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Abstract

In this paper, we study timed-release cryptography with information-theoretic security. As
fundamental cryptographic primitives with information-theoretic security, we can consider key-
agreement, encryption, and authentication codes. Therefore, in this paper we deal with information-
theoretic timed-release security for all those primitives. Specifically, we propose models and formal-
izations of security for information-theoretic timed-release key-agreement, encryption, and authenti-
cation codes; we also derive tight lower bounds on entities’ memory-sizes required for all those ones;
and we show optimal constructions of all those ones. Furthermore, we investigate a relationship of
mechanisms between information-theoretic timed-release key-agreement and information-theoretic
key-insulated key-agreement. It turns out that there exists a simple algorithm which converts the
former into the latter, and vice versa. In the sense, we conclude that these two mechanisms are
essentially close.

1 Introduction

The security of most of present cryptographic systems is based on the assumption of difficulty of
computationally hard problems such as the integer factoring problem or the discrete logarithm problem
in finite fields or elliptic curves. However, taking into account recent rapid development of algorithms
and computer technologies, such a system based on the assumption of difficulty of computationally
hard problems might not maintain sufficient long-term security. In fact, it is known that quantum
computers can easily solve the factoring and discrete logarithm problems. From these aspects, it is
necessary and interesting to consider cryptographic techniques whose security does not depend on any
computationally hard problems, especially for the long-term security.

Informally, the goal of timed-release cryptography is to securely send a certain information into
the future. For instance, in timed-release encryption, a sender transmits a ciphertext so that a receiver
can decrypt it when the time which the sender specified has come, and the receiver cannot decrypt
it before the time. The timed-release cryptography was first proposed by May [11] in 1993, and after
that, Rivest et al. [13] developed it in a systematic and formal way. Since Rivest et al. gave a
formal definition of timed-release encryption in [13], various researches on timed-release cryptography
including timed-release signatures (e.g., [1, 8, 9]) and timed-release encryption have been done based
on computational security. In particular, timed-release public key encryption (TR-PKE for short)

∗This paper is the full version of [Watanabe, Y., Seito, T., Shikata, J.: Information-Theoretic Timed-Release Se-
curity: Key-Agreement, Encryption, and Authentication Codes. In: Smith, A. (ed.) 6th International Conference on
Information-Theoretic Security, LNCS 7412, pp. 167-187, Springer, Heidelberg (2012).]

1



has been recently researched intensively. Chan et al.[4] proposed the first TR-PKE scheme, but
did not present a formal security definition. Cathalo et al.[2] and Chalkias et al.[3] proposed direct
constructions of TR-PKE schemes based on number-theoretic assumptions in the random oracle model.
Independently, Cheon et al. [6] proposed a generic construction of TR-PKE and it is efficient and
provably secure in the standard model. And also, Fujioka et al.[7] proposed a generic construction of
TR-PKE that guarantees strong security in the random oracle model. It also should be noted that
Choen et al.[5] recently shows relationships between TR-PKE and key-insulated public-key encryption
(KI-PKE for short) with computational security setting.

To the best of our knowledge, there is no paper which reports on the study of information-theoretic
timed-release cryptography. If a sender wants to transmit a message far into the future, information-
theoretic security will be helpful in constructing timed-release mechanism, since its security can provide
the long-term security. In this paper, we study timed-release cryptography with information-theoretic
security. As fundamental cryptographic primitives with information-theoretic security, we can consider
information-theoretically secure key-agreement, encryption, and authentication codes. Therefore, in
this paper, we deal with information-theoretic timed-release security for all those primitives. Specifi-
cally, the contribution of this paper is as follows.

• TR-KA. We propose a model and formalization of security for timed-release key-agreement
(TR-KA for short) in information-theoretic security setting. We also derive tight lower bounds
on entities’ memory-sizes required for TR-KA. In addition, we propose an optimal direct con-
struction of TR-KA based on multivariate polynomials over finite fields.

• TRE. We propose a model and formalization of security for timed-release encryption (TRE for
short) in information-theoretic security setting. In addition, we derive tight lower bounds on
entities’ memory-sizes required for TRE. Furthermore, we present a simple generic construction
of TRE: TRE can be constructed from TR-KA and the one-time pad. In particular, the ap-
plication of our optimal direct construction of TR-KA in the generic construction leads to an
optimal direct construction of TRE.

• TRA-code. We propose a model and formalization of security for timed-release authentication
codes (TRA-codes for short) in information-theoretic security setting. We also derive tight lower
bounds on entities’ memory-sizes required for TRA-codes. In addition, we present two kinds of
constructions, generic and direct ones. Our generic construction of TRA-codes is simple: TRA-
codes can be constructed from TR-KA and traditional A-codes. Since the generic construction
does not lead to an optimal construction of TRA-codes, we also propose a direct construction
which is optimal.

• Relation between TR-KA and KI-KA. We investigate and show relationship between TR-
KA and key-insulated key-agreement (KI-KA for short) [15] in information-theoretic security
setting. It turns out that there exists a simple algorithm which converts TR-KA into KI-KA,
and vice versa. Therefore, we can conclude that the mechanisms of TR-KA and KI-KA are
essentially close. Note that this relationship in information-theoretic security setting is analogous
to that of TR-PKE and KI-PKE in computational security setting shown in [5].
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2 TR-KA: Timed-Release Key-Agreement with Information-Theoretic
Security

2.1 Model and Security Definition

In this section we show a model and a security definition of timed-release key-agreement (TR-KA for
short) with information-theoretic security. This is done based on those of timed-release schemes with
computational security and those of traditional key-agreement with information-theoretic security.

For simplicity, we assume that there is a trusted authority whose role is to generate and to distribute
secret-keys of entities. We call this model the trusted initializer model as in [12]. In TR-KA, there
are n+ 2 entities, n users U1, U2, . . . , Un, a time-server T for broadcasting time-signals and a trusted
initializer TI, where n is a positive integer. In this paper, we assume that the identity of each user Ui is
also denoted by Ui. In addition, when any two users communicate each other in a timed-release scheme
(i.e., not only TR-KA but also TRE and TRA-codes in the following sections) under consideration in
this paper, we call a user who specifies the time a sender and the other a receiver for convenience.

Informally, TR-KA is executed as follows. In the initial phase, TI generates secret-keys on behalf
of Ui (1 ≤ i ≤ n) and the time-server T. After distributing these keys via secure channels, TI deletes
them in his memory. Any user Ui1 can specify future time when Ui1 wants to share a common-key
with a user Ui2 , and he computes a common-key in advance by using Ui1 ’s secret-key and the identity
Ui2 . And Ui1 tells Ui2 the future time which Ui1 specified. The time-server T periodically broadcasts
a time-signal at each time which is generated by using T’s master-key. When the specified time has
come, Ui2 can compute a common-key shared with Ui1 by using Ui2 ’s secret-key, the identity Ui1 and
a time-signal of the specified time. Note that each user has two kinds of secret-keys: one is used for
generating a common-key when he is a sender; and the other is used for deriving a common-key when
he is a receiver. In TR-KA, we consider a non-interactive model where any two users can share a
common-key without interactive communications.

Formally, we give the definition of TR-KA as follows.1

Definition 1 (TR-KA). A timed-release key-agreement (TR-KA for short) Π involves n+2 entities,
TI, U1, U2, . . . , Un and T, and consists of a four-tuple of algorithms (Setup, Ext, KeyGen, KeyDer)
with five spaces, T CK, T UK, TMK, T , and T I, where all of the above algorithms except Setup are
deterministic and all of the above spaces are finite. In addition, Π is executed with four phases as
follows.

– Notation:

- Entities: TI is a trusted initializer, Ui (1 ≤ i ≤ n) is a user and T is a time-server which
broadcasts time-signals. Let U := {U1, U2, . . . , Un} be the set of all users.

- Spaces: T CK is a set of possible common-keys, and TMK is a set of possible master-keys.
T := {1, 2, . . . , τ} is a set of time. T I(t) is a set of time-signals at time t. Let T I :=∪τ

i=1 T I
(i). Also, T UK(S)

i is a set of possible Ui’s secret-keys for common-key generation.
And also, T UK(R)

i is a set of possible Ui’s secret-keys for common-key derivation. Then,
T UKi := T UK(S)

i × T UK(R)
i is the set of possible secret-keys for Ui with an associated

probability distribution PTUKi . Let T UK(S) :=
∪n

i=1 T UK
(S)
i , T UK(R) :=

∪n
i=1 T UK

(R)
i ,

and T UK :=
∪n

i=1 T UKi.

1Note that our models of information-theoretically secure timed-release schemes (i.e., Definitions 1, 4 and 6) are
almost the same as those of computationally secure timed-release schemes [2, 4, 5, 6, 7] except for considering the trusted
initializer in our models.
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- Algorithms: Setup is a key generation algorithm which on input a security parameter 1k,
outputs users’ secret-keys and a time-server’s master-key, Ext : TMK×T → T I is a time-
signal generation algorithm for T , KeyGen: T UK(S) × T × U → T CK is a common-key
generation algorithm and KeyDer : T UK(R)×T I ×U → T CK is a common-key derivation
algorithm.

1. Key Generation and Distribution. In the initial phase, TI generates the following keys by
using Setup: a master-key tmk∗ ∈ TMK for T; and a secret-key tuki = (tuk(S)

i , tuk
(R)
i ) ∈ T UKi

for Ui (i = 1, 2, . . . , n). These keys are distributed to corresponding entities via secure channels.
After distributing these keys, TI deletes them from his memory. And, T and Ui keep their keys
secret, respectively.

2. Time-signal Generation. For broadcasting a time-signal at each time, T generates a time-
signal tmk(t) =Ext(tmk∗, t) ∈ T I(t) by using a master key tmk∗ and time t ∈ T . Then, T
broadcasts it to all users via a (authenticated) broadcast channel.

3. Common-key Generation. If Ui1 wants to share a common-key with Ui2 at future time t, Ui1

computes a common-key to be shared with Ui2 in advance, tck(t)
i1,i2

=KeyGen(tuk(S)
i1
, t, Ui2) ∈

T CK, by using his secret-key tuk
(S)
i1

, time t, and the receiver’s identity Ui2 . And, Ui1 tells Ui2

the specified time t via an authenticated channel.

4. Common-key Derivation. On receiving the specified time t from Ui1 , and if the time t has
come, Ui2 computes a common-key tck(t)

i1,i2
=KeyDer(tuk(R)

i2
,

tmk(t), Ui1) by using his secret-key tuk(R)
i2

, a time-signal tmk(t) at time t, and the sender’s identity
Ui1 .

In the model of TR-KA, we require the following equation holds: For all possible t ∈ T , i1, i2 ∈
{1, 2, . . . , n}, tuk(S)

i1
∈ T UK(S)

i1
, tuk(R)

i2
∈ T UK(R)

i2
, tmk(t) ∈ T I(t), we have KeyGen(tuk(S)

i1
, t, Ui2) =

KeyDer(tuk(R)
i2
, tmk(t), Ui1)．The above requirement implies that any two users can share a common-

key at the specified time without any error if they correctly follow the specification of TR-KA. In
addition, tck(t)

i1,i2
means a shared key between Ui1 and Ui2 at time t when Ui1 is the sender and Ui2 is

the receiver, and we note that tck(t)
i1,i2
̸= tck

(t)
i2,i1

in general.
We now define several notation to formalize security of TR-KA as follows. For any finite set Z and

any non-negative integer z, let P(Z, z) := {Z ⊂ Z||Z| ≤ z} be the family of all subsets of Z whose
cardinality is less than or equal to z. Let ω (< n) be the maximum number of possible colluders. For
a set of colluders W = {Ul1 , Ul2 , . . . , Ulj} ∈ P(U , ω), T UK(S)

W := T UK(S)
l1
× T UK(S)

l2
× · · · × T UK(S)

lj

denotes the set of possible W ’s secret-keys for common-key generation, and T UK(R)
W := T UK(R)

l1
×

T UK(R)
l2
× · · · × T UK(R)

lj
denotes the set of possible W ’s secret-keys for common-key derivation. And,

let T CK(t)
i1,i2

be the set of possible common-keys shared between Ui1 and Ui2 at the time t ∈ T .

Furthermore, let TCK(t)
i1,i2

, TMK, TUK
(S)
W , TUK

(R)
W , and TI(1), . . . , T I(τ) be random variables which

take values on T CK(t)
i1,i2

, TMK, T UK(S)
W , T UK(R)

W , and T I(1), . . . , T I(τ), respectively.
Next, we formalize a security definition of TR-KA based on the idea of timed-release security and

traditional key-agreement with information-theoretic security. In TR-KA, we consider the following
security goal and attacking model. First, the security goal which we consider is basically the same
as that of the traditional key-agreement: an adversary (or a dishonest entity) cannot obtain any
information on a common-key shared between two honest users. In addition to this, we want to
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require that even a legitimate receiver cannot obtain any information on a common-key to be shared
before the specified time comes (i.e., before a time-signal at the specified time is received), since
we consider timed-release security in this paper. Secondly, as an attacking model we consider the
following three types of attacks: (1) an attack by a dishonest time-server; (2) an attack by colluders
(i.e., dishonest users) not including a receiver; and (3) an attack by colluders including a receiver. By
combining the security goal and attacks mentioned above, we formally define security of TR-KA as
follows.

Definition 2. Let Π be TR-KA. Π is said to be (n, ω, τ)-secure if the following conditions are satisfied:

(1) For any Ui1 , Ui2 ∈ U and t ∈ T , it holds that

H(TCK(t)
i1,i2
| TMK) = H(TCK(t)

i1,i2
).

(2) For any W ∈ P(U , ω), Ui1 , Ui2 ∈ U such that Ui1 , Ui2 /∈W , and for any t ∈ T , it holds that

H(TCK(t)
i1,i2
| TUK(S)

W , TUK
(R)
W , T I(1), . . . , T I(τ)) = H(TCK(t)

i1,i2
).

(3) For any W ∈ P(U , ω), Ui1 , Ui2 ∈ U such that Ui1 /∈W and Ui2 ∈W , for any t ∈ T , it holds that

H(TCK(t)
i1,i2
| TUK(S)

W , TUK
(R)
W , T I(1), . . . , T I(t−1), T I(t+1), . . . , T I(τ)) = H(TCK(t)

i1,i2
).

