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Abstract. This paper shows a generic method of constructing CCA-
secure public key encryption schemes with leakage resilience on the secret
key. It is based on a new kind of universal2 hash proof system which
accepts an auxiliary parameter. Specifically, two schemes are presented,
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1 Introduction

1.1 Background

Building cryptographic schemes secure even if the secrets are partially leaked is
a trend in cryptography, motivating partially from side channel attacks. In this
paper we are interested in public key encryption (PKE) schemes with leakage
resilience. Let us first summarize the literature.

In 2009, Akavia, Goldwasser, and Vaikuntanathan [1] gave the model and
the first leakage-resilient chosen plaintext attack (IND-lrCPA) secure scheme
under the LWE assumption. Afterwards, Naor and Segev [9] presented both
IND-lrCPA-secure and leakage-resilient chosen ciphertext attack (IND-lrCCA)
secure schemes based on the decisional Diffie-Hellman (DDH) assumption. More
precisely, they used universal1 hash proof systems (HPS) [2] to build IND-
lrCPA-secure schemes. For IND-lrCCA-secure schemes, they used the Naor-Yung
paradigm yielding schemes with good leakage tolerance, but are quite inefficient,
so is of theoretical interest. To achieve efficiency, they considered the Cramer-
Shoup scheme [3] under the DDH assumption.

Dodis et al. [5] continued by schemes with very good leakage tolerance, but
with a big trade-off in efficiency (see Table 1).

It might be quite curious that Naor and Segev did not mention anything
on universal2 HPS in [9]. Furthermore, they did not examine other well-known
variants of Cramer-Shoup like the Kurosawa-Desmedt scheme [4,8]. In fact, there
are certain difficulties for settling these, as we show below.
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Table 1. IND-lrCCA-secure PKE schemes.

Schemes #Exps Ciphertext size Leakage rate Assumption
[enc; dec] (in bits)

Naor-Segev [9] [4.5; 3] |s|+ |m|+ 3|q| 1/6 DDH

Dodis et al. [5] – ≥ (36 + 9/δ)|q| 1− δ DLIN (pairing)

Ours (Sect.4.4) – |s|+ |m|+ (2 + 1
3
)|N1| 1/12 DCR

Ours (Sect.4.3) [4.5; 1.5] |s|+ |m|+ (3 + 1
3
)|q| 1/18 DLIN (no pairing)

Above, s: seed; m: message; q, |q|: base group order and its bit length, N1: base mod-
ulus; 0 < δ < 1 and `2 < |q|, |N1|. We treat one multi-exponentiation as 1.5 single
exponentiation, and only consider schemes in G = 〈g〉 for computational cost. The
scheme in [5] requires heavy computation, including pairing, so we do not put the cost
for comparison.

1.2 Our contributions

Results. We show how to construct IND-lrCCA-secure PKE schemes from
universal2 HPS accepting an auxiliary input. Specifically, two schemes are pre-
sented, basing on the decisional composite residuosity (DCR) assumption and
DLIN assumption respectively. Our DCR-based scheme is the first one with IND-
lrCCA security in the literature. Likewise, our DLIN-based scheme is the first
one without pairing operations. Hence it is much more efficient than the previous
scheme [5] albeit the leakage rate is smaller.

A comparison is given in Table 1, where the leakage rate is defined as the
supremum of

total leakage size

secret key size
,

when considering large base groups.

Technical hurdles. For illustrative discussions, let us consider the Kurosawa-
Desmedt scheme which is IND-CCA secure under the DDH assumption [8]. It
serves as a warm up for our generic construction although the leakage rate is
smaller3 than that of [9].

The secret key is sk = (x1, x2, y1, y2) and the public key contains c = gx1
1 gx2

2

and d = gy11 g
y2
2 , and a target collision resistant function TCR. A ciphertext on

message m is of the form (u1, u2, e, t) where u1 = gr1, u2 = gr2, e = SEk1(m),
t = MACk2(e), where (k1, k2) is derived from v = crdr·TCR(u1,u2).

Roughly speaking, the crux in proving CCA security in [4, 8] is to show
that any v is randomly distributed given c, d and a fixed v∗. This implies that
(k1, k2) is random, so that symmetric encryption e = SEk1(m) together with
authentication MACk2(e) will guarantee CCA security.

