
Some Connections Between Primitive Roots and
Quadratic Non-Residues Modulo a Prime

Sorin Iftene
Department of Computer Science

“Al. I. Cuza” University
Iasi, Romania

Email: siftene@info.uaic.ro

Abstract—In this paper we present some interesting connec-
tions between primitive roots and quadratic non-residues modulo
a prime. Using these correlations, we propose some polynomial
deterministic algorithms for generating primitive roots for primes
with special forms (for example, for safe primes).

Index Terms—primitive roots, Legendre-Jacobi symbol,
quadratic non-residues, square roots.

I. INTRODUCTION

Generating primitive roots modulo a prime is an funda-
mental problem in number theory, with major applications in
cryptography. Diffie-Hellman key establishment scheme [1],
ElGamal public-key cryptosystem [2], Schnorr identification
scheme [3] and Digital Signature Scheme [4] are only a few
examples which rely on generating primitive roots or elements
of a certain order. Finding quadratic non-residues modulo a
prime is another interesting problem in number theory. Tonelli-
Shanks algorithm ([5], [6]) and Cippola-Lehmer algorithm
([7], [8]) for computing square roots modulo a prime and
Goldwasser-Micali probabilistic encryption scheme [9] are the
most important applications that rely on generating quadratic
non-residues.

In this paper we discuss comparatively these two issues.
After presenting the existing randomized algorithm for gener-
ating primitive roots, we propose some polynomial determin-
istic algorithms for generating primitive roots for primes with
special forms. The paper is structured as follows. Section 2
is dedicated to some mathematical preliminaries on primitive
roots and quadratic non-residues. Section 3 presents some con-
nections between primitive roots and quadratic non-residues
modulo a prime. Generating primitive roots is discussed in
Section 4. The last section concludes the paper.

II. MATHEMATICAL BACKGROUND

In this section we present some basic facts on number
theory, focusing on primitive roots and quadratic non-residues.
For more details, the reader is referred to [10], [11], [12], [13].
Computational aspects can be found in [14].

A. The order of an element. Primitive roots

Definition 1: Let m ≥ 2 and a ∈ Z∗
m. The order of a

modulo m, denoted by ordm(a), is defined as

ordm(a) = min({l ∈ N∗|al ≡ 1 mod m})

The most important properties of the order of an element
are summarized in Proposition 1.

Proposition 1: Let m ≥ 2, a ∈ Z∗
m, and k, l some integers.

1) If ak ≡ 1 mod m then ordm(a)|k. As a particular
case, we obtain ordm(a)|φ(m), where φ denotes Euler’s
totient function;

2) The relation ak ≡ al mod m is equivalent with

k ≡ l mod ordm(a);

3) The next relation holds true

ordm(ak mod m) =
ordm(a)

(ordm(a), k)
.

Definition 2: Let m ≥ 2 and α ∈ Z∗
m. The element α is

called primitive root modulo m if ordm(α) = φ(m).
Remark 1: In case that α is a primitive root modulo m,

every element β from the set Z∗
m can be uniquely expressed

as β = αi mod m, for i ∈ Zφ(m). The value i will be referred
to as the discrete logarithm (modulo m) to the base α of β
and we will write i = logαβ. While an expression of form
β = αi mod m can be efficiently computed given α, i,m
(see, for example, [14]), the problem of finding the discrete
logarithm modulo m to the base α of β, given α, β,m is
intractable.

The most important properties of the primitive roots are
presented in Proposition 2.

Proposition 2: Let m ≥ 2, α ∈ Z∗
m. Then

1) Z∗
m has primitive roots if and only if m ∈
{2, 4, pk, 2pk}, where p is an odd prime and k ≥ 1
(Gauss’ Theorem);

2) If Z∗
m has primitive roots, then there are exactly

φ(φ(m)) primitives roots modulo m;
3) If Z∗

m has primitive roots, α is a primitive root modulo
m if and only if the next relation holds:

α
φ(m)
r 6≡ 1 mod m,

for any prime divisor r of φ(m).
Proposition 2(3) does not always allow to efficiently gen-

erate primitive roots modulo m because computing φ(m) and
factoring φ(m) are intractable for large integers m.

Elements of order q may be generated via primitive roots.
More exactly, if q|φ(m), α is a primitive root modulo m,

and β = α
φ(m)
q mod m , then ordm(β) = q. Indeed, by the

Proposition 1(3), ordm(α
φ(m)
q mod m) = ordm(α)

(ordm(α),
φ(m)
q)

=

φ(m)

(φ(m),
φ(m)
q)

= q.

