first tests whether the given oracle

O is “good” by running R̃ many times with independently generated instances (using I) and

checking whether R̃ succeeds in solving these with sufficiently high probability, and then decides
which of R̃ or U it uses to find the answer x to the given instance y. Specifically, the description
of R̂ is as follows:

R̂O(1λ, y): (where y contains the group description Λ) Let t = 8λp′(λ)2 and Z = δ(λ) + 1
2p′(λ) .

For i ∈ [t], R̂ runs (yi, wi) ← I(Λ), xi ← R̃O(1λ, yi), and V(yi, xi, wi). We let bi = 1 if

V(yi, xi, wi) = > and bi = 0 otherwise. R̂ calculates χ = 1
t

∑
i∈[t] bi. If χ > Z then R̂ runs

x← R̃O(1λ, y), and otherwise runs x← U(1λ, y). Finally, R̂ terminates with output x.

It is easy to see that R̂ is an algebraic oracle PPTA, because both R̃ and U are algebraic (oracle)
PPTAs and p′(λ) is a positive polynomial.

Call O ∈ [D] positive if Pr[ExptP
GS,R̃O (λ) = 1]− δ(λ) ≥ 0, and otherwise call O negative. Note

that by definition, any good oracle O ∈ [D] is also positive.

We will now estimate EO←D[AdvP
GS,R̂O (λ)] = Pr[Ẽxpt

P

GS,R̂D(λ) = 1] − δ(λ). In the experiment

Ẽxpt
P

GS,R̂D(λ), we consider the following events:

– Succ: R̂ succeeds in outputting x such that V(y, x, w) = >.

– Posi: O (chosen according to D) is positive

– Good: O (chosen according to D) is good.

Here, according to our description of R̂, we know that the following two equations hold (where Λ
is the group description output from GS(1λ))4:

Pr[Succ|χ > Z ∧ Good]− δ(λ)

= Pr[(y, w)← I(Λ); x← R̃O(1λ, y) : V(y, x, w) = >|O is good]− δ(λ) ≥ 1

p′(λ)
(3)

Pr[Succ|χ ≤ Z] = Pr[(y, w)← I(Λ); x← U(1λ, y) : V(y, x, w) = >] = δ(λ) (4)

4 Recall that we define a group scheme GS so that a group description is deterministically determined
by the security parameter λ, and thus the success probability of an adversary solving a NIP P is not
affected by the generation of Λ for a fixed security parameter λ.

19

Using these, we have (for infinitely many λ’s):

E
O←D

[AdvP
GS,R̂O (λ)] = Pr[Ẽxpt

P

GS,R̂D(λ) = 1]− δ(λ) = Pr[Succ]− δ(λ)

= Pr[Succ ∧ χ > Z] + Pr[Succ|χ ≤ Z] · Pr[χ ≤ Z]− δ(λ)

(∗)
= Pr[Succ ∧ χ > Z] + δ(λ) · (1− Pr[χ > Z])− δ(λ)

= Pr[Succ ∧ χ > Z]− δ(λ) · Pr[χ > Z]

= Pr[Succ ∧ χ > Z]− δ(λ) · (Pr[χ > Z ∧ Posi] + Pr[χ > Z|Posi] · Pr[Posi])

≥ Pr[Succ ∧ χ > Z ∧ Posi]− δ(λ) · Pr[χ > Z ∧ Posi]− Pr[χ > Z|Posi]
= Pr[Succ ∧ χ > Z ∧ Good] + Pr[Succ ∧ χ > Z ∧ Posi ∧ Good]

− δ(λ) · (Pr[χ > Z ∧ Good] + Pr[χ > Z ∧ Posi ∧ Good])− Pr[χ > Z|Posi]
= Pr[χ > Z ∧ Good] · (Pr[Succ|χ > Z ∧ Good]− δ(λ))

+ Pr[χ > Z ∧ Posi ∧ Good] · (Pr[Succ|χ > Z ∧ Posi ∧ Good]− δ(λ))− Pr[χ > Z|Posi]
≥ Pr[χ > Z|Good] · Pr[Good] · (Pr[Succ|χ > Z ∧ Good]− δ(λ))− Pr[χ > Z|Posi]

> Pr[χ > Z|Good] · 1

2p(λ)
· 1

p′(λ)
− Pr[χ > Z|Posi]

where, in the above, the equation (*) is due to the equation (4), the second last inequality uses
Pr[Succ|χ > Z ∧ Posi ∧ Good]− δ(λ) ≥ 0 which is because of the definition of the positive oracles,
and the last inequality holds due to the equations (2) and (3) for infinitely many λ’s.

Here, in order to proceed, we need the following claims, which will be proven later:

Claim 18 Pr[χ > Z|Good] > 1− e−λ.

Claim 19 Pr[χ > Z|Posi] < e−λ.

Using these, we have

E
O←D

[AdvP
GS,R̂O (λ)] > (1− e−λ) · 1

2p(λ)
· 1

p′(λ)
− e−λ

≥ 1

2p(λ)p′(λ)
− 2e−λ

where the last inequality holds for infinitely many λ’s. Put differently, the expected advantage of
the algebraic oracle algorithm R̂ in solving P is non-negligible.

However, by the second property of D, there exist PPTAs B1 and B2, a polynomial Q(λ), and
a negligible function µ(λ) such that

E
O←D

[AdvP
GS,R̂O (λ)] ≤ Q(λ) · AdvDLGS,B1

(λ) + AdvPGS,B2
(λ) + µ(λ)

and since we are assuming that the DL problem is hard, AdvDLGS,B1
(λ) is negligible. Hence, it follows

that AdvPGS,B2
(λ) ≥ EO←D[AdvPGS,R′O (λ)] − Q(λ) · AdvDLGS,B1

(λ) − µ(λ) is non-negligible. However,
this contradicts that the NIP P is hard, and thereby the existence of the algebraic black-box
reduction R.

It remains to prove Claims 18 and 19. For notational convenience, for an oracle O ∈ [D] let

P (O) = Pr[ExptP
GS,R̃O (λ) = 1]

= Pr[(y, w)← I(Λ);x← R̃O(1λ, y) : V(y, x, w) = >]

where Λ is the group description output by GS(1λ).

