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Abstract

Optimizing the maximum, or average, length of the shares in relation to the length of
the secret for every given access structure is a difficult and long-standing open problem in
cryptology. Most of the known lower bounds on these parameters have been obtained by
implicitly or explicitly using that every secret sharing scheme defines a polymatroid related
to the access structure. The best bounds that can be obtained by this combinatorial method
can be determined by using linear programming, and this can be effectively done for access
structures on a small number of participants.

By applying this linear programming approach, we improve some of the known lower
bounds for the access structures on five participants and the graph access structures on six
participants for which these parameters were still undetermined. Nevertheless, the lower
bounds that are obtained by this combinatorial method are not tight in general. For some
access structures, they can be improved by adding to the linear program non-Shannon in-
formation inequalities as new constraints. We obtain in this way new separation results for
some graph access structures on eight participants and for some ports of non-representable
matroids. Finally, we prove that, for two access structures on five participants, the combi-
natorial lower bound cannot be attained by any linear secret sharing scheme.

Key words. Secret sharing, linear programming, polymatroid, non-Shannon information
inequalities.

1 Introduction

Secret sharing, which was independently introduced by Blakley [7] and Shamir [40], deals with
methods to distribute a secret value among a set of participants, in such a way that only some
qualified subsets can recover the secret value. In this work we consider only unconditionally
secure perfect secret sharing schemes, in which the shares of the participants in an unqualified

∗A previous version of this paper appeared in the Proceedings of LATIN 2010 [38]. Several new results have
been added to the current version, as the ones in Sections 6 and 7. Moreover, the overall presentation of the
paper has been greatly improved. This work was partially done while the first and second authors were with
Universitat Politècnica de Catalunya, Barcelona. Their work was partially supported by the Spanish Ministry of
Education and Science under project MTM2009-07694. The work of the first and third authors is supported by
the Singapore National Research Foundation under Research Grant NRF-CRP2-2007-03.
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set do not provide any information about the secret. The collection of qualified subsets is
called the access structure of the secret sharing scheme. The reader that is unfamiliar with
secret sharing will find more information about the topic in the surveys by Stinson [41] and by
Beimel [2]. In addition, some of the concepts appearing in this paper are described in more
detail in [31].

The length of the shares, when compared to the length of the secret value, is usually con-
sidered as a measure of the efficiency of a secret sharing scheme. Specifically, the complexity, or
information ratio, of a secret sharing scheme is defined as the ratio between the maximum length
of the shares and the length of the secret. The average complexity , or average information ratio,
is defined analogously from the average length of the shares. In every secret sharing scheme,
the length of every share is at least the length of the secret [30]. A secret sharing scheme is said
to be ideal if all shares have the same length as the secret. The optimal complexity σ(Γ) of an
access structure Γ is defined as the infimum of the complexities of all secret sharing schemes
for Γ. The optimal average complexity σ̃(Γ) is defined analogously. Clearly, 1 ≤ σ̃(Γ) ≤ σ(Γ).

Determining the values of these parameters is one of the main open problems in secret shar-
ing. Even though many partial results have been found, important questions remain unsolved.
In particular, the asymptotic behavior of these parameters is unknown and there is a huge gap
between the best known upper and lower bounds. Because of the difficulty of finding general
results, this problem has been considered for several particular families of access structures
in [8, 13, 14, 15, 16, 23, 29, 32] among other works. And a great achievement has been ob-
tained recently by Csirmaz and Tardos [15] by determining the optimal complexity of all access
structures defined by trees.

In a linear secret sharing scheme, the secret value and the shares are vectors over some
finite field, and every share is the value of a given linear map on some random vector. The
homomorphic properties of linear secret sharing schemes are very important for some of the
main applications of secret sharing as, for instance, secure multiparty computation. On the
other hand, linear secret sharing schemes are obtained when applying the best known techniques
to construct efficient schemes, as the decomposition method by Stinson [42]. Because of that,
it is also interesting to consider the parameters λ(Γ) and λ̃(Γ), the infimum of the (average)
complexities of all linear secret sharing schemes for Γ. Obviously, σ(Γ) ≤ λ(Γ). In fact, almost
all known upper bounds on the optimal complexity are upper bounds on λ, and the same applies
to the corresponding parameters for the average optimal complexity. Even though non-linear
secret sharing schemes have been proved to be in general more efficient than the linear ones [3, 6],
not many examples of access structures with σ(Γ) < λ(Γ) are known.

On the other hand, Csirmaz [12] explained how most of the known lower bounds on the opti-
mal complexity have been found by implicitly or explicitly using a combinatorial method based
on the connection between the Shannon entropy and polymatroids presented by Fujishige [24].
The best known asymptotic lower bound [12] was obtained by using this method. The parame-
ter κ(Γ) was introduced in [31] to denote the best lower bound on σ(Γ) that can be obtained by
this method. We introduce here the corresponding parameter κ̃(Γ) for the combinatorial lower
bounds on the optimal average complexity.

As far as we know, κ(Γ) = λ(Γ) for all access structures whose optimal complexity σ(Γ)
has been determined. This is due of course to the techniques that have been most used until
now. Namely, the combinatorial method, which provide lower bounds on κ, and several de-
composition methods, which provide almost always linear secret sharing schemes, and hence
upper bounds on λ. In particular, these are the methods used by Jackson and Martin [29] to
determine the optimal (average) complexities of almost all 180 non-isomorphic access structures
on five participants. The same techniques were used by van Dijk [16] to find the the optimal
complexities of almost all 112 non-isomorphic graph access structures on six participants. Some
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improvements in the upper bounds for the unsolved cases were presented in [11, 19].
Determining the values of κ(Γ) and κ̃(Γ) for a given access structure Γ is a linear pro-

gram. Both the number of variables and of constraints grow exponentially in the number of
participants. Moreover, Csirmaz [14, Section 1.2] pointed out that the system of constraints is
overdetermined. Nevertheless, linear programming can be used to compute κ(Γ) and κ̃(Γ) for
access structures on a small number of participants. This method has been applied on access
structures with four minimal qualified subsets [32] and on bipartite access structures [23].

The use of linear programming, whenever it is possible, to compute κ(Γ) and κ̃(Γ) has two
useful advantages. First, it does not only provide a lower bound on the optimal (average)
complexity, but the best bound that can be obtained by using that combinatorial method.
That is, other techniques are needed if the obtained lower bound is not tight. And second, after
solving the linear program, a polymatroid attaining the optimal value of κ(Γ) and κ̃(Γ) is given,
which may facilitate the search for optimal secret sharing schemes.