Intuitively, the meaning of formalizations (1)-(3) in Definition 2 is explained as follows: (1) a
dishonest time-server cannot obtain any information on a common-key shared between two honest
users. However, we assume that the time-server correctly broadcasts a time-signal at each time;
(2) No information on a common-key shared between two honest users is obtained by any colluding
group W not including a legitimate receiver, even if W obtains time-signals at all the time; (3) No
information on a common-key between two users at the specified time is obtained by any colluding
group W including a legitimate (but dishonest) receiver, even if W obtains time-signals at all the time
except the specified time.2

2.2 Lower Bounds

In this section, we derive lower bounds of entities’ memory-sizes required for secure TR-KA as follows.
The proof is given in Appendix A.

Theorem 1. Let Π be (n, ω, τ)-secure TR-KA, and we assume that all entropies on common-keys are
equal, namely H(TCK) = H(TCK(t)

i1,i2
) for any i1, i2 ∈ {1, 2, . . . , n} and t ∈ T . Then, we have

(i) H(TUK(R)
i ) ≥ (ω + 1)H(TCK), (ii) H(TUK(S)

i ) ≥ (τ + ω)H(TCK),

(iii) H(TI(t)) ≥ (ω + 1)H(TCK), (iv) H(TMK) ≥ τ(ω + 1)H(TCK).

As we will see in the next section, the above lower bounds are tight since our construction will
meet all the above inequalities with equalities. Therefore, we define optimality of constructions of
TR-KA as follows.

Definition 3. A construction of (n, ω, τ)-secure TR-KA is said to be optimal if it meets equality in
every inequality of (i)-(iv) in Theorem 1.

2In this sense, we have formalized the security notion stronger than the security that a dishonest receiver cannot
obtain any information on a common-key to be shared before the specified time comes.
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2.3 Construction

We present a construction, which is provably secure TR-KA in our model, by using multivariate
polynomials over finite fields. In addition, it is shown that the construction is optimal. The detail of
our construction of TR-KA Π=(Setup, Ext, KeyGen, KeyDer) is given as follows.

1. Setup. For a security parameter 1k, Setup outputs matching secret-keys tuki and tmk∗ for
Ui (1 ≤ i ≤ n) and T, respectively, as follows. Setup picks a k-bit prime power q, where
q > max(n, τ), and constructs the finite field Fq with q elements. We assume that the identity
of each user Ui is encoded as Ui ∈ Fq\{0}. Also, we assume T = {1, 2, . . . , τ} ⊂ Fq\{0} by using
appropriate encoding. And, Setup chooses uniformly at random f(x, y) :=

∑ω
i=0

∑ω
j=0aijx

iyj ,
tmk∗(x, z) :=

∑ω
i=0

∑τ−1
k=0 bikx

izk over Fq with three variables x, y and z in which each degree of
x and y is at most ω, and the degree of z is at most τ − 1. Setup also computes tuk(S)

i (y, z) :=
f(Ui, y) + tmk∗(Ui, z) and tuk

(R)
i (x) := f(x, Ui) (1 ≤ i ≤ n). Then, Setup outputs secret-keys

tuki := (tuk(S)
i (y, z), tuk(R)

i (x)) (1 ≤ i ≤ n) and tmk∗ := tmk∗(x, z) for Ui (1 ≤ i ≤ n) and T,
respectively.

2. Ext . For tmk∗ = tmk∗(x, z) and time t ∈ T , Ext outputs a time-signal at time t, tmk(t)(x) :=
tmk∗(x, t).

3. KeyGen . For a secret-key tuk(S)
i1

, the specified time t and an identity Ui2 , KeyGen generates a

common-key shared between Ui1 and Ui2 , tck
(t)
i1,i2

:= tuk
(S)
i1

(Ui2 , t), and outputs it.

4. KeyDer . For a secret-key tuk(R)
i2

, a time-signal tmk(t) at the specified time t and an identity Ui1 ,

KeyDer outputs a common-key shared between Ui1 and Ui2 , tck
(t)
i1,i2

:= tuk
(R)
i2

(Ui1)+tmk
(t)(Ui1).

The security and optimality of the above construction is stated as follows.

Theorem 2. The resulting TR-KA Π by the above construction is (n, ω, τ)-secure and optimal.

Proof Sketch. First, we show the construction satisfies the condition (1) in Definition 2. T cannot
guess the information on a common-key tck

(t)
i1,i2

with probability larger than 1/q, since he does not

know at least one coefficient of f(x, y). Thus, we have H(TCK(t)
i1,i2
|TMK) = log2 q. On the other

hand, it is clear that H(TCK(t)
i1,i2

) = log2 q. Therefore, for any Ui1 , Ui2 ∈ U and t ∈ T , H(TCK(t)
i1,i2
|

TMK)= H(TCK(t)
i1,i2

).
Next, we show the construction satisfies the conditions (2) in Definition 2. Suppose a group of

colluders W not including a targeted receiver gets all time-signals. Then, W can obtain tmk∗(x, z).
Also, W has f(Ul, y) and f(x,Ul) (Ul ∈ W ). However, since each degree of f(x, y) with respect to
x and y is at most ω, W cannot guess at least one coefficient of f(x, y) with probability larger than
1/q. Thus, we have H(TCK(t)

i1,i2
|TUK(S)

W , TUK(R)
W , TI(1), . . . , T I(τ)) = log2 q. Therefore, for any Ui1 ,

Ui2 ∈ U such that Ui1 , Ui2 /∈W , and for any t ∈ T , H(TCK(t)
i1,i2
|TUK(S)

W , TUK(R)
W , TI(1), . . . , T I(τ)) =

H(TCK(t)
i1,i2

).
Moreover, we show the construction satisfies the condition (3) in Definition 2. Without loss of

generality, we suppose that Ui1 is a targeted sender, Ui2 is a targeted receiver, and τ is a specified
time. Suppose a group of colluders W with Ui2 ∈W will guess a common-key tck(τ)

i1,i2
. Note that W can

get f(Ui1 , Ui2) since Ui2 ∈W . Thus, W tries to obtain tmk∗(x, z) to know f(Ui1 , Ui2) + tmk∗(Ui1 , τ).
Although W can know tmk∗(Ul, z) (Ul ∈ W ) and tmk∗(x, t) (1 ≤ t ≤ τ − 1), W cannot guess at
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least one coefficient of tmk∗(x, z) with probability larger than 1/q since the degrees of tmk∗(x, z) with
respect to x and z are at most ω and τ−1, respectively. Thus, we have H(TCK(τ)

i1,i2
|TUK(S)

W , TUK(R)
W ,

TI(1), TI(2), . . . , T I(τ−1)) = log2 q. Therefore, in general, for any Ui1 , Ui2 ∈ U such that Ui1 /∈W and
Ui2 ∈ W , and for any t ∈ T , H(TCK(t)

i1,i2
|TUK(S)

W , TUK(R)
W , TI(1), . . . , T I(t−1), TI(t+1), . . . , T I(τ)) =

H(TCK(t)
i1,i2

).
Finally, it is straightforward to see that the construction satisfies all the equalities of lower bounds

in Theorem 1. �

3 TRE: Timed-Release Encryption with Information-Theoretic Se-
curity

In this section, we show a model and a security formalization of timed-release encryption (TRE for
short) with information-theoretic security. We also show that TRE can be constructed from TR-KA
and the one-time pad in a generic and simple way. In addition, we derive tight lower bounds on
entities’ memory-sizes required for TRE.

3.1 Model and Security Definition

We propose a model and a security definition of TRE, based on that of timed-release encryption with
computational security (e.g., [13]) and that of the traditional encryption with information-theoretic
security (e.g., [16]). Formally, we give a definition of TRE in the TI-model as in the case of TR-KA.

Definition 4 (TRE). A timed-release encryption (TRE for short) Σ involves n + 2 entities, TI,
U1, U2, . . . , Un and T, and consists of a four-tuple of algorithms (EGen, EExt, Enc, Dec) with six spaces,
C,ME ,USK, EMK, T , and ET I, where all of the above algorithms except EGen are deterministic
and all of the above spaces are finite. In addition, Σ is executed with four phases as follows.

– Notation:

- Entities: TI, Ui (1 ≤ i ≤ n), T, and U are the same as those in Definition 1.

- Spaces: T is the same as that in Definition 1. C is a set of possible ciphertexts, ME is
a set of possible plaintexts with a probability distribution PM , EMK is a set of possible
master-keys. ET I(t) is a set of time-signals at time t. Let ET I :=

∪τ
i=1 ET I

(i). Also,
EKi is a set of possible encryption-keys for Ui, DKi is a set of possible decryption-keys for
Ui, and USKi := EKi × DKi is a set of possible secret-keys for Ui. Let EK :=

∪n
i=1 EKi,

DK :=
∪n

i=1DKi and USK :=
∪n

i=1 USKi.

- Algorithms: EGen is a key generation algorithm which on input a security parameter 1k,
outputs each user’s secret-key and a server’s master-key, EExt : EMK × T → ET I is a
time-signal generation algorithm for T, Enc: ME × EK × T × U → C is an encryption
algorithm, and Dec: C × DK × ET I × U →ME is a decryption algorithm.

1. Key Generation and Distribution. In the initial phase, TI generates the following keys by
using EGen: a master-key emk∗ ∈ EMK for T; a secret-key uski = (eki, dki) ∈ USKi for Ui

(i = 1, 2, . . . , n). These keys are distributed to corresponding entities via secure channels. After
distributing these keys, TI deletes them from his memory. And, T and Ui keep their keys secret,
respectively.
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2. Time-signal Generation. For broadcasting a time-signal at each time, T generates a time-
signal emk(t) =EExt(emk∗, t) ∈ ET I(t) by using a master-key emk∗ ∈ EMK and time t ∈ T .
Then, T broadcasts it to all users via a (authenticated) broadcast channel.

3. Encryption. Ui1 specifies time t when Ui2 can decrypt a ciphertext, and then Ui1 computes a
ciphertext, c(t)i1,i2

=Enc(m, eki1 , t, Ui2) ∈ C, by a plaintextm ∈ME , an encryption-key eki1 ∈ EK,
the specified time t and the identity Ui2 . And, Ui1 sends a pair of the ciphertext and the specified
time, (c(t)i1,i2

, t), to Ui2 via an authenticated channel.

4. Decryption. Suppose that Ui2 has received (c(t)i1,i2
, t) from Ui1 . After receiving a time-signal

emk(t) at the specified time t, Ui2 recovers m =Dec(c(t)i1,i2
, dki2 , emk

(t), Ui1) by a ciphertext c(t)i1,i2
,

a decryption-key dki2 , a time-signal emk(t), and the identity Ui1 .

In the model of TRE, we require the following equation holds: For all possible t ∈ T , i1, i2 ∈
{1, 2, . . . , n}, eki1 ∈ EKi1 , dki2 ∈ DKi2 , emk

(t) ∈ ET I(t), we have

Dec(Enc(m, eki1 , t, Ui2), dki2 , emk
(t), Ui1) = m.

The above requirement means correctness of TRE.
Next, we provide a security definition of TRE based on the idea of timed-release security and

the traditional encryption with information-theoretic security. The choice of possible colluders W ∈
P(U , ω) is the same as that in TR-KA. For a set of colluders W = {Ul1 , Ul2 , . . . , Ulj} ∈ P(U , ω),
EKW := EKl1×EKl2×· · ·×EKlj is a set of W ’s encryption-keys, and DKW := DKl1×DKl2×· · ·×DKlj

is a set of W ’s decryption-keys. Also, let C(t)
i1,i2

be a finite set of possible ciphertexts sent from Ui1 to

Ui2 such that it can be decrypted at the time t. Furthermore, let M , C(t)
i1,i2

, EMK, EKW , DKW , and

ETI(1), . . . , ETI(τ) be random variables which take values on ME , C(t)
i1,i2

, EMK, EKW , DKW , and
ET I(1), . . . , ET I(τ), respectively.

Similarly as in Definition 2 we consider the following three types of security notions for TRE:
(1) A dishonest time-server cannot obtain any information on an underlying plaintext from a target
ciphertext transmitted on the channel; (2) No information on an underlying plaintext from a target
ciphertext is obtained by any colluding group W not including a legitimate receiver, even if W obtains
time-signals at all the time; (3) No information on an underlying plaintext from a target ciphertext is
obtained by any colluding group W including a legitimate (but dishonest) receiver, even if W obtains
time-signals at all the time except the specified time.

The formalizations of the above security notions for TRE are given as follows.

Definition 5. Let Σ be TRE. Σ is said to be (n, ω, τ)-secure if the following conditions are satisfied:

(1) For any Ui1 , Ui2 ∈ U and any t ∈ T , it holds that

H(M | C(t)
i1,i2

, EMK) = H(M).

(2) For any W ∈ P(U , ω), Ui1 , Ui2 ∈ U such that Ui1 , Ui2 /∈W , and for any t ∈ T , it holds that

H(M | C(t)
i1,i2

, EKW , DKW , ETI(1), . . . , ETI(τ)) = H(M).

(3) For any W ∈ P(U , ω), Ui1 , Ui2 ∈ U such that Ui1 /∈W and Ui2 ∈W , for any t ∈ T , it holds that

H(M | C(t)
i1,i2

, EKW , DKW , ETI(1), . . . , ETI(t−1), ETI(t+1), . . . , ETI(τ)) = H(M).
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3.2 Lower Bounds

We derive lower bounds on entities’ memory-sizes required for secure TRE as follows.

Theorem 3. Let Σ be an (n, ω, τ)-secure TRE. Then, we have

(i) H(DKi) ≥ (ω + 1)H(M), (ii) H(EKi) ≥ (τ + ω)H(M),
(iii) H(ETI(t)) ≥ (ω + 1)H(M), (iv) H(EMK) ≥ τ(ω + 1)H(M).

Proof. The proof is given in Appendix B. The proof is similar to that of Theorem 1, however, in the
proof there are several technical points which are complicated than that of Theorem 1 (See Appendix
B for details). �

As we will see in the next section, the above lower bounds are tight since an instantiation of our
generic construction will meet all the above inequalities with equalities.

3.3 Construction of TRE from TR-KA and One-time Pad

We present a generic construction of TRE Σ=(EGen, EExt, Enc, Dec) starting from TR-KA Π=(Setup,
Ext, KeyGen, KeyDer) and the one-time pad. In our construction, Π and Σ satisfy the following con-
ditions: EMK = TMK; ET I = T I; EK = T UK(S); and DK = T UK(R).