However, in the leakage setting, it is not ensured that v is random. This is
because v = ux1+αy1

1 ux2+αy2
2 (for α = TCR(u1, u2)) is written as a function of sk,

and hence the adversary can ask for some information on it. A natural attempt

3 The leakage rate is 1/12 compared to 1/6 in [9].



to deal with this situation would be to extract random bits from v. Namely
let (k1, k2) = Ext(v; s) for a randomness extractor Ext, with a random seed s
additionally put in the ciphertext (to enable decryption). If v has high entropy,
(k1, k2) should be random as required.

The attempt, while intuitively appealing, does not work! The reason is that
the seed s is completely controlled by the adversary in decryption, and thus is
not random. In turn, (k1, k2) = Ext(v; s) is not random as desired.

Looking into [9], the same issue occurs, and is resolved as follows. The value
v itself is directly used for authentication, namely check v = ux1+αy1

1 ux2+αy2
2 for

every decryption request. However, the symmetric encryption key k1 comes from
another random source (an extra public key h = gz11 g

z2
2 ), which is unavailable in

our setting. (In fact, that source causes additional computation and ciphertext
size in [9], compared to ours.)

We overcome the above difficulty as follows. Let’s split v into three equal
parts, namely v = k0||k1||k2, and note that k0, k1, k2 have enough entropy when
v does. Here we at least need the leakage amount λ < |v|/3. The leakage rates
in our schemes are worsened by this step. The authentication (i.e. MAC) is now
of the form t = k1e ⊕ k2. When k1, k2 have high entropy, this authentication
will reject all ill-formed ciphertexts, since passing the authentication amounts to
computing k2 = t⊕ k1e. In addition, let the challenge e∗ = Ext(k∗0 ; s∗)⊕mb for
random seed s∗. It seems that the same issue on the seed is repeated here, but
it is not, since ill-formed ciphertexts are anyway rejected by the authentication,
and s∗ in forming the challenge ciphertext is not controlled by the adversary.

Generally, the same technique works for PKE derived from universal2 HPS
accepting an auxiliary parameter (which is the extractor’s seed), as shown in
Sect.4.2.

Organization of this paper. We present the leakage-resilient scheme based
on Kurosawa-Desmedt scheme in Sect.3. We show how to generalize the idea
to universal2 hash proof systems in Sect.4.2, which additionally yields schemes
based on DLIN and decisional composite residuosity (DCR) assumptions.

2 Preliminaries

Notations. For a set A, |A| denotes its cardinality. Taking a randomly from A

is expressed by a
$←A. Let |a| denote the number of bits representing a. Hence

|a| − 1 ≤ log2 a < |a|.

DDH assumption. Let G = 〈g〉 be a group of prime public order q generated
by g. The DDH assumption on G asserts that for all poly-time distinguisher D,

g1, g2
$←G, and r 6= s

$← Zq, the distance

εddh =
∣∣∣Pr[D(g1, g2, g

r
1, g

r
2) = 1]− Pr[D(g1, g2, g

r
1, g

s
2) = 1]

∣∣∣
is negligible on parameter log2 q.



Entropy and extractor. The statistical distance of random variables X,Y over
a finite domain Ω is SD(X,Y ) = 1

2

∑
a∈Ω |Pr[X = a] − Pr[Y = a]|. The min-

entropy of X is H∞(X) = − log2(maxx Pr[X = x]). The average min-entropy of
X conditioned on Y is

H̃∞(X|Y ) = − log2

(
Ey←Y

[
2−H∞(X|Y=y)

])
,

as defined in [6], which also proved the following result.

Lemma 1 (Lemma 2.2 in [6]). If Y has 2λ possible values and Z is any
random variable, then

H̃∞(X|Y,Z) ≥ H̃∞(X,Y |Z)− λ ≥ H̃∞(X|Z)− λ ≥ H∞(X,Z)− λ.

When applying the lemma in our context, Y stands for the leakage on secret
key X, while Z is another information on X such as given by the public key.
The lemma then says that, given a leakage amount of λ bits, the secret key’s
entropy is decreased by λ. Hereafter, when referring to entropy, we mean average
min-entropy unless otherwise stated.

A function Ext : {0, 1}n × Seed → {0, 1}` is called a (k, εExt)-randomness
extractor if for all pairs of random variables (X, I) such that X is an n-bit string
satisfying H̃∞(X|I) ≥ k,

SD
(

(Ext(X, s), s, I), (rand, s, I)
)
≤ εExt,

where s
$← Seed and rand

$←{0, 1}`. In other words, Ext(X, s) is nearly random
given s and I (when εExt is small enough). Randomness extractors can be realized
via pairwise independent hash functions.

