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Abstract – This paper proposes a pseudo random number 

generator (PRNG) based on quasigroups.  The proposed PRNG 

has low memory requirements, is autonomous and the quality of 

the output stream of random numbers is better than other 

available standard PRNG implementations (commercial and 

open source) in majority of the tests. Comparisons are done using 

the benchmark NIST Statistical Test Suite and compression tools. 

Results are presented for quality of raw stream of random 

numbers and for encryption results using these random numbers. 

Index Terms – cryptography, random number generation, 

quasigroups, efficient encryption 

I. INTRODUCTION 

seudo random number generators (PRNG) play an 

important role in computing and communication 

technology, whether it be for online gambling, reducing 

collisions on Ethernet networks, or securing data through 

cryptographic techniques. 

A common application of PRNGs is to secure 

communication of large amounts of data, over insecure public 

channels. A common approach is to exchange PRNG seeds 

using a public key cryptosystems and then XOR the stream of 

data with the stream of pseudo random numbers produced 

from the PRNG. The receiver can invert the XOR operation as 

he can also generate the same stream of pseudo random 

numbers. 

Such light weight encryption systems are of great advantage 

in low-powered environments such as sensor networks and 

mobile devices including smart phones and tablet computers. 

These can be used to encrypt large amounts of data being 

produced by these devices in the form of pictures, videos and 

teleconferencing. The proposed pseudo random number 

generator has low memory requirements, low computation 

requirements (if any at all – most operations are table look up) 

and has high throughput making it an ideal choice for such 

environments. 

In the following we first discuss the PRNG choices 

available to programmers, followed by a primer on 

quasigroups. We then present the proposed algorithms and 

results. 

Among programming languages, C, Java, C++, Objective-

C, and C#.Net are the top five [1].  In all, these languages 

make use of only two different algorithms to generate pseudo 

random numbers, SHA-1 [2] [3] [4] [5] [6] and AES [3] [2], 

with a third (ARC4) available only on BSD derived operating 

systems [7].  While the C derived languages (C, C++, Obj-C) 

do not provide secure PRNG interfaces directly, common 

practice makes use of either OpenSSL’s rand or the BSD’s 

arc4random.  Here, OpenSSL’s rand makes use of SHA-

1 [5], and arc4random uses an implementation of the ARC4 

stream cipher.  

The National Institute of Standards and Technology (NIST), 

a division of U.S. Department of Commerce, produces the 

Federal Information Processing Standards Publication (FIPS 

PUBS) [8].   While these focus on standards set for the United 

States Federal Government, they are adopted by every major 

software vendor. FIPS-180 specifies SHA-1 as the preferred 

algorithm for producing random numbers [9](versions 1-4).  

For this reason, the operating system vendors have chosen 

SHA-1 as part of the standard offering.  

Microsoft Windows supplied the SHA-1 algorithm via the 

CryptGenRandom API in versions up to Windows Vista.   

From that point on, Microsoft began offering an AES 

“Counter Mode” (AES-CM) [10] algorithm through the same 

API [3].  The Microsoft.NET CLR virtual machine makes use 

of CryptGenRandom directly [2], hence both Win32 and 

Microsoft.NET applications will use either SHA-1 or AES-

CM.  Java followed suit, implementing the FIPS-180 

standards SHA-1. 

BSD is an outlier in a few ways.  First, most UNIX like 

operating systems chose not to directly provide secure PRNGs 

other than the linear congruential generator found in libc. 

Instead they rely on third-party packages, such as OpenSSL’s 

rand.  Second, BSD provided arc4random in the C 

standard library which also made its way into Mac OS X, but 

again, OpenSSL is shipped as part of the Mac OS X 

distribution as well. 

Although the United States government has adopted SHA-1 

as the preferred mechanism for random number generation, 

both SHA-1 and RC4 (arc4random) have their limitations.  It 

has been found that in the CryptGenRandom function, 

using the SHA-1 algorithm [11], up to 128 kilo-bytes of past 
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and future random data may be revealed with a non-trivial 

approach taking 223 steps.  Issues with the RC4 key stream 

generator have been noted for some time.  Statistical biases 

have been found that may distinguish RC4 output from other 

random strings with only 225 bytes [12].  For this and other 

reasons, NIST chose to deprecate SHA-1, supposedly phasing 

out the hash algorithm’s adoption by 2010 [13]. Although 

SHA-1 and RC4 are no longer considered secure, by July of 

2012 they have not been faced out with the exception of the 

Microsoft Windows implementation, being operating system 

dependent [3]. 

In this paper we present a new pseudo random number 

generator, based on quasigroups, that is both stroage and 

computationally efficient. The quality of stream of random 

numbers produced is tested using the NIST Statistical Test 

Suite and compression methods. The results show that the 

proposed random number generator performs better in most 

cases and at par in other cases with the commercially available 

test suite. Further, the random number generator does not 

depend on any hashing algorithm or third party sub-algorithm 

and is completely self-contained and operating system 

independent. 

II. BACKGROUND ON QUASIGROUPS AND QUASIGROUP 

STREAM CIPHERS 

Quasigroups are square matrix structures that support a 

forward and an inverse operation. The elements in the matrix 

are so arranged that no element repeats in any row or column 

and every element appears in every row and column. 