In this paper, we present the results of such a computation on the access structures on five
participants and the graph access structures on six participants whose optimal complexities
have not been previously determined. Several known lower bounds are improved and, in a few
cases, the value of the optimal (average) complexity is determined. After the publication of the
previous version of this paper [38], Gharahi and Dehkordi [25] presented lower bounds on the
optimal complexities of some graph access structures. Their bounds coincide with the values of
κ(Γ) that we computed by linear programming, but a different proof is given. For one of those
access structures, an upper bound is given in [25] that makes it possible to determine σ(Γ).

The lower bound κ(Γ) on the optimal complexity is not tight in general. The first found
examples of access structures with κ(Γ) < σ(Γ) were the ports of the Vamos matroid [4]. An
infinite family of graph access structures with κ(Γ) < λ(Γ) was presented by Csirmaz [14].
These results are proved, respectively, by using the non-Shannon information inequality by
Zhang and Yeung [43] and the Ingleton inequality [26]. These and other known information
inequalities, as for instance the ones in [20, 35, 21, 22], are linear inequalities, and hence they
can be added as constraints to the linear program computing κ(Γ). For some access structures,
better lower bounds on σ(Γ) (or on λ(Γ) if the Ingleton inequality is used) are obtained in
this way. Nevertheless, Beimel and Orlov [5] proved that all known non-Shannon information
inequalities cannot improve our knowledge on the asymptotic behavior of the optimal (average)
complexity.

We checked that, for the aforementioned access structures on five participants and graph
access structures on six participants, no better lower bounds on λ(Γ) can be obtained by adding
the Ingleton inequality to the linear program. Nevertheless, we found in this way three graph
access structures on eight participants with κ(λ) < λ(Γ). By using in the same way the non-
Shannon information inequalities from [20, 43], we present other examples of access structures
with κ(Γ) < σ(Γ). As in [4], they are ports of non-representable matroids.

Finally, we analyze in more detail two of the access structures on five participants and
we prove, by using other techniques, that there is no linear secret sharing scheme for those
access structures with complexity equal to κ(Γ). For one of them, we prove the same result
for the average complexity. In particular, this implies that the techniques used by Jackson
and Martin [29] are not sufficient to determine the optimal (average) complexities of all access
structures on five participants.
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2 Polymatroids and Secret Sharing

We use P(Q) to denote the power set of a set Q. A polymatroid is a pair (Q, f), where Q is a
finite set, and f is a map f : P(Q) → R satisfying the following properties.

1. f(∅) = 0.

2. f is monotone increasing : if A ⊆ B ⊆ Q, then f(A) ≤ f(B).

3. f is submodular : f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) for all A,B ⊆ Q.

The set Q and the map f are called, respectively, the ground set and the rank function of
the polymatroid. A polymatroid is said to be integer if its rank function is integer-valued. A
matroid M is an integer polymatroid M = (Q, f) such that f(A) ≤ |A| for every A ⊆ Q. The
independent sets of M are the subsets A ⊆ Q with f(A) = |A|.

Let (Vi)i∈Q be a family of subspaces of some vector space E. Then the map f : P(Q) → R
defined by f(A) = dim(

∑
i∈A Vi) for every A ⊆ Q. The polymatroids that can be defined in

this way from a family of vector subspaces are called linear. If S = (Q, f) is a polymatroid, the
polymatroids of the form (Q, cf) for some real number c > 0 are called the multiples of S. The
multiples of a linear polymatroid are called poly-linear .

For a finite set Q, consider a family of discrete random variables (Si)i∈Q, where Si is defined
on a set Ei. For every A ⊆ Q, we use SA to denote the random variable (Si)i∈A on the
set

∏
i∈AEi, and H(SA) will denote its Shannon entropy. The map h : P(Q) → R defined

by h(∅) = 0 and h(A) = H(SA) if ∅ ̸= A ⊆ Q is the rank function of a polymatroid with
ground set Q. This connection between Shannon entropy and polymatroids was discovered by
Fujishige [24]. Every polymatroid that can be defined in this way from a family of random
variables is called entropic. The multiples of an entropic matroid are said to be poly-entropic.

An access structure Γ on a set P of participants is a monotone increasing family of subsets
of P , which are called the qualified sets. Since every superset of a qualified set is qualified,
an access structure Γ is determined by the family minΓ of its minimal qualified sets. In a
connected access structure, every participant is in a minimal qualified set. Only connected
access structures are considered in this paper.

Let Q be a finite set with a distinguished element p0 ∈ Q called dealer , and let P = Q−{p0}
be the set of participants. Consider a finite set E with a probability distribution on it and,
for every i ∈ Q, consider a finite set Ei and a surjective map πi : E → Ei. The tuple Σ =
(πi)i∈Q induce a family (Si)i∈Q of discrete random variables on the sets (Ei)i∈Q. Consider
the polymatroid (Q,h) given by h(A) = H(SA) for every A ⊆ Q. In this situation, the tuple
Σ = (πi)i∈Q is a secret sharing scheme with access structure Γ on the set of participants P if
h({p0}) > 0 and, for every A ⊆ P , the following properties are satisfied.

1. h(A ∪ {p0}) = h(A) if A ∈ Γ.

2. h(A ∪ {p0}) = h(A) + h({p0}) if A /∈ Γ.

In this situation, every random choice of an element x ∈ E according to the given probability
distribution results in a distribution of shares (si)i∈Q, where si = πi(x) ∈ Ei is the share
of the participant i ∈ P and sp0 = πp0(x) ∈ Ep0 is the shared secret value. The polymatroid
S(Σ) = (Q, f) defined by f(A) = h(A)/h({p0}) for every A ⊆ Q is called polymatroid associated
to the secret sharing scheme Σ.

The complexity of a secret sharing scheme Σ is defined as σ(Σ) = maxi∈P h({i})/h({p0}),
that is, the maximum length of the shares in relation to the length of the secret. The average
complexity is defined by σ̃(Σ) = (1/n)

∑
i∈P h({i})/h({p0}), where n = |P | is the number of
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participants. It is not difficult to check that h({i}) ≥ h({p0}) for every participant i ∈ P , and
hence σ(Σ) ≥ σ̃(Σ) ≥ 1. Secret sharing schemes with σ(Σ) = 1 are said to be ideal and their
access structures are called ideal as well.

Ito, Saito and Nishizeki [27] proved that there exists a secret sharing scheme for every access
structure. The optimal complexity σ(Γ) of an access structure Γ is defined as the infimum of
the complexities σ(Σ) of the secret sharing schemes for Γ. The optimal average complexity σ̃(Γ)
is defined analogously.