B. Quadratic (non-)residues. Square roots

Definition 3: Let p be a prime and a ∈ Z∗
p. We say that a

is a quadratic residue modulo p if there exists b ∈ Z∗
p with

the property a = b2 mod p. Otherwise, a is a quadratic non-
residue modulo p.

For the simplicity of the notation, from this point forward
we will omit the modular reduction modulo p but the reader
must be aware that all computations are performed modulo p
if not explicitly stated otherwise.

If b2 = a then b will be referred to as a square root of a. We
have to remark that if a is a quadratic residue modulo p, p odd
prime, then a has exactly two square roots - if b is a square
root of a, then p− b is the other one. In particular, 1 has the
square roots 1 and (−1) (in this case, (−1) will be regarded as
being p− 1) or, equivalently, a2 = 1⇔ (a = 1 ∨ a = (−1)).

Definition 4: The Legendre symbol of a modulo p, denoted
as
(
a
p

)
, is defined to be equal to ±1 depending on whether

a is a quadratic residue modulo p. More exactly,(
a

p

)
=

{
1, if a is a quadratic residue mod p;
−1, otherwise.

The Jacobi symbol is a generalization of the Legendre
symbol to arbitrary moduli and is defined as (the same notation
is used): (a

n

)
=

(
a

p1

)e1 (a

p2

)e2
· · ·
(
a

pk

)ek
,

for any odd positive integer n, a ∈ Z∗
n, where pe11 p

e2
2 · · · p

ek
k

is the prime factorization of n.
The most important properties of the Legendre-Jacobi sym-

bol are summarized in Proposition 3 (for more details, see
[12], [13]).

Proposition 3: 1) (Euler’s criterion) For any prime p and
a ∈ Z∗

p, the following relation holds true:

a
p−1
2 =

(
a

p

)
;

2)
(

−1
p

)
= (−1)

p−1
2 , that implies that (−1) is a quadratic

non-residue modulo p if and only if p ≡ 3 mod 4;

3)
(

2
p

)
= (−1)

p2−1
8 , that implies that 2 is a quadratic non-

residue modulo p if and only if p ≡ ±3 mod 8;
4)
(
ab
n

)
=
(
a
n

) (
b
n

)
;

5)
(
a
n

)
=
(
b
n

)
if and only if a ≡ b mod n; in particular,(

a
n

)
=
(
a mod n

n

)
;

6) (law of quadratic reciprocity)
(
a
n

)
=
(
n
a

)
(−1) a−1

2 ·n−1
2 ,

for any coprime odd positive integers a, n.
These properties lead to the following algorithm for com-

puting the Legendre-Jacobi symbol ([12, page 113]):

LegendreJacobi (a,n)

input: n, an odd positive integer, a ∈ Z∗
n ;

output:
(
a
n

)
;

begin
t := 1;
while a 6= 0 do

while a mod 2 = 0 do
a := a div 2;
if n ≡ ±3 mod 8 then t := −t;

swap(a,n);
if (a ≡ 3 mod 4 and n ≡ 3 mod 4) then t := −t;
a := a mod n;

return(t)
end.

Fig. 1: An algorithm for computing the Legendre-Jacobi
symbol

The complexity of this algorithm is O((log2(a))(log2(n))).
Euler’s criterion also provides a method of computing the

Legendre symbol of a modulo p using an exponentiation mod-
ulo p, whose complexity is O((log2(p))3) (see, for example,
[14]). There are faster methods for evaluating the Legendre-
Jacobi symbol - see, for example, [15], in which are presented
algorithms of complexity O((log2(p))

2

log2(log2(p))
) for computing the

Legendre-Jacobi symbol modulo p. Thus, is important to
remark that the evaluation of the Legendre-Jacobi symbol is
much faster than an exponentiation.

It is known (see, for example, [16][Remark 2.151]) that
for an odd prime p, half of the elements in Z∗

p are quadratic
non-residues modulo p. Still, no deterministic polynomial
algorithm is known for finding a quadratic non-residue modulo
a prime. A randomized algorithm for finding a quadratic
non-residue modulo a prime p is to simply generate random
elements in Z∗

p until one is found having its Legendre-
Jacobi symbol equal with −1. The expected number iterations
before a quadratic non-residue modulo p is found is two. An
algorithm for generating a quadratic residue is presented next.