Quasigroup (QG) stream ciphers are cryptosystems based on 

these structures [14] [15]. In particular, we define a forward 

operation such that, ܽ ή ܾ ൌ ܿ 

and an inverse operation (via an inverse quasigroup [14]), ܽȀܿ ൌ ܾ 

Here the elements on the left hand side of the above equations 

represent the column and row indices of the quasigroup matrix 

and the right hand side element is an element from the 

quasigroup matrix. The operations ‘ή’ and ‘Ȁ’ produce the right 

hand side by lookup operation in the quasigroup matrix. The 

order of a quasigroup is the number of rows or columns it has. 

For example, a QG of size 256x256 has order 256 containing 

64 K elements. 

A quasigroup based stream cipher works as follows:  

1. Choose a seed, s, in the same range as the QG’s order.  

2. The input plaintext, M, is broken into a stream of 8-bit 

words as m1, m2, …, mn.  The corresponding cipher text, 

C, is a stream of 8-bit words c1, c2, …, cn, where, ܿଵ ൌ 	ݏ ή ݉ଵ ܿଶ ൌ 	 ܿଵ ή ݉ଶ 

… 

ܿ௡ ൌ 	 ܿ௡ିଵ ή ݉௡ 

Quasigroups have also been used to construct block ciphers 

and when compared against competing systems such as AES, 

they perfomed better in almost all tests [14]. 

Gligoroski and Markovski explore the use of quasigroups 

for pseudo random number generation [16].  Markovski and 

Dimitrova looked at applying multiple QG stream cipher 

passes on an initial vector of a single value.  Here, a string 

such as “111111111” is encrypted multiple times, until 

sufficiently random data is acquired.  A minimum of two 

passes is necessary as a single pass reduces the algorithm to a 

single repeating permutation of size n where n is the order of 

the quasigroup.  Markovski and Dimitrova refer to this as the 

period of the QG-PRNG [17], and suggest the period may be 

extended through each successive pass of the QG stream 

cipher.  In a second study, Markovski, Gilgorski and Kocarev 

(MGK) suggest the application of a QG stream cipher to a 

non-uniform, but random source, making it unbiased [18].  

Another implementation of QG PRNG linearizes the QG 

matrix in a raster like operation, Godavarty [19].  The original 

QG is kept, and the linearized values are fed through the QG 

stream cipher. The output values are rotated by a pre-

determined factor and fed back through the QG stream cipher 

to produce another set of n
2 values.  Godavarty’s method, 

unlike MGK, does not need to have a randomized input vector 

equivalent in size to the output itself and has lower memory 

requirements than Markovski and Dimitrova method. 

III. CONSTRUCTION OF LOW OVERHEAD QUASIGROUP 

Consider a quasigroup of order 6, such as the one in table 

1(A). In this quasigroup, each cell may be represented by the 

expression ሺݎ ൅ ܿሻ	݉݀݋	݊, where r is the row index, c is the 

column index and n is the order of the group, 6 in this case.  

Additionally shuffling the rows and columns will produce a 

randomized quasigroup (See table 1 (B)). We create a 

randomized quasigroup by shuffling the row and column 

indices, using ሺݎ ൅ ܿሻ݉݀݋	݊ , resulting in only ʹ݊ ή݈ܿ݁݅݅݊݃ሺ݈݃݋ଶሺ݊ሻሻ  bits to store the state of the quasigroup.  

Further, if an uncalculated quasigroup were stored, the storage 

requirement would be ݊ଶ݈ܿ݁݅݅݊݃ሺ݈݃݋ଶሺ݊ሻሻ bits.  The memory 

improvement is thus O(n2). 

If we compare the storage performance to other quasigroup 

PRNG methods, we see that Godavarty’s method [19] has a 

storage requirement of ʹ݊ଶ݈ܿ݁݅݅݊݃ሺ݈݃݋ଶሺ݊ሻሻ  and the 

Markovski et. al. methods [17] [18] require ݊ଶ݈ܿ݁݅݅݊݃൫݈݃݋ଶሺ݊ሻ൯ ൅ ܴ, where n is the quasigroup’s order 

and  R is the number of desired random bits. 



 

 

IV. THE PROPOSED LOW OVERHEAD QUASIGROUP (LOQG) 

PRNG  

Denote the quasigroup matrix as qgls and the value denoted 

by qgls(s1,s2) is the value in the matrix at (s1,s2). 

 
TABLE 1. QUASIGROUPS OF ORDER 6 WHERE THE QUASIGROUP IN (B) IS THE 

SHUFFLED FORM OF QUASIGROUP IN (A) 

 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

(A) 

 1 4 5 0 2 3 

0 1 4 5 0 2 3 

3 4 1 2 3 5 0 

5 0 3 4 5 1 2 

2 3 0 1 2 4 5 

4 5 2 3 4 0 1 

1 2 5 0 1 3 4 

(B) 

Initialize 

1) Begin with a randomized Latin square to form a QG 

using the low overhead quasigroup to reduce storage 

2) Randomly choose two integer seed values (s1, s2) from 

[0,n). 