20

Proof. (of Claim 18.) Fix a good oracle O. This guarantees that P (O) > δ(λ) + 1
p′(λ) . For i ∈ [t],

let αi ∈ {0, 1} be the indicator variable which is set 1 if and only if V(yi, xi, wi) = >. Note that
E[αi] = Pr[αi = 1] = P (O) for all i ∈ [t]. Using the Hoeffding bound (Lemma 15) with parameters

t = 8λp′(λ)2, Z = δ(λ) + 1
2p′(λ) , µ = P (O), and (1− ν)µ = Z (which implies ν = P (O)−Z

P (O)), we can

estimate the probability Pr[χ ≤ Z|Good] as follows:

Pr[χ ≤ Z|Good] ≤ exp(−ν2µt/2)

= exp

(
−
(
P (O)− Z
P (O)

)2

· P (O) · (8λp′(λ)2)/2

)

= exp

(
− 1

P (O)
· (P (O)− Z)2 · 4λp′(λ)2

)
(∗)
< exp

(
−
(

1

2p′(λ)

)2

· 4λp′(λ)2

)
= exp(−λ)

where in the inequality (*) we used 1
P (O) > 1 and P (O)− Z > 1

2p′(λ) . Therefore, we have Pr[χ >

Z|Good] > 1− e−λ. This completes the proof of Claim 18. ut

Proof. (of Claim 19.) Fix a negative oracle O. This guarantees that P (O) < δ(λ). Let Z ′ = 1−Z
and χ′ = 1 − χ. Then the event χ > Z is equivalent to the event χ′ < Z ′. For i ∈ [t], let
α′i ∈ {0, 1} be the indicator variable which is set to 1 if and only if V(yi, xi, wi) = ⊥. Note that
E[α′i] = Pr[α′i = 1] = 1 − P (O) for all i ∈ [t]. Using the Hoeffding bound (Lemma 15) with
parameters t = 8λp′(λ)2, Z ′ = 1 − Z = 1 − (δ(λ) + 1

2p′(λ)), µ = 1 − P (O), and (1 − ν)µ = Z ′

(which implies ν = Z−P (O)
1−P (O)), we can estimate the probability Pr[χ > Z|Posi] as follows:

Pr[χ > Z|Posi] = Pr[χ′ < Z ′|Posi]
< exp(−ν2µt/2)

= exp

(
−
(
Z − P (O)

1− P (O)

)2

· (1− P (O)) · (8λp′(λ)2)/2

)

= exp

(
− 1

1− P (O)
· (Z − P (O))2 · 4λp′(λ)2

)
(∗)
< exp

(
−
(

1

2p′(λ)

)2

· 4λp′(λ)2

)
= exp(−λ),

where in the inequality (*) we used 1
1−P (O) > 1 and Z − P (O) > 1

2p′(λ) . This completes the proof

of Claim 19. ut

We have seen that regardless of the hardness of the DL problem, if the NIP P is hard, then
there is no algebraic black-box reduction from the GOAL-ATK security of a KEM Γ ∈ KGS,n to the
hardness of P. The above proof works for any group scheme GS, any KEM Γ ∈ KGS,n and any
NIP P with respect to GS. This completes the proof of Lemma 8. ut

C Proof of Lemma 9

Proof. Let GS, Γ , and D be as stated in the lemma. For an algebraic oracle algorithm A that has

access to an oracle O ∈ [D], let us denote by Ẽxpt
OW-n-CCA1

Γ,AD (λ) the experiment ExptOW-n-CCA1Γ,AO (λ) in

21

which the choice of the oracle O according to the distribution D is also taken into account. That
is,

Ẽxpt
OW-n-CCA1

Γ,AD (λ) : [O ← D; Return ExptOW-n-CCA1Γ,AO (λ)]

Then, by definition, we have

E
O←D

[
AdvOW-n-CCA1Γ,AO (λ)

]
= E
O←D

[
Pr[ExptOW-n-CCA1Γ,AO (λ) = 1]

]
= Pr[Ẽxpt

OW-n-CCA1

Γ,AD (λ) = 1]

Therefore, to prove the lemma, it is sufficient to show an algebraic oracle PPTA A = (A1,A2)

and lowerbound A’s success probability in the experiment Ẽxpt
OW-n-CCA1

Γ,AD (λ). As defined by the

experiment Ẽxpt
OW-n-CCA1

Γ,AD (λ), A1 is given a public key pk = (Λ, aux,X1, . . . , Xn) of Γ as input,
and access to a corresponding decapsulation oracle Odec. Furthermore, both A1 and A2 are given
access to the oracle O = (O1,O2) which is chosen according to D in the experiment. A = (A1,A2)
is constructed as follows:

AOdec,O1,O2

1 (pk = (Λ, aux,X1, . . . , Xn)): (Let Λ = (g, p,G), and let yi = loggXi for i ∈ [n]) A1

submits pk to O1 to obtain (C1, . . . , Cn, σ), and then submits Ci to Odec to obtain Ki for each
i ∈ [n]. A1 then submits (pk,K1, . . . ,Kn, σ) to O2 to obtain {ui = ψ1(pk,Ci, y1, . . . , yn)}i∈[n].
Note that in the experiment, since pk is generated correctly and Odec perfectly implements
decapsulation of a ciphertext under pk, neither O1 nor O2 returns ⊥ as a response to A1’s
queries. Recall that the third condition of KEMs in the class KGS,n guarantees that the func-
tion ψ1 can be decomposed using the scheme-dependent functions {ψ1,i}i∈{0,...,n} i.e. it is
guaranteed that

ψ1(pk,C, y1, . . . , yn) = ψ1,0(pk, C) +
∑
i∈[n]

ψ1,i(pk,C) · yi

holds for any pk = (Λ, aux,X1, . . . , Xn) ∈ PK and any ciphertext C ∈ G × {0, 1}∗ (in the
range of Enc(pk)).
Next, A1 calculates u′j = uj − ψ1,0(pk,Cj) for every j ∈ [n]. Note that for each index j ∈ [n],
we must have ∑

i∈[n]

ψ1,i(pk,Cj) · yi = u′j . (5)

For a ciphertext C, let ψ(pk, C) ∈ Znp be the n-dimensional (row) vector whose i-th element
is ψ1,i(pk,C), i.e. ψ(pk,C) = (ψ1,1(pk,C), . . . , ψ1,n(pk,C)). Let C = (C1, . . . , Cn) be the
ciphertexts returned from O1, and let Ψ(pk,C) ∈ Zn×np be the n × n matrix whose i-th row
is ψ(pk, ci). That is,

Ψ(pk,C) =


ψ(pk,C1)
ψ(pk,C2)

...
ψ(pk,Cn)

 =


ψ1,1(pk, C1) ψ1,2(pk,C1) . . . ψ1,n(pk,C1)
ψ1,1(pk, C2) ψ1,2(pk,C2) . . . ψ1,n(pk,C2)

...
...