PKE with IND-lrCCA security. A PKE consists of key generation KG, en-
cryption Enc, and decryption Dec algorithms. KG outputs public key pk and
secret key sk. The algorithm Encpk(m) returns a ciphertext c which can be
decrypted by Decsk(c).

To define leakage-resilient CCA security for PKE, consider the following game
with adversary A. First, (pk, sk) ← KG and pk is given to A. In the so-called
find stage, A can access to a decryption oracle Decsk(·) to decrypt any string of
its choice. Furthermore, A can query arbitrary functions f to a leakage oracle
Leaksk(·) which returns f(sk). We require that the total length of all returned
f(sk) must less than a fixed λ in bits.

Then A submits a pair of m0,m1 such that |m0| = |m1| to a challenge oracle.
The oracle returns a challenge ciphertext C∗ = Encpk(mb), where b ∈ {0, 1} is
randomly chosen.

After that, in the guess stage, A can access to the decryption oracle Decsk(·)
but cannot to the leakage oracle Leaksk(·). (This restriction is necessary since
otherwise A uses f(·) = Dec(·)(C

∗) to get partial information on mb, so the
game is trivial.) A is not allowed to query the challenge ciphertext C∗ to the
decryption oracle, either. Finally, A returns b′ as a guess of the hidden b.



The PKE scheme is IND-lrCCA-secure if∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
is negligible for all poly-time A.

3 Leakage-Resilient Kurosawa-Desmedt Scheme

In this section, we show a leakage resilient variant of Kurosawa-Desmedt encryp-
tion scheme [4,8] with the leakage rate 1/12 under the DDH assumption. This is
a warm up of our generic construction later in Sect.4 although the leakage rate
is smaller than 1/6 in [9].

Let G be a group of order q. We assume that there exists an injection KDF :
G→ {0, 1}|q|. For example, let G = (Z∗q)2 be the q-order subgroup of Z∗p (where
p = 2q + 1 is also a prime). Then the following KDF satisfies our condition4.

KDF(x) =

{
x if 0 < x < p/2
p− x if p/2 < x < p

Let Ext : {0, 1}|q|/3 × Seed→ {0, 1}` be a (|q|/3− λ, εExt)-randomness extractor,
and PRG : {0, 1}` → {0, 1}∗ be a pseudo-random generator. Also needed are
target collision resistant (TCR) functions TCR : G2×Seed→ Zq, and a collision

resistant hash function H : {0, 1}∗ → {0, 1}
|q|
3 .

Key generation: Let a secret key be sk = (x1, x2, y1, y2)
$← Z4

q. Compute c =

gx1
1 gx2

2 and d = gy11 g
y2
2 , where g1, g2

$←G. The public key is pk = (g1, g2, c, d).
Encryption of m ∈ {0, 1}∗:

r
$← Zq, u1 ← gr1, u2 ← gr2, s

$← Seed, α← TCR(u1, u2, s) ∈ Zq
v ← crdrα, k0||k1||k2 ← KDF(v),where |k0| = |k1| = |k2| = |q|/3

e← PRG(Ext(k0; s))⊕m, t← k1H(e) + k2

(
over GF(2

|q|
3 )
)

Output (u1, u2, e, t, s)

Decryption of (u1, u2, e, t, s):

α← TCR(u1, u2, s), v ← ux1+αy1
1 ux2+αy2

2 , k0||k1||k2 ← KDF(v).

If t = k1H(e) + k2, then output m = PRG(Ext(k0; s))⊕ e. Else output ⊥.

The leakage rate. Remember that the total leakage on sk which an adversary

can learn from the leakage oracle is less than λ bits. Setting 2λ−
|q|
3 (see below)

to be negligible, i.e., λ− |q|3 = −η for η-bit security leads to λ = |q|
3 − η, which

means the leakage rate λ
|sk| = λ

4|q| approaches 1
12 when the group size q becomes

large.

4 This is because −1 ∈ Z∗p is a quadratic non-residue, so x 6= p− x′ for x, x′ ∈ (Z∗p)2.



Theorem 1 The above scheme is IND-lrCCA-secure with leakage rate 1/12 un-
der the DDH assumption.