GenerateQuadraticNonResidue(p)

input: p, an odd prime;
output: a quadratic non-residue modulo p;
begin

if p ≡ 3 mod 4 then return(−1)
if p ≡ 5 mod 8 then return(2)
repeat

generate randomly a ∈ Z∗
p

until LegendreJacobi(a,p)=−1
return(a)

end.

Fig. 2: An algorithm for generating a quadratic non-residue
modulo a prime p

Computing square roots modulo a prime is another funda-
mental problem in number theory, with major applications as
primality testing, factorization or elliptic point compression.
According to Bach and Shallit [12, Notes on Chapter 7,
page 194] and Lemmermeyer [13, Exercise 1.16, Page 29],
Lagrange was the first one who has stated an explicit formula
for computing square roots in the case p ≡ 3 mod 4 in 1769.
According to the same sources ([12, Exercise 1, page 188]
and [13, Exercise 1.17, Page 29]), the case p ≡ 5 mod 8 has
been solved by Legendre in 1785. Atkin [17] has also found a
simple solution for the case p ≡ 5 mod 8 in 1992. For the rest
of the cases, Tonelli-Shanks algorithm ([5], [6]) and Cippola-
Lehmer algorithm ([7], [8]) can be used, these algorithms
relying on a quadratic non-residue modulo p. An algorithm
for finding the set of square roots modulo a prime p, for a
given element a ∈ Z∗

p, is sketched next.

SquareRoots(p,a)

input: p, an odd prime, a ∈ Z∗
p ;

output: the set of the square roots modulo p of a;
begin

if LegendreJacobi(a,p)= −1 then return(∅)
if a = 1 then return({1,−1})
if p ≡ 3 mod 4 then return({a

p+1
4 , p− a

p+1
4 })

if p ≡ 5 mod 8 then
begin

u := (2a)
p−5
8 ;

v := 2au2;
b = ua(v − 1);
return({b, p− b})

end
call Tonelli-Shanks or Cippola-Lehmer

end.

Fig. 3: An algorithm for finding the set of square roots

This algorithm can be recursively called for obtaining the
set of the solutions of the equation x2

s

= 1, for a given s ≥ 2.

III. PRIMITIVE ROOTS VERSUS QUADRATIC
NON-RESIDUES (MODULO A PRIME)

In this section we discuss some interesting connections
between these two topics. Some of these correlations will be
exploited in the next section in order to develop determinis-
tic algorithms for generating primitive roots modulo special
primes.

Proposition 4: Let p be an odd prime and α a primitive
root modulo p. Then α is a quadratic non-residue modulo p.

Proof: Using Proposition 2(3), we obtain that α
p−1
r 6= 1

for any prime divisor r of (p−1). For r = 2 ((p−1) is even)
we have that α

p−1
2 6= 1 (this is equivalent with α

p−1
2 = −1

because (α
p−1
2)2 = 1 by Fermat’s Theorem and 1 has the

only square roots 1 and −1 modulo a prime) which, in adition
with Euler’s criterion (Prop 3(1)) leads to the fact that α is a
quadratic non-residue modulo p.

Proposition 5: Let p be an odd prime and α a quadratic
non-residue modulo p. Then α is a primitive root modulo p if
and only if α

p−1
r 6= 1 for any odd prime divisor r of (p− 1).

Proof: Directly from Proposition 2(3) and Euler’s crite-
rion (Prop 3(1)).

Directly from Proposition 4 and Proposition 5 we obtain:
Proposition 6: Let p be an odd prime such that there is

s ≥ 1 so that p − 1 = 2s and α ∈ Z∗
p. Then α is a primitive

root modulo p if and only if α is a quadratic non-residue
modulo p.

Proposition 7: Let p be an odd prime and a, α ∈ Z∗
p. The

following relations hold true:
1) If a is a quadratic non-residue modulo p and k ∈ Z then

ak is a quadratic non-residue modulo p if and only if k
is odd;

2) If α is a primitive root modulo p and k ∈ Z then αk is
a primitive root modulo p if and only if (k, p− 1) = 1.

Proof:

1) It follows directly from the property
(
ak

p

)
=
(
a
p

)k
=(

a
p

)k mod 2

;
2) From Proposition 1(3) we obtain that ordp(α

k) =
ordp(α)

(ordp(α),k)
= p−1

(k,p−1) (if α is a primitive root then its
order is φ(p) = p−1). Thus, αk is a primitive root if and
only if ordp(αk) = p−1, or, equivalently, (k, p−1) = 1.