. . .
...

ψ1,1(pk, Cn) ψ1,2(pk,Cn) . . . ψ1,n(pk,Cn)


Furthermore, let yT = (y1, . . . , yn) ∈ Znp and u′

T
= (u′1, . . . , u

′
n) ∈ Znp . Using this notation, we

can describe the equation system that A1 has obtained as follows:

Ψ(pk,C) · y = u′,

where A1 knows all values in the matrix Ψ(pk,C) and the vector u′. Note that this equation
system is always consistent since the KEM Γ is assumed to be correct, pk is generated correctly
in the experiment, and (C1, . . . , Cn) are valid ciphertexts under pk. Finally, A1 prepares the
state information st consisting of all information known to A1 and terminates with output st.

AO1,O2

2 (st, C∗ = (c∗, d∗)): A2 calculates the determinant det Ψ(pk,C), and proceeds as follows:

22

– If det Ψ(pk,C) 6= 0: A2 solves the equation system Ψ(pk,C) · y = u′ and obtains yT =
(y1, . . . , yn) (which is possible because A2 knows all values in the matrix Ψ(pk,C) and the

vector u′). A2 then calculates the session-key K∗ = gψ0(pk,C
∗,y1,...,yn)c∗ψ1(pk,C

∗,y1,...,yn),
and terminates with output K∗.

– If det Ψ(pk,C) = 0: Using the algorithm guaranteed by Lemma 16, A2 checks if the vector
ψ(pk,C∗) is linearly dependent on the n − 1 vectors ψ(pk,C1), . . . ,ψ(pk, Cn−1). If this
is not the case, A2 gives up and aborts. Otherwise, the algorithm will recover constants
α1, . . . , αn−1 ∈ Zp such that

ψ(pk, C∗) = α1ψ(pk,C1) + . . .+ αn−1ψ(pk,Cn−1)

Here, notice that by multiplying (from the right) the column vector y to the above equa-
tion, and using the equation (5), we obtain:∑

i∈[n]

ψ1,i(pk,C
∗) · yi =

∑
j∈[n−1]

αju
′
j

Using the above, A2 computes the session-key as follows:

K∗ = gψ0,0(pk,C
∗)(
∏
i∈[n]

X
ψ0,i(pk,C

∗)
i)c∗ψ1,0(pk,C

∗)+
∑
j∈[n−1] αju

′
j

= gψ0,0(pk,C
∗)+

∑
i∈[n] ψ0,i(pk,C

∗)·yic∗ψ1,0(pk,C
∗)+

∑
i∈[n] ψ1,i(pk,C

∗)·yi

= gψ0(pk,C
∗,y1,...,yn)c∗ψ1(pk,C

∗,y1,...,yn),

where the last equation follows from the decomposition of the scheme-dependent functions
ψ0 and ψ1 using {ψi,j}i∈{0,1},j∈[n]. Finally, A2 terminates with output K∗.

The above completes the description of A. Note that A is deterministic. Furthermore, it is easy
to see that A satisfies the property of an algebraic oracle algorithm: All group elements that A
uses as inputs for the oracle queries either comes from the experiment, or from the oracles O and
Odec as answers to A’s previous queries, and thus the corresponding extractor can be trivially
constructed.

We now proceed to estimate A’s success probability in the experiment Ẽxpt
OW-n-CCA1

Γ,AD (λ). Note
that according to our description of A, A succeeds in outputting the correct session-key K∗ that
corresponds to the challenge ciphertext C∗ when either of the following two disjoint events occurs:

– (1) det Ψ(pk,C) 6= 0
– (2) det Ψ(pk,C) = 0 and ∃α1, . . . , αn−1 ∈ Zp : ψ(pk,C∗) =

∑
j∈[n−1] αiψ(pk, Cj)

Let us denote by p1(pk) and p2(pk) the probabilities that the above events (1) and (2) occur,
respectively, under the fixed public key pk ∈ PK. That is, the probability space of p1(pk) and
that of p2(pk) are over the choice of the oracle O ← D and the calculation of the challenge
ciphertext/session-key pair (C∗,K∗)← Enc(pk). By definition, it holds that

Pr[Ẽxpt
OW-n-CCA1

Γ,AD (λ) = 1] = E
(pk,sk)←KG(Λ)

[p1(pk) + p2(pk)],

where KG is the key generation algorithm of the KEM Γ . Recall that by the definition of the oracle
O = (O1,O2), if O is picked according to D, then the function F used in O is a random function,
and thus the values (r1, . . . , rn) output from F (pk) are distributed uniformly over Znp . Furthermore,
by definition the experiment chooses the randomness r∗ used to generate the challenge ciphertext

C∗ uniformly from Zp. Therefore, if a public key pk is fixed in the experiment Ẽxpt
OW-n-CCA1

Γ,AD (λ), we
can identify the remaining probability space of the experiment with the uniformly random choice
of the randomness (r1, . . . , rn, r

∗) from Zn+1
p (the ciphertext/session-key pairs {(Ci,Ki)}i∈[n] and

(C∗,K∗) are uniquely determined by pk and (r1, . . . , rn, r
∗) ∈ Zn+1

p).

23

In the following, we show a lower bound of p1(pk)+p2(pk) under a fixed pk ∈ PK, and thereby

a lower bound of Pr[Ẽxpt
OW-n-CCA1

Γ,AD (λ) = 1].
The first probability p1(pk) (under a fixed pk ∈ PK) is given by5:

p1(pk) = Pr
r1,...,rn←Zp

[det Ψ(pk,C) 6= 0]

Hence, it follows that
Pr

r1,...,rn←Zp
[det Ψ(pk,C) = 0] = 1− p1(pk)

Before we estimate p2(pk), let us introduce the following: For a pk ∈ PK, i ∈ [n], an (i − 1)-
dimensional vector (r1, . . . , ri−1) ∈ Zi−1p , and an element ri ∈ Zp, let νi(pk, (r1, . . . , ri−1), ri) be a
variable indicating whetherψ(pk,Ci) is linearly dependent on the n−1 vectorsψ(pk,C1), . . . ,ψ(pk,Ci−1),
i.e.