Proof. Let Ki denotes the random variable induced by ki for i = 0, 1, 2. We say
that a ciphertext (u1, u2, e, t, s) is invalid if u1 = gr11 , u2 = gr22 and r1 6= r2.
We will proceed in games, each of which is a modification of the previous one.
Below, Pr[Xi] = Pr[b′ = b in Gamei].

Game0: This game is the IND-lrCCA attack game with an adversary A.
The challenge ciphertext is denoted by C∗ = (u∗1, u

∗
2, e
∗, t∗, s∗). We denote

by r∗, α∗, v∗, k∗0 , k
∗
1 , k
∗
2 the corresponding intermediate quantities. We also as-

sume that r∗, u∗1, u
∗
2, α
∗, v∗, k∗0 , k

∗
1 , k
∗
2 are computed at the beginning of the game

because they do not depend on m0,m1 which are provided by A later.

Game1: The challenge oracle computes v∗ as

v∗ = (u∗1)x1+α
∗y1(u∗2)x2+α

∗y2

where u∗1 = gr
∗

1 , u
∗
2 = gr

∗

2 for r∗
$← Zq, s∗

$← Seed and α∗ = TCR(u∗1, u
∗
2, s
∗). Then

we have Pr[X0] = Pr[X1] because the value of v∗ remains the same in the two
games.

Game2: The challenge oracle chooses r∗1 6= r∗2 ∈ Zq randomly, and compute

(u∗1, u
∗
2) = (g

r∗1
1 , g

r∗2
2 ).

We can show that |Pr[X1] − Pr[X2]| is negligible under the DDH assumption
in the same way as in [4, 8]. In particular, the DDH distinguisher can simulate
the leakage oracle which returns by f(sk) because sk is chosen by the DDH
distinguisher

Game3: The decryption oracle is given not only sk but also ω such that g2 = gω1 .
We can do this because we do not use the DDH distinguisher from now on. Then
in the find stage, the decryption oracle returns ⊥ for (u1, u2, e, t, s) if u2 6= uω1 .
That is, the simulator rejects all invalid ciphertexts in the find stage.

We show |Pr[X2]− Pr[X3]| is negligible. Namely, we prove that in Game2,
any invalid ciphertext is rejected by the decryption oracle with overwhelming
probability. Note that, from the adversary’s point of view, sk = (x1, x2, y1, y2)
is uniformly random subject to c = gx1

1 gx2
2 and d = gy11 g

y2
2 , ignoring the leakage

functions f for now.
Let C ′ = (u1, u2, e, t, s) be the first invalid ciphertext queried by A, where

u1 = gr11 , u2 = gr22 and r1 6= r2. Let v = ux1+αy1
1 ux2+αy2

2 . Then

 logg1 c
logg1 d
logg1 v

 =

 1 0 ω 0
0 1 0 ω
r1 r1α r2ω r2ωα


︸ ︷︷ ︸

U


x1
y1
x2
y2

 ,



and the matrix U is of rank 3. This means that v is random from A’s point of
view.

Now A learns at most λ bits leakage f(sk). Given f(sk) and (c, d), the
entropy of v is at least log q − λ from Lemma 1. The entropy of (K0,K1,K2) is
also log q − λ because k0||k1||k2 = KDF(v) and KDF is an injection. Therefore
for any k0, k1, k2,

Pr[K0 = k0,K1 = k1,K2 = k2] ≤ 2λ/q.

Hence

Pr[K1 = k1,K2 = k2] =
∑
k0

Pr[K0 = k0,K1 = k1,K2 = k2] ≤ 2|q|/3 · 2λ/q

Let B = {(k1, k2) | t = k1H(e) + k2}. Then |B| ≤ 2|q|/3. Finally we have

Pr
k1,k2

[t = k1e
′ ⊕ k2] =

∑
(k1,k2)∈B

Pr[K1 = k1,K2 = k2]

≤
∑

(k1,k2)∈B

2|q|/3 · 2λ/q

≤ 22|q|/3 · 2λ/q
≤ 2λ+1/2|q|/3 (since log2 q ≥ |q| − 1)

This means that C ′ is rejected with overwhelming probability. An almost iden-
tical argument holds for all the subsequent invalid decryption queries.

Game4: In the guess stage, if A queries an invalid ciphertext with (u1, u2, s) 6=
(u∗1, u

∗
2, s
∗) but α = α∗, then the decryption oracle returns ⊥.