1. EGen . For a security parameter 1k, EGen outputs matching secret-keys uski = (eki, dki) and
emk∗ for Ui (1 ≤ i ≤ n) and T, respectively, as follows. EGen calls Setup with input 1k.
Suppose (tuk(S)

1 , tuk(R)
1 , tuk(S)

2 , tuk(R)
2 , . . . , tuk

(S)
n , tuk(R)

n , tmk∗) ←Setup(1k). Then, EGen
outputs secret-keys eki := tuk

(S)
i , dki := tuk

(R)
i , and emk∗ := tmk∗ for Ui (1 ≤ i ≤ n) and T ,

respectively.

2. EExt . For a master-key emk∗ = tmk∗ and time t, EExt calls Ext, and let tmk(t) =Ext(tmk∗, t).
Then, EExt outputs a time-signal at the time t, emk(t) := tmk(t).

3. Enc. For a plaintext m, an encryption-key eki1 = tuk
(S)
i1

, the specified time t and an identity

Ui2 , Enc calls KeyGen, and suppose tck
(t)
i1,i2

=KeyGen(tuk(S)
i1

, t, Ui2). Then, Enc outputs a

ciphertext c(t)i1,i2
:= m⊕ tck(t)

i1,i2
.

4. Dec. For a ciphertext c(t)i1,i2
, a decryption-key dki2 = tuk

(R)
i2

, a time-signal emk(t) = tmk(t) at

the specified time t and an identity Ui1 , Dec calls KeyDer, and suppose tck(t)
i1,i2

=KeyDer(tuk(R)
i2

,

tmk(t), Ui1). Then, Dec outputs a plaintext m := c
(t)
i1,i2
⊕ tck(t)

i1,i2
.

The security of the above construction is shown as follows.

Theorem 4. Given (n, ω, τ)-secure TR-KA Π in which common-keys are uniformly distributed over
T CK (i.e., H(TCK(t)

i,j ) = log2 |T CK| for any i, j, and t), then the TRE Σ formed by the above
construction based on Π is (n, ω, τ)-secure.

Proof Sketch. The proof can be directly shown by the security of TR-KA and perfect secrecy of the
one-time pad. First, we describe the outline of the proof for the condition (1) in Definition 5. From
Definition 2, T cannot obtain any information on a common-key shared between two honest users even
if T knows a master key. Therefore, by perfect secrecy of the one-time pad, H(M | C(t)

i1,i2
, EMK) =

H(M).
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Next, we only describe the outline of the proof for the condition (2) in Definition 5, since the
condition (3) can be shown by a similar idea. From Definition 2, any colluding group W such that
Ui1 , Ui2 /∈ W cannot know a uniform common-key shared between Ui1 and Ui2 in TR-KA. Therefore,
by perfect secrecy of the one-time pad, H(M | C(t)

i1,i2
, EKW , DKW , ETI(1), . . . , ETI(τ)) = H(M).

�

Remark 1. Although in this paper we have presented the direct proof of Theorem 1 (i.e., the lower
bounds in TR-KA), we can also prove Theorem 1 by using Theorem 3 (i.e., the lower bounds in TRE
) and the above generic construction where uniformly distributed plaintexts are taken.

Remark 2. In the above generic construction, we suppose PM to be uniform (i.e., uniformly dis-
tributed plaintexts) and apply the direct (and optimal) construction of TR-KA in Section 2.3. Then,
the resulting direct construction of TRE meets equality in every inequality of (i)-(iv) in Theorem 3.
Therefore, the resulting direct construction is optimal and the lower bounds in Theorem 3 are tight.

4 TRA-codes: Timed-Release Authentication Codes

In this section, we show a model and a security definition of timed-release authentication codes (TRA-
codes for short). We also derive tight lower bounds on entities’ memory-sizes required for TRA-codes.
In addition, we present two kinds of constructions of TRA-codes, generic and direct ones. Our generic
construction is simple, while our direct construction is optimal.

4.1 Model and Security Definition

We newly propose a model and a security definition of TRA-codes, based on that of timed-release
signatures with computational security (e.g., [8]) and that of the traditional authentication code with
information-theoretic security (e.g., [17]).

Formally, we give a definition of TRA-codes in the TI-model as in the case of TR-KA.

Definition 6 (TRA-codes). A timed-release authentication code (TRA-code for short) Λ involves
n + 2 entities, TI, U1, U2, . . . , Un and T, and consists of a four-tuple of algorithms (TAGen, AExt,
TAuth, TVer) with six spaces, MA, A, E , AMK, T and AT I, where all of the above algorithms
except TAGen are deterministic and all of the above spaces are finite. In addition, Λ is executed with
four phases as follows.

– Notation:

- Entities: TI, Ui (1 ≤ i ≤ n), T, and U are the same as those in Definition 1.

- Spaces: T is the same as that in Definition 1. A is a set of possible authenticators (or
tags),MA is a set of possible messages, AMK is a set of possible master-keys. AT I(t) is a
set of time-signals at time t. Let AT I :=

∪τ
t=1AT I

(t). Also, E(S)
i is a set of possible Ui’s

authentication-keys, E(R)
i is a set of possible Ui’s verification-keys, and Ei := E(S)

i × E(R)
i

is a set of possible secret-keys for Ui. Let E(S) :=
∪n

i=1 E
(S)
i , E(R) :=

∪n
i=1 E

(R)
i , and

E :=
∪n

i=1 Ei.
- Algorithms: TAGen is a key generation algorithm which on input a security parameter 1k,

outputs each user’s secret-key and a time-server’s master-key, AExt : AMK×T → AT I is a
time-signal generation algorithm for T, TAuth: MA×E(S)×T ×U → A is an authentication
algorithm, and TVer : MA × A × T × E(R) × AT I × U → {true, false} is a verification
algorithm.
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1. Key Generation and Distribution. In the initial phase, TI generates the following keys
by using TAGen: a master-key amk∗ ∈ AMK for T; a secret-key ei = (e(S)

i , e
(R)
i ) ∈ Ei for Ui

(i = 1, 2, . . . , n). These keys are distributed to corresponding entities via secure channels. After
distributing these keys, TI deletes them from his memory. And, T and Ui keep their keys secret,
respectively.

2. Time-signal Generation. For broadcasting a time-signal at each time, T generates a time-
signal amk(t) =AExt(amk∗, t) ∈ AT I(t) by using a master-key amk∗ ∈ AMK and time t ∈ T .
Then, T broadcasts it to all users via a (authenticated) broadcast channel.

3. Authentication. Ui1 specifies time t when Ui2 can verify validity of a message m, and then
Ui1 computes an authenticator, α(t)

i1,i2
=TAuth(m, e(S)

i1
, t, Ui2) ∈ A, by the message m ∈MA, an

authentication-key e(S)
i1

, the specified time t and the identity Ui2 . And, Ui1 sends (m,α(t)
i1,i2

, t) to
Ui2 via an insecure channel.

4. Verification. Suppose that Ui2 has received (m,α(t)
i1,i2

, t) from Ui1 . After receiving a time-signal

amk(t) at the specified time t, Ui2 checks the validity of α(t)
i1,i2

by a verification-key e(R)
i2

, a time-

signal amk(t) and the identity Ui1 : If TVer(m,α(t)
i1,i2

, t, e
(R)
i2
, amk(t), Ui1) = true, then Ui2 accepts

(m,α(t)
i1,i2

, t) as valid, and rejects it otherwise.

In the model of TRA-codes, we require the following equation holds: for all possible t ∈ T , i1, i2 ∈
{1, 2, . . . , n}, e(S)

i1
∈ E(S)

i1
, e(R)

i2
∈ E(R)

i2
, amk(t) ∈ AT I(t), we have

TVer(m,TAuth(m, e(S)
i1
, t, Ui2), t, e

(R)
i2
, amk(t), Ui1) = true.

The above requirement means correctness of TRA-codes.
Next, we provide a security notion and its formalization for TRA-codes based on the idea of

timed-release security and the traditional authentication code with information-theoretic security.
The choice of possible colluders W ∈ P(U , ω) is the same as that in TR-KA. For a set of colluders
W := {Ul1 , Ul2 , . . . , Ulj} ∈ P(U , ω), E(S)

W := E(S)
l1
× E(S)

l2
× · · · × E(S)

lj
is a set of W ’s authentication-

keys, and E(R)
W := E(R)

l1
× E(R)

l2
× · · · × E(R)

lj
is a set of W ’s verification-keys. In TRA-codes, we

consider impersonation attacks and substitution attacks as follows. (a) Impersonation attacks: an
adversary (or a dishonest entity) tries to generate a fraudulent authenticated message at time t,
(m,α(t)

i1,i2
, t), that has not been legally generated by a sender Ui1 but will be accepted by a receiver

Ui2 . (b) Substitution attacks: an adversary (or a dishonest entity) tries to generate a fraudulent
authenticated message at time t2, (m′, α

(t2)
i1,i2

, t2), that has not been legally generated by a sender
Ui1 but will be accepted by a receiver Ui2 , after observing a valid authenticated message at time t1,
(m,α(t1)

i1,i2
, t1) with (m,α(t1)

i1,i2
, t1) ̸= (m′, α

(t2)
i1,i2

, t2). Similarly as in Definition 2 we consider the following
three types of security notions for TRA-codes: (1) A dishonest time-server cannot succeed in each of
the impersonation attack and substitution attack ; (2) Any colluding groupW not including a legitimate
receiver cannot succeed in each of the impersonation attack and substitution attack, even if W obtains
time-signals at all the time; (3) Any colluding group W including a legitimate (but dishonest) receiver
cannot check the validity of a target authenticated message without a time-signal at the specified time,
even if W obtains time-signals at all the time except the specified time. To formalize this security
notion, we consider it to be a kind of security against impersonation attacks at the future specified
time: Any colluding group W including a receiver cannot succeed in impersonation attacks at the
future specified time, even if W obtains time-signals at all the time except the specified time.

The formalizations of the above three types of security notions for TRA-codes are given as follows.
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Definition 7. Let Λ be a TRA-code. Λ is said to be (n, ω, τ ; ϵ)-secure, if max(PServer, P1, P2) ≤ ϵ,
where PServer, P1 and P2 are defined as follows.

(1) Attacks by a dishonest time-server. Let PServer := max(PIS , PSS ), where PIS and PSS are given
as follows.

1-1) Impersonation attacks. The success probability of this attack denoted by PIS is defined as
follows: For any Ui1 , Ui2 ∈ U and any t ∈ T , we define PIS (Ui1 , Ui2 , t) by

PIS (Ui1 , Ui2 , t) := max
(m,α

(t)
i1,i2

,t)

max
amk∗

max
amk(t)

Pr(TV er(m,α(t)
i1,i2

, t, e
(R)
i2
, amk(t), Ui1) = true | amk∗).

The probability PIS is defined as PIS := max
Ui1 ,Ui2 ,t

PIS (Ui1 , Ui2 , t).

1-2) Substitution attacks. The success probability of this attack denoted by PSS is defined as
follows: For any Ui1 , Ui2 ∈ U and any t1, t2 ∈ T , we define PSS (Ui1 , Ui2 , t1, t2) by

PSS (Ui1 , Ui2 , t1, t2) := max
(m′,α

(t2)
i1,i2

,t2)

max
(m,α

(t1)
i1,i2

,t1) ̸=(m′,α
(t2)
i1,i2

,t2)

max
amk∗

max
amk(t2)

Pr(TV er(m′, α
(t2)
i1,i2

, t2, e
(R)
i2
, amk(t2), Ui1) = true | (m,α(t1)

i1,i2
, t1), amk∗).

The probability PSS is defined as PSS := max
Ui1 ,Ui2 ,t1,t2

PSS (Ui1 , Ui2 , t1, t2).

(2) Attacks by colluders not including a legitimate receiver. Let P1 := max(PI1 , PS1), where PI1 and
PS1 are given as follows.

2-1) Impersonation attacks. The success probability of this attack denoted by PI1 is defined as
follows: For any set of colluders W ∈ P(U , ω), any Ui1 , Ui2 ∈ U such that Ui1 , Ui2 /∈W and
for any t ∈ T , we define PI1(Ui1 , Ui2 ,W, t) by

PI1(Ui1 , Ui2 ,W, t) := max
(m,α

(t)
i1,i2

,t)

max
e
(S)
W

max
e
(R)
W

max
amk(1),...,amk(τ)

Pr(TV er(m,α(t)
i1,i2

, t, e
(R)
i2
, amk(t), Ui1) = true

| e(S)
W , e

(R)
W , amk(1), . . . , amk(τ)).

The probability PI1 is defined as PI1 := max
Ui1 ,Ui2 ,W,t

PI1(Ui1 , Ui2 ,W, t).

2-2) Substitution attacks. The success probability of this attack denoted by PS1 is defined as
follows: For any set of colluders W ∈ P(U , ω), any Ui1 , Ui2 ∈ U such that Ui1 , Ui2 /∈W and
for any t1, t2 ∈ T , we define PS1(Ui1 , Ui2 ,W, t1, t2) by

PS1(Ui1 , Ui2 ,W, t1, t2) := max
(m′,α

(t2)
i1,i2

,t2)

max
(m,α

(t1)
i1,i2

,t1 )̸=(m′,α
(t2)
i1,i2

,t2)

max
e
(S)
W

max
e
(R)
W

max
amk(1),...,amk(τ)

Pr(TV er(m′, α
(t2)
i1,i2

, t2, e
(R)
i2
, amk(t2), Ui1) = true

| (m,α(t1)
i1,i2

, t1), e
(S)
W , e

(R)
W , amk(1), . . . , amk(τ)).

And, PS1 is defined as PS1 := max
Ui1 ,Ui2 ,W,t1,t2

PS1(Ui1 , Ui2 ,W, t1, t2).
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(3) An attack by colluders including a legitimate (but dishonest) receiver. The success probability
of this attack denoted by P2 is defined as follows: For any set of colluders W ∈ P(U , ω), any
Ui1 , Ui2 ∈ U such that Ui1 /∈W and Ui2 ∈W , and for any t ∈ T , we define P2(Ui1 , Ui2 ,W, t) by

P2(Ui1 , Ui2 ,W, t) := max
(m,α

(t)
i1,i2

,t)

max
e
(S)
W

max
e
(R)
W

max
amk(1),...,amk(t−1),amk(t+1),...,amk(τ)

Pr(TV er(m,α(t)
i1,i2

, t, e
(R)
i2
, amk(t), Ui1) = true

| e(S)
W , e

(R)
W amk(1), . . . , amk(t−1), amk(t+1), . . . , amk(τ)).

The probability P2 is defined as P2 := max
Ui1 ,Ui2 ,W,t

P2(Ui1 , Ui2 ,W, t).