νi(pk, (r1, . . . , ri−1), ri) =

{
1 if ∃α1, . . . , αi−1 s.t. ψ(pk, Ci) =

∑
j∈[i−1] αjψ(pk, rj)

0 otherwise

For convenience, we let ν1(pk, ∅, r1) indicate whether or not ψ(pk, C1) = 0. To proceed, we will
make use of the following claims.

Claim 20

Pr
r1,...,rn←Zp

[det Ψ(pk,C) = 0] ≤ Pr
r1←Zp

[ν1(pk, ∅, r1) = 1]+. . .+ Pr
r1,...,rn←Zp

[νn(pk, (r1, . . . , rn−1), rn) = 1].

Proof. (of Claim 20.) To see this, observe that, for a given choice of (r1, . . . , rn)← Znp , det Ψ(pk,C) =
0 implies that ψ(pk,C1), . . . ,ψ(pk,Cn) are linearly dependent i.e. there must exist α1, . . . , αn ∈
Zp, not all zero, such that α1ψ(pk,C1) + . . .+ αnψ(pk,Cn) = 0. Let i′ be the largest index such
that αi′ 6= 0 and let α′i = −αi/αi′ . Hence, we must have that

ψ(pk,Ci′) = α′1ψ(pk,C1) + . . .+ α′i′−1ψ(pk,Ci′−1)

and that νi′(pk, (r1, . . . , ri′−1), ri′) = 1. This implies that for any choice of (r1, . . . , rn) ∈ Znp , if
det Ψ(pk,C) = 0, there is at least one i for which νi(pk, (r1, . . . , ri−1), ri) = 1. Hence, it must hold
that

Pr
r1,...,rn←Zp

[det Ψ(pk,C) = 0] ≤ Pr
r1,...,rn←Zp

[ν1(pk, ∅, r1) = 1 ∨ · · · ∨ νn(pk, (r1, . . . , rn−1), rn) = 1].

Applying the union bound to the right-hand side of the above equation yields the equation in
Claim 20. ut
Claim 21 Prr1,...,rn←Zp [νn(pk, (r1, . . . , rn−1), rn) = 1] ≥ (1− p1(pk))/n.

Proof. (of Claim 21.) To see that this must be true, assume for the purpose of a contradiction that

Pr
r1,...,rn←Zp

[νn(pk, (r1, . . . , rn−1), rn) = 1] < (1− p1(pk))/n.

Note that

Pr
r1,...,rn←Zp

[νn(pk, (r1, . . . , rn−1), rn) = 1]

= Pr
r1,...,rn←Zp

[∃α1, . . . , αn−1 : ψ(pk, Cn) =
∑

i∈[n−1]

αiψ(pk,Ci)]

≥ Pr
r1,...,rn←Zp

[∃α1, . . . , αn−1 : ψ(pk, Cn) =
∑

i∈[n−1]

αiψ(pk,Ci) ∧ αn−1 = 0]

= Pr
r1,...,rn−1←Zp

[∃α1, . . . , αn−2 : ψ(pk,Cn−1) =
∑

i∈[n−2]

αiψ(pk, Ci)]

= Pr
r1,...,rn−1←Zp

[νn−1(pk, (r1, . . . , rn−2), rn−1) = 1]

5 Note that the event (1) is independent of the choice of the randomness r∗ used for generating the
challenge ciphertext/session-key pair.

24

Hence, assuming Prr1,...,rn←Zp [νn(pk, (r1, . . . , rn−1), rn) = 1] < (1− p1(pk))/n, we must have

Pr
r1,...,rn−1←Zp

[νn−1(pk, (r1, . . . , rn−2), rn−1) = 1] < (1− p1(pk))/n.

Iterating the above argument yields that

Pr
r1,...,ri←Zp

[νi(pk, (r1, . . . , ri−1), ri) = 1] < (1− p1(pk))/n

for any i ∈ [n]. Hence, from Claim 20 we get

Pr
r1,...,rn←Zp

[det Ψ(pk,C) = 0] ≤ Pr
r1←Zp

[ν1(pk, ∅, r1) = 1] + . . .+ Pr
r1,...,rn←Zp

[νn(pk, (r1, . . . , rn−1), rn) = 1]

< n · (1− p1(pk))/n

= 1− p1(pk)

which contradicts that Prr1,...,rn←Zp [det Ψ(pk,C) = 0] = 1− p1(pk). This completes the proof of
Claim 21. ut

We will now return to the estimation of p2(pk) (under a fixed pk ∈ PK):

p2(pk) = Pr
r1,...,rn,r∗←Zp

[det Ψ(pk,C) = 0 ∧ νn(pk, (r1, . . . , rn−1), r∗) = 1]

= E
r1,...,rn−1←Zp

[
Pr

rn,r∗←Zp
[det Ψ(pk,C) = 0 ∧ νn(pk, (r1, . . . , rn−1), r∗) = 1]

]
(∗)
= E

r1,...,rn−1←Zp

[
Pr

rn←Zp
[det Ψ(pk,C) = 0] · Pr

r∗←Zp
[νn(pk, (r1, . . . , rn−1), r∗) = 1]

]
≥ E
r1,...,rn−1←Zp

[(
Pr

rn←Zp
[νn(pk, (r1, . . . , rn−1), rn) = 1]

)2
]

≥
(

E
r1,...,rn−1←Zp

[
Pr

rn←Zp
[νn(pk, (r1, . . . , rn−1), rn) = 1]

])2

=

(
Pr

r1,...,rn←Zp
[νn(pk, (r1, . . . , rn−1), rn) = 1]

)2

≥
(

1− p1(pk)

n

)2

where the equation (*) is because the considered events in this equation become independent once
we fix pk and (r1, . . . , rn−1), the first inequality follows from the observation that νn(pk, (r1, . . . , rn−1), rn) =
1 implies det Ψ(pk,C) = 0 and therefore Prrn←Zp [det Ψ(pk,C) = 0] ≥ Prrn←Zp [νn(pk, (r1, . . . , rn−1), rn) =
1], the second inequality follows from Jensen’s inequality6, and the last inequality follows from
Claim 21.