We can show that |Pr[X3]−Pr[X4]| is negligible in the same way as in [4,8]
because TCR is a target collision resistant function.

Game5: In the guess stage, if A queries an invalid ciphertext with (u1, u2, s) 6=
(u∗1, u

∗
2, s
∗) and α 6= α∗, then the decryption oracle returns ⊥.

We show that |Pr[X4] − Pr[X5]| is negligible by proving such ciphertext is
also rejected with overwhelming probability in Game4. The situation is similar
to Game3. The difference is that A may know v∗ as well as c and d.

Suppose that A queries such an invalid ciphertext C = (u1, u2, e, t, s) with
u1 = gr11 and u2 = gr22 . Let v = ux1+αy1

1 ux2+αy2
2 . Then

logg1 c
logg1 d
logg1 v

∗

logg1 v

 =


1 0 ω 0
0 1 0 ω
r∗1 r

∗
1α
∗ r∗2ω r

∗
2ωα

∗

r1 r1α r2ω r2ωα


︸ ︷︷ ︸

M


x1
y1
x2
y2

 ,

in which det(M) = ω2(r∗2 − r∗1)(r2 − r1)(α − α∗) 6= 0. Hence by using the same
argument as given in Game3, we can see that C is rejected with overwhelming
probability.



Game6: In the guess stage, if A queries an invalid ciphertext C 6= C∗ such that
(u1, u2, s) = (u∗1, u

∗
2, s
∗), then the decryption oracle returns ⊥.

We show that |Pr[X5] − Pr[X6]| is negligible, by proving that in Game5,
any such ciphertext is also rejected with overwhelming probability. Let C ′ =
(u1, u2, e, t, s) be the first such ciphertext queried by A. Since (u1, u2, s) =
(u∗1, u

∗
2, s
∗), we have v = v∗. Hence (k1, k2) = (k∗1 , k

∗
2). If C ′ is accepted, then

t∗ = k∗1H(e∗) + k∗2

t = k∗1H(e) + k∗2

If e = e∗, then t = t∗ which means that C ′ = C∗. Therefore it must be that
e 6= e∗. In this case, H(e) 6= H(e∗) since H is collision resistant. Then there
exists a unique solution (k∗1 , k

∗
2) which satisfies the above linear equations. Let

(a1, a2) denote this solution.
On the other hand, in Game5, A does not learn any more information on

(x1, x2, y1, y2) from the invalid ciphertexts such that (u1, u2, s) 6= (u∗1, u
∗
2, s
∗)

because they are all rejected. Hence it is enough to consider

 logg1 c
logg1 d
logg1 v

∗

 =

 1 0 ω 0
0 1 0 ω
r∗1 r

∗
1α
∗ r∗2ω r

∗
2ωα

∗


︸ ︷︷ ︸

V


x1
y1
x2
y2

 ,

Since the matrix V has rank 3, v∗ is random from A’s point of view if we
ignore the leakage functions f and C∗. Note k∗0 ||k∗1 ||k∗2 = KDF(v∗) and e∗ is
independent of (k∗1 , k

∗
2). Hence given f(sk), and t∗ ∈ {0, 1}|q|/3 and (c, d), the

entropy of (k∗1 , k
∗
2) is at least

(2/3)|q| − 1− λ− |t∗| ≥ |q|/3− λ− 1.

Therefore,

Pr[C ′ is accepted] = Pr[K∗1 = a1,K
∗
2 = a2] ≤ 2λ+1/2|q|/3.

This means that C ′ is rejected with overwhelming probability. All the subsequent
such ciphertexts are rejected similarly.

Game7: Replace PRG(Ext(K∗0 , s
∗)) with a random string in the challenge ci-

phertext C∗. We show that |Pr[X6]− Pr[X7]| is negligible.
In Game6, all invalid ciphertexts are rejected by the decryption oracle. In

addition, by submitting valid ciphertexts, A only learns a linear combination
of logg1 c = x1 + ωx2 and logg1 d = y1 + ωy2 which A already knew from the
public key. Hence as shown in Game6, v∗ is random from A’s point of view if
we ignore the leakage functions f and C∗. Further k∗0 ||k∗1 ||k∗2 = KDF(v∗) and k∗0
is independent of t∗. Hence given f(sk), t∗ and (c, d), the entropy of K∗0 is at
least

|q|/3− λ− 1.