A secret sharing scheme Σ is said to be linear if the sets E and Ei are vector spaces over some
finite field K, the maps πi are K-linear, and the uniform probability distribution is considered
on E. For every i ∈ Q, consider the subspace Vi = (kerπi)

⊥ of the dual space E∗. Then
h(A) = H(SA) = log(|K|) dim(

∑
i∈A Vi), and hence the polymatroid (Q,h) is poly-linear. By

reversing this argument, it can be easily proved that every linear polymatroid is poly-entropic.
As a consequence of the general construction in [27], every access structure admits a lin-

ear secret sharing scheme. For an access structure Γ, we notate λ(Γ) for the infimum of the
complexities of the linear secret sharing schemes for Γ. We consider as well the corresponding
parameter λ̃(Γ) for the average complexity.

Csirmaz [12] used the aforementioned connection between Shannon entropy and polyma-
troids to provide a unified description for the methods previously used to find most of the
known lower bounds on the optimal complexity. Namely, they can be obtained by using the
fact that the access structure of a secret sharing scheme implies certain restrictions on the
polymatroid derived from the random variables involved in the scheme. More details about
this combinatorial method to obtain lower bounds on the optimal complexity are given in the
following.

An element p0 ∈ Q is said to be an atomic point of the polymatroid S = (Q, f) if f({p0}) = 1
and, for every A ⊆ Q, either f(A∪{p0}) = f(A) or f(A∪{p0}) = f(A)+ 1. For a polymatroid
S = (Q, f) with an atomic point p0 ∈ Q, we define on the set P = Q−{p0} the access structure

Γp0(S) = {A ⊆ P : f(A ∪ {p0}) = f(A)},

which is clearly a monotone increasing family of subsets of P . For an access structure Γ on P ,
a polymatroid S with ground set Q = P ∪ {p0} is said to be a Γ-polymatroid if p0 is an atomic
point of S and Γ = Γp0(S). Obviously, if Σ is a secret sharing scheme with access structure
Γ, then the associated polymatroid S(Σ) = (Q, f) is a Γ-polymatroid. If S is a matroid, then
the access structure Γp0(S) is called the port of the matroid S at the point p0. If Σ is an ideal
secret sharing scheme, then its associated polymatroid S(Σ) is a matroid, and hence the access
structure of Σ is a matroid port [9].

For a polymatroid S = (Q, f) and p0 ∈ Q, we define σp0(S) = max{f({i}) : i ∈ P} and
σ̃p0(S) = (1/n)

∑
i∈P f({i}), where P = Q − {p0} and n = |P |. Clearly, σ(Σ) = σp0(S(Σ))

and σ̃(Σ) = σ̃p0(S(Σ)) for every secret sharing scheme Σ. Moreover, from the discussion in this
section it is clear that, for every access structure Γ,

σ(Γ) = inf{σp0(S) : S is a poly-entropic Γ-polymatroid} (1)

and
λ(Γ) = inf{σp0(S) : S is a poly-linear Γ-polymatroid}, (2)

and the analogous properties apply to σ̃(Γ) and λ̃(Γ). Therefore, the parameter

κ(Γ) = inf{σp0(S) : S is a Γ-polymatroid}, (3)

which was introduced in [31], is a lower bound on the optimal complexity. Moreover, it is the
best lower bound that can be obtained by the combinatorial technique that has been used to
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compute most of the known lower bounds. The parameter κ̃(Γ), which is introduced here for
the first time, is defined analogously and it is a lower bound on the optimal average complexity.

For an access structure Γ on a set P , the dual access structure Γ∗ is defined by Γ∗ = {A ⊆ P :
P −A /∈ Γ}. From every linear secret sharing scheme for an access structure Γ, a linear scheme
with the same (average) complexity can be obtained for the dual access structure Γ∗ [18, 28],
and hence λ(Γ∗) = λ(Γ) and λ̃(Γ∗) = λ̃(Γ). In addition, it was proved in [31] that κ(Γ∗) = κ(Γ)
and, by using the same arguments, it is not difficult to check that κ̃(Γ∗) = κ̃(Γ). Nevertheless,
the behavior of the parameters σ, σ̃ with respect to duality is unknown.

3 Linear Programming Approach

We discuss here how the values κ(Γ) and κ̃(Γ) can be obtained by solving linear programming
problems. Nevertheless, the number of variables and of constraints is exponential in the number
of participants, and hence, this only can be done if the set of participants is not too large.

Observe that, by ordering in some way the elements in P(Q), the rank function of a poly-
matroid S = (Q, f) can be seen as a vector f = (f(A))A⊆Q ∈ Rk, where k = |P(Q)| = 2n+1.
The polymatroid axioms imply a number of linear constraints on this vector. If, in addition,
we assume that S is a Γ-polymatroid for some access structure Γ on P = Q−{p0}, other linear
constraints appear. Since σ̃p0(S) is also a linear function on the vector f , one can determine
κ̃(Γ) by solving the linear programming problem

Minimize (1/n)
∑

i∈P f({i})

subject to f is the rank function of a Γ-polymatroid.

Observe that σp0(S) is not linear. Because of that, we introduce a new variable v. Obviously,
κ(Γ) is the solution of the linear program

Minimize v

subject to f is the rank function of a Γ-polymatroid and
v ≥ f({i}) for every i ∈ Q.

The feasible region for the first linear programming problem is

Ω = Ω(Γ) = {f ∈ Rk : f is the rank function of a Γ-polymatroid}.

Since there exist Γ-polymatroids for every access structure, Ω ̸= ∅. For the other linear pro-
gramming problem, the feasible region is

Ω′ = {(f, v) ∈ Rk+1 : f ∈ Ω and v ≥ f({i}) for every i ∈ Q},

which is obviously nonempty as well. Therefore, both linear programs are feasible and bounded,
and hence κ(Γ) = min{σp0(S) : S is a Γ-polymatroid} and κ(Γ) is a rational number. The same
applies to κ̃(Γ).

The number of constraints to define these feasible regions can be reduced by using the
following characterization of polymatroids given by Matúš [34]. Namely, f : P(Q) → R is the
rank function of a polymatroid with ground set Q if and only if

1. f(∅) = 0,

2. f(Q− {i}) ≤ f(Q) for every i ∈ Q, and
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3. f(A∪ {i}) + f(A∪ {j}) ≥ f(A∪ {i, j}) + f(A) for every i, j ∈ Q with i ̸= j and for every
A ⊆ Q− {i, j}.

Moreover, we can further reduce the number of constraints by taking into account that a poly-
matroid S = (Q, f) is a Γ-polymatroid if and only if

4. f({p0}) = 1,

5. f(A ∪ {p0}) = f(A) if A ⊆ P is a minimal qualified subset of Γ, and

6. f(B ∪ {p0}) = f(B) + 1 if B ⊆ P is a maximal unqualified subset of Γ.