Now, under a fixed pk ∈ PK, we have

p1(pk) + p2(pk) ≥ p1(pk) +

(
1− p1(pk)

n

)2

≥ 1

n2

((
p1(pk)− 1

2

)2

+
3

4

)
≥ 3

4n2
.

Hence, we finally get

E
O←D

[AdvOW-n-CCA1Γ,AO (λ)] = Pr[Ẽxpt
OW-n-CCA1

Γ,AD (λ) = 1] = E
(pk,sk)←KG(Λ)

[p1(pk) + p2(pk)] ≥ 3

4n2
,

which completes the proof of Lemma 9. ut
6 If X is a random variable and f is a convex function, then E[f(X)] ≥ f(E[X]). We use f(x) = x2.

25

D Proof of Lemma 10

Proof. Let GS, Γ ∈ KGS,n, P = (I,U,V), and D be as stated in the lemma. For an oracle algorithm

A, let us denote by Ẽxpt
P

GS,AD(λ) the experiment ExptPGS,AO (λ) where the choice of the oracle O
according to the distribution D is also taken into account. That is,

Ẽxpt
P

GS,AD(λ) : [O ← D; Return ExptPGS,AO (λ)]

Then, by definition,

E
O←D

[AdvPGS,AO (λ)] = E
O←D

[Pr[ExptPGS,AO (λ) = 1]− δ(λ)] = Pr[Ẽxpt
P

GS,AD(λ) = 1]− δ(λ).

Now, fix arbitrarily an algebraic oracle PPTA A. Suppose q = q(λ) is the number of oracle
queries that A makes. (Since A is a PPTA, q is a polynomial, and without loss of generality, we
assume q > 0.) Then, by definition of an algebraic oracle PPTA, there exists a corresponding

“decomposition” algebraic PPTA Â that satisfies the condition explained in Section 2.3, and Â
halts after q invocations of the oracle O. Let Ê be the extractor corresponding to Â.

We consider the following sequence of games:

Game 1: This is the experiment Ẽxpt
P

GS,AD(λ) itself.
Game 2: Same as Game 1, except that in this game, any O2-query (pk, (K1, . . . ,Kn), σ) that is

not preceded by a O1-query pk (with the same pk) is answered with ⊥.
Game 3: Same as Game 2, except that in this game, the experiment maintains a list L which is

initially empty, and A’s oracle queries are answered as follows:
– O1-query pk is answered using “lazy sampling” as follows:

1. O1 returns ⊥ if pk /∈ PK.
2. If there is an entry of the form (pk,C, ∗, σ) for some C = (C1, . . . , Cn) in the list L,
O1 returns (C, σ) to A.

3. O1 picks r1, . . . rn ∈ Zp and σ ∈ {0, 1}λ uniformly at random, computes (Ci,Ki) ←
Enc(pk; ri) for every i ∈ [n], and sets C = (C1, . . . , Cn) and K = (K1, . . . ,Kn).

4. O1 returns (C, σ) to A, and stores the values (pk,C,K, σ) in the list L.
– O2-query (pk = (Λ, aux, (X1, . . . , Xn)),K = (K1, . . . ,Kn), σ) is answered using the list L

and the extractor Ê for Â, where Â is the “decomposition” of the algebraic oracle algorithm
A, in the following way:
1. O2 checks if there is an entry of the form (pk, ∗,K, σ) in the list L, and returns ⊥ if

there is no such entry.
2. Let C = (C1, . . . , Cn) be the vector of ciphertexts retrieved from the entry found in

the above step, st be the state information that Â outputs with this O2-query, X′ be
the vector consisting of all group elements that are input to Â until this point (either
from the experiment or from O as answers to previous queries), and let X′i = X′\{ci},
where ci is the first component of the ciphertext Ci = (ci, di). For every i ∈ [n], O2

parses Ci as (ci, di) ∈ G × {0, 1}n and runs the extractor Ê on Â’s input (Λ, X′ and

st) to obtain an integer ui ∈ Zp such that Ki = cuii · (X
′zi
i) for some zi ∈ Z|X

′
i|

p .7 8

3. If for some i ∈ [n] the extractor Ê fails to compute ui or ui 6= ψ1(pk,Ci, y1, . . . , yn),
then O2 returns ⊥ to A.

4. O2 sets u = (u1, . . . , un) and returns u to A.
Game 4: Same as Game 3, except that in the response to O2-queries from A, O2 does not check

if ui 6= ψ1(pk, Ci, y1, . . . , yn) for any i ∈ [t] in step 3, and directly uses the value ui for u.

7 Recall that for X ∈ Gn and y ∈ Znp , Xy =
∏
i∈[|X|] X[i]y[i].

8 Note that according to the definition of O1 in Game 3, C = (C1, . . . , Cn) must have appeared previously
as an answer to one of A’s O1-queries. Furthermore, recall that each ciphertext Ci is of the form
(ci, di) ∈ G× {0, 1}∗. Therefore, X′ must contain (c1, . . . , cn).

26

For each i ∈ [4], let Succi be the event that in Game i, A succeeds in solving the NIP P, namely,
AO(1λ, y) outputs x such that V(y, x, w) = > in Game i.

Then, EO←D[AdvPGS,AO (λ)] can be estimated as follows.

E
O←D

[AdvPGS,AO (λ)] = Pr[Ẽxpt
P

GS,AD(λ) = 1]− δ(λ)

= Pr[Succ1]− δ(λ)

≤
∑
i∈[3]

|Pr[Succi]− Pr[Succi+1]|+ Pr[Succ4]− δ(λ) (6)

In the following, we upperbound each term in the above inequality.

Claim 22 |Pr[Succ1]− Pr[Succ2]| ≤ q
2λ−q .

Proof. (of Claim 22.) For γ ∈ {1, 2}, let Forgeγ be the event that in Game γ, A submits at least
one O2-query (pk, (K1, . . . ,Kn), σ) such that the answer to this query in Game 1 is not ⊥ and A
has not previously asked an O1-query pk (with the same pk). Such query is answered with ⊥ in
Game 2, while it is answered with some value that is not ⊥ in Game 1. Since Game 1 and Game
2 proceed identically unless Forge1 or Forge2 occurs, we have

|Pr[Succ1]− Pr[Succ2]| ≤ Pr[Forge1] = Pr[Forge2].