Hence Ext(K∗0 , s
∗) is statistically indistinguishable from a random string. Thus,

PRG(Ext(K∗0 , s
∗)) is computationally indistinguishable from a random string.

Now in Game7, e∗ = R ⊕ mb, where R is a random string. Therefore A
learns no information on mb from e∗. Hence

Pr[X7] = Pr[b′ = b in Game7] = 1/2.

This means that |Pr[b′ = b]− 1/2| is negligible in the original attack game. ut

4 Generalization to universal hash proof system

In this section, we generalize our leakage resilient scheme of Sect.3 to universal
hash proof systems (HPS).

4.1 HPS with auxiliary input

The notion of hash proof systems was introduced by Cramer and Shoup to
construct IND-CCA secure hybrid encryption scheme [2]. In key encapsulation
mechanism (KEM), let SK,PK, and K be sets of secret keys, public keys, and
encapsulated symmetric keys. E is the set of all ciphertexts of KEM, and V ⊂ E is
the set of all “valid” ones. In addition, S is a set of seeds. In Kurosawa-Desmedt
scheme, SK = G4, PK = G2, E = G2, K = G, V = {(gr1, gr2) : r ∈ Zq}, and
S = Seed.

The subset membership assumption says that V is indistinguishable from
E . If V = {(gr1, gr2) : r ∈ Zq} and E = G2 as above, this is exactly the DDH
assumption.

A function Λsk : E×S → K is projective if there exists a projection µ : SK →
PK such that pk = µ(sk) defines Λsk : V×S → K. Namely, for every E ∈ V, the
value K = Λsk(E, s) is uniquely determined by pk = µ(sk) and (E, s), where
s ∈ S.

A projective function Λsk is called computationally universal2 if for all E,E∗ 6∈
V with (E, s) 6= (E∗, s∗),(

pk,Λsk(E∗, s∗),Λsk(E, s)
)

and
(
pk,Λsk(E∗, s∗),K

)
are computationally indistinguishable, where sk and K are random. It is worth
noting that Λsk has an additional input s, compared to previous works. While
the original HPS in [2] requires E 6= E∗, our property here allows E = E∗ if
s 6= s∗.

In our scheme of Sect.3,

Λsk

(
E = (u1, u2), s

)
= ux1+αy1

1 ux2+αy2
2



where α = TCR(E, s). To prove that Λsk(E, s) is random conditioned on pk and
Λsk(E∗, s∗), since

logg1 c
logg1 d

logg1 Λsk(E∗, s∗)
logg1 Λsk(E, s)

 =


1 0 ω 0
0 1 0 ω
r∗1 r

∗
1α
∗ r∗2ω r

∗
2ωα

∗

r1 r1α r2ω r2ωα


︸ ︷︷ ︸

M


x1
y1
x2
y2

 ,

it suffices to show det(M) 6= 0. Again, this holds true because det(M) =
ω2(r∗2 − r∗1)(r2 − r1)(α − α∗), and r∗2 6= r∗1 , r2 6= r1 (since E,E∗ 6∈ V), and
α = TCR(E, s) 6= α∗ = TCR(E∗, s∗) since (E, s) 6= (E∗, s∗).

Hash proof system. A hash proof system HPS consists of three algorithms
(Param,Pub,Priv). Param generates (group,SK,PK,K, E ,V,Λ(·)(·), µ : SK →
PK,S).

Pub(pk,E, s, r) returns Λsk(E, s) for E ∈ V, where s ∈ S and r is a witness
of the fact that E ∈ V. Priv(sk,E, s) returns Λsk(E, s) (without knowing a
witness).

4.2 Leakage resilient CCA-secure PKE from HPS

Let q = |K| (prime, except in Sect.4.4). We assume that there exists an injection
KDF : K → {0, 1}|q|. Let Ext : {0, 1}|q|/3 × Seed → {0, 1}` be a (|q|/3 − λ, εExt)-
randomness extractor, and PRG : {0, 1}` → {0, 1}∗ be a pseudo-random genera-

tor. Also needed is a collision resistant hash function H : {0, 1}∗ → {0, 1}
|q|
3 .

Key generation: Run Param to define (group,SK,PK,K, E ,V,Λ(·)(·), µ :
SK → PK,S). Let a public key be pk = µ(sk) for a random secret sk ∈ SK.

Below |k0| = |k1| = |k2| = log2 |K|
3 .