4.2 Lower Bounds

We derive lower bounds on success probabilities of attacks and memory-sizes required for (n, ω, τ ; ϵ)-
secure TRA-codes. Let MA(t)

i1,i2
:= {(m,α(t)

i1,i2
) ∈ MA × A | m ∈ MA and TAuth(m, e(S)

i1
, t, Ui2) =

α
(t)
i1,i2

for some e(S)
i1
∈ E(S)

i1
} be a set of possible pairs of messages and authenticators such that each

element of the set can be generated by the sender Ui1 to send it to Ui2 at specified future time t.
Furthermore, let MA

(t)
i1,i2

, AMK, E(S)
W , E(R)

W , ATI(1), . . . , ATI(τ) be random variables which take

values in MA(t)
i1,i2

, AMK, E(S)
W , E(R)

W , AT I(1), . . . , AT I(τ), respectively.
We assume that there exist the following mappings in the model of TRA-codes: for every i, j ∈

{1, 2, . . . , n} and every t ∈ {1, 2, . . . , τ},

λi : E(S)
i → E(S)

i,1 × · · · × E
(S)
i,n ,

πj : E(R)
j → E(R)

1,j × · · · × E
(R)
n,j ,

f (t) : AT I(t) → AT I(t)
1 × · · · × AT I

(t)
n ,

g : AMK → AMK1 × · · · × AMKn,

gi : AMKi → AT I(1)
i × · · · × AT I

(τ)
i ,

ρi,j : E(S)
i,j → E

(R)
i,j ×AMKi,

where E(S)
i,j is a set of possible Ui’s authetication-keys which are actually used to communicate with

a receiver Uj ; E(R)
i,j is a set of possible Uj ’s verification-keys which are actually used to communicate

with a sender Ui; AT I(t)
i is a set of possible information on time-signals at time t when Ui becomes a

sender; AMKi is a set of possible partial information about master-keys when Ui becomes a sender3.
Note that each user has the potential to become an adversary, but each user is honest when he is a
sender. Hence, if a sender Ui is fixed and amk(t)

i ∈ AT I
(t)
i is given, TRA-codes look like MRA-codes

[14]. From this, it would be natural to assume a mapping E(S)
i,j → E

(R)
i,j , if amk(t)

i ∈ AT I
(t)
i is given, in

TRA-codes as in the model of MRA-codes (see Definition 3.1 in [14]). In addition, from the footnote
of this page, we have assumed the above mapping ρi,j : E(S)

i,j → E
(R)
i,j ×AMKi. From the explanation,

we consider that the assumption of existence of the above mappings is not so strange, rather natural,
and we will show that these mappings actually exist in our simple direct construction in Section 4.4.

Then, we can derive lower bounds on success probabilities of attacks as follows.
3We assume that each user Ui potentially has partial information on a master-key, since a sender Ui can specify

any time t (i.e., the sender Ui can generate amk
(t)
i ∈ AT I(t)

i for 1 ≤ ∀t ≤ τ) but he cannot generate a time-signal
amk(t) ∈ AT I(t).
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Theorem 5. For any i1, i2 ∈ {1, 2, . . . , n}, any time t ∈ T , any colluding group W with Ui1 , Ui2 /∈W ,
and W̃ with Ui1 /∈ W̃ and Ui2 ∈ W̃ , it holds that

1. log PIS (Ui1 , Ui2 , t) ≥ −I(MA
(t)
i1,i2

; E
(R)
i1,i2

| AMK)

2. log PSS (Ui1 , Ui2 , t1, t2) ≥ −I(M̃A
(t2)
i1,i2

; E
(R)
i1,i2

| AMK, MA
(t1)
i1,i2

)

3. log PI1(Ui1 , Ui2 , W, t) ≥ −I(MA
(t)
i1,i2

; E
(R)
i1,i2

| E
(S)
W , E

(R)
W , ATI(1), . . . , ATI(τ))

4. log PS1(Ui1 , Ui2 , W, t1, t2) ≥ −I(M̃A
(t2)
i1,i2

; E
(R)
i1,i2

| E
(S)
W , E

(R)
W , ATI(1), . . . , ATI(τ), MA

(t1)
i1,i2

)

5. log P2(Ui1 , Ui2 , W̃ , t) ≥ −I(MA
(t)
i1,i2

; ATI
(t)
i1

| E
(S)

W̃
, E

(R)

W̃
, ATI(1), . . . , ATI(t−1), ATI(t+1), . . . , ATI(τ))

The proof can be shown in a way similar to that of Theorem 3.2 in [14].
We next show lower bounds on memory-sizes of entities in TRA-codes. The proof is given in

Appendix C.

Theorem 6. Let Λ be an (n, ω, τ ; ϵ)-secure TRA-code. Let q := ϵ−1. Then, for any i1, i2 ∈
{1, 2, . . . , n} and t ∈ {1, 2, . . . , τ}, we have

(i) |E(R)
i2
| ≥ q2(ω+1), (ii) |E(S)

i1
| ≥ q2ω+τ+1,

(iii) |AT I(t)| ≥ qω+1, (iv) |AMK| ≥ qτ(ω+1),

(v) |A(t)
i1,i2
| ≥ q.

As we will see in Section 4.4, the above lower bounds are all tight since our direct construction
will meet all the above inequalities with equalities. Therefore, we define optimality of constructions
of TRA-codes as follows.

Definition 8. A construction of (n, ω, τ ; ϵ)-secure TRA-codes is said to be optimal if it meets equality
in every inequality of (i)-(v) in Theorem 6.

4.3 Generic Construction of TRA-codes from TR-KA and A-codes

We propose a generic construction of (n, ω, τ ; ϵ)-secure TRA-codes from TR-KA and the traditional
A-codes (e.g., [17]). First, we briefly explain the traditional A-codes as follows.

A-codes. We consider a scenario where there are three entities, a sender S, a receiver R, and an
adversary A. The A-code Θ consists of a three-tuple of algorithms (AGen, Auth, Ver) with three
spaces, M̃, Ã and Ẽ , where they are finite sets of possible messages, possible authenticators (or tags)
and possible secret-keys, respectively. AGen is a key generation algorithm, which takes a security
parameter on input and outputs a secret-key e. Auth is an algorithm for generating an authenticator.
Auth takes a message m ∈ M̃ and a secret-key e ∈ Ẽ on input and outputs an authenticator α ∈ Ã,
and we write α =Auth(m, e) for it. On receiving (m,α), a receiver R can check the validity of it by
using Ver. Ver takes a message m, an authenticator α and a secret-key e on input, and outputs true
or false, and we write true=Ver(m,α, e) or false=Ver(m,α, e) for it. In A-codes, there are two kinds
of attacks: impersonation attacks and substitution attacks. Here, Θ is said to be ϵ-secure if each of
success probabilities of these attacks is at most ϵ (e.g., see [17] for details).

The detail of our generic construction of TRA-codes Λ=(TAGen, AExt, TAuth, TVer) by using
TR-KA Π=(Setup, Ext, KeyGen, KeyDer) and A-codes Θ=(AGen, Auth, Ver) is given as follows. In
our construction, Π, Θ and Λ satisfy the following conditions: MA × T ⊂ M̃; T CK ⊂ Ẽ ; A = Ã;
AMK = TMK; AT I = T I; E(S) = T UK(S); and E(R) = T UK(R).
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1. TAGen . For a security parameter 1k, TAGen outputs matching secret-keys ei = (e(S)
i , e

(R)
i )

and amk∗ for Ui (1 ≤ i ≤ n) and T, respectively, as follows. TAGen calls Setup with input 1k,
and suppose (tuk(S)

1 , tuk
(R)
1 , tuk

(S)
2 , tuk

(R)
2 ,

. . . , tuk
(S)
n , tuk

(R)
n , tmk∗)←Setup(1k). Then, TAGen outputs secret-keys e(S)

i := tuk
(S)
i , e

(R)
i :=

tuk
(R)
i and amk∗ := tmk∗ for Ui (1 ≤ i ≤ n) and T, respectively.

2. AExt . For a master-key amk∗ = tmk∗ and time t, AExt calls Ext, and suppose tmk(t) =Ext(tmk∗, t).
Then, AExt outputs a time-signal at time t, amk(t) := tmk(t).

3. TAuth . For a message m, an authentication-key e
(S)
i1

= tuk
(S)
i1

, the specified time t and an

identity Ui2 , TAuth calls KeyGen, and suppose tck(t)
i1,i2

= KeyGen(tuk(S)
i1
, t, Ui2). Then, TAuth

calls Auth, and it computes an authenticator α =Auth((m, t), tck(t)
i1,i2

). Finally, TAuth outputs

an authenticator at time t, α(t)
i1,i2

:= α.

4. TVer . For a message m, the specified time t, an authenticator α(t)
i1,i2

, a verification-key e(R)
i2

=

tuk
(R)
i2

, a time-signal amk(t) = tmk(t) at the specified time t and an identity Ui1 , TVer calls

KeyDer with inputting them, and suppose tck(t)
i1,i2

=KeyDer(tuk(R)
i2
, tmk(t), Ui1). Then, TVer

outputs true if Ver((m, t), α(t)
i1,i2

, tck
(t)
i1,i2

) =true, and outputs false otherwise.

The security of the above construction is shown as follows.

Theorem 7. Given an ϵ-secure A-code Θ and (n, ω, τ)-secure TR-KA Π in which common-keys are
uniformly distributed over T CK, then the TRA-code Λ formed by the above construction based on Θ
and Π is (n, ω, τ ; ϵ)-secure.

Proof Sketch. The proof can be directly shown by the security of TR-KA and that of the A-code. First,
we describe the outline of the proof of PSS ≤ ϵ. From Definition 2, T cannot obtain any information
on a common-key shared between two honest users even if T knows a master key. Therefore, since
the underlying A-code is ϵ-secure, success probability of substitution attacks is at most ϵ. Thus, we
have PSS ≤ ϵ. In a manner similar to this, we can prove PIS ≤ ϵ. Therefore, we have PServer =
max(PIS , PSS ) ≤ ϵ.

Next, we describe the outline of the proof of PS1 ≤ ϵ. From Definition 2, any colluding group W
such that Ui1 , Ui2 /∈ W cannot know a uniform common-key shared between Ui1 and Ui2 in TR-KA.
Therefore, since the underlying A-code is ϵ-secure, success probability of substitution attacks is at
most ϵ. Thus, we have PS1 ≤ ϵ. In a manner similar to this, we can prove PI1 ≤ ϵ. Therefore, we have
P1 = max(PI1 , PS1) ≤ ϵ.

Finally, we describe the outline of the proof of P2 ≤ ϵ. From Definition 2, even a colluding group W
including a legitimate (but dishonest) receiver cannot obtain any information on a common-key at the
future specified time. Hence, success probability of this attack can be reduced to that of impersonation
attacks for the underlying A-code. Thus, we have P2 ≤ ϵ. �
Remark 3. Even if we apply optimal constructions of TR-KA and A-codes in the above generic
construction, we cannot obtain an optimal construction of TRA-codes. For example, consider the
optimal construction of TR-KA in Section 2.3 and the well-known optimal construction of A-codes
given by Auth(m, e) = am+ b, where m is an element of a finite field Fq and e = (a, b) ∈ F2

q . We can
quite smoothly apply these constructions in our generic construction since both ones are given based
on polynomials over Fq. However, the resulting construction of TRA-codes is not optimal. Therefore,
in the next section we will show that there exists a construction which satisfies Definition 8 by means
of a direct construction (i.e., a construction from scratch).
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4.4 Direct Construction of TRA-codes by Polynomials over Finite Fields

We propose a direct construction of (n, ω, τ ; ϵ)-secure TRA-codes. In addition, it is shown that the
construction is optimal. The detail of our construction of TRA-codes Λ=(AGen, AExt, TAuth, TVer)
is given as follows.

1. AGen . For a security parameter 1k, AGen outputs matching secret-keys ei and amk∗ for
Ui (1 ≤ i ≤ n) and T, respectively, as follows. AGen picks a k-bit prime power q, where
q > max(n, τ), and constructs the finite field Fq with q elements. We assume that the identity
of each user Ui is encoded as Ui ∈ Fq\{0}. Also, we assume T = {1, 2, . . . , τ} ⊂ Fq\{0} by using
appropriate encoding. And, AGen chooses uniformly at random f(x, y) :=

∑ω
i=0

∑ω
j=0aijx

iyj ,
g(x, y) :=

∑ω
i=0

∑ω
j=0bijx

iyj , and amk∗(x, z) :=
∑ω

i=0

∑τ−1
k=0 cikx

izk over Fq with three variables
x, y and z in which each degree of x and y is at most ω, and the degree of z is at most τ − 1.
AGen also computes e(S)

i := (g(Ui,y), f(Ui, y) + amk∗(Ui, z)) and e(R)
i := (g(x,Ui), f(x,Ui)) (1

≤ i ≤ n). Then, AGen outputs secret-keys ei := (e(S)
i , e(R)

i ) (1 ≤ i ≤ n) and amk∗ := amk∗(x, z)
for Ui (1 ≤ i ≤ n) and T, respectively.

2. AExt . For amk∗ = amk∗(x, z) and time t ∈ T , Ext outputs a time-signal at time t, amk(t)(x) :=
amk∗(x, t).

3. TAuth . For a message m, a secret-key e
(S)
i1

, the specified time t and an identity Ui2 , TAuth

generates an authenticator, α(t)
i1,i2

:= g(Ui1 , Ui2)m+ f(Ui1 , Ui2) + amk∗(Ui1 , t), and outputs it.

4. TVer . For the message m, the authenticator α(t)
i1,i2

, the specified time t, a secret-key e
(R)
i2

, a

time-signal amk(t) at the specified time t and an identity Ui1 , TVer outputs true if α(t)
i1,i2

=
g(Ui1 , Ui2)m+f(Ui1 , Ui2) + amk∗(Ui1 , t) holds, and otherwise outputs false.

The security and optimality of the above construction is stated as follows.

Theorem 8. The resulting TRA-code Λ by the above construction is (n, ω, τ ; 1/q)-secure and optimal.

Proof Sketch. First, we describe the outline of the proof of PSS = 1/q. To succeed in the substitution
attack by T, T will generate a fraudulent authenticated message at time t2 (m′, α

(t2)
i1,i2

, t2), under the

following conditions: T can obtain a valid authenticated message (m,α(t1)
i1,i2

, t1) where m ̸= m′ and
knows his master-key amk∗. However, since each degree of f(x, y) and g(x, y) with respect to x and
y is at most ω, T cannot guess at least one coefficient of f(x, y) and g(x, y) with probability larger
than 1/q. Therefore, we have PSS = 1/q. In a manner similar to this, we can prove that PSI = 1/q.
Thus, we have PS = max(PSI , PSS ) ≤ 1/q.