For every A ⊆ Q, we consider the vector eA ∈ Rk with eA(A) = 1 and eA(B) = 0 for every
B ∈ P(Q)− {A}. At this point, we can present a set of linear constraints defining the feasible
region Ω (vectors are considered as columns).

1. eT∅ f = 0.

2. (eQ−{i} − eQ)
T f ≤ 0 for every i ∈ Q.

3. (eA∪{i,j} + eA − eA∪{i} − eA∪{j})
T f ≤ 0 for every i, j ∈ Q with i ̸= j and for every

A ⊆ Q− {i, j}.

4. eT{p0}f = 1.

5. (eA∪{p0} − eA)
T f = 0 for every A ∈ minΓ.

6. (eB∪{p0} − eB)
T f = 1 for every maximal unqualified subset B.

Both the number of variables and the number of constraints grow exponentially on the number
n of participants. The number of variables is k = 2n+1. If m = |minΓ| and m′ is the number
of maximal unqualified subsets, then the number Nc of constraints is Nc =

(
n+1
2

)
· 2n−1 + n +

2(m+m′) + 5. In addition, m,m′ ≤
(

n
⌊n/2⌋

)
by Sperner’s Theorem [1].

4 New Bounds

Jackson and Martin [29] determined the optimal (average) complexities of all access structures
on five participants except a few ones, for which upper and lower bounds were given. Specifically,
there are 180 non-isomorphic access structures with five participants, and they found the optimal
complexities of 170 of them and the optimal average complexities of 165 of them. The techniques
used in [29] provide lower bounds on κ(Γ) and upper bounds on λ(Γ). The value of σ(Γ) is
determined only if these bounds imply that κ(Γ) = λ(Γ). The same applies to the corresponding
parameters for the optimal average complexity. Because of that, the results that are obtained
for an access structure apply as well to its dual. Taking this into account, the unsolved cases
in [29] reduce to the 13 ones that are listed in Table 1, which involve access structures on
P = {1, 2, 3, 4, 5} described in the following and their duals. They are enumerated as in [29].
The lower bound on σ̃(Γ73) was improved by van Dijk [17]. From now on, we unburden the
notation by writing the subsets of P in compact form, that is, 12 instead of {1, 2}.

• minΓ73 = {12, 13, 24, 35, 145}.

• minΓ80 = {12, 13, 234, 235, 45}.

• minΓ82 = {12, 13, 234, 235, 145, 245}.
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• minΓ83 = {12, 13, 234, 235, 145, 245, 345}.

• minΓ86 = {12, 13, 234, 45}.

• minΓ88 = {12, 13, 234, 145, 245}.

• minΓ89 = {12, 13, 234, 145, 245, 345}.

• minΓ150 = {123, 124, 134, 125, 235}.

• minΓ152 = {123, 124, 134, 125, 345}.

• minΓ153 = {123, 124, 134, 125, 2345}.

Table 1: Our results for access structures on five participants

Access σ σ̃ κ κ̃ Current Number of
structure from [29] from [29, 17] with LP with LP σ̃ constraints

Γ73
∼= Γ∗

151 [3/2, 5/3] [3/2, 8/5] 3/2 3/2 [3/2, 8/5] 272

Γ80
∼= Γ∗

18 3/2 [6/5, 7/5] 13/10 [13/10, 7/5] 274

Γ82
∼= Γ∗

107 [3/2, 5/3] [6/5, 7/5] 3/2 13/10 [13/10, 7/5] 274

Γ83
∼= Γ∗

136 3/2 [6/5, 7/5] 13/10 [13/10, 7/5] 280

Γ86
∼= Γ∗

123 3/2 [6/5, 7/5] 13/10 [13/10, 7/5] 268

Γ88
∼= Γ∗

88 3/2 [6/5, 7/5] 7/5 7/5 270

Γ89
∼= Γ∗

113 3/2 [6/5, 7/5] 13/10 [13/10, 7/5] 274

Γ150
∼= Γ∗

40 [3/2, 12/7] 7/5 3/2 7/5 272

Γ152
∼= Γ∗

53 [3/2, 5/3] [7/5, 8/5] 3/2 3/2 [3/2, 8/5] 272

Γ153
∼= Γ∗

30 [3/2, 5/3] 7/5 3/2 7/5 274

By using our linear programming approach, we are able to improve the results in [29] by
determining the values of κ(Γ) and κ̃(Γ) for all those access structures. The obtained results
are given in Table 1. The entries with an interval correspond to a lower and an upper bound.
Observe that we improved some of the lower bounds on σ̃(Γ) but we could not improve the
lower bounds on σ(Γ) for any of these access structures. Nevertheless, the exact values of κ(Γ)
and κ̃(Γ) have been determined. Therefore, we know now that no better lower bounds can be
obtained by the combinatorial techniques used in [29]. That is, whether better constructions
of secret sharing schemes are obtained for those structures, or better lower bounds have to be
searched by considering information inequalities other than the basic Shannon inequalities, as
discussed in Section 5. We also included in the table the number of constraints that define the
feasible region.

1 2

6 3

45

1 2

6 3

45

1 2

6 3

45

1 2

6 3

45

1 2

6 3

45

Γ
6,40

Γ
6,42

Γ
6,43

Γ
6,61

Γ
6,22

1 2

6 3

45

Γ
6,9

Figure 1: Graph access structures with six vertices.
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The optimal complexities of 94 of the 112 non-isomorphic graph access structures on six
participants were determined by van Dijk [16], while lower and upper bounds were given for
the remaining ones. Some of these upper bounds were improved in [11, 19]. By using linear
programming, we have computed the values of κ(Γ) for the 18 unsolved cases from [16], which
improve the lower bounds for six of them, namely the ones in Figure 1. The results are shown in
Table 2. We notice that, by mistake, we did not include the results about Γ6,22 in the previous
version of this paper [38]. Except for Γ6,61, these new lower bounds determine the values of
σ(Γ). After the publication of the previous version of this paper [38], Gharahi and Dehkordi [25]
presented lower bounds on the optimal complexities of all access structures in Figure 1 except
Γ6,9. Their bounds coincide with the values of κ(Γ) that are given in Table 2, but they are proved
by using the same techniques as in [16]. Moreover, they present a decomposition construction
of a linear secret sharing scheme for Γ6,61 that makes it possible to determine the optimal
complexity of this access structure.