Thus, to prove the claim it is sufficient to upper-bound Pr[Forge1].
Note that if O is picked according to D, then by definition, F used in the oracle O is a random

function. Furthermore, to make a query that causes the event Forge1 in Game 1, A has to come up
with the tag σ ∈ {0, 1}λ which is an output of the random function F (pk) without ever making
an O1-query pk. Consider the probability (in Game 1) that “A’s i-th query is the first O2-query
that causes the event Forge1.” Before the i-th query, A will at most have learned i− 1 strings9 in
{0, 1}λ that are not the actual σ for a given pk. Therefore,

Pr[i-th query is the first O2-query that causes Forge1] ≤ 1

2λ − (i− 1)
≤ 1

2λ − q

where the latter inequality is because i ≤ q. Then, by the union bound over the q queries by A,
we have Pr[Forge1] ≤ q

2λ−q . This completes the proof of Claim 22. ut

Claim 23 |Pr[Succ2]− Pr[Succ3]| is negligible.

Proof. (of Claim 23.) Note that the difference between Game 2 and Game 3 is only in the oracles
which A is given access to. It is easy to see that the responses to O1-queries are distributed
identically in both Game 2 and Game 3, because the lazy sampling can simulate the random
function F used by O1 (and O2) perfectly for PPTAs. (Recall that in Game 2 and Game 3, any
O2-query using pk that is not preceded by O1-query with the same pk is always answered with
⊥.) As for O2, if O2 on input (pk,K, σ) outputs some value that is not ⊥ in Game 3, then it must
agree with the output in Game 2 due to the check ui = ψ1(pk,Ci, y1, . . . , yn) performed in the
step 3. In particular, although O2 in Game 3 does not re-compute the ciphertext/session-key pairs
{(ci,Ki)}i∈[n], checking whether (pk, ∗,K, σ) ∈ L is equivalent to checking whether the session-
keys K = (K1, . . . ,Kn) in this O2-query and those generated during the response to the previously
asked O1-query pk agree. The only part where the values output from O2 in Game 2 and in Game
3 can disagree is in step 3 of O2 in Game 3 where the extractor Ê could fail to compute ui for
some i ∈ [n]. Let Fail3 be the event that (in Game 3), Ê fails to compute ui for some i ∈ [n] for
some O2-query. Then, we have

|Pr[Succ2]− Pr[Succ3]| ≤ Pr[Fail3].

9 These strings might be learned by making O2-queries with a same pk (without using it as a O1-query).

27

However, by the definition of an algebraic oracle algorithm, for each invocation, the probability that
the corresponding extractor fails is negligible. A can make only polynomially many O2-queries,
each of which can contain at most n session-keys, and thus the union bound over the possible
session-keys contained in A’s O2-queries in Game 3 (which is at most polynomial) shows that
Pr[Fail3] is negligible. This completes the proof of Claim 23. ut

Claim 24 There exists a PPTA B1 and a negligible function µ′(λ) such that

|Pr[Succ3]− Pr[Succ4]| ≤ nq · AdvDLGS,B1
(λ) + µ′(λ).

Proof. (of Claim 24.) Note that the difference between Game 3 and Game 4 is whether ui =
ψ1(pk,Ci, y1, . . . , yn) is checked in the step 3 of O2. For γ ∈ {3, 4}, let Badγ be the event that in
Game γ, A submits at least one O2-query (pk = (Λ, aux,X1, . . . , Xn),K, σ) such that it passes
the checks in the step 1, and ui 6= ψi(pk,Ci, y1, . . . , yn) for some i ∈ [n], where ui is computed by

the extractor Ê and yi = loggXi for i ∈ [n]. Note that if a query passes the check in the step 1 of
O2 in Game 3 (resp. Game 4), it means that A must have submitted the O1-query pk before the
O2-query that caused the event Bad3 (resp. Bad4).

Since Game 3 and Game 4 proceed identically unless Bad3 or Bad4 occurs, we have

|Pr[Succ3]− Pr[Succ4]| ≤ Pr[Bad3] = Pr[Bad4].

We show that there exists a PPTA B1 such that AdvDLGS,B1
(λ) ≥ 1

nq · Pr[Bad4] − µ′′(λ) for some

negligible function µ′′(λ), which proves the claim by setting µ′(λ) = nq ·µ′′(λ). B1 uses A (actually,

Â) as a subroutine and runs as follows:

B1(1λ, Λ = (g, p,G), Z = gα): (where α ∈ Zp is chosen uniformly at random and unknown to B1)
B1 picks two indices i∗ ∈ [q] and j∗ ∈ [n] uniformly at random, runs (y, w) ← I(Λ), and
generates an empty list L (which will be used to simulate O1 and O2 as in Game 4). Then B1
picks a randomness rA (for A) and then runs A(1λ, y; rA).
For 1 ≤ i < i∗, B1 answers A’s i-th query exactly as in Game 4, which is possible because
O1-queries can be answered perfectly by lazy sampling (which B1 implements using the list

L), and O2-queries can be answered by using L and the extractor Ê (recall that B1 holds the
randomness rA which is used to run A).
When A makes the i∗-th query, B1 proceeds as follows:

1. B1 gives up and aborts if either of the following occurs: (1) this is not an O1-query, (2) This
is an O1-query pk but pk /∈ PK, or there already exists an entry of the form (pk, ∗, ∗, ∗)
in L.

2. Let pk∗ = (Λ, aux∗, X∗1 , . . . , X
∗
n) be the public key in thisO1-query. B1 recovers the discrete

logarithms {y∗i = loggX
∗
i }i∈[n] by using the extractor Ê . Note that this is possible (unless

the extractor fails) since B1 can compute the discrete logarithms (with respect to g) of
all group elements that are input to A until this point.10 B1 gives up and aborts if the
extractor fails during the above computation of the discrete logarithms.

3. B1 picks (r∗1 , . . . , r
∗
j∗−1, r

∗
j∗+1, . . . , r

∗
n) ∈ Zn−1p and σ∗ ∈ {0, 1}λ uniformly at random, and

calculates (C∗i ,K
∗
i)← Enc(pk∗; r∗i) for all i ∈ [n]\{j∗}

4. B1 regards Z as c∗j∗ , and calculates d∗j∗ ← ψ̃(pk∗, c∗j∗ , y
∗
1 , . . . , y

∗
n), where ψ̃ is the scheme-

dependent function of Γ that is guaranteed by the fourth property of the class KGS,n. B1
also sets C∗j∗ ← (c∗j∗ , d

∗
j∗). Here, note that C∗j∗ is a correct ciphertext under pk∗ using the

randomness α, i.e. it holds that C∗j∗ = Enc(pk∗;α) where α = logg c
∗
j∗ = logg Z.