Next, we show the outline of the proof of P1S = 1/q. To succeed in the substitution attack by a
group of colluders W not including a targeted receiver, W will generate a fraudulent authenticated
message at time t2 (m′, α

(t2)
i1,i2

, t2), under the following conditions: W can obtain ω user’s secret-keys,

all time-signals, and a valid authenticated message (m,α(t1)
i1,i2

, t1) where m ̸= m′. Then, W can obtain
amk∗(x, z). However, since each degree of f(x, y) and g(x, y) with respect to x and y is at most
ω, W cannot guess at least one coefficient of f(x, y) and g(x, y) with probability larger than 1/q.
Therefore, we have P1S = 1/q. In a manner similar to this, we can prove that P1I = 1/q. Thus, we
have P1 = max(P1I , P1S ) ≤ 1/q.

Moreover, we show the outline of the proof of P2 = 1/q. Without loss of generality, we suppose
that Ui1 is a targeted sender, Ui2 is a targeted receiver, and τ is a specified time. To succeed in the
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substitution attack by a group of colluders W̃ with Ui2 ∈ W̃ , W̃ will try to check the validity of a target
authenticated message without a time-signal at the specified time under the following conditions: W̃
can obtain ω user’s secret-keys, time-signals at all the time except the specified time τ , and a valid
authenticated message (m,α(t1)

i1,i2
, t1) where m ̸= m′. Note that W̃ can get f(Ui1 , Ui2) and g(Ui1 , Ui2)

since Ui2 ∈ W̃ . Thus, W̃ tries to obtain amk∗(x, z) to know f(Ui1 , Ui2) + amk∗(Ui1 , τ). Although
W̃ can know amk∗(Ul, z) (Ul ∈ W̃ ) and amk∗(x, t) (1 ≤ t ≤ τ − 1), W̃ cannot guess at least one
coefficient of amk∗(x, z) with probability larger than 1/q since the degrees of amk∗(x, z) with respect
to x and z are at most ω and τ − 1, respectively. Thus, we have P2 = 1/q.

Finally, it is straightforward to see that the construction satisfies all the equalities of lower bounds
in Theorem 6. �

5 Relation to Information-Theoretic Key-Insulated Security

In this section, we show relationship between TR-KA and key-insulated key-agreement (KI-KA for
short) in information-theoretic security setting.

5.1 Key-Insulated Key Agreement (KI-KA)

Recently, information-theoretically secure KI-KA is proposed by Seito and Shikata [15]. In KI-KA,
there are ñ users U1, U2, . . . , Uñ where ñ is a positive integer. And each user has two kinds of devices:
a trusted device (e.g., a smart card, USB flash memory) which stores a master-key; and an insecure
device in which a user’s secret-key is stored. Here, the notion of a secure device implies that it is
usually isolated from a network (e.g. the Internet or LAN) and that the attacker can neither wiretap
nor substitute information stored in the device via the network. Here, we assume that the user Ui’s
secure device is expressed as Hi (1 ≤ i ≤ ñ). We also assume that the lifetime of systems is divided
into discrete periods. And, at the beginning of each period j, Ui receives key-updating information
from Hi by connecting with Hi, then Ui computes a secret-key at the period j by using the secret-key
of the previous period and key-updating information. And then, any user Ui1 can share a common-key
with any user Ui2 at a period j.

Formally, we describe the definition of the model of KI-KA shown in [15].

Definition 9 (KI-KA[15]). A key-insulated key-agreement (KI-KA for short) Π̃ involves 2ñ + 1
entities, TI, U1, U2, . . . , Uñ and H1, H2, . . . , Hñ, and consists of a four-tuple of algorithms (KGen,
KUpd∗, KUpd, KDer) with six spaces, CK, I, T̃ , T̂ , MK and UK, where all of the above algorithms
except KGen are deterministic and all of the above spaces are finite. And, the detail of the notation
is as follows.

- Entities: TI is a trusted initializer, Ui (1 ≤ i ≤ ñ) is a user and Hi (1 ≤ i ≤ ñ) is a secure
device for Ui. Let Ũ := {U1, U2, . . . , Uñ} be a set of users, and H̃ := {H1,H2, . . . , Hñ} is a set of
devices. It is assumed that the identity of each user Ui is also denoted by Ui.

- Spaces: CK is a set of possible common-keys, Ii is a set of possible key-updating information
for Ui. Let I := I1 ∪ I2 ∪ . . . ∪ Iñ. And T̃ := {1, 2, . . . , N} is a set of time periods. Let
T̂ := T̃ ∪ {0}. Also MKi is a set of possible master-keys for Hi. Let MK :=MK1 ∪ MK2 ∪
. . . ∪ MKñ. And also UK(j)

i is a set of possible secret-keys at a period j for Ui. Let UKi :=
UK(0)

i ∪ UK(1)
i ∪ . . . ∪ UK(N)

i and UK := UK1 ∪ UK2 ∪ . . . ∪ UKñ.

- Algorithms: KGen is a key generation algorithm which on input a security parameter 1k, outputs
each user Ui’s initial secret-key uk(0)

i ∈ UK(0)
i (i.e., a secret-key at the period 0) and each device
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Hi’s master-key mki ∈ MKi. And, KUpd∗: MK × T̂ × T̃ → I is a key-updating algorithm
for Hi (1 ≤ i ≤ ñ), and we write mk(h,j)

i =KUpd∗(mki, h, j) where mk(h,j)
i ∈ Ii is key-updating

information. Also, KUpd : UK × I → UK is a key-updating algorithm for Ui (1 ≤ i ≤ ñ), and
we describe uk(j)

i =KUpd(uk(h)
i , mk(h,j)

i ) where uk(j)
i ∈ UK(j)

i is a Ui’s secret-key at a period
j. KDer : UK × Ũ → CK is a key derivation algorithm, and we write ck(j)

i1,i2
=KDer(uk(j)

i1
, Ui2)

where ck(j)
i1,i2
∈ CK is a common-key shared between Ui1 and Ui2 at a period j.

In KI-KA, it is required that the following equation holds: for all possible j ∈ T̃ , i1, i2 ∈
{1, 2, . . . , ñ}, uk(j)

i1
∈ UK(j)

i1
and uk(j)

i2
∈ UK(j)

i2
, we have KDer(uk(j)

i1
, Ui2) = KDer(uk(j)

i2
, Ui1).

And, in KI-KA, the following security goal is considered.

- The adversary does not obtain any information on a common-key shared between two honest
users at a target period.

And, as an adversarial model, it is assume that an adversary can obtain the following information on
user’s keys exposed in KI-KA.

- A user’s secret-key from the insecure device.
- A user’s master-key exposed (or robbed) from the secure device.

Especially, in KI-KA, it is considered that the following two types of exposure from targeted users.

- Type A: Targeted users’ secret-keys exposure, which models compromise of targeted users’ secret-
keys from their insecure devices (i.e., the attack to steal a secret-key stored in an insecure device
via a network).

- Type B: Targeted users’ master-keys exposure, which models compromise of their secure devices
by physical means (i.e., the attack to steal a master-key stored in a secure device directly).

To show the formal definition of the above security notions, we describe the several notations. Let
ψ be the number of possible users whose master-keys are exposed, let λ be the number of possible
users whose secret-keys are exposed per period, and let ω̃ be a nonnegative integer with ω̃ ≥ ψ + λ.
And, let γ be the number of possible periods at which secret-keys are exposed per user. And also,
let Ψ := {Ui1 , Ui2 , . . . , Uiψ} ∈ P(Ũ , ψ) be a set of users whose master-keys are exposed, andMKΨ :=
MKi1 ×MKi2 × · · · ×MKiψ be a set of master-keys exposed. Also let Λ(j) := {Ul1 , Ul2 , . . . , Ulλ} ∈
P(Ũ , λ) be a set of users whose secret-keys at the period j are exposed. Here, we note that Λ(j)

satisfies the following condition: for every i ∈ {1, 2, . . . , ñ}, |{j|Ui ∈ Λ(j) for some j ∈ T̃ }| ≤ γ. The
above condition implies that for every Ui, the number of periods at which Ui’s secret-keys may be
exposed is at most γ. Also, let UK(j)

Λ :=UK(j)
l1
× UK(j)

l2
× · · · × UK(j)

lλ
be a set of users’ secret-keys

exposed at the period j.
And, let CK(j)

i1,i2
be a finite set of possible common-keys shared between Ui1 and Ui2 at a period

j. Also, let I(h,j)
i ⊂ Ii be a finite set of possible Ui’s key-updating information which is used for

key-updating process from a period h to a period j. And, let CK(j)
i1,i2

, MKΨ and UK(1)
Λ , . . . , UK(N)

Λ

be random variables which take values on CK(j)
i1,i2

, MKΨ and UK(1)
Λ , . . . , UK(N)

Λ , respectively. With
these notation, we formally define security notions of KI-KA as follows.

Definition 10 ([15]). Let Π̃ be a KI-KA and ω̃ ≥ ψ + λ. Π̃ is said to be (ñ, ω̃;N, γ)-secure, if the
following conditions are satisfied:

1. For any Ui1 , Ui2 ∈ Ũ and any j ∈ T̃ , it holds that H(CK(j)
i1,i2
|UK(j)

i1
, Ui2) = 0.
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2. For any set of users Ψ ∈ P(Ũ , ψ) whose master-keys are exposed, any set of users Λ(j) ∈ P(Ũ , λ)
whose secret-keys at the period j are exposed, and any target period t ∈ T̃ , it holds that

H(CK(t)
i1,i2
|MKΨ, UK

(1)
Λ , . . . , UK

(N)
Λ ) = H(CK(t)

i1,i2
).

under each of the following conditions: (a) any Ui1 , Ui2 /∈ Ψ and Ui1 , Ui2 /∈ Λ(t); (b) any Ui1 ,
Ui2 ∈ Ψ and Ui1 , Ui2 /∈ Λ(j) (1 ≤ j ≤ N).

In this paper, we introduce a slightly weaker security: There is no exposure of users’ secret-keys
at the target period; and either Type A (users’ secret-key exposure) or Type B (users’ master-key
exposure) occurs. Formally, it is stated as follows.

Definition 11. Let Π̃ be a KI-KA. Π̃ is said to be (ñ, ω̃;N, γ)-weakly-secure, if the following conditions
are satisfied.

1. For any Ui1 , Ui2 ∈ Ũ and any j ∈ T̃ , it holds that H(CK(j)
i1,i2
|UK(j)

i1
, Ui2) = 0.

2. For any Ui1 , Ui2 ∈ Ũ and any target period t ∈ T̃ , the following security conditions are sarisfied:

(a) For any set of users Λ(j) ∈ P(Ũ , ω̃) whose secret-keys at the period j (1 ≤ j ≤ N, j ̸= t)
are exposed, it holds that

H(CK(t)
i1,i2
|UK(1)

Λ , . . . , UK
(t−1)
Λ , UK

(t+1)
Λ , . . . , UK

(N)
Λ ) = H(CK(t)

i1,i2
).

(b) For any set of users Ψ ∈ P(Ũ , ω̃) whose master-keys are exposed such that Ui1 , Ui2 ̸∈ Ψ, it
holds that H(CK(t)

i1,i2
|MKΨ) = H(CK(t)

i1,i2
).

5.2 Relationship between TR-KA and KI-KA

In KI-KA, any user cannot update a secret-key without using key-updating information which is
generated by the master-key. That is to say, the user’s key-updating process is controlled by the
device’s master-key and key-updating information. On the other hand, in TR-KA, no receiver can
derive a common-key without using a time-signal corresponding to a designated period (time). Namely,
the receiver’s common-key derivation process is controlled by the time-server’s master-key and the
time-signal. From the above observation, the mechanisms of KI-KA and TR-KA are similar in the
point that a common-key (or a secret-key required for deriving a common-key) derivation process is
controlled by a master-key.

The above statement is explicitly shown by proposing two generic constructions (or converters) in
a simple way: one is a construction of KI-KA from TR-KA; and the other is a construction of TR-KA
from KI-KA. In the following sections, we will see that the mechanisms of TR-KA and KI-KA are
essentially close by showing the generic constructions.

5.2.1 KI-KA from TR-KA

We first propose a simple algorithm which converts a secure TR-KA Π=(Setup, Ext, KeyGen, Key-
Der) into a secure KI-KA Π̃=(KGen, KUpd∗, KUpd, KDer). More precisely, we propose a generic
construction method of KI-KA by using TR-KA, and it meets the security requirements of KI-KA.
The detail of the construction is as follows.
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1. KGen . For a security parameter 1k, KGen outputs matching secret-keys for U1, . . . , Uñ and
H1, . . . , Hñ as follows. KGen calls Setup with taking on input 1k. Let (tuk(S)

1 , tuk(R)
1 , tuk(S)

2 ,
tuk

(R)
2 , . . . , tuk(S)

ñ , tuk(R)
ñ , tmk∗) be the output from Setup. Then, KGen outputs secret-keys

uk
(0)
i := (tuk(S)

i , tuk(R)
i , 0) and mki := tmk∗ for Ui and Hi, respectively.

2. KUpd∗ and KUpd . For two periods h ∈ T̂ , j ∈ T̃ and mki = tmk∗, KUpd∗ calls Ext and
generates tmk(j) =Ext(tmk∗, j). Then, KUpd∗ outputs a key-updating information mk

(h,j)
i :=

tmk(j). On the other hand, for mk(h,j)
i and uk(h)

i :=(tuk(S)
i , tuk(R)

i , h, tmk(h)), KUpd generates
a secret-key at the period j, uk(j)

i :=(tuk(S)
i , tuk(R)

i , j, tmk(j)), and outputs it.
3. KDer . For uk(j)

i1
= (tuk(S)

i1
, tuk

(R)
i1
, j, tmk(j)) and an identity Ui2 , KDer calls KeyGen and

KeyDer and generates the following two values:

tck
(j)
i1,i2

= KeyGen(tuk(S)
i1
, j, Ui2), tck

(j)
i2,i1

= KeyDer(tuk(R)
i1
, tmk(j), Ui2).

Then, KDer outputs a common-key at a period j, ck(j)
i1,i2

:= tck
(j)
i1,i2
⊕ tck(j)

i2,i1
.

The security of the above construction is shown as follows.