Table 2: Our results for graph access structures on six vertices

Access σ σ κ Current Number of
structure from [16] from [11] with LP σ constraints

Γ6,9 [5/3, 2] [5/3, 7/4] 7/4 7/4 703

Γ6,22 [5/3, 9/5] [5/3, 7/4] 7/4 7/4 705

Γ6,40 [5/3, 9/5] [5/3, 7/4] 7/4 7/4 707

Γ6,42 [5/3, 7/4] no improvement 7/4 7/4 707

Γ6,43 [5/3, 7/4] no improvement 7/4 7/4 707

Γ6,61 [5/3, 2] [5/3, 16/9] 7/4 7/4 ([25]) 707

5 Sharpening the Feasible Region

The lower bounds on the optimal (average) complexity given by κ(Γ) and κ̃(Γ) are not tight in
general. This is due to the fact that the sets in (1), (2) and (3) are different.

This is due to the existence of the so-called non-Shannon information inequalities. The
polymatroid axioms correspond to the basic Shannon information inequalities (namely, the
mutual information is nonnegative). Zhang and Yeung [43] presented an information inequality
that must be satisfied by the rank function of every poly-entropic polymatroid but is independent
from the polymatroid axioms. Many other such non-Shannon information inequalities have been
found since then [20, 22, 35]. Moreover, Zhang-Yeung inequality was used in [4] to present the
first examples of access structures with κ(Γ) < σ(Γ). The bounds in [4] were improved in [36]
by using the inequalities from [20]. In addition, there exist several rank inequalities, which are
satisfied by the rank function of every poly-linear polymatroid. The first one was presented by
Ingleton [26], and other such inequalities were given by Dougherty, Freiling and Zeger [21].

Beimel and Orlov [5] proved that all known non-Shannon information inequalities cannot
improve our knowledge on the asymptotic behavior of the optimal (average) complexity. Never-
theless, since all these inequalities are linear, they can be added to the linear programs that are
discussed in Section 3. In this way, better lower bounds on σ(Γ), or on λ(Γ) if rank inequalities
are used, can be found for some access structures. Differently to the one in (3), the sets in (1)
and (2) cannot be described by a finite number of linear inequalities [21, 35], and hence the
values of σ(Γ) and λ(Γ) cannot be determined by linear programming.
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In this section, we explain how to use the Ingleton inequality to obtain a linear program
providing better lower bounds on λ(Γ). For a polymatroid S = (Q, f) and A,B,C,D ⊆ Q,
consider

I(f ;A,B,C,D) = f(A) + f(B) + f(C ∪D) + f(A ∪B ∪ C) + f(A ∪B ∪D)

−f(A ∪B)− f(A ∪ C)− f(A ∪D)− f(B ∪ C)− f(B ∪D).

Specifically, Ingleton inequality states that, if S = (Q, f) is a poly-linear polymatroid, then

I(f ;A,B,C,D) ≤ 0 for every A,B,C,D ⊆ Q. (4)

Moreover, according to the main result of [10], a polymatroid S = (Q, f) satisfies (4) if and
only if

I(f ;A ∪X,B ∪X,C ∪X,D ∪X) ≤ 0

for all disjoint sets A,B,C,D,X ⊆ Q with A,B,C,D nonempty. For an access structure Γ,
consider the linear program

Minimize v

subject to f is the rank function of a Γ-polymatroid,
I(f ;A ∪X,B ∪X,C ∪X,D ∪X) ≤ 0
for all disjoint sets A,B,C,D,X ⊆ Q with A,B,C,D nonempty, and
v ≥ f({i}) for every i ∈ Q.

Since there exists a linear secret sharing scheme for Γ, this linear program is feasible and
bounded. The solution λIN (Γ) is a lower bound on λ(Γ). Moreover, it is the best lower bound
on λ(Γ) that can be obtained by adding only the Ingleton inequality to the Shannon information
inequalities.

By solving this linear program, we obtained that λIN (Γ) = κ(Γ) for the 5 access struc-
tures on five participants and the 12 graph access structures on six participants whose optimal
complexities are still undetermined. Therefore, the Ingleton inequality does not improve the
lower bounds on λ(Γ) for these access structures. Nevertheless, we explored graph access struc-
tures on more than 6 participants and we found three examples, the graphs in Figure 2, with
λIN (Γ) > κ(Γ), and hence they are new examples of access structures with κ(Γ) < λ(Γ).
Specifically, λIN (Γ1) = 19/10 and λIN (Γ2) = λIN (Γ3) = 13/7, while κ(Γ1) = 11/6 and
κ(Γ2) = κ(Γ3) = 9/5.
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Figure 2: Graph access structures on 8 participants with κ(Γ) < λ(Γ).
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6 Ports of Non-representable Matroids

In this section, we use linear programming to extend the results in [4, 36, 39] about the ports
of the Vámos matroid to the ports of other non-linear matroids. Seymour [39] proved that
the Vámos matroid is not poly-entropic, and hence the two non-isomorphic ports V1 and V6 of
the Vámos matroid do not admit any ideal secret sharing scheme. By using the non-Shannon
information inequality by Zhang and Yeung [43], lower bounds on the optimal complexities of
those access structures proving that σ(Vi) > κ(Vi) = 1 where presented in [4]. This bounds were
improved in [36] by using some of the non-Shannon information inequalities given by Dougherty,
Freiling and Zeger [20] (DFZ inequalities from now on). In addition, a lower bound on λ(Vi)
(the same for both structures, because they are dual of each other) are obtained in [4] from the
Ingleton inequality. A construction given in [31] provides an upper bound on λ(Vi). Specifically,
the results in [4, 31, 36] are summarized as follows.

• κ(V1) = 1 < 19/17 ≤ σ(V1) ≤ λ(V1) ≤ 4/3.

• κ(V6) = 1 < 21/19 ≤ σ(V6) ≤ λ(V6) ≤ 4/3.

• 5/4 ≤ λ(V1) = λ(V6) ≤ 4/3.

These results were obtained without using linear programming. Nevertheless, linear program-
ming was used in [36] to prove that no better lower bounds on σ(Vi) can be obtained by using
only the Zhang-Yeung and DFZ inequalities. In the Appendix of [37], we find two matroid-
s, AG(3, 2)′ and Q8, that, similarly to the Vámos matroid, are among the smallest non-linear
matroids. By using linear programming, we prove similar results for the ports of these matroids.

1 
2 

3 
4 

5 6 

7 8 

Figure 3: AG(3, 2)′ and Q8

Definition 6.1. The matroid AG(3, 2)′ is defined on the set V = {1, . . . , 8}. Its independent
sets are all the sets with at most 4 elements except the six faces, the six diagonal planes and
the twisted plane {1, 3, 6, 8} of the cube in Figure 3.