Encryption of m ∈ {0, 1}∗:

E (witness r)
$←V, s $← Seed, v ← Pub(pk,E, s, r)

k0||k1||k2 ← KDF(v),where |k0| = |k1| = |k2| = |q|/3

e← PRG(Ext(k0; s))⊕m, t← k1H(e) + k2

(
over GF(2

|q|
3 )
)

Output (E, e, t, s)

Decryption of (E, e, t, s):

v ← Priv(sk,E, s), k0||k1||k2 ← KDF(v)

If t = k1H(e) + k2, then output PRG(Ext(k0; s))⊕ e. Else output ⊥

Theorem 2 The above generic construction is IND-lrCCA-secure.

The proof idea is almost the same as that of Theorem 1. More details are
given below.



Table 2. Decryption of query (e, E, t, s).

In Game0,1,2 In Game3,4

1: if (E, s) = (E∗, s∗) then
2: if t 6= k∗1e⊕ k∗2 then
3: return ⊥
4: else
5: return Ext(k∗0 ; s∗)⊕ e
6: end if
7: else if E 6∈ V then
8: k0||k1||k2 ← Λsk(E, s)
9: if t 6= k1e⊕ k2 then return ⊥

10: else return Ext(k0; s)⊕ e
11: else
12: k0||k1||k2 ← Λsk(E, s)
13: if t 6= k1e⊕ k2 then return ⊥
14: return Ext(k0; s)⊕ e
15: end if

1: if (E, s) = (E∗, s∗) then
2: if t 6= k∗1e⊕ k∗2 then
3: return ⊥
4: else
5: return Ext(k∗0 ; s∗)⊕ e
6: end if
7: else if E 6∈ V then
8: return ⊥
9: else

10: k0||k1||k2 ← Λsk(E, s)
11: if t 6= k1e⊕ k2 then return ⊥
12: return Ext(k0; s)⊕ e
13: end if

Proof. We proceed in games as follows.

Game0: This game is the IND-CCA attack game with leakage. Without loss of
generality, assume that E∗, s∗, r∗ are generated at the beginning of the game.
Let k∗0 ||k∗1 ||k∗2 = Priv(sk,E∗, s∗). When the adversary submits (m0,m1), the
simulator computes

e∗ = PRG(Ext(k∗0 ; s∗))⊕mb, t
∗ = k∗1 ·H(e∗)⊕ k∗2 .

Also, decryption queries are handled as in Table 2.

Game1: Compute Pub(pk,E∗, s∗, r∗) as Priv(sk,E∗, s∗). We have Pr[X0] =
Pr[X1].

Game2: Take E∗
$←C\V. We have |Pr[X1]−Pr[X2]| ≤ εsm thanks to the subset

membership problem.

Game3: Any decryption query (e, E, t, s) with (s, E) 6= (s∗, E∗) and E 6∈ V
is answered by ⊥. We have |Pr[X2] − Pr[X3]| ≤ εhash thanks to the εhash-
computationally universal2 property. Namely, Λsk(E, s) = Pub(pk,E, s, r) =
k0||k1||k2 is random-like conditioned on pk and Λsk(E∗, s∗). Conditioned fur-
ther on the leakage amount λ, the entropy of k1||k2 is still high, so that the
check k2 = t⊕ k1e goes through with negligible probability (which is computed
like in the proof of Theorem 1.)

Game4: Replace Ext(k∗0 ; s∗) in the challenge ciphertext by a random string,
so that e∗ = Ext(k∗0 ; s∗) ⊕ mb completely hides the challenge bit b. We have
|Pr[X3]− Pr[X4]| ≤ εhash and Pr[X4] = 1/2.



The reason is that, thanks to the εhash-computationally universal2 property,
Λsk(E∗, s∗) = k∗0 ||k∗1 ||k∗2 still has high entropy, given Λsk(E, s), pk and leakage
amount λ. To obtain any further information on K∗0 , the adversary must submit
for decryption queries of the form (s∗, E∗, e, t) with (e, t) 6= (e∗, t∗). However,
since k∗1 ||k∗2 has high entropy, those decryption queries will be rejected. ut

4.3 Instantiation under the d-Linear Assumption

We use the HPS based on the decisional d-linear assumption (DLIN) given by [7,
Sect.5.2] for d = 2. In this HPS, SK = Z6

q, PK = G4, K = G, S = Seed. Also
E = G3 and V = {(gr11 , g

r2
2 , h

r1+r2) : r1, r2 ∈ Zq}, where g1, g2, h ∈ G. The DLIN
assumption says that E and V are indistinguishable.