Proposition 8: Let p be an odd prime. The following rela-
tions hold true:

1) If a and b are quadratic non-residues modulo p then ab
is a quadratic residue modulo p;

2) If a is a quadratic non-residue modulo p and b is a
quadratic residue modulo p then ab is a quadratic non-
residue modulo p;

3) If a and b are quadratic residues modulo p then ab is a
quadratic residue modulo p;

4) If α and β are primitive roots modulo p then αβ is a
non-primitive root modulo p.

Proof:
(1), (2), (3) follow directly from Proposition 3(4);
(4) From Proposition 4 we obtain that α and β are
quadratic non-residues modulo p which leads to the fact
that αβ is a quadratic residue modulo p and, thus, αβ
is not a primitive root modulo p (also by Proposition 4);

Remark 2: 1) It is interesting that a result similar to the
property presented in Proposition 8(2) does not hold for
primitive roots. More exactly, if α is a primitive root
modulo p and β is a non-primitive root modulo p then
αβ may be or not a primitive root modulo p. Indeed, in
this case β can be expressed as αk, with (k, p− 1) 6= 1
(from Proposition 7(2)). We obtain that αβ = αk+1. We
may have (k+1, p−1) = 1 (for example, in case p = 7,
k = 4) and in this case αβ is a primitive root modulo p
or we may have (k+1, p−1) 6= 1 (for example, in case

p = 7, k = 2) which implies that αβ is a non-primitive
root modulo p.

2) Also, a result similar to the property presented in
Proposition 8(3) does not hold for primitive roots. More
exactly, if α is a non-primitive root modulo p and β
is a non-primitive root modulo p then αβ may be or
not a primitive root modulo p. Indeed, in this case,
if we consider γ, a primitive root modulo p then α
can be expressed as γk1 , with (k1, p − 1) 6= 1 and β
can be expressed as γk2 , with (k2, p − 1) 6= 1 (from
Proposition 7(2)). We obtain that αβ = γk1+k2 . We may
have (k1 + k2, p− 1) = 1 (for example, in case p = 7,
k1 = 2, k2 = 3) and in this case αβ is a primitive root
modulo p or we may have (k1 + k2, p − 1) 6= 1 (for
example, in case p = 7, k1 = 2, k2 = 4) which implies
that αβ is a non-primitive root modulo p.

IV. GENERATING PRIMITIVE ROOTS MODULO A PRIME

Proposition 2(3) from Section II gives a method of gen-
erating a primitive root modulo an odd prime p, knowing
the prime decomposition of φ(p) = p − 1, as presented in
Figure 4 (which presents the classic randomized algorithm for
generating a primitive root modulo an odd prime).

PrimitiveRoot1(p)

input: p, an odd prime;
additional input: the prime factorization of (p− 1);
output: a primitive root modulo p;
begin

generate randomly α ∈ Z∗
p;

ok := 1;
for each prime r, r|(p− 1) do

if α
p−1
r = 1 then ok := 0

if ok = 1 then return(α)
end.

Fig. 4: The classic algorithm for generating a primitive root
modulo an odd prime p, knowing the prime factorization of
(p− 1)

The probability of success, denoted by psuccess, of the
classic randomized algorithm (which is of Las Vegas type)
presented above is given by the ratio between the number of
primitive roots and the total number of elements in Z∗

p, i.e.,
psuccess =

φ(φ(p))
φ(p) (by Proposition 2(2)).

Using Proposition 5 from Section III we obtain the follow-
ing improved algorithm:

PrimitiveRoot2(p)

input: p, an odd prime;
additional input: the prime factorization of (p− 1);
output: a primitive root modulo p;
begin

α :=GenerateQuadraticNonResidue(p);
ok := 1;
for each odd prime r, r|(p− 1) do

if α
p−1
r = 1 then ok := 0

if ok = 1 then return(α)
end.