Definition 6.2. The matroid Q8 is defined on the set V = {1, . . . , 8}. Its independent sets
are all the sets of cardinality at most 4 except the six faces and exactly five of the six diagonal
planes of the cube in Figure 3. Assume that the diagonal plane {1, 3, 5, 7} is the independent
one.

It is not difficult to check that there are only two non-isomorphic ports of the matroid
AG(3, 2)′, namely AG1 = Γ1(AG(3, 2)′) and AG2 = Γ2(AG(3, 2)′). Moreover, AG∗

1 = AG2.
Similarly, the two non-isomorphic ports of the matroid Q8 are Q1 = Γ1(Q8) and Q2 = Γ2(Q8).
As before, Q∗

1 = Q2. The minimal qualified sets of these access structures are listed in the
following.
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• minAG1 = {234, 256, 458, 357, 278, 467, 368, 2457}.

• minAG2 = {134, 367, 156, 178, 358, 468, 4578, 4567, 3457, 1457}.

• minQ1 = {234, 256, 458, 278, 467, 2368, 2457, 3468, 3568, 3678, 2357, 3457, 3567, 3578}.

• minQ2 = {156, 367, 134, 468, 178, 358, 1357, 4567, 1457, 3567, 1567, 1368}.

Zhang-Yeung inequality [43] implies that, for every poly-entropic polymatroid (Q, f) and
for every A,B,C,D ⊆ Q,

ZY (f ;A,B,C,D) = f(A) + 2f(B) + 2f(C) + f(A ∪D) + 4f(A ∪B ∪ C) + 4f(B ∪ C ∪D)

−3f(A ∪B)− 3f(A ∪ C)− 3f(B ∪ C)− f(B ∪D)− f(C ∪D) ≤ 0

If we set {A,B,C,D} = {18, 36, 27, 45} for AG(3, 2)′ and {A,B,C,D} = {15, 26, 37, 48} for
Q8, then ZY (f ;A,B,C,D) > 0. Therefore, the matroids AG(3, 2)′ and Q8 are not poly-
entropic, and hence their ports do not admit any ideal secret sharing scheme. By adding to
the corresponding linear program the Zhang-Yeung inequality, or the DFZ inequalities, or the
Ingleton inequality, with the previous choices of the sets A,B,C,D, we obtain the lower bounds
in Table 3. In particular, these are new examples of access structures with κ(Γ) < σ(Γ).

Table 3: Result for AG(3, 2)′ and Q8

Access Lower bound Lower bound Lower bound
structure of σ by ZY of σ by DFZ of λ by Ingleton

AG1 10/9 19/17 5/4

AG2 9/8 9/8 5/4

Q1 9/8 9/8 5/4

Q2 10/9 19/17 5/4

7 An Impossibility Result

Since no better bounds on λ(Γ) can be obtained for the access structures in Tables 1 and 2 by
using Ingleton inequality, one could expect that there exist for those access structures linear
secret sharing schemes with complexity equal to the lower bound κ(Γ). We prove in this section
that, at least for two of those access structures, this is not the case.

If Γ is an access structure with κ(Γ) = κ̃(Γ) and S = (Q, f) is a Γ-polymatroid with
σp0(S) = κ(Γ), then h({i}) = κ(Γ) for every i ∈ P . This simplifies the search for linear schemes
with complexity equal to κ(Γ). We find in Table 1 two access structures with that property.
Namely κ(Γ) = κ̃(Γ) = 3/2 if Γ = Γ73 or Γ = Γ152. We prove in the following that the
complexity of every linear secret sharing scheme for one of these structures is larger than 3/2.
Moreover, for Γ73, the same applies to the average complexity. Here we consider Γ53 = Γ∗

152

instead of Γ152. The minimal qualified sets of Γ73 and Γ53, which are represented in Figure 4,
are

• minΓ73 = {12, 13, 24, 35, 145}, and

• minΓ53 = {12, 13, 24, 34, 35, 145} = minΓ73 ∪ {34}.
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Figure 4: Access Structures Γ73 and Γ53

The remaining of this section is devoted to prove the following impossibility result. The proof
is quite long and it is divided into several partial results.

Proposition 7.1. There does not exist any linear secret sharing scheme Σ with access structure
Γ53 or Γ73 with complexity σ(Σ) = 3/2. There does not exist any linear secret sharing scheme
Σ with access structure Γ73 with average complexity σ̃(Σ) = 3/2.

When using linear programming to compute the value of κ(Γ) for Γ = Γ53 or Γ = Γ73, we
always obtain as an optimal solution the polymatroid S1 and, respectively, S2 that are described
in Definition 7.2. We prove in Lemma 7.4 that these polymatroids are not poly-linear.

Definition 7.2. The polymatroids S1 and S2 are defined as the only Γ53-polymatroid and,
respectively, the only Γ73-polymatroid satisfying the following properties.

1. f(i) = 3/2 for every i ∈ P .

2. f(A) = 5/2 for every unqualified set A ⊆ P with |A| = 2.

3. f(A) = 3 for every qualified set A ⊆ P with |A| = 2.

4. f(A) = 7/2 for every A ⊆ P with |A| ≥ 3.

Lemma 7.3. Let V1, V2, V3 be subspaces of a vector space E. Then,

max
{
0, s−

∑
si +

∑
ri

}
≤ dim(V1 ∩ V2 ∩ V3) ≤ min{t1, t2, t3},

where s = dim(V1 + V2 + V3), si = dim(Vj + Vk), ri = dimVi, and ti = dim(Vj ∩ Vk) for every
{i, j, k} = {1, 2, 3}.

Proof. Put t = dim(V1 ∩ V2 ∩ V3). Since (V1 ∩ V3) + (V2 ∩ V3) ⊆ (V1 + V2) ∩ V3, we have that

dim((V1 + V2) ∩ V3)− dim((V1 ∩ V3) + (V2 ∩ V3)) =
∑

si −
∑

ri − s+ t ≥ 0.

Obviously, t ≤ ti.

Lemma 7.4. The polymatroids S1 and S2 are not poly-linear.

Proof. Take Q = {0, 1, 2, 3, 4, 5} with p0 = 0. Let S = (Q, f) be one of these polymatroids and
suppose that it is poly-linear. Then there must exist a positive integer c and subspaces (Vi)i∈Q
of a vector space E such that dim

∑
i∈A Vi = 2c f(A) for every A ⊆ Q.