Theorem 9. If TR-KA Π is (n, ω, τ)-secure and common-keys are uniformly distributed over T CK,
then the KI-KA Π̃ formed by the above construction is (ñ, ω̃;N, γ)-weakly-secure, where ñ = n, ω̃ = ω
and γ = τ − 1. Furthermore, the sizes of secret-keys required in the above construction are given as
follows:

|MKi| = |T MK|, |UK(j)
i | = |T UK

(S)
i | · |T UK

(R)
i | · |T I

(j)| · τ,

|CK(j)
i1,i2
| = |T CK(j)

i1,i2
|, |I(h,j)

i | = |T I(j)|.

Proof. From the requirement of TR-KA shown in Section 2, it is obvious that the proposed construction
satisfies the first condition in Definition 11. And, we show the proposed construction fulfills the second
conditions (a) and (b) in Definition 11. In the following, suppose that Ui1 and Ui2 are target users and
t ∈ T̃ is a target period, and that the adversary tries to obtain any information about a common-key
ck

(t)
i1,i2

shared between Ui1 and Ui2 at the period t.

Condition (a). We consider the following case for (a) in Definition 11:

1. No devices’ master-key is compromised, and no sender’s secret-keys is compromised, i.e., Ψ = ∅
and Ui1 /∈ Λ(j) for 1 ≤ j ≤ N . Let Λ(j) := {U1, U2, . . . , Uω̃−1, Ui2}4 be a set of users whose
secret-keys at the period j is compromised (1 ≤ j ≤ N , j ̸= t); and

2. No user’s secret-key at the targeted period t is compromised, i.e., Λ(t) := ∅.

Then, we have

H(CK(t)
i1,i2
|UK(1)

Λ , . . . , UK
(t−1)
Λ , UK

(t+1)
Λ , . . . , UK

(N)
Λ )

= H(TCK(t)
i1,i2
⊕ TCK(t)

i2,i1
|TUK(S)

W , TUK
(R)
W , T I(1), . . . , T I(t−1), T I(t+1), . . . , T I(N)) (1)

= H(TCK(t)
i1,i2
|TUK(S)

W , TUK
(R)
W , T I(1), . . . , T I(t−1), T I(t+1), . . . , T I(N))

= H(TCK(t)
i1,i2

) (2)

= H(CK(t)
i1,i2

), (3)
4The case of Ui2 /∈ Λ(j) can be similarly discussed, and we omit it here.
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where W = {U1, U2, . . . , Uω̃−1, Ui2}, (1) and (3) follow from the construction, and (2) follows from
Definition 2.

Condition (b). We consider the following case for (b) in Definition 11:

- No user’s secret-key is compromised through a whole period, i.e. Λ(j) = ∅ for 1 ≤ j ≤ N . Let
Ψ(̸= ∅) be an arbitrary set of users whose master-keys are exposed (Note that MKΨ = {tmk∗}
for any Ψ ̸= ∅ from the construction).

Then, we have

H(CK(t)
i1,i2
|MKΨ) = H(TCK(t)

i1,i2
⊕ TCK(t)

i2,i1
|TMK) (4)

= H(TCK(t)
i1,i2
⊕ TCK(t)

i2,i1
) (5)

= H(CK(t)
i1,i2

), (6)

where (4) and (6) follow from the construction, and (5) follows from Definition 2. �

5.2.2 TR-KA from KI-KA

Next, we show a simple algorithm which converts a secure KI-KA Π̃=(KGen, KUpd∗, KUpd, KDer)
into a secure TR-KA Π=(Setup, Ext, KeyGen, KeyDer). We now describe a construction method of
Π from Π̃.

1. Setup. For a security parameter 1k, Setup outputs each entity’s secret-key as follows. Setup calls
KGen with inputs 1k to generate secret-keys for two sets Ũ := {U1.S , U1.R, U2.S , U2.R, . . . , Un.S ,
Un.R}5 and H̃ := {H1.S , H1.R, H2.S , H2.R, . . . , Hn.S , Hn.R}. Let (uk(0)

1.S , uk(0)
1.R, uk(0)

2.S , uk(0)
2.R, . . . ,

uk
(0)
n.S , uk(0)

n.R, mk1.S , mk1.R, mk2.S , mk2.R, . . . , mkn.S , mkn.R) be the output from KGen. Then,
Setup outputs secret-keys tuk(S)

i :=(uk(0)
i.S , mki.S), tuk(R)

i := uk
(0)
i.R and tmk∗ :=(mk1.R, mk2.R,

. . . , mkn.R).

2. Ext . For a master-key tmk∗ = (mk1.R,mk2.R, . . . ,mkn.R) and a period j, Ext calls KUpd∗ n

times and generates mk(0,j)
i.R =KUpd∗(mki.R, 0, j) (1 ≤ j ≤ n). Then, Ext outputs a time-signal

at the period j, tmk(j) :=(mk(0,j)
1.R , . . . , mk(0,j)

n.R ).

3. KeyGen . For tuk(S)
i1

= (uk(0)
i1.S ,mki1.S) and a period j, and an identity Ui2 , KeyGen calls

KUpd∗ and KUpd generates mk(0,j)
i1.S =KUpd∗(mki1.S , 0, j) and uk

(j)
i1.S =KUpd(uk(0)

i1.S ,mk
(0,j)
i1,S ).

Then, KeyGen computes ck(j)
i1.S,i2.R =KDer(uk(j)

i1.S , Ui2.R) and outputs a common-key at a period

j, tck(j)
i1,i2

:= ck
(j)
i1.S,i2.R.

4. KeyDer . For tuk(R)
i2

= uk
(0)
i2.R, tmk(j) = (mk(0,j)

1.R , . . . ,mk
(0,j)
n.R ) and an identity Ui1 , KeyDer calls

KUpd and generates uk(j)
i2.R =KUpd(uk(0)

i2.R,mk
(0,j)
i2.R ). Then, KeyGen generates ck(j)

i2.R,i1.S =KDer

(uk(j)
i2.R, Ui1.S), and outputs a common-key at a period j, tck(j)

i1,i2
:= ck

(j)
i2.R,i1.S .

We give a proof that the above construction is secure TR-KA as follows.

5In this construction, each identity Ui ∈ U consists of two identities Ui.S , Ui.R ∈ Ũ .
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Theorem 10. If KI-KA Π̃ is (ñ, ω̃;N,N)-secure with 1
2 ñ ≤ ω̃, then the TR-KA Π formed by the

above construction is (n, ω, τ)-secure, where n = 1
2 ñ, ω ≤ ω̃ −

1
2 ñ, and τ = N . Furthermore, the sizes

of secret-keys required in the above construction are as follows:

|T MK| = |MK|n, |T UK(S)
i | = |UK

(0)
i | · |MKi|, |T UK(R)

i | = |UK
(0)
i |,

|T CK(j)
i1,i2
| = |CK(j)

i1,i2
|, |T I(j)| = |I(0,j)

i |n.

Proof. We show that the proposed construction satisfies the conditions (1)-(3) in Definition 2. In the
following, suppose that Ui1 and Ui2 are target users, and that t ∈ T is the specified time.

Condition (1). Suppose n ≤ ω̃. Then, we have

H(TCK(t)
i1,i2
|TMK∗) = H(CK(t)

i1,i2
|MKΨ)

= H(CK(t)
i1,i2

) (7)

= H(TCK(t)
i1,i2

), (8)

where Ψ = {U1.R, U2.R, . . . , Un.R}, (7) follows from Definition 10, and (8) follows by the construction.

Condition (2). Suppose n+ ω ≤ ω̃. Without loss of generality, we consider the following case.

• W = {U1, U2, . . . , Uω} is a set of colluders such that Ui1 , Ui2 ̸∈W .

• W tries to obtain any information on tck(t)
i1,i2

.

Then, we have

H(TCK(t)
i1,i2
|TUK(S)

W , TUK
(R)
W , T I(1), . . . , T I(τ))

≥ H(CK(t)
i1,i2
|MKΨ, UK

(1)
Λ , . . . , UK

(τ)
Λ )

= H(CK(t)
i1,i2

) (9)

= H(TCK(t)
i1,i2

), (10)

where Ψ = {U1.S , U2.S , . . . , Uω.S} and Λ(j) = {U1.R, U2.R, . . . , Un.R} (1 ≤ j ≤ τ), (9) follows from
Definition 10, and (10) follows by the construction. Obviously, we have

H(TCK(t)
i1,i2
|TUK(S)

W , TUK
(R)
W , T I(1), . . . , T I(τ)) ≤ H(TCK(t)

i1,i2
).

Therefore, we obtain H(TCK(t)
i1,i2
|TUK(S)

W , TUK
(R)
W , T I(1), . . . , T I(τ)) = H(TCK(t)

i1,i2
).

Condition (3). Suppose n+ ω ≤ ω̃. Without loss of generality, we consider the following case.

• W := {U1, U2, . . . , Uω−1, Ui2} is a set of colluders including a legitimate (but dishonest) receiver
Ui2 .

• W tries to obtain any information about tck(t)
i1,i2

by using information on time-signals at all the
time except the specified time t.

Then, we obtain

H(TCK(t)
i1,i2
|TUK(S)

W , TUK
(R)
W , T I(1), . . . , T I(t−1), T I(t+1), . . . , T I(τ))

≥ H(CK(t)
i1,i2
|MKΨ, UK

(1)
Λ , . . . , UK

(τ)
Λ )

= H(CK(t)
i1,i2

) (11)

= H(TCK(t)
i1,i2

), (12)
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where Ψ = {U1.S , U2.S , . . . , Uω−1.S , Ui2.S} and Λ(j) = {U1.R, U2.R, . . . , Un.R} (1 ≤ j ≤ τ , j ̸= t), (11)
follows from Definition 10, and (12) follows by the construction. Therefore, we have

H(TCK(t)
i1,i2
|TUK(S)

W , TUK
(R)
W , T I(1), . . . , T I(t−1), T I(t+1), . . . , T I(τ)) = H(TCK(t)

i1,i2
). �

6 Concluding Remarks

In this paper, we studied timed-release cryptography with information-theoretic security. Specifically,
we first proposed a model and formalization of security for timed-release key-agreement (TR-KA) in
information-theoretic security setting. In addition, we derived tight lower bounds on memory-sizes
required for TR-KA, and we proposed the optimal direct construction.

Also, we proposed models and formalizations of security for timed-release encryption (TRE) and
authentication-codes (TRA-codes) in information-theoretic security setting. We also presented simple
generic constructions of TRE and TRA-codes, respectively. Furthermore, we derived tight lower
bounds on memory-sizes required for TRE and TRA-codes, respectively, and we also proposed optimal
direct constructions of TRE and TRA-codes, respectively.

Moreover, we showed the relationship between TR-KA and key-insulated key-agreement (KI-KA)
in information-theoretic security setting. We have shown that there exists a simple algorithm which
converts TR-KA into KI-KA, and vice versa. Therefore, we conclude that the mechanisms of TR-KA
and KI-KA are essentially close.

Acknowledgements. The authors would like to thank anonymous reviewers of ICITS 2012 for their
valuable comments.
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Appendix A: Proof of Theorem 1

The proof follows from the following lemmas.

Lemma 1. H(TUK(R)
i ) ≥ (ω + 1)H(TCK) for any i ∈ {1, 2, . . . , n}.

Proof. For arbitrary i ∈ {1, 2, . . . , n}, we take a subset B := {l1, l2, . . . , lω+1} ⊂ {1, 2, . . . , n} of indices
of users such that i /∈ B. Let Dk := (lk, i) and Wk := {l1, l2, . . . , lk} for each k with 1 ≤ k ≤ ω + 1.
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Then, we have

H(TUK(R)
i ) ≥ H(TUK(R)

i | TI(t))

≥ I(TCK(t)
D1
, TCK

(t)
D2
, . . . , TCK

(t)
Dω+1

;TUK(R)
i | TI(t))

= H(TCK(t)
D1
, TCK

(t)
D2
, . . . , TCK

(t)
Dω+1

| TI(t))

−H(TCK(t)
D1
, TCK

(t)
D2
, . . . , TCK

(t)
Dω+1

| TI(t), TUK
(R)
i )

= H(TCK(t)
D1
, TCK

(t)
D2
, . . . , TCK

(t)
Dω+1

| TI(t))

=
ω+1∑
k=1

H(TCK(t)
Dk
| TI(t), TCK

(t)
D1
, TCK

(t)
D2
, . . . , TCK

(t)
Dk−1

)

≥
ω+1∑
k=1

H(TCK(t)
Dk
| TUK(S)

Wk−1
, T I(t))

=
ω+1∑
k=1

H(TCK(t)
Dk

) (13)

= (ω + 1)H(TCK),

where (13) follows from the condition (2) in Definition 2. �

Lemma 2. H(TUK(S)
i ) ≥ (τ + ω)H(TCK) for any i ∈ {1, 2, . . . , n}.

Proof. For arbitrary i ∈ {1, 2, . . . , n}, we take a subset B := {l1, l2, . . . , lω+1} ⊂ {1, 2, . . . , n} of indices
of users such that i /∈ B. Let Dk := (i, lk) and Wk := {l1, l2, . . . , lk} for each k with 1 ≤ k ≤ ω + 1.
Also, let F (t)

k := (TCK(1)
Dk
, TCK

(2)
Dk
,

. . . , TCK
(t)
Dk

) and G(t)
k := (TCK(t)

D1
, TCK

(t)
D2
, . . . , TCK

(t)
Dk

) for 1 ≤ k ≤ ω + 1 and 1 ≤ t ≤ τ . Then, we
have

H(TUK(S)
i )

≥ H(F (τ)
1 , G

(t)
ω+1)

= H(F (τ)
1 ) +H(G(t)

ω+1 | F
(τ)
1 )

=
τ∑

t=1

H(TCK(t)
D1
| F (t−1)

1 ) +
ω+1∑
k=2

H(TCK(t)
Dk
| F (τ)

1 , TCK
(t)
D2
, . . . , TCK

(t)
Dk−1

)

≥
τ∑

t=1

H(TCK(t)
D1
| TUK(R)

D1
, T I(1), . . . , T I(t−1))

+
ω+1∑
k=2

H(TCK(t)
Dk
| TUK(R)

Wk−1
, T I(1), . . . , T I(τ))

=
τ∑

t=1

H(TCK(t)
D1

) +
ω+1∑
k=2

H(TCK(t)
Dk

) (14)

= (τ + ω)H(TCK),

where (14) follows from the conditions (2) and (3) in Definition 2. �
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Lemma 3. H(TI(t) | TI(1), . . . , T I(t−1)) ≥ (ω+1)H(TCK) for any t ∈ T . In particular, H(TI(t)) ≥
(ω + 1)H(TCK) for any t ∈ T .