Fig. 5: An improved algorithm for generating a primitive root
modulo an odd prime p, knowing the prime factorization of
(p− 1)

In fact, the main difference between PrimitiveRoot1
and PrimitiveRoot2 is that the exponentiation α

p−1
2

(which is the operation with the greatest exponent among
those involved in Algorithm PrimitiveRoot1) is replaced
with the evaluation of the Legendre-Jacobi symbol (in order
to verify that α is a quadratic non-residue modulo p). The im-
provement is given by the fact that the evaluation of Legendre-
Jacobi symbol is much faster than an exponentiation (see, e.g.,
[12, page 113] or [15]). Moreover, for primes p with certain
forms, a quadratic non-residue modulo p can be generated
without effectively evaluating the Legendre-Jacobi symbol
(see Algorithm GenerateQuadraticNonResidue from
Section II) and this can lead to further improvements. The
same speedup has been discovered by Cohen in [10].

The biggest impact of this replacement is obtained in
the case of the primes p of special form p = 2sq +
1, where s ≥ 1 and q is an odd prime (in this case
Algorithm PrimitiveRoot1 implies only two exponen-
tiations, with exponents p−1

2 and p−1
q and in Algorithm

PrimitiveRoot2 the operation with exponent p−1
2 is re-

placed with the evaluation of the Legendre-Jacobi symbol).
For such primes p, an element α ∈ Z∗

p is a primitive root
if and only if (α quadratic non-residue modulo p∧α2s 6= 1).

We obtain the following algorithm:

PrimitiveRoot3(p)

input: p prime, p = 2sq + 1, s ≥ 1, q odd prime;
output: a primitive root modulo p;
begin

α :=GenerateQuadraticNonResidue(p);
if α2s 6= 1 then return(α)

end.

Fig. 6: An algorithm for generating a primitive root modulo
a prime p, p = 2sq + 1, s ≥ 1, q odd prime

For p prime, p = 2sq + 1, s ≥ 1, q is an odd prime, we

obtain that

psuccess =
φ(φ(p))

φ(p)
=

(2s − 2s−1)(q − 1)

2sq
=
q − 1

2q
≈ 1

2

Evidently, this algorithm may be iterated until a primitive root
is finally outputted. The expected number iterations before a
primitive root is found is two.

A. Finding Deterministic Algorithms for Generating Primitive
Roots Modulo Special Primes

In this part of the paper we try to find efficient deterministic
algorithms for generating primitive roots modulo p, p = 2sq+
1, s ≥ 1, q odd prime, for certain small values of s (s ∈
{1, 2}). In these cases, quadratic non-residues are known: (−1)
for s = 1 (in this case, p ≡ 3 mod 4) and 2 for s = 2 (in
this case, p ≡ 5 mod 8). The main idea is to find, with a
single random generation, an element that is simultaneously
a quadratic non-residue and a non-solution for the equation
x2

s

= 1. We may use the following tricks (see Proposition 8):

1) If α is a quadratic residue then, by multiplying it with
a quadratic non-residue, we will obtain a quadratic non-
residue;

2) If α is a quadratic non-residue then, by multiplying it
with a quadratic residue, we will obtain a quadratic non-
residue;

3) If α is a solution of the equation x2
s

= 1 then, by
multiplying it with a non-solution of the same equation,
we will obtain a non-solution of the same equation;

4) If α is a non-solution of the equation x2
s

= 1 then, by
multiplying it with a solution of the same equation, we
will obtain a non-solution of the same equation.

Thus, in case that a quadratic non-residue β is somehow
provided, we need to consider two cases:

1) If β2s 6= 1 - then α = β is a primitive root modulo p;
2) If β2s = 1 - then, by multiplying β with a non-solution

of the equation x2
s

= 1 which is simultaneously a
quadratic residue modulo p, we will obtain a primitive
root modulo p - more exactly, any transformation of
type α = βγ2 will work as long (γ2)2

s 6= 1 (we
have to remark that there exist quadratic residues that
are non-solutions for the equation x2

s

= 1 because this
equation has at most 2s solutions in Z∗

p whereas there
are p−1

2 = 2s−1q quadratic residues modulo p). The
simplest option is to choose γ = 2 (when p 6 |42s − 1),
which translates in multiplying β with 4 modulo p.

We obtain the following algorithm:

PrimitiveRoot4(p)

input: p prime, p = 2sq + 1, s ≥ 1, q odd prime;
additional input: β, a quadratic non-residue mod p;
output: a primitive root modulo p;
begin

if β2s 6= 1 then return(β)
γ := 2;
while (γ2)2

s

= 1 do γ := γ + 1;
α := βγ2;
return(α)

end.