Key generation: Let a secret key be sk = (x1, x2, y1, y2, z, z
′)

$← Z6
q. Compute

c1 = gx1
1 hz, c2 = gx2

2 hz, d1 = gy11 h
z′ , d2 = gy22 h

z′ . where g1, g2, h
$←G. The

public key is pk = (g1, g2, h, c1, c2, d1, d2).

Encryption of m ∈ {0, 1}∗:

r1, r2
$← Zq, u1 ← gr11 , u2 ← gr22 , u3 ← hr1+r2

s
$← Seed, α← TCR(u1, u2, u3, s) ∈ Zq, v ← (cα1 d1)r1(cα2 d2)r2

k0||k1||k2 ← KDF(v),where |k0| = |k1| = |k2| = |q|/3

e← PRG(Ext(k0; s))⊕m, t← k1H(e) + k2

(
over GF(2

|q|
3 )
)

Output (u1, u2, u3, e, t, s)

Decryption of (u1, u2, u3, e, t, s):

α← TCR(u1, u2, u3, s), v ← ux1+αy1
1 ux2+αy2

2 uz+αz
′

3 , k0||k1||k2 ← KDF(v).

If t = k1H(e) + k2, then output m = PRG(Ext(k0; s))⊕ e. Else output ⊥.

Let λ be the leakage amount on sk. We need 2λ−
|q|
3 to be negligible. For η-bit

security, let 2λ−
|q|
3 = 2−η, so λ = |q|

3 − η. This means the leakage rate

λ

|sk|
=

(1/3)|q| − η
6|q|

approaches 1/18 when the group order q becomes large.

Theorem 3 The above encryption scheme is IND-lrCCA-secure with leakage
rate 1/18 under the DLIN assumption.



4.4 Instantiation under the DCR Assumption

We use the HPS based on the decisional composite residuosity assumption
(DCR) given by [2]. Let p1 = 2p2 + 1 and q1 = 2q2 + 1 be primes, where p2
and q2 are also primes. Let N1 = p1q1 and N2 = p2q2. Let G be the subgroup
of Z∗

N2
1

with order N1N2. Note that G is written as G = GN1
· GN2

where Gn
denotes a cyclic group of order n. Let g be a generator of G, so that g1 = gN2 is
a generator of GN1

and g2 = gN1 is a generator of GN2
.

In this HPS, SK = {0, . . . , bN2
1 /2c}2, PK = G2

N2
, K = ZN1 , and S = Seed.

Also E = G and V = {gr2 mod N2
1 : r ∈ {0, . . . , N1/4}}. The DCR assumption

says that E and V are indistinguishable.
Let Ext : {0, 1}|N1|/3 × Seed → {0, 1}` be a (|N1|/3 − λ, εExt)-randomness

extractor, and PRG : {0, 1}` → {0, 1}∗ be a pseudo-random generator. Also

needed are a collision resistant hash function H : {0, 1}∗ → {0, 1}
|N1|

3 , and a
target collision resistant TCR : {0, 1}∗ → ZbN2

1 /2c. Below KDF : ZN1 → ZN1 is
the identity function.

Key generation: Let a secret key be sk = (x, y)
$←SK. Compute c = gx2 mod

N2
1 and d = gy2 mod N2

1 The public key is pk = (N1, g2, c, d).
Encryption of m ∈ {0, 1}∗:

r
$←{0, . . . , N1/4}, u← gr2 mod N2

1 , s
$← Seed, α← TCR(u, s),

v ← (cαd)r mod N1, k0||k1||k2 ← KDF(v),where |k0| = |k1| = |k2| =
|N1|

3

e← PRG(Ext(k0; s))⊕m, t← k1H(e) + k2

(
over GF(2

|N1|
3 )
)

Output (u, e, t, s)

Decryption of (u, e, t, s):

α← TCR(u, s), v ← uxα+y mod N1, k0||k1||k2 ← KDF(v),

If t = k1H(e)⊕ k2, then output PRG(Ext(k0; s))⊕ e. Else output ⊥

Again, set λ = (1/3) log2N1 − η. Note that |sk| ≈ 4 log2N1 so the leakage
rate λ/|sk| approaches 1/12.

Theorem 4 The above encryption scheme is IND-lrCCA-secure with leakage
rate 1/12 under the DCR assumption.
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