10 It should be noticed that the instance y given to A could contain group elements. However, since I is
an algebraic PPTA, B1 can obtain all discrete logarithms (with respect to g) of the group elements
contained in the instance y by running the extractor corresponding to I. Hence, at this point, the only
group element whose discrete logarithm (with respect to g) is unknown to B1 is Z, but this group
element has not been given to A up until this point.

28

5. B1 calculates K∗j∗ = gψ0(pk
∗,C∗j∗ ,y

∗
1 ,...,y

∗
n) · c∗j∗

ψ1(pk
∗,C∗j∗ ,y

∗
1 ,...,y

∗
n). Note that by the third

property of the class KGS,n, K∗j∗ computed here is a correct session-key corresponding to
C∗j∗ .

6. B1 sets C∗ ← (C∗1 , . . . , C
∗
n) and K∗ ← (K∗1 , . . . ,K

∗
n), returns (C∗, σ∗) to A, and stores the

values (pk∗,C∗,K∗, σ∗) in the list L.
After the i∗-th query, B1 continues simulating the answers to oracle queries from A as in Game
4 until A terminates.
At some point, A terminates (with some output which B1 discards). B1 checks if A has issued
an O2-query of the form (pk∗,K∗, σ∗) that (1) caused the event Bad4

11 and (2) for which

uj∗ 6= ψ1(pk∗, C∗j∗ , y
∗
1 , . . . , y

∗
n)12, where uj∗ is obtained by B1 by running the extractor Ê as

specified in Game 4. If no such query has been made by A, B1 simply gives up and aborts.
If such query is found, B1 calculates the value s ∈ Zp such that K∗j∗ = gsZuj∗ . Note that
B1 will be able to compute this s efficiently since B1 has obtained all discrete logarithms
of the group elements that are input to A, except for Z, through Ê (unless Ê failed in the
response to one of the previous queries). Since the first component of the j∗-th ciphertext C∗j∗

in C∗ is Z, we must have that K∗j∗ = gsZuj∗ = gψ0(pk
∗,C∗j∗ ,y

∗
1 ,...,y

∗
n)Zψ1(pk

∗,C∗j∗ ,y
∗
1 ,...,y

∗
n) and

uj∗ 6= ψ1(pk∗, C∗j∗ , y
∗
1 , . . . , y

∗
n). Then, B1 calculates α = logg Z = (ψ0(pk∗, C∗j∗ , y

∗
1 , . . . , y

∗
n) −

s)/(uj∗ − ψ1(pk∗, C∗j∗ , y
∗
1 , . . . , y

∗
n)), and terminates with output α.

It is straightforward to see that B1 simulates Game 4 perfectly for A as long as A’s i∗-th query
is a fresh O1-query with a valid public-key pk∗ ∈ PK and the extractor Ê that B1 runs during
the response to the i∗-th query does not fail. In particular, since the j∗-th ciphertext C∗j∗ of
C∗ that is used for answering A’s i∗-th query is generated from the DL instance Z, C∗j∗ is a
correct ciphertext under pk∗ using the randomness α = logg, Z which, by the definition of the DL
problem, is distributed uniformly in Zp. Therefore, C∗j∗ is distributed identically to a ciphertext
generated from Enc(pk∗), and thus B1’s simulated response to the i∗-th query is perfect (assuming
this query is a fresh and valid O1-query pk∗ ∈ PK and the extractor does not fail). Moreover,
once A makes an O2-query that causes the event Bad4, B1 will be able to compute the discrete
logarithm α = logg Z with probability at least 1

nq (except some negligible failure probability due

to the extractor Ê), because B1’s guess on which query and which index the event Bad4 occurs is
correct with probability at least 1

nq , and once B1 succeeds in guessing the position, it succeeds in

outputting the discrete logarithm of Z with overwhelming probability (the error can occur when

the extractor Ê fails). Therefore, there exists a negligible function µ′′(λ), indicating the total failure

probability of the extractor Ê , such that

AdvDLGS,B1
(λ) ≥ 1

nq
· Pr[Bad4]− µ′′(λ),

which completes the proof of Claim 24. ut

Claim 25 There exists a PPTA B2 such that Pr[Succ4]− δ(λ) = AdvPGS,B2
(λ).

Proof. (of Claim 25.) We show how to construct a PPTA B2 that perfectly simulates Game 4 for
A and solves the NIP P with probability exactly Pr[Succ4]. The description of B2 is as follows:

B2(1λ, y): B2 generates an empty list L (which is used to simulate O1 and O2 as in Game 4),
picks a randomness rA that is used for A, and runs A(1λ, y; rA). B2 answers to all queries
from A as in Game 4, which is possible because O1-queries can be perfectly answered by the
lazy sampling using the list L, and O2-queries can be answered by using L and the extractor Ê
(recall that B2 holds the randomness rA used to run A). When A outputs x, B2 also outputs
x and terminates.

11 Note that unless B1 aborts due to the extractor Ê failing, B1 will know all discrete logarithms {y∗i =
loggX

∗
i }i∈[n], and will hence be able to check whether there is an O2-query that causes the event Bad4

efficiently by computing the scheme-dependent function ψ1.
12 Note that even if it is a query that causes Bad4, the position j such that uj 6= ψ1(pk∗, C∗j , y

∗
1 , . . . , y

∗
n)

could be different from j∗.

29

It is easy to see that B2 perfectly simulates Game 4 for A, and thus B2 succeeds in outputting
x such that V(y, x, w) = > whenever A does so (in Game 4), and thus we have Pr[Succ4] =
Pr[ExptPGS,B2

(λ) = 1]. This implies

Pr[Succ4]− δ(λ) = Pr[ExptPGS,B2
(λ) = 1]− δ(λ) = AdvPGS,B2

(λ),

which completes the proof of Claim 25. ut

Using Claims 22 to 25 in the inequality (6), we conclude that there exist PPTAs B1 and B2, a
polynomial Q(λ), and a negligible function µ(λ) such that

E
O←D

[AdvPGS,AO (λ)] ≤ Q(λ) · AdvDLGS,B1
(λ) + AdvPGS,B2

(λ) + µ(λ).