Proof. For arbitrary i ∈ {1, 2, . . . , n}, we take a subset B := {l1, l2, . . . , lω+1} ⊂ {1, 2, . . . , n} of indices
of users such that i = l1. Let Dk := (lk, i) and Wk := {l1, l2, . . . , lk} for each k with 1 ≤ k ≤ ω + 1.
Then, we have

H(TI(t) | TI(1), . . . , T I(t−1))

≥ H(TI(t) | TUK(R)
i , T I(1), . . . , T I(t−1))

≥ I(TCK(t)
D1
, TCK

(t)
D2
, . . . , TCK

(t)
Dω+1

;TI(t) | TUK(R)
i , T I(1), . . . , T I(t−1))

= H(TCK(t)
D1
, TCK

(t)
D2
, . . . , TCK

(t)
Dω+1

| TUK(R)
i , T I(1), . . . , T I(t−1))

−H(TCK(t)
D1
, . . . , TCK

(t)
Dω+1

| TUK(R)
i , T I(1), . . . , T I(t))

= H(TCK(t)
D1
, TCK

(t)
D2
, . . . , TCK

(t)
Dω+1

| TUK(R)
i , T I(1), . . . , T I(t−1))

=
ω+1∑
k=1

H(TCK(t)
Dk
| TUK(R)

i , T I(1), . . . , T I(t−1), TCK
(t)
D1
, . . . , TCK

(t)
Dk−1

)

≥
ω+1∑
k=1

H(TCK(t)
Dk
| TUK(S)

Wk−1
, TUK

(R)
i , T I(1), . . . , T I(t−1))

=
ω+1∑
k=1

H(TCK(t)
Dk

) (15)

= (ω + 1)H(TCK),

where (15) follows from the condition (3) in Definition 2. �

Lemma 4. H(TMK) ≥ τ(ω + 1)H(TCK)．

Proof. We have

H(TMK) ≥ I(TI(1), . . . , T I(τ);TMK)
= H(TI(1), . . . , T I(τ))−H(TI(1), . . . , T I(τ) | TMK)
= H(TI(1), . . . , T I(τ))

=
τ∑

t=1

H(TI(t) | TI(1), . . . , T I(t−1))

= τ(ω + 1)H(TCK),

where the last equality follows from Lemma 3. �

Appendix B: Proof of Theorem 3

The proof of Theorem 3 follows from the lemmas in this appendix. In this appendix, for any i, j ∈
{1, 2, . . . , n} and any t ∈ {1, 2, . . . , τ}, M (t)

i,j denotes the random variable which takes plaintexts to be

sent from Ui to Uj at time t, and M (t)
i,j is i.i.d. according to PM .

Lemma 5. H(DKi) ≥ (ω + 1)H(M) for any i ∈ {1, 2, . . . , n}.
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Proof. For arbitrary i ∈ {1, 2, . . . , n}, we take a subset B := {l1, l2, . . . , lω+1} ⊂ {1, 2, . . . , n} of indices
of users such that i /∈ B. Let Dk := (lk, i) with 1 ≤ k ≤ ω + 1. Then, we have

H(DKi) ≥ H(DKi | ETI(t), C
(t)
D1
, C

(t)
D2
, . . . , C

(t)
Dω+1

)

≥ I(M (t)
D1
,M

(t)
D2
, . . . ,M

(t)
Dω+1

;DKi | ETI(t), C
(t)
D1
, C

(t)
D2
, . . . , C

(t)
Dω+1

)

= H(M (t)
D1
,M

(t)
D2
, . . . ,M

(t)
Dω+1

| ETI(t), C
(t)
D1
, C

(t)
D2
, . . . , C

(t)
Dω+1

)

−H(M (t)
D1
,M

(t)
D2
, . . . ,M

(t)
Dω+1

| ETI(t), DKi, C
(t)
D1
, C

(t)
D2
, . . . , C

(t)
Dω+1

)

= H(M (t)
D1
,M

(t)
D2
, . . . ,M

(t)
Dω+1

| ETI(t), C
(t)
D1
, C

(t)
D2
, . . . , C

(t)
Dω+1

)

=
ω+1∑
k=1

H(M (t)
Dk
| ETI(t),M

(t)
D1
,M

(t)
D2
, . . . ,M

(t)
Dk−1

, C
(t)
D1
, C

(t)
D2
, . . . , C

(t)
Dω+1

)

=
ω+1∑
k=1

H(M (t)
Dk

) (16)

= (ω + 1)H(M),

where (16) is shown by following: Let Wk := {l1, l2, . . . , lk−1, lk+1, . . . , lω+1} for each k with 1 ≤ k ≤
ω + 1. Then, we have

H(M (t)
Dk
| C(t)

Dk
, EKWk

, ETI(t))

= H(M (t)
Dk
| C(t)

Dk
, EKWk

, ETI(t),M
(t)
D1
, . . . ,M

(t)
Dk−1

,M
(t)
Dk+1

, . . . ,M
(t)
Dω+1

)

≤ H(M (t)
Dk
|M (t)

D1
, . . . ,M

(t)
Dk−1

, C
(t)
D1
, . . . , C

(t)
Dω+1

, ETI(t))

≤ H(M (t)
Dk

).

And, we have H(M (t)
Dk
| C(t)

Dk
, EKWk

, ETI(t)) = H(M (t)
Dk

) from the condition (2) in Definition 5.

Therefore, we have H(M (t)
Dk
|M (t)

D1
, . . . ,M

(t)
Dk−1

, C
(t)
D1
, . . . , C

(t)
Dω+1

, ETI(t)) = H(M (t)
Dk

). �

Lemma 6. H(EKi) ≥ (τ + ω)H(M) for any i ∈ {1, 2, . . . , n}.

Proof. For arbitrary i ∈ {1, 2, . . . , n}, we take a subset B := {l1, l2, . . . , lω+1} ⊂ {1, 2, . . . , n} of
indices of users such that i /∈ B. Let Dk := (i, lk) and Wk := {l1, l2, . . . , lk−1, lk+1, . . . , lω+1} for
each k with 1 ≤ k ≤ ω + 1. Also, let F (t)

k := (M (1)
Dk
,M

(2)
Dk
, . . . ,M

(t)
Dk

), G(t)
k := (M (t)

D1
,M

(t)
D2
, . . . ,M

(t)
Dk

),

FC
(t)
k := (C(1)

Dk
, C

(2)
Dk
, . . . , C

(t)
Dk

), and GC
(t)
k := (C(t)

D1
, C

(t)
D2
, . . . , C

(t)
Dk

) for 1 ≤ k ≤ ω + 1 and 1 ≤ t ≤ τ .
Then, we have

H(EKi) = H(EKi | F (τ−1)
1 , G

(τ)
ω+1)

≥ I(EKi;FC
(τ−1)
1 , GC

(τ)
ω+1 | F

(τ−1)
1 , G

(τ)
ω+1)

= H(FC(τ−1)
1 , GC

(τ)
ω+1 | F

(τ−1)
1 , G

(τ)
ω+1)−H(FC(τ−1)

1 , GC
(τ)
ω+1 | F

(τ−1)
1 , G

(τ)
ω+1, EKi)

= H(FC(τ−1)
1 , GC

(τ)
ω+1 | F

(τ−1)
1 , G

(τ)
ω+1) (17)

= H(FC(τ−1)
1 | F (τ−1)

1 , G
(τ)
ω+1) +H(GC(τ)

ω+1 | F
(τ−1)
1 , G

(τ)
ω+1, FC

(τ−1)
1 )
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=
τ−1∑
t=1

H(C(t)
D1
| F (τ−1)

1 , G
(τ)
ω+1, C

(1)
D1
, . . . , C

(t−1)
D1

)

+
ω+1∑
j=1

H(C(τ)
Dj
| F (τ−1)

1 , G
(τ)
ω+1, FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

)

≥ (τ + ω)H(M), (18)

where (17) follows from Enc algorithm (i.e., H(FC(τ−1)
1 , GC

(τ)
ω+1 | F

(τ−1)
1 , G

(τ)
ω+1, EKi) = 0), and (18)

follows from the following claim:

Claim 1. H(C(t)
Dj
| F (τ−1)

1 , G
(τ)
ω+1, C

(1)
D1
, . . . , C

(t−1)
D1

) ≥ H(M (t)
Dj

) for any i ∈ {1, 2, . . . , n}, any lj ∈ B,

and any t ∈ T . In particular, H(C(t)
Dj
| F (τ−1)

1 , G
(τ)
ω+1, FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

) ≥ H(M (t)
Dj

) for any
i ∈ {1, 2, . . . , n}, any lj ∈ B, and any t ∈ T .

Proof. First, it is easy to see that H(C(t)
Dj
| F (τ−1)

1 , G
(τ)
ω+1, C

(1)
D1
, . . . , C

(t−1)
D1

) ≥ H(C(t)
Dj
| F (τ−1)

1 , G
(τ)
ω+1,

FC
(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

) for any i ∈ {1, 2, . . . , n}, any lj ∈ B, and any t ∈ T .

Next, for H(C(t)
Dj
, F

(τ−1)
1 , G

(τ)
ω+1 | FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

), we have

H(C(t)
Dj
, F

(τ−1)
1 , G

(τ)
ω+1 | FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

)

= H(C(t)
Dj
| FC(τ−1)

1 , C
(τ)
D1
, . . . , C

(τ)
Dj−1

)

+H(F (τ−1)
1 | FC(τ−1)

1 , C
(τ)
D1
, . . . , C

(τ)
Dj−1

, C
(t)
Dj

)

+H(G(τ)
ω+1 | F

(τ−1)
1 , FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

, C
(t)
Dj

)

= H(C(t)
Dj
| FC(τ−1)

1 , C
(τ)
D1
, . . . , C

(τ)
Dj−1

)

+
τ−1∑
k=1

H(M (k)
D1
| FC(τ−1)

1 , C
(τ)
D1
, . . . , C

(τ)
Dj−1

, C
(t)
Dj
,M

(1)
D1
, . . . ,M

(k−1)
D1

)

+
ω+1∑
l=1

H(M (τ)
Dl
| F (τ−1)

1 , FC
(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

, C
(t)
Dj
,M

(τ)
D1
, . . . ,M

(τ)
Dl−1

)

= H(C(t)
Dj
| FC(τ−1)

1 , C
(τ)
D1
, . . . , C

(τ)
Dj−1

) +
τ−1∑
k=1

H(M (k)
D1
| C(k)

D1
) +

ω+1∑
l=1

H(M (τ)
Dl
| C(τ)

Dl
) (19)

= H(C(t)
Dj
| FC(τ−1)

1 , C
(τ)
D1
, . . . , C

(τ)
Dj−1

) +
τ−1∑
k=1

H(M (k)
D1

) +
ω+1∑
l=1

H(M (τ)
Dl

) (20)

= H(C(t)
i,j | FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

) +H(F (τ−1)
1 ) +H(G(τ)

ω+1), (21)

where (19) follows from that M (t)
i,j is independent of (C(k)

i,l ,M
(k)
i,l ) if (j, t) ̸= (l, k), (20) follows from

Definition 5, and (21) follows from that each M (t)
i,j is i.i.d.
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On the other hand, we have

H(C(t)
Dj
, F

(τ−1)
1 , G

(τ)
ω+1 | FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

)

= H(G(τ)
ω+1 | FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

)

+H(F (τ−1)
1 | G(τ)

ω+1, FC
(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

)

+H(C(t)
Dj
| F (τ−1)

1 , G
(τ)
ω+1, FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

)

=
ω+1∑
l=1

H(M (τ)
Dl
| FC(τ−1)

1 , C
(τ)
D1
, . . . , C

(τ)
Dj−1

,M
(τ)
D1
, . . . ,M

(τ)
Dl−1

)

+
τ−1∑
k=1

H(M (k)
D1
| G(τ)

ω+1, FC
(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

,M
(1)
D1
, . . . ,M

(k−1)
D1

)

+H(C(t)
Dj
| F (τ−1)

1 , G
(τ)
ω+1, FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

)

=
ω+1∑
l=1

H(M (τ)
Dl

) +
τ−1∑
k=1

H(M (k)
D1

) +H(C(t)
Dj
| F (τ−1)

1 , G
(τ)
ω+1, FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

) (22)

= H(G(τ)
ω+1) +H(F (τ−1)

1 ) +H(C(t)
Dj
| F (τ−1)

1 , G
(τ)
ω+1, FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

), (23)

where (22) and (23) follow from that the same reasons of (19), (20), and (21) above.
Therefore, from (21) and (23), we have

H(C(t)
Dj
| F (τ−1)

1 , G
(τ)
ω+1, FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

) = H(C(t)
i,j | FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

). (24)

Next, for H(C(t)
Dj
,M

(t)
Dj
, EKi, DKj , ETI

(t) | FC(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

), we have

H(C(t)
Dj
,M

(t)
Dj
, EKi, DKj , ETI

(t) | FC(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

)

= H(C(t)
Dj
, EKi, DKj , ETI

(t) | FC(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

)

+H(M (t)
Dj
| FC(τ−1)

1 , C
(τ)
D1
, . . . , C

(τ)
Dj−1

, C
(t)
Dj
, EKi, DKj , ETI

(t))

= H(C(t)
Dj
, EKi, DKj , ETI

(t) | FC(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

), (25)

where (25) follows from Dec algorithm in Definition 4 (i.e., H(M (t)
i,j | C

(t)
i,j , DKj , ETI

(t)) = 0).
On the other hand, we have

H(C(t)
Dj
,M

(t)
Dj
, EKi, DKj , ETI

(t) | FC(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

)

= H(M (t)
Dj
, EKi, DKj , ETI

(t) | FC(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

)

+H(C(t)
Dj
| FC(τ−1)

1 , C
(τ)
D1
, . . . , C

(τ)
Dj−1

,M
(t)
Dj
, EKi, DKj , ETI

(t))

= H(M (t)
Dj
, EKi, DKj , ETI

(t) | FC(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

), (26)

where (26) follows from Enc algorithm in Definition 4 (i.e., H(C(t)
i,j |M

(t)
i,j , EKi) = 0).
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Therefore, we have

H(C(t)
Dj
| FC(τ−1)

1 , C
(τ)
D1
, . . . , C

(τ)
Dj−1

) +H(EKi, DKj , ETI
(t) | FC(τ−1)

1 , C
(τ)
D1
, . . . , C

(τ)
Dj−1

)

≥ H(C(t)
Dj
, EKi, DKj , ETI

(t) | FC(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

)

= H(M (t)
Dj
, EKi, DKj , ETI

(t) | FC(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

) (27)

= H(M (t)
Dj

) +H(EKi, DKj , ETI
(t) | FC(τ−1)

1 , C
(τ)
D1
, . . . , C

(τ)
Dj−1

), (28)

where (27) follows from (25) and (26), and (28) follows from thatM (t)
Dj

is independent of (EKi, DKj , ETI
(t),

FC
(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Di−1

).
Hence, we have

H(C(t)
Dj
| FC(τ−1)

1 , C
(τ)
D1
, . . . , C

(τ)
Dj−1

) ≥ H(M (t)
Dj

). (29)

Finally, from (24) and (29), we have H(C(t)
Dj
| F (τ−1)

1 , G
(τ)
ω+1, FC

(τ−1)
1 , C

(τ)
D1
, . . . , C

(τ)
Dj−1

) ≥ H(M (t)
Dj

)
for any i ∈ {1, 2, . . . , n}, any lj ∈ B, and any t ∈ T . �
Proof of Lemma 6 : Now, the proof of Lemma 6 is completed. �

Lemma 7. H(ETI(t) | ETI(1), . . . , ETI(t−1)) ≥ (ω + 1)H(M) for any t ∈ T . In particular,
H(ETI(t)) ≥ (ω + 1)H(M) for any t ∈ T .