Fig. 7: An algorithm for generating a primitive root modulo
a prime p, p = 2sq + 1, s ≥ 1, q odd prime, in case that a
quadratic non-residue β is provided

A different strategy (but less applicable and, moreover, less
efficient) is to start with α as a non-solution of the equation
x2

s

= 1. There are two approaches for achieving this:
• generating a random α and testing if α2s 6= 1;
• computing all the solutions of the equation x2

s

= 1 (using
recursively the algorithm SquareRoots presented in
Section II) and generating α outside this set; this ap-
proach is suitable only for very small s (s = 1 or s = 2).

Then, if α is a quadratic non-residue modulo p then α is
a primitive root modulo p; else, by multiplying α with β we
will obtain a primitive root modulo p providing that β is a
solution of the equation x2

s

= 1.
We will propose next some efficient deterministic algo-

rithms for generating primitive roots in the cases s = 1, s = 2.
1) The Case s = 1: This is exactly the case of safe primes,

i.e, primes p of form p = 2q + 1, q odd prime. These primes
satisfy p ≡ 3 mod 4 and thus (−1) is a quadratic non-residue
modulo p. The element (−1) is also a solution for the equation
x2

1

= 1. Because 1 and (−1) are the only solutions of this
equation, it is sufficient to find a quadratic non-residue in the
set {2, 3, . . . , p−2}. The second strategy presented above leads
to the following deterministic algorithm:

PrimitiveRootSafePrime1(p)

input: p prime, p = 2q + 1, q odd prime;
output: a primitive root modulo p;
begin

generate randomly α ∈ {2, 3, . . . , p− 2};
if LegendreJacobi(α,p)=−1 then return(α)

else return(−α)
end.

Fig. 8: An initial deterministic algorithm for generating a
primitive root modulo a prime p, p = 2q + 1, q odd prime

Indeed, if α is a quadratic residue modulo p then (−α) is a
quadratic non-residue modulo p (because (−1) is a quadratic
non-residue modulo p). Moreover, if α ∈ {2, 3, . . . , p − 2}
then also (−α) ∈ {2, 3, . . . , p − 2}. The complexity of the

above algorithm is O((log2(p))2) if we use the Algorithm
LegendreJacobi presented in Section II but if we use
faster methods for evaluating the Legendre-Jacobi symbol (see,
for example, [15]), we can obtain an algorithm of complexity
O((log2(p))

2

log2(log2(p))
).

The algorithm PrimitiveRoot4, for primes p of form
p = 2q+1, q odd prime (in this case, we may choose β = −1),
reduces to the following very simple algorithm:

PrimitiveRootSafePrime2(p)

input: p prime, p = 2q + 1, q odd prime;
output: a primitive root modulo p;
begin

generate randomly γ ∈ {2, 3, . . . , p− 2};
α := −γ2;
return(α)

end.

Fig. 9: An alternative deterministic algorithm for generating
a primitive root modulo a prime p, p = 2q + 1, q odd prime

Indeed, in this case, β21 = 1 and (γ2)2
1

= 1⇔ γ = ±1.
Algorithm PrimitiveRootSafePrime2 involves only

one modular squaring modulo p and, therefore, its complexity
is O((log2(p))2) (see, for example, [14]).

Example 1 illustrates the application of the
algorithms PrimitiveRootSafePrime1 and
PrimitiveRootSafePrime2.

Example 1: (with artificially small parameters) Let p = 11
(q = 5). In this case 2 is a primitive root modulo 11 because
2

11−1
2 = 10 6= 1 and 2

11−1
5 = 4 6= 1. The rest of the primitive

roots can be obtained as 23, 27, 29 (see Proposition 7(2)) which
leads to the elements 8, 7, and, respectively, 6.

• PrimitiveRootSafePrime1 - suppose that α = 5
is generated in the first step of the algorithm; because(

5
11

)
= 1 (5 = 42 mod 11) then (−5) = 6 is returned,

which is indeed a primitive root modulo 11;
• PrimitiveRootSafePrime2 - by considering all the

values γ ∈ {2, 3, 4, 5} we may obtain all the primitive
roots modulo 11; these are: (−22) = 7, (−32) = 2,
(−42) = 6, and, finally, (−52) = 8.

2) The Case s = 2: This is the case of primes p = 22q+1,
q odd prime, that satisfy p ≡ 5 mod 8. Thus, 2 is a quadratic
non-residue modulo p. If 2 is also a non-solution for the
equation x2

2

= 1 then 2 is a primitive root modulo p. The
relation 22

2

= 1 mod p is equivalent with p|15 . Because p
is a prime and p ≥ 13 (because q ≥ 3) then we obtain that
2 cannot be a solution for the equation x2

2

= 1 mod p and,
thus, 2 is a primitive root modulo p. If we are interested in
finding another primitive roots, we may raise 2 at any odd
power that is not divisible by q.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have analysed some interesting connections
between primitive roots and quadratic non-residues modulo a

prime. Using some correlations between the mentioned topics,
we have proposed some efficient deterministic algorithms for
generating primitive roots modulo p, p = 2sq + 1, s ≥ 1, q
odd prime, for certain small values of s (s ∈ {1, 2}). Because
in these cases, quadratic non-residues are known, some simple
algorithms can be developed, as presented in Section IV-A.

It is interesting to investigate more complex cases, as p =
2sqr + 1 or even p = 2sqr11 q

r2
2 + 1. We will consider these

issues in our future work.

Acknowledgements

We thank D. J. Bernstein for pointing us the fact that
replacing the exponention α

p−1
2 with the evaluation of the

Legendre-Jacobi symbol has been already presented by Cohen
in [10].

REFERENCES

[1] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. IT-22, no. 6, pp. 644–654,
1976.

[2] T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” IEEE Transactions on Information Theory,
vol. 31, pp. 469–472, 1985, (a preliminary version appeared in ”Ad-
vances in Cryptology – Crypto ’84”, G. R. Blakley and D. Chaum, eds.,
Lecture Notes in Computer Science 196 (1985), 10-18).

[3] C.-P. Schnorr, “Efficient identification and signatures for smart cards,” in
Advances in Cryptology - CRYPTO ’89, ser. Lecture Notes in Computer
Science, G. Brassard, Ed., vol. 435. Springer, 1989, pp. 239–252.

[4] FIPS 186-3, “Digital Signature Standard”, Federal Infor-
mation Processing Standards Publication 186, June 2009,
http://csrc.nist.gov/publications/fips/fips186-3/fips 186-3.pdf.

[5] A. Tonelli, “Bemerkung über die Auflösung quadratischer Congruen-
zen,” Göttinger Nachrichten, pp. 344–346, 1891.

[6] D. Shanks, “Five number-theoretic algorithms,” in Proceedings of the
second Manitoba conference on numerical mathematics, ser. Congressus
Numerantium, R. Thomas and H. Williams, Eds., vol. 7. Utilitas
Mathematica, 1973, pp. 51–70.

[7] M. Cipolla, “Un metodo per la risolutione della congruenza di sec-
ondo grado,” RendicontodellAccademia Scienze Fisiche e Matematiche,
Napoli, vol. 9, pp. 154–163, 1903.

[8] D. Lehmer, “Computer technology applied to the theory of numbers,” in
Studies in number theory, ser. MAA Studies in Mathematics, W. Lev-
eque, Ed., vol. 6. Prentice-Hall, 1969, pp. 117–151.

[9] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of
Computer and System Sciences, vol. 28, no. 2, pp. 270–299, 1984.

[10] H. Cohen, A Course in Computational Algebraic Number Theory,
4th ed., ser. Graduate Texts in Mathematics. Springer-Verlag, 2000.

[11] F. L. Ţiplea, Algebraic Foundations of Computer Science. Polirom,
2006, (in Romanian).

[12] E. Bach and J. Shallit, Algorithmic Number Theory, Volume I: Efficient
Algorithms. MIT Press, 1996.

[13] F. Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein. Springer-
Verlag, 2000.

[14] F. L. Ţiplea, S. Iftene, C. Hriţcu, I. Goriac, R. Gordân, and
E. Erbiceanu, “MpNT: A multi-precision number theory package.
Number-theoretic algorithms (I),” “Al.I.Cuza” University of Iaşi, Fac-
ulty of Computer Science, Tech. Rep. TR 03-02, 2003, (available at
http://www.infoiasi.ro/˜ tr/tr.pl.cgi).

[15] S. Eikenberry and J. Sorenson, “Efficient algorithms for computing the
Jacobi symbol,” Journal of Symbolic Computation, vol. 26, no. 4, pp.
509–523, 1998.

[16] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography, ser. Discrete Mathematics and Its Applications.
CRC Press, vol. 6.

[17] A. Atkin, “Probabilistic primality testing (summary by F. Morain),”
INRIA, Tech. Rep. 1779, 1992, URL:http://algo.inria.fr/seminars/sem91-
92/atkin.pdf.