Clearly, dim(V1 ∩ V4) = dim(V1 ∩ V5) = dim(V4 ∩ V5) = c, and hence dim(V1 ∩ V4 ∩ V5) = c
by Lemma 7.3. Therefore V1 ∩ V4 = V1 ∩ V5 = V4 ∩ V5 = U0.
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Since dim[(V2 + V3) ∩ V5] = dim(V2 + V3) + dimV5 − dim(V2 + V3 + V5) = 5c+ 3c− 7c = c
and dim(V2 ∩ V5) = c, we have that U0 ∩ (V2 + V3) ⊆ V5 ∩ (V2 + V3) = V5 ∩ V2. Therefore,
U0 ∩ (V2 + V3) = {0} because V1 ∩ V2 = {0}.

The subspace V0 corresponding to the dealer is contained in VA for every A ∈ Γ. Therefore,

V0 ⊆ (V1 + V2) ∩ (V1 + V3) ∩ (V2 + V4) ∩ (V3 + V5) = W

We prove in the following that 3c ≤ dimW ≤ 4c. Indeed, on one hand,

dimW = dim{[(V1 + V2) ∩ (V2 + V4)] ∩ [(V1 + V3) ∩ (V3 + V5)]}
= dim[(V1 + V2) ∩ (V2 + V4)] + dim[(V1 + V3) ∩ (V3 + V5)]

−dim{[(V1 + V2) ∩ (V2 + V4)] + [(V1 + V3) ∩ (V3 + V5)]}
≤ 5c+ 5c− dim[V2 + (V1 ∩ V4)] + [V3 + (V1 ∩ V5)]

= 5c+ 5c− dim(V2 + V3 + U0)

= 5c+ 5c− 6c

= 4c. (5)

On the other hand, dim{[(V1 + V2) ∩ (V2 + V4)] + [(V1 + V3) ∩ (V3 + V5)]} ≤ 7c, and hence
dimW ≥ 5c+ 5c− 7c = 3c.

The next step is to prove that dim[W ∩ (V2 + V5)] = 2c.

dim[W ∩ (V2 + V5)] = dimW + dim(V2 + V5)− dim(W + V2 + V5)

≤ dimW + dim(V2 + V5)− dim(V0 + V2 + V5)

≤ 4c+ 5c− 7c

= 2c. (6)

The other inequality is obtained by

dim[W ∩ (V2 + V5)] = dim{(V1 + V2) ∩ (V1 + V3) ∩ (V2 + V4) ∩ (V3 + V5) ∩ (V2 + V5)}
= dim{[(V1 + V2) ∩ (V2 + V5) ∩ (V2 + V4)] ∩ [(V1 + V3) ∩ (V3 + V5)]}
≥ dim[(V2 + U0) ∩ (V3 + U0)]

= dim(V2 + U0) + dim(V3 + U0)− dim(V2 + V3 + U0)

= 4c+ 4c− 6c

= 2c (7)

In particular, all inequalities in (6) must be equalities, which implies that dimW = 4c. More-
over, the inequality in (5) must be also an equality, and hence

[(V1 + V2) ∩ (V2 + V4)] + [(V1 + V3) ∩ (V3 + V5)] = [V2 + (V1 ∩ V4)] + [V3 + (V1 ∩ V5)]

= V2 + V3 + U0.

Therefore, (V1 + V3) ∩ (V3 + V5) ⊆ V2 + V3 + U0 and (V1 + V3) ∩ (V3 + V5) ⊆ V2 + V3 + U0.

dim(W ∩ V2) = dim[(V1 + V3) ∩ (V3 + V5) ∩ V2]

= dim[(V1 + V3) ∩ (V3 + V5)] + dimV2

−dim{[(V1 + V3) ∩ (V3 + V5)] + V2}
≥ dim[(V1 + V3) ∩ (V3 + V5)] + dimV2 − dim(V2 + V3 + U0)

= 5c+ 3c− 6c

= 2c
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Analogously, dim(W ∩ V3) ≥ 2c. Therefore,

dim[W ∩ (V2 + V3)] ≥ dim[(W ∩ V2) + (W ∩ V3)]

= dim(W ∩ V2) + dim(W ∩ V3)− dim(W ∩ V2 ∩ V3)

≥ 2c+ 2c− c

= 3c (8)

Finally, since V0 ⊆ W ,

dim[V0 ∩ (V2 + V3)] = dim[V0 ∩W ∩ (V2 + V3)]

≥ dim(V0) + dim[W ∩ (V2 + V3)]− dim(W )

≥ 2c+ 3c− 4c

= c,

a contradiction with the fact that {2, 3} is not qualified.

We prove in Lemma 7.7 that the polymatroids S1 and S2 are the only optimal solutions of
the linear programs computing κ(Γ53) and κ(Γ73), respectively. We need two technical results.
The first one is due to Csirmaz [12], while the second one is proved by using the independent
sequence technique [8].

Lemma 7.5. Let Γ be an access structure. The following properties are satisfied by every
Γ-polymatroid S = (Q, f).

1. If B ∈ Γ, and A ⊆ B and A /∈ Γ, then f(A) ≤ f(B)− 1.

2. If A,B ∈ Γ but A ∩B /∈ Γ, then f(A ∪B) + f(A ∩B) ≤ f(A) + f(B)− 1.

Lemma 7.6. Let Γ be an access structure and S = (Q, f) a Γ-polymatroid. If a, b, c, d ∈ P are
such that ab, bc, acd ∈ Γ and b, ac, ad /∈ Γ, then f(bc) ≥ 3.

Lemma 7.7. If Γ = Γ53 or Γ = Γ73, there exists a unique Γ-polymatroid S with σp0(S) = 3/2.

Proof. Let S = (Q, f) be such a polymatroid. Obviously, f(i) = 3/2 for every i ∈ P since
κ(Γ) = κ̃(Γ) = 3/2. If ij ∈ Γ, then f(ij) = 3 by Lemma 7.6 and f(ij) ≤ f(i) + f(j). Clearly,
every 3-subset of P is qualified. Take three different participants i, j, k ∈ P such that ij, jk /∈ Γ.
By Lemma 7.5,

f(ij) + 1 ≤ f(ijk) ≤ f(ij) + f(jk)− f(j),

which implies that f(ij) ≥ 5/2. Symmetrically, f(jk) ≥ 5/2, and hence f(ijk) ≥ 7/2. Ob-
viously, this implies that f(ij) ≥ 5/2 for every pair ij /∈ Γ. In addition, since every 3-subset
contains at least one unqualified 2-subset, f(A) ≥ 7/2 for every A ⊆ P with |A| = 3. Consider
now three different participants i, j, k ∈ P such that ij, jk ∈ Γ. Applying Lemma 7.5 again,

f(ijk) ≤ f(ij) + f(jk)− f(j)− 1 = 7/2,

and hence f(ik) = 5/2. This implies that f(ij) = 5/2 for every pair ij /∈ Γ except for 45 for
Γ73. Therefore,

f(145) ≤ f(14) + f(15)− f(1) = 7/2,

and hence f(45) ≤ f(145) − 1 = 5/2. Analogously, f(A) = 7/2 for every A ⊆ P with |A| = 3,
and f(A) = 5/2 for every A ⊆ P with |A| = 2 and A /∈ Γ. Let A be a 4-subset of P , and let
B ⊆ A be an unqualified 2-subset. Then A = B ∪ ij and

f(A) ≤ f(B ∪ i) + f(B ∪ j)− f(B)− 1 = 7/2,
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and hence f(A) = 7/2. One can prove in the same way that f(P ) = 7/2. All these facts
determine a unique Γ-polymatroid S.