Finally note that the proof works for any group scheme GS, any KEM Γ ∈ KGS,n, any NIP P with
respect to GS, and any algebraic oracle PPTA A. This completes the proof of Lemma 10. ut

E Proof of Theorem 12

Proof. Let A be an adversary against the IND-q-CCA2 security of the proposed KEM Γ . Now
consider the following sequence of games:

Game 1 This is the original IND-q-CCA2 security experiment ExptIND-q-CCA2Γ,A (λ).
Game 2 In this game, we change the computation of the public key pk of Γ and the decapsulation

oracle as follows:

– The public key pk is generated by firstly picking x, y ← Zp uniformly at random, computing
(κ, τ)← HTrapGen(Λ, gx, gy), and setting pk ← (Λ, κ).

– The decapsulation oracle will, on input a ciphertext c, compute (ac, bc)← HTrapEval(τ, c)
and return the key K = cxac+ybc .

The remaining part is unchanged from Game 1.

Let Succi be the event that A succeeds in correctly guessing the challenge bit in Game i. Then
the advantage of A can be expressed as

AdvIND-q-CCA2Γ,A (λ) = Pr[Succ1]− 1

2
≤ |Pr[Succ1]− Pr[Succ2]|+ Pr[Succ2]− 1

2

In the following claims, we will bound each term in the right hand side of the above inequality.

Claim 26 |Pr[Succ1]− Pr[Succ2]| is negligible.

Proof. (of Claim 26) Note that the distribution of the hash key κ returned by HTrapGen is sta-
tistically close to the κ returned by HGen. Hence, the distribution of the public key pk and the
challenge ciphertext/session-key pair (c∗,K∗b) in Game 1 is statistically close to that of Game 2.
Furthermore, note that the output of the decapsulation oracle agree in Game 1 and Game 2 on all
ciphertexts c. Specifically, let c = gr for some r ∈ Zp and let (ac, bc)← HTrapEval(τ, c). In Game
2, the session-key K returned by the decapsulation oracle satisfies

K = cxac+ybc = (gr)xac+ybc =
(
(gx)ac(gy)bc

)r
= Eval(κ, c)r

where the last equality is due to the property of HTrapEval. This completes the proof of Claim 26.
ut

Claim 27 There exist a PPTA B and a noticeable function µ(·) with the following properties: (1)
B is an algebraic oracle algorithm with respect to GS that treats A as an oracle, and (2) it holds
that AdvDDHGS,B(λ) ≥ µ(λ) · (Pr[Succ2]− 1/2).

30

Proof. (of Claim 27) We will construct a PPT algorithm B which, using A as a building block,
solves the DDH problem with respect to GS with the claimed advantage. Initially, B receives a
group description Λ = (g, p,G) and an instance (gα, gβ , Z) of the DDH problem, where Z is either
a random element in G or Z = gαβ . The goal of B is to output the bit 0 if Z is random in G, and
1 if Z = gαβ . B is constructed as follows.

B(Λ = (g, p,G), gα, gβ , Z): B regards α as x in Game 2 (although B does not know the exact value
of α). B picks y ← Zp uniformly at random, runs (κ, τ)← HTrapGen(gα, gy), sets pk ← (Λ, κ),
and runs A1(pk).
When A1 submits a decapsulation query c, B proceeds as follows: B computes (ac, bc) ←
HTrapEval(τ, c). If ac 6= 0, B aborts and outputs a random bit. Otherwise (i.e. ac = 0), B
computes the key K = cybc . Note that in this case, the key K is computed correctly as in
Game 2 since letting c = gr for some r ∈ Zp, we have K = cybc = ((gα)ac(gy)bc)r = Eval(κ, c)r.
At some point, A1 will terminate with state information st. B then sets the challenge en-
capsulation to be c∗ ← gβ and computes (ac∗ , bc∗) ← HTrapEval(τ, c∗). If ac∗ = 0, B aborts
and outputs a random bit. Otherwise (i.e. ac∗ 6= 0), B computes the challenge session-key as
K∗ ← Zac∗ (gβ)ybc∗ . Note that if Z = gαβ , we must have

K∗ = (gαβ)ac∗ (gβ)ybc∗ = ((gα)ac∗ (gy)bc∗)β = Eval(κ, c∗)β

which corresponds to the session-key encapsulated by c∗ = gβ in Game 2. On the other hand,
if Z is random in G, then so is K∗. B then runs A2 with input (st, c∗,K∗).
If A2 submits a decapsulation query, B will respond as in a decapsulation query submitted by
A1. Note that A1 and A2 are allowed to ask at most q decapsulation queries in total.
Eventually, A2 will terminate with output a bit which B simply outputs as his answer to the
problem instance (gα, gβ , Z).

The above completes the description of B. It is easily seen that B is an algebraic oracle algorithm
with respect to GS which treats the adversary A as an oracle.

Let Abort be the event that B aborts in the experiment, and let SuccB be the event that B
succeeds in solving the DDH problem. The advantage of B in solving the DDH problem is given
by

AdvDDHGS,B(λ) = Pr[SuccB]− 1

2

= Pr[SuccB|Abort] · Pr[Abort] + Pr[SuccB|Abort] · Pr[Abort]− 1

2

Since B provides a perfect simulation of Game 2 for A when Abort does not occur, we must have
Pr[SuccB|Abort] = Pr[Succ2]. Furthermore, B will output a random bit when Abort occurs and
therefore, Pr[SuccB|Abort] = 1/2. Hence,

AdvDDHGS,B(λ) = Pr[Succ2] · Pr[Abort] +
1

2
Pr[Abort]− 1

2

= Pr[Abort] ·
(

Pr[Succ2]− 1

2

)
According to the conditions in which B aborts, we have

Pr[Abort] = Pr[ac1 = · · · = acq = 0 ∧ ac∗ 6= 0],

where ci denotes the i-th decapsulation query, (aci , bci) ← HTrapEval(τ, ci), and (ac∗ , bc∗) ←
HTrapEval(τ, c∗). It follows directly from the assumption that H is a (q, 1)-programmable hash
function that this probability is noticeable. Therefore, Claim 27 follows by letting µ(λ) denote the
probability Pr[Abort]. ut

Combining the above two claims yields that the KEM Γ can be proven to be IND-q-CCA2
secure under the DDH assumption via an algebraic black-box reduction. This completes the proof
of Theorem 12. ut

31