3) Maintain an index i, initialized to zero, used for 

reshuffling the QG.  

Generate 

1) Let rand := qgls(s1,s2) 

2) Let s1 := s2 and s2 := rand  

3) Shuffle column i with column s1, and row i with row s2 

4) Increment i mod n 

5) Output rand as the random value 

6) Repeat 

Initialization with external seed 

1) Initialize as specified in Initialize step 1. 

2) Choose a random seed vector of length l.1 

For each 8-bit word in the seed vector S of length l do the 

following: 

3) Shuffle column i with column Sj-1, and row i with row Sj 

4) Increment i mod n and repeat to (3), until i = l 

5) Finally, let s1 := Sl-1 and s2 := Sl 

The algorithm begins with the Initialize subroutine, a 

randomized quasigroup matrix and the seed values of s1 and 

s2. To generate random numbers call the Generate subroutine. 

One can initialize the random number generator with an 

external seed vector to improve the quality of random numbers 

(see foot note1). 

V. EVALUATION PROCESS 

Typically, the abilities of a PRNG are gauged against other 

well-known PRNG outputs.  Test suites such as NIST 

                                                           
1 The seed vector affects the square at a rate of 4l(n-l)/n2 where l is the seed 

vector length in bytes and n is the quasigroup order. For example, a seed 

vector of 16 bytes (128 bits) should sufficiently reconfigure the LOQG 

PRNG.  Consequently, 128 bits are produced from SHA-256 or other hash 

functions, allowing timestamps to become a good seed. 

Statistical Test Suite (NIST-STS) [20] and compression 

algorithms, like GNU-zip, allows one to establish a greater 

confidence in the quality of a proposed algorithm [21].  

The NIST-STS has pre-established thresholds for pass/fail 

rating of a random sequence. Often, well known PRNGs fail 

these tests.  Hence, it is important to execute multiple tests and 

compare success rates of LOQG PRNG with established 

PRNG algorithms. 

The evaluation process of the LOQG PRNG begins by 

establishing parameters guarding the selection of PRNG 

output data.  We produce 1000 sample outputs, each ʹଶଶ bits 

(512 KB) for all of the evaluated PRNG algorithms.  Test 

results compare the LOQG PRNG with both commercial 

PRNGs and previously proposed QG PRNGs.  The tested 

PRNG algorithms are: 

 LOQG PRNG order 256 

 MGK with glibc-random() driver [18] 

 Dimitrova and Markovski [17] 

 OpenSSL rand [5] 

 arc4random [7] 

 Java - SecureRandom [6] 

 Microsoft.NET - RandomNumberGenerator [2] 

NIST-STS performs a number of tests that compare bit 

strings of a certain length.  If a bit string contains m bits, it is 

referred to as m-bit block. Because each of the tests look at 

varying characteristics of the sample data, the size of m differs 

between tests, and is not configurable by the user.  The NIST-

STS suite includes the following tests: 

 Approximate Entropy (AE) – A test comparing all 

overlapping m-bit patterns. 

 Block Frequency (BF) – A test which evaluates the 

proportion of 1’s in m-bit blocks. 

 Cumulative Sums, Forward (CSF), Reverse (CSR) – 

Evaluates whether the maximal cumulative sum of partial 

sequences is outside the range for expected behavior of a 

random sequence. 

 Discrete Fourier Transform (FFT) – Implemented as a Fast 

Fourier Transform, detects repeating or periodic features 

that are near to each other. 

 Frequency (FREQ) – Evaluates the frequency of 1’s and 0’s 

in the entire sequence. 

 Longest Run – Comparison of longest contiguous run of 1’s 

in m-bit blocks to expected frequency of same. 

 Rank – The rank of disjoint sub-matrices within the entire 

sequence. 

 Runs – Finds and evaluates the longest sequence of 

contiguous 1’s in the entire sequence and compares the 

oscillation between 1’s and 0’s to a standard frequency. 

 Serial – Compares the frequency of all m-bit overlapping 

patterns in the full sequence.  Two variations are applied. 



 

 

Figure 1 compares the NIST-STS analysis of the LOQG 

PRNG order 256 output with analysis of BSD arc4random, 

OpenSSL rand, Java SecureRandom, and Microsoft.Net 

RandomNumberGenerator outputs.  The figure shows the 

number of successes (pass/fail according to NIST-STS) for 

1000 runs of the random number generators. Given any single 

PRNG suite, the proposed algorithm outperforms it in majority 

of the tests. 

 

 
Figure 1. LOQG PRNG vs. Commercial PRNGs:  This chart compares the 

LOQG PRNG with commercial PRNGS.  The vertical axis is the number of 

successful tests for each NIST test area.  One thousand (1000) tests were 

conducted for each PRNG. 

 

  Figure 2 compares Godavarty and MGK QG PRNGs with 

the LOQG PRNG of order 256.  The two variations of the 

LOQG PRNG are shown to demonstrate differences between 

different QG sizes in the LOQG.  Results of the Dimitrova and 

Markovski [17] were so low, that they obscured results from 

the other four, and have not been displayed