Lemmas 7.4 and 7.7 suffice to prove the first statement in Proposition 7.1. In order to prove
the impossibility result about the average complexity, we need to analyze in more detail the
properties of the Γ73-polymatroids that are optimal solutions for the linear program determining
κ̃(Γ73).

Let τ be the permutation on Q that interchanges 2 with 3 and 4 with 5 and leaves 1 and p0
fixed. Clearly, τ induces an automorphism of the access structure Γ73. Therefore, if S = (Q, f)
is a Γ73-polymatroid, then τS = (Q, fτ) is also a Γ73-polymatroid. Moreover, if S is poly-linear
over some finite field K, the same applies to τS. Consider the polymatroid S ′ = (Q, f ′) with
f ′ = (f+fτ)/2. Clearly, S ′ is a Γ73-polymatroid. Moreover, τS ′ = S ′ because τ2 is the identity
map. Finally, if there exists a linear secret sharing scheme Σ for Γ73 that is associated to the
polymatroid S, then there exists a linear secret sharing scheme Σ′ for Γ73 that is associated to
the polymatroid S ′, and both schemes have the same average complexity. By taking this into
account, Lemma 7.8 concludes the proof of Proposition 7.1.

Lemma 7.8. There exists a unique Γ73-polymatroid S = (Q, f) such that τS = S and σ̃p0(S) =
3/2.

Proof. By Lemma 7.6, f(ij) ≥ 3 if ij ∈ Γ. Then,

• f(1) + f(3) = f(1) + f(2) ≥ 3, and

• f(2) + f(4) = f(3) + f(5) ≥ 3.

We have used here that τS = S. Combining these inequalities with
∑5

i=1 f(i) = 15/2, we
obtain f(4) = f(5) ≤ 3/2, and f(2) = f(3) ≥ 3/2, and f(1) ≤ 3/2.

By Lemma 7.5,
f(23) + 1 ≤ f(234) ≤ f(23) + f(34)− f(3), (9)

and hence f(34) ≥ 5/2. Similarly, f(23) ≥ 5/2 and f(234) ≥ 7/2. In addition, by using again
that τ is an automorphism of the polymatroid, f(235) = f(234) ≥ 7/2 and f(25) = f(34) ≥ 5/2.
Moreover, f(345) = f(245) ≥ f(25) + 1 ≥ 7/2, and similarly f(134) = f(125) ≥ 7/2 and
f(123) ≥ 7/2.

We claim f(124) = f(135) ≤ 7/2 and f(145) ≤ 7/2. Indeed,

f(124) ≤ f(12) + f(24)− f(2)− 1

≤ f(1) + f(2) + f(4)− 1

= 1/2× 15/2 + f(1)/2− 1 (10)

≤ 7/2.

And

f(145) ≤ f(14) + f(15)− f(1)

= 2f(14)− f(1)

≤ 2[f(124)− 1]− f(1)

≤ 2[f(12) + f(24)− f(2)− 2]− f(1)

= 2[f(12)− f(2)− f(1)] + 2f(24) + f(1)− 4

≤ 2f(24) + f(1)− 4

≤ 2f(2) + 2f(4) + f(1)− 4

= 15/2− 4 = 7/2.
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The next step is to prove that f(124)− f(14) = f(135)− f(15) = 1. Observe that f(124)−
f(14) = 1 + ϵ for some ϵ ≥ 0, and hence f(14) = f(15) ≤ 5/2− ϵ. Since 1 + f(14) + f(1245) ≤
f(124) + f(145), we have that

7/2 ≤ f(1245) ≤ ϵ+ f(145) ≤ f(14) + f(15)− f(1) ≤ 5− ϵ− f(1), (11)

and hence f(1) ≤ 3/2 − ϵ. Now, inequality (10) implies that f(124) ≤ 7/2 − 1/2ϵ, and hence
f(15) = f(14) ≤ 5/2−3/2ϵ. By using this last inequality in (11), we have that f(1) ≤ 3/2−2ϵ.
By repeating this argument, f(1) ≤ 3/2 − nϵ for every positive integer n, which implies that
ϵ = 0.

Therefore, f(145) ≥ f(1245) by (11), and hence f(145) = f(1245) = f(1345) = 7/2.
Moreover, f(245) = f(345) = 7/2 and f(134) = f(125) = 7/2, which implies that f(25) =
f(34) = 5/2. We can now use (9) to obtain f(2) = f(3) = 3/2, and hence f(i) = 3/2 for all
i ∈ P . By far, we conclude the proof of Proposition 7.1.

8 Conclusion and Open Problems

In this paper, we present several results on the optimization of the (average) complexity of
secret sharing schemes that have been obtained by using linear programming. Other results by
using the same technique have been given in [23, 32]. Differently to these other works, some
of our results are obtained by using non-Shannon information inequalites (as the one by Zhang
and Yeung [43]) and the Ingleton inequalities. Nevertheless, since the number of variables and
constraints in the involved linear programs is exponential in the number of participants, the
power of the techniques applied in this paper seems to be rather limited.

The most obvious open problem that can be posed here is to finish the projects initiated
by Jackson and Martin [29] and by van Dijk [16] for access structures on five participants and
graph access structures on six participants, respectively. As we saw in Section 5, the Ingleton
inequality does not provide any improvement on the bounds. In addition, the impossibility
result in Section 7 indicates that this is not an easy task.

In regard to that impossibility result, we notice that it does not imply that κ(Γ) < λ(Γ) for
the involved access structures. Indeed, there could exist infinite linear secret sharing schemes
whose complexities are arbitrarily close to 3/2. Maybe other rank inequalities different from
the Ingleton one can prove that stronger separation result.

Another interesting line of future work is to apply the techniques in Section 6 to other ma-
troids that are not poly-entropic, as the non-Desargues matroids and other examples presented
in [33].
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