

A Quasigroup Based Random Number Generator

for Resource Constrained Environments

Matthew Battey

Computer Science

University of Nebraska at Omaha

Omaha, NE 68182

Abhishek Parakh

Nebraska University Center for Information Assurance

University of Nebraska at Omaha

Omaha, NE 68182

Abstract – This paper proposes a pseudo random number

generator (PRNG) based on quasigroups. The proposed PRNG

has low memory requirements, is autonomous and the quality of

the output stream of random numbers is better than other

available standard PRNG implementations (commercial and

open source) in majority of the tests. Comparisons are done using

the benchmark NIST Statistical Test Suite and compression tools.

Results are presented for quality of raw stream of random

numbers and for encryption results using these random numbers.

Index Terms – cryptography, random number generation,

quasigroups, efficient encryption

I. INTRODUCTION

seudo random number generators (PRNG) play an

important role in computing and communication

technology, whether it be for online gambling, reducing

collisions on Ethernet networks, or securing data through

cryptographic techniques.

A common application of PRNGs is to secure

communication of large amounts of data, over insecure public

channels. A common approach is to exchange PRNG seeds

using a public key cryptosystems and then XOR the stream of

data with the stream of pseudo random numbers produced

from the PRNG. The receiver can invert the XOR operation as

he can also generate the same stream of pseudo random

numbers.

Such light weight encryption systems are of great advantage

in low-powered environments such as sensor networks and

mobile devices including smart phones and tablet computers.

These can be used to encrypt large amounts of data being

produced by these devices in the form of pictures, videos and

teleconferencing. The proposed pseudo random number

generator has low memory requirements, low computation

requirements (if any at all – most operations are table look up)

and has high throughput making it an ideal choice for such

environments.

In the following we first discuss the PRNG choices

available to programmers, followed by a primer on

quasigroups. We then present the proposed algorithms and

results.

Among programming languages, C, Java, C++, Objective-

C, and C#.Net are the top five [1]. In all, these languages

make use of only two different algorithms to generate pseudo

random numbers, SHA-1 [2] [3] [4] [5] [6] and AES [3] [2],

with a third (ARC4) available only on BSD derived operating

systems [7]. While the C derived languages (C, C++, Obj-C)

do not provide secure PRNG interfaces directly, common

practice makes use of either OpenSSL’s rand or the BSD’s

arc4random. Here, OpenSSL’s rand makes use of SHA-

1 [5], and arc4random uses an implementation of the ARC4

stream cipher.

The National Institute of Standards and Technology (NIST),

a division of U.S. Department of Commerce, produces the

Federal Information Processing Standards Publication (FIPS

PUBS) [8]. While these focus on standards set for the United

States Federal Government, they are adopted by every major

software vendor. FIPS-180 specifies SHA-1 as the preferred

algorithm for producing random numbers [9](versions 1-4).

For this reason, the operating system vendors have chosen

SHA-1 as part of the standard offering.

Microsoft Windows supplied the SHA-1 algorithm via the

CryptGenRandom API in versions up to Windows Vista.

From that point on, Microsoft began offering an AES

“Counter Mode” (AES-CM) [10] algorithm through the same

API [3]. The Microsoft.NET CLR virtual machine makes use

of CryptGenRandom directly [2], hence both Win32 and

Microsoft.NET applications will use either SHA-1 or AES-

CM. Java followed suit, implementing the FIPS-180

standards SHA-1.

BSD is an outlier in a few ways. First, most UNIX like

operating systems chose not to directly provide secure PRNGs

other than the linear congruential generator found in libc.

Instead they rely on third-party packages, such as OpenSSL’s

rand. Second, BSD provided arc4random in the C

standard library which also made its way into Mac OS X, but

again, OpenSSL is shipped as part of the Mac OS X

distribution as well.

Although the United States government has adopted SHA-1

as the preferred mechanism for random number generation,

both SHA-1 and RC4 (arc4random) have their limitations. It

has been found that in the CryptGenRandom function,

using the SHA-1 algorithm [11], up to 128 kilo-bytes of past

P

and future random data may be revealed with a non-trivial

approach taking 223 steps. Issues with the RC4 key stream

generator have been noted for some time. Statistical biases

have been found that may distinguish RC4 output from other

random strings with only 225 bytes [12]. For this and other

reasons, NIST chose to deprecate SHA-1, supposedly phasing

out the hash algorithm’s adoption by 2010 [13]. Although

SHA-1 and RC4 are no longer considered secure, by July of

2012 they have not been faced out with the exception of the

Microsoft Windows implementation, being operating system

dependent [3].

In this paper we present a new pseudo random number

generator, based on quasigroups, that is both stroage and

computationally efficient. The quality of stream of random

numbers produced is tested using the NIST Statistical Test

Suite and compression methods. The results show that the

proposed random number generator performs better in most

cases and at par in other cases with the commercially available

test suite. Further, the random number generator does not

depend on any hashing algorithm or third party sub-algorithm

and is completely self-contained and operating system

independent.

II. BACKGROUND ON QUASIGROUPS AND QUASIGROUP

STREAM CIPHERS

Quasigroups are square matrix structures that support a

forward and an inverse operation. The elements in the matrix

are so arranged that no element repeats in any row or column

and every element appears in every row and column.

Quasigroup (QG) stream ciphers are cryptosystems based on

these structures [14] [15]. In particular, we define a forward

operation such that, ܽ ή ܾ ൌ ܿ

and an inverse operation (via an inverse quasigroup [14]), ܽȀܿ ൌ ܾ

Here the elements on the left hand side of the above equations

represent the column and row indices of the quasigroup matrix

and the right hand side element is an element from the

quasigroup matrix. The operations ‘ή’ and ‘Ȁ’ produce the right

hand side by lookup operation in the quasigroup matrix. The

order of a quasigroup is the number of rows or columns it has.

For example, a QG of size 256x256 has order 256 containing

64 K elements.

A quasigroup based stream cipher works as follows:

1. Choose a seed, s, in the same range as the QG’s order.

2. The input plaintext, M, is broken into a stream of 8-bit

words as m1, m2, …, mn. The corresponding cipher text,

C, is a stream of 8-bit words c1, c2, …, cn, where, ܿଵ ൌ 	ݏ ή ݉ଵ ܿଶ ൌ 	 ܿଵ ή ݉ଶ

…

ܿ௡ ൌ 	 ܿ௡ିଵ ή ݉௡

Quasigroups have also been used to construct block ciphers

and when compared against competing systems such as AES,

they perfomed better in almost all tests [14].

Gligoroski and Markovski explore the use of quasigroups

for pseudo random number generation [16]. Markovski and

Dimitrova looked at applying multiple QG stream cipher

passes on an initial vector of a single value. Here, a string

such as “111111111” is encrypted multiple times, until

sufficiently random data is acquired. A minimum of two

passes is necessary as a single pass reduces the algorithm to a

single repeating permutation of size n where n is the order of

the quasigroup. Markovski and Dimitrova refer to this as the

period of the QG-PRNG [17], and suggest the period may be

extended through each successive pass of the QG stream

cipher. In a second study, Markovski, Gilgorski and Kocarev

(MGK) suggest the application of a QG stream cipher to a

non-uniform, but random source, making it unbiased [18].

Another implementation of QG PRNG linearizes the QG

matrix in a raster like operation, Godavarty [19]. The original

QG is kept, and the linearized values are fed through the QG

stream cipher. The output values are rotated by a pre-

determined factor and fed back through the QG stream cipher

to produce another set of n
2 values. Godavarty’s method,

unlike MGK, does not need to have a randomized input vector

equivalent in size to the output itself and has lower memory

requirements than Markovski and Dimitrova method.

III. CONSTRUCTION OF LOW OVERHEAD QUASIGROUP

Consider a quasigroup of order 6, such as the one in table

1(A). In this quasigroup, each cell may be represented by the

expression ሺݎ ൅ ܿሻ	݉݀݋	݊, where r is the row index, c is the

column index and n is the order of the group, 6 in this case.

Additionally shuffling the rows and columns will produce a

randomized quasigroup (See table 1 (B)). We create a

randomized quasigroup by shuffling the row and column

indices, using ሺݎ ൅ ܿሻ݉݀݋	݊ , resulting in only ʹ݊ ή݈ܿ݁݅݅݊݃ሺ݈݃݋ଶሺ݊ሻሻ bits to store the state of the quasigroup.

Further, if an uncalculated quasigroup were stored, the storage

requirement would be ݊ଶ݈ܿ݁݅݅݊݃ሺ݈݃݋ଶሺ݊ሻሻ bits. The memory

improvement is thus O(n2).

If we compare the storage performance to other quasigroup

PRNG methods, we see that Godavarty’s method [19] has a

storage requirement of ʹ݊ଶ݈ܿ݁݅݅݊݃ሺ݈݃݋ଶሺ݊ሻሻ and the

Markovski et. al. methods [17] [18] require ݊ଶ݈ܿ݁݅݅݊݃൫݈݃݋ଶሺ݊ሻ൯ ൅ ܴ, where n is the quasigroup’s order

and R is the number of desired random bits.

IV. THE PROPOSED LOW OVERHEAD QUASIGROUP (LOQG)

PRNG

Denote the quasigroup matrix as qgls and the value denoted

by qgls(s1,s2) is the value in the matrix at (s1,s2).

TABLE 1. QUASIGROUPS OF ORDER 6 WHERE THE QUASIGROUP IN (B) IS THE

SHUFFLED FORM OF QUASIGROUP IN (A)

 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

(A)

 1 4 5 0 2 3

0 1 4 5 0 2 3

3 4 1 2 3 5 0

5 0 3 4 5 1 2

2 3 0 1 2 4 5

4 5 2 3 4 0 1

1 2 5 0 1 3 4

(B)

Initialize

1) Begin with a randomized Latin square to form a QG

using the low overhead quasigroup to reduce storage

2) Randomly choose two integer seed values (s1, s2) from

[0,n).

3) Maintain an index i, initialized to zero, used for

reshuffling the QG.

Generate

1) Let rand := qgls(s1,s2)

2) Let s1 := s2 and s2 := rand

3) Shuffle column i with column s1, and row i with row s2

4) Increment i mod n

5) Output rand as the random value

6) Repeat

Initialization with external seed

1) Initialize as specified in Initialize step 1.

2) Choose a random seed vector of length l.1

For each 8-bit word in the seed vector S of length l do the

following:

3) Shuffle column i with column Sj-1, and row i with row Sj

4) Increment i mod n and repeat to (3), until i = l

5) Finally, let s1 := Sl-1 and s2 := Sl

The algorithm begins with the Initialize subroutine, a

randomized quasigroup matrix and the seed values of s1 and

s2. To generate random numbers call the Generate subroutine.

One can initialize the random number generator with an

external seed vector to improve the quality of random numbers

(see foot note1).

V. EVALUATION PROCESS

Typically, the abilities of a PRNG are gauged against other

well-known PRNG outputs. Test suites such as NIST

1 The seed vector affects the square at a rate of 4l(n-l)/n2 where l is the seed

vector length in bytes and n is the quasigroup order. For example, a seed

vector of 16 bytes (128 bits) should sufficiently reconfigure the LOQG

PRNG. Consequently, 128 bits are produced from SHA-256 or other hash

functions, allowing timestamps to become a good seed.

Statistical Test Suite (NIST-STS) [20] and compression

algorithms, like GNU-zip, allows one to establish a greater

confidence in the quality of a proposed algorithm [21].

The NIST-STS has pre-established thresholds for pass/fail

rating of a random sequence. Often, well known PRNGs fail

these tests. Hence, it is important to execute multiple tests and

compare success rates of LOQG PRNG with established

PRNG algorithms.

The evaluation process of the LOQG PRNG begins by

establishing parameters guarding the selection of PRNG

output data. We produce 1000 sample outputs, each ʹଶଶ bits

(512 KB) for all of the evaluated PRNG algorithms. Test

results compare the LOQG PRNG with both commercial

PRNGs and previously proposed QG PRNGs. The tested

PRNG algorithms are:

 LOQG PRNG order 256

 MGK with glibc-random() driver [18]

 Dimitrova and Markovski [17]

 OpenSSL rand [5]

 arc4random [7]

 Java - SecureRandom [6]

 Microsoft.NET - RandomNumberGenerator [2]

NIST-STS performs a number of tests that compare bit

strings of a certain length. If a bit string contains m bits, it is

referred to as m-bit block. Because each of the tests look at

varying characteristics of the sample data, the size of m differs

between tests, and is not configurable by the user. The NIST-

STS suite includes the following tests:

 Approximate Entropy (AE) – A test comparing all

overlapping m-bit patterns.

 Block Frequency (BF) – A test which evaluates the

proportion of 1’s in m-bit blocks.

 Cumulative Sums, Forward (CSF), Reverse (CSR) –

Evaluates whether the maximal cumulative sum of partial

sequences is outside the range for expected behavior of a

random sequence.

 Discrete Fourier Transform (FFT) – Implemented as a Fast

Fourier Transform, detects repeating or periodic features

that are near to each other.

 Frequency (FREQ) – Evaluates the frequency of 1’s and 0’s

in the entire sequence.

 Longest Run – Comparison of longest contiguous run of 1’s

in m-bit blocks to expected frequency of same.

 Rank – The rank of disjoint sub-matrices within the entire

sequence.

 Runs – Finds and evaluates the longest sequence of

contiguous 1’s in the entire sequence and compares the

oscillation between 1’s and 0’s to a standard frequency.

 Serial – Compares the frequency of all m-bit overlapping

patterns in the full sequence. Two variations are applied.

Figure 1 compares the NIST-STS analysis of the LOQG

PRNG order 256 output with analysis of BSD arc4random,

OpenSSL rand, Java SecureRandom, and Microsoft.Net

RandomNumberGenerator outputs. The figure shows the

number of successes (pass/fail according to NIST-STS) for

1000 runs of the random number generators. Given any single

PRNG suite, the proposed algorithm outperforms it in majority

of the tests.

Figure 1. LOQG PRNG vs. Commercial PRNGs: This chart compares the

LOQG PRNG with commercial PRNGS. The vertical axis is the number of

successful tests for each NIST test area. One thousand (1000) tests were

conducted for each PRNG.

 Figure 2 compares Godavarty and MGK QG PRNGs with

the LOQG PRNG of order 256. The two variations of the

LOQG PRNG are shown to demonstrate differences between

different QG sizes in the LOQG. Results of the Dimitrova and

Markovski [17] were so low, that they obscured results from

the other four, and have not been displayed. The Dimitrova

and Markovski algorithm failed the Approximate Entropy,

Rank, Serial and Longest Run tests; of the others, none scored

above the 34th percentile. Results show that the LOQG PRNG

performs as well or better than Godavarty and MGK.

Encryption using proposed random number generator:

We take plain text and combine it with random values from

the LOQG PRNG algorithm using a quasigroup stream cipher

as discussed in section 2. Therefore, the operands on the left

hand side of the equation are 8-bit words from the plaintext

and 8-bit words from the stream of random numbers. The

result value is the cipher text. When decoding, an identical

stream of random values must be recombined with the cipher

text to reproduce the plain text.

We encrypted PCM audio [22] then evaluated the encrypted

cipher text with the NIST-STS suite for randomness. Here we

compare P-values produced by the NIST-STS suite. P-value is

the probability that an examined stream of numbers is as

random as a “perfect” random sequence. TABLE 2 shows that

the P-value of the original audio was nearly zero in all cases.

However, the P-values for the random numbers and the

ciphertext were very close to each other showing that the

ciphertext had properties similar to random numbers,

essentially “destroying” the information contained within the

plaintext.

Figure 2. LOQG PRNG vs. Other QG PRNGS: This chart compares the

Godavarty [19] and MGK [18] QG PRNGS with LOQG PRNG order 256.

The vertical axis is the number of successful tests for each NIST test areas.

One thousand (1000) tests were conducted for each PRNG. The Dimitrova-

Markovski QG PRNG is not included because its performance maximized at

33.9%, with complete failure on Serial 1 and 2.

Figure 3. Use of proposed quasigroup random number generator to encrypt a

stream of audio data. The operation can be inverted if the receiver knows the

initialization state for the random number generator.

Compression tests: The GNU-zip utility was chosen to test

the compressibility of data produced by the PRNGs. Figure 3

demonstrates results from compressing each of the 1000, 222

bit data files with the GNU-zip compression utility. The

compression rates are a ratio of the compressed data size

versus the original data size, shown are the average, minimum

and maximum compression rates across the 1000 samples

from each algorithm. With the exception of the Dimitrova-

Markovski output, each PRNG produced data, which when

compressed became larger instead of smaller (the Dimitrova-

Markovski output compressed to approximately 1/1000th of

the original size). Consequently, fig. 4 is actually measuring

the expansion of data when run through GNU-zip.

VI. CONCLUSIONS

We have presented a novel quasigroups based low overhead

pseudo random number generator. The algorithm requires the

storage of ʹ݊ ή ݈ܿ݁݅݅݊݃ሺ݈݃݋ଶ݊ሻ bits, where n is the order of the

quasigroup. The algorithm is computationally efficient, as it

requires matrix lookup operations and limited number of

writes to memory. The quality of random numbers produced

by the proposed algorithm is compared against other well-

known PRNGs and the results show that the proposed

algorithm outperforms any given PRNG in majority of the

tests. We also presented the results of using the stream of

random numbers generated to encrypt audio data.

950

955

960

965

970

975

980

985

990

995

1000

AE BF CSF CSR FFT FREQ Longest

Run

Rank Runs Serial1 Serial2

arc4random - OpenSSL - Java -

MS.Net - LO QGP -

900

910

920

930

940

950

960

970

980

990

1000

AE BF CSF CSR FFT FREQ Longest

Run

Rank Runs Serial1 Serial2

godavarty - MGK - LO QGP(256) -

TABLE 2. AUDIO ENCRYPTION SUCCESS RATES FOR 1000 RUNS. RAND IS THE STREAM OF RANDOM NUMBERS AND C-TEXT IS

THE CIPHER TEXT

Org Audio Average P-Value StdDev-P Var-P Number of successes

P-value Rand C-Text Rand C-Text Rand C-Text Rand C-Text

AF 0.0000 0.4796 0.5071 0.2837 0.2879 0.0805 0.0829 990 989

BG 0.0000 0.5177 0.4977 0.2837 0.2843 0.0805 0.0808 993 992

CS-F 0.0000 0.5042 0.5091 0.2852 0.2942 0.0813 0.0866 989 987

CS-R 0.0000 0.5101 0.5076 0.2872 0.2934 0.0825 0.0861 992 988

FFT 0.0102 0.5056 0.4962 0.2983 0.2936 0.0890 0.0862 982 990

FREQ 0.0000 0.4965 0.4983 0.2805 0.2885 0.0787 0.0833 992 988

Longest Run 0.0000 0.5031 0.4908 0.2841 0.2805 0.0807 0.0787 992 994

Rank 0.0000 0.4905 0.4949 0.2800 0.2863 0.0784 0.0819 991 982

Runs 0.0000 0.5014 0.4951 0.2906 0.2877 0.0845 0.0828 988 987

Serial1 0.0000 0.5162 0.5079 0.2861 0.2866 0.0819 0.0822 995 995

Serial2 0.0000 0.5153 0.5048 0.2834 0.2821 0.0803 0.0796 990 988

Figure 3. This graph shows minimum, average, and maximum compression

rates of the pseudo random data generated by the tested suites. The GNU-libc

(glibc) random data, which was used to drive the MGK suite, is also included.

REFERENCES

[1] TIBOE Software, "TIBOE Programming Community Index for May

2012," 1 May 2012. [Online]. Available:

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

[Accessed 21 May 2012].

[2] Microsoft, "RandomNumberGenerator," [Online]. Available:

http://msdn.microsoft.com/en-

us/library/system.security.cryptography.randomnumbergenerator.aspx.

[Accessed 25 May 2012].

[3] Microsoft, Inc., "CryptGenRandom Function," [Online]. Available:

http://msdn.microsoft.com/en-

us/library/windows/desktop/aa379942%28v=vs.85%29.aspx. [Accessed

21 May 2012].

[4] Sun Inc./Oracle Inc., "CryptoSpec.thml -- SHA1PRNG," [Online].

Available:

http://docs.oracle.com/javase/1.4.2/docs/guide/security/CryptoSpec.htm

l#AppA. [Accessed 21 May 2012].

[5] OpenSSL.org, "rand(3)," [Online]. Available:

http://www.openssl.org/docs/crypto/rand.html. [Accessed 21 May

2012].

[6] Oracle/Sun, "SecureRandom," [Online]. Available:

http://docs.oracle.com/javase/6/docs/api/java/security/SecureRandom.ht

ml. [Accessed 25 May 2012].

[7] BSD Library Functions Manual, "arc4random(3)," Apple, Inc., [Online].

Available:

http://developer.apple.com/library/ios/#documentation/System/Concept

ual/ManPages_iPhoneOS/man3/arc4random.3.html. [Accessed 21 May

2012].

[8] NIST, "FIPS Home Page," [Online]. Available:

http://www.itl.nist.gov/fipspubs/index.htm. [Accessed 21 June 2012].

[9] NIST, "Secure Hash Standard (FIPS 180-4)," March 2012. [Online].

Available: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-

4.pdf. [Accessed 21 May 2012].

[10] NIST, "Digital Signature Standard; FIPS 186," [Online]. Available:

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf.

[Accessed 21 June 2012].

[11] L. Dorrendorf, Z. Gutterman and B. Pinkas, "Cryptanalysis of the

random number generator of the Windows operating system," ACM

Transactions on Information and System Security, vol. 13, no. 1, pp.

10:1-10:30, 2009.

[12] S. Paul and B. Preneel, "A New Weakness in the RC4 Keystream

Generator and an Approach to Improve the Security of the Cipher," Fast

Sfotware Encryption 2004 : Lecture notes in Computer Science, vol.

3017, pp. 245-259, 2004.

[13] NIST, "NIST Brief Comments on Recent Cryptanalytic Attacks on

Secure Hashing Functions and the Continued Security Provided by

SHA-1," NIST, 2004.

[14] M. Battey and A. Parakh, "Efficient quasigroup block cipher for sensors

networks," in To appear in proceedings of 21st International

Conference on Computer Communication Networks (ICCCN 2012),

Munich, Germany, 2012.

[15] M. Satti and S. Kak, "Multilevel indexed quasigroup encryption for data

and speech," IEEE Transactions on Broadcasting, vol. 55, no. 2, pp.

270-281, 2009.

[16] D. Gligoroski and S. Markovski, Cryptographic potentials of

quasigroup transformations, Skopje, Republic of Macedonia:

University “St. Cyril and Methodious”, Institute of Informatics.

[17] J. Dimitrova and V. Markovski, "On quasigroup pseudo random

sequence generators," in 1st Balkan Conference in Informatics,

Thessaloniki, pp. 393-401, 2003.

[18] S. Markovski, D. Gligoroski and L. Kocarev, "Unbiased random

sequences from quasigroup string transformations," Fast Software

Encryption: 12th International Workshop, Paris, France, pp. 163-180,

2005.

[19] V. K. Godavarty, "Using quasigroups for generating pseudorandom

numbers," CoRR, arXiv:1112.1048v1, 2011.

[20] A. Rukhin and et. al., "SP800-22: A Statistical Test Suite for Random

and Pseudorandom Number Generators for Cryptographic

Applications," NIST, 2010.

[21] J. Soto, "Statistical Testing of Random Number Generators," NIST.

[22] "Waveform Audio Format - 11,025 Hz 16 bit PCM audio file,"

[Online]. Available: http://www.nch.com.au/acm/11k16bitpcm.wav.

[Accessed 21 July 2012].

1.000207

1.000208

1.000209

1.00021

1.000211

1.000212
Min Compression Rate Average Compression Rate Max Compression Rate