Proof. For arbitrary i ∈ {1, 2, . . . , n}, we take a subset B := {l1, l2, . . . , lω+1} ⊂ {1, 2, . . . , n} of indices
of users such that i = l1. Let Dk := (lk, i) with 1 ≤ k ≤ ω + 1. Then, we have

H(ETI(t) | ETI(1), . . . , ETI(t−1))

≥ H(ETI(t) | C(t)
D1
, C

(t)
D2
, . . . , C

(t)
Dω+1

, DKi, ETI
(1), . . . , ETI(t−1))

≥ I(M (t)
D1
,M

(t)
D2
, . . . ,M

(t)
Dω+1

;ETI(t) | C(t)
D1
, C

(t)
D2
, . . . , C

(t)
Dω+1

, DKi, ETI
(1), . . . , ETI(t−1))

= H(M (t)
D1
,M

(t)
D2
, . . . ,M

(t)
Dω+1

| C(t)
D1
, C

(t)
D2
, . . . , C

(t)
Dω+1

, DKi, ETI
(1), . . . , ETI(t−1))

−H(M (t)
D1
,M

(t)
D2
, . . . ,M

(t)
Dω+1

| C(t)
D1
, C

(t)
D2
, . . . , C

(t)
Dω+1

, DKi, ETI
(1), . . . , ETI(t))

= H(M (t)
D1
,M

(t)
D2
, . . . ,M

(t)
Dω+1

| C(t)
D1
, C

(t)
D2
, . . . , C

(t)
Dω+1

, DKi, ETI
(1), . . . , ETI(t−1))

=
ω+1∑
k=1

H(M (t)
Dk
| C(t)

D1
, C

(t)
D2
, . . . , C

(t)
Dω+1

, DKi, ETI
(1), . . . , ETI(t−1),M

(t)
D1
, . . . ,M

(t)
Dk−1

)

=
ω+1∑
k=1

H(M (t)
Dk

) (30)

= (ω + 1)H(M),

where (30) is shown by following: Let Wk := {l1, l2, . . . , lk−1, lk+1, . . . , lω+1} for each k with 1 ≤ k ≤
ω + 1. Then, we have

H(M (t)
Dk
| C(t)

Dk
, EKWk

, DKi, ETI
(1), . . . , ETI(t−1))

= H(M (t)
Dk
| C(t)

Dk
, EKWk

, DKi, ETI
(1), . . . , ETI(t−1),M

(t)
D1
, . . . ,M

(t)
Dk−1

,M
(t)
Dk+1

, . . . ,M
(t)
Dω+1

)

≤ H(M (t)
Dk
| C(t)

D1
, C

(t)
D2
, . . . , C

(t)
Dω+1

, DKi, ETI
(1), . . . , ETI(t−1),M

(t)
D1
, . . . ,M

(t)
Dk−1

)

≤ H(M (t)
Dk

).
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And, we have H(M (t)
Dk
| C(t)

Dk
, EKWk

, DKi, ETI
(1), . . . , ETI(t−1)) = H(M (t)

Dk
) from the condition (3) in

Definition 5. Hence, H(M (t)
Dk
| C(t)

D1
, C

(t)
D2
, . . . , C

(t)
Dω+1

, DKi, ETI
(1), . . . , ETI(t−1),M

(t)
D1
, . . . ,M

(t)
Dk−1

) =

H(M (t)
Dk

). �

Lemma 8. H(EMK) ≥ τ(ω + 1)H(M)．

Proof. The proof can be shown by the same way as in the proof of Lemma 4. �

Appendix C: Proof of Theorem 6

The proof of Theorem 6 follows from the lemmas in this appendix. In order to complete the proof of
Theorem 6, we show the following lemmas.

Lemma 9. |E(R)
i2
| ≥ q2(ω+1) for any i2 ∈ {1, 2, . . . , n}.

Proof: For arbitrary i1, i2 ∈ {1, 2, . . . , n}, let Wi1 := {U1, . . . , Ui1−1, Ui1+1, . . . , Uω+1} such that Ui2 /∈
Wi1 . Then, for any t1, t2 ∈ T , we have(

1
q

)2(ω+1)

≥
ω+1∏
i1=1

PI1(Ui1 , Ui2 ,Wi1 , t1)PS1(Ui1 , Ui2 ,Wi1 , t1, t2)

≥ 2
−
∑ω+1
i1=1 H(E

(R)
i1,i2

|E(S)
Wi1

)
(31)

≥ 2−
∑ω+1
i1=1 H(E

(R)
i1,i2

|E(S)
1 ,...,E

(S)
i1−1)

≥ 2−
∑ω+1
i1=1 H(E

(R)
i1,i2

|E(S)
1,i2

,...,E
(S)
i1−1,i2

) (32)

≥ 2−
∑ω+1
i1=1 H(E

(R)
i1,i2

|E(R)
1,i2

,...,E
(R)
i1−1,i2

) (33)

= 2−H(E
(R)
1,i2

,...,E
(R)
ω+1,i2

)

≥ 2−H(E
(R)
i2

) (34)

≥ 2− log |E(R)
i2

| =
1

|E(R)
i2
|
,

where (31) follows from Theorem 5, and (32), (33), and (34) follow from the mappings, λi1 for 1 ≤
i1 ≤ ω, ρi1,i2 for 1 ≤ i1 ≤ ω, and πi2 , respectively. Therefore, we have |E(R)

i2
| ≥ q2(ω+1). �

Lemma 10. |AT I(t)| ≥ qω+1 for any t ∈ T .

Proof: For arbitrary i1, i2 ∈ {1, 2, . . . , n}, let W̃i1 := {U1, . . . , Ui1−1, Ui1+1, . . . , Uω+1} such that Ui2 ∈
W̃i1 . Then, for any t ∈ T , we have(

1
q

)ω+1

≥
ω+1∏
i1=1

P2(Ui1 , Ui2 , W̃i1 , t)

≥ 2
−
∑ω+1
i1=1 H(ATI

(t)
i1

|E(S)

W̃i1

)
(35)

≥ 2−
∑ω+1
i1=1 H(ATI

(t)
i1

|E(S)
1 ,...,E

(S)
i1−1)

≥ 2−
∑ω+1
i1=1 H(ATI

(t)
i1

|AMK1,...,AMKi1−1) (36)

≥ 2−
∑ω+1
i1=1 H(ATI

(t)
i1

|ATI
(t)
1 ,...,ATI

(t)
i1−1) (37)
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= 2−H(ATI
(t)
1 ,...,ATI

(t)
ω+1)

≥ 2−H(ATI(t)) (38)

≥ 2− log |AT I(t)| =
1

|AT I(t)|
,

where (35) follows from Theorem 5; (36) follow from the mappings λi1 and ρi1,i2 for 1 ≤ i1 ≤ ω; (37)
and (38) follow from the mappings gi1 for 1 ≤ i1 ≤ ω, and f (t), respectively. Therefore, we have
|AT I(t)| ≥ qω+1. �

Lemma 11. |AMK| ≥ qτ(ω+1).

Proof: For arbitrary i1, i2 ∈ {1, 2, . . . , n}, let W̃i1 := {U1, . . . , Ui1−1, Ui1+1, . . . , Uω+1} such that Ui2 ∈
W̃i1 . Then, for any t ∈ T , we have(

1
q

)τ(ω+1)

≥
τ∏

t=1

ω+1∏
i1=1

P2(Ui1 , Ui2 , W̃i1 , t)

≥ 2
−
∑τ
t=1

∑ω+1
i1=1 H(ATI

(t)
i1

|E(S)

W̃i1

,ATI(1),...,ATI(t−1))
(39)

≥ 2−
∑τ
t=1

∑ω+1
i1=1 H(ATI

(t)
i1

|E(S)
1 ,...,E

(S)
i1−1,ATI(1),...,ATI(t−1))

≥ 2−
∑τ
t=1

∑ω+1
i1=1 H(ATI

(t)
i1

|AMK1,...,AMKi1−1,ATI(1),...,ATI(t−1)) (40)

≥ 2−
∑τ
t=1

∑ω+1
i1=1 H(ATI

(t)
i1

|ATI
(t)
1 ,...,ATI

(t)
i1−1,ATI(1),...,ATI(t−1)) (41)

= 2−
∑τ
t=1 H(ATI

(t)
1 ,...,ATI

(t)
ω+1|ATI(1),...,ATI(t−1))

≥ 2−
∑τ
t=1 H(ATI(t)|ATI(1),...,ATI(t−1)) (42)

= 2−H(ATI(1),...,ATI(τ))

≥ 2−H(AMK) (43)

≥ 2− log |AMK| =
1

|AMK|
,

where (39) follows from Theorem 5; (40) follow from the mappings λi1 and ρi1,i2 for 1 ≤ i1 ≤ ω; (41)
and (42) follow from the mappings gi1 for 1 ≤ i1 ≤ ω and f (t), respectively; (43) follows from the
deterministic algorithm (i.e., mapping) AExt : AMK × T → AT I. Therefore, we have |AMK| ≥
qτ(ω+1). �

Lemma 12. |E(S)
i1
| ≥ q2ω+τ+1 for any i1 ∈ {1, 2, . . . , n}.

Proof: For arbitrary i1, i2 ∈ {1, 2, . . . , n}, let Wi2 := {U1, . . . , Ui2−1, Ui2+1, . . . , Uω+1} such that Ui1 /∈
Wi2 , and W̃ ∈ P(U , ω) such that Ui1 /∈ W̃ and Ui2 ∈ W̃ . Then, for any t, t1, t2 ∈ T , we have

log
(

1
q

)2ω+τ+1

≥ log

(
τ∏

t=2

P2(Ui1 , Ui2 , W̃ , t)
ω+1∏
i2=1

PI1(Ui1 , Ui2 ,Wi2 , t1)PS1(Ui1 , Ui2 ,Wi2 , t1, t2)

)

≥ −
τ∑

t=2

H(ATI(t)
i1
| E(S)

W̃
, E

(R)

W̃
, ATI(1), . . . , ATI(t−1), ATI(t+1), . . . , ATI(τ))

−
ω+1∑
i2=1

H(E(t)
i1,i2
| E(S)

Wi2
, E

(R)
Wi2

, ATI(1), . . . , ATI(τ)) (44)
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≥ −
τ∑

t=2

H(ATI(t)
i1
| ATI(1), ATI(2), . . . , ATI(t−1))

−
ω+1∑
i2=1

H(E(t)
i1,i2
| E(R)

Wi2
, ATI(1), . . . , ATI(τ))

≥ −
τ∑

t=2

H(ATI(t)
i1
| ATI(2), ATI(3), . . . , ATI(t−1))

−
ω+1∑
i2=1

H(E(t)
i1,i2
| E(R)

1 , . . . , E
(R)
i2−1ATI

(2), . . . , ATI(τ))

≥ −
τ∑

t=2

H(ATI(t)
i1
| ATI(2)

i1
, ATI

(3)
i1
, . . . , ATI

(t−1)
i1

)

−
ω+1∑
i2=1

H(E(t)
i1,i2
| E(R)

i1,1, . . . , E
(R)
i1,i2−1, ATI

(2)
i1
, . . . , ATI

(τ)
i1

) (45)

= −H(ATI(2)
i1
, ATI

(3)
i1
, . . . , ATI

(τ)
i1
, E

(R)
i1,1, . . . , E

(R)
i1,ω+1)

≥ −H(AMKi1 , E
(R)
i1,1, . . . , E

(R)
i1,ω+1) (46)

≥ −H(E(S)
i1,1, . . . , E

(S)
i1,ω+1) (47)

≥ −H(E(S)
i1

) (48)

≥ − log |E(S)
i1
|,

where (44) follows from Theorem 5; (45) follows from the mappings πi2 for 1 ≤ i2 ≤ ω and f (t) for
2 ≤ t ≤ τ ; (46), (47), and (48) follow from the mappings, gi1 , ρi1,i2 for 1 ≤ i2 ≤ ω + 1, and λi1 ,
respectively. Therefore, |E(S)

i1
| ≥ q2ω+τ+1. �

Lemma 13. |A(t)
i1,i2
| ≥ q for any i1, i2 ∈ {1, 2, . . . , n} and t ∈ T .

Proof: Let W = ∅. Then, we have

1
q
≥ PI1(Ui1 , Ui2 ,W, t)

≥ 2−I(MA
(t)
i1,i2

;E
(R)
i1,i2

|ATI(1),...,ATI(τ)) (49)

= 2−I(M ;E
(R)
i1,i2

|ATI(1),...,ATI(τ))−I(A
(t)
i1,i2

;E
(R)
i1,i2

|ATI(1),...,ATI(τ),M)

= 2−I(A
(t)
i1,i2

;E
(R)
i1,i2

|ATI(1),...,ATI(τ),M)

≥ 2−H(A
(t)
i1,i2

) ≥ 1

|A(t)
i1,i2
|
,

where (49) follows from Theorem 5. Therefore, we have |A(t)
i1,i2
| ≥ q． �

Proof of Theorem 6: From Lemmas 9-13, the proof of Theorem 6 is completed. �

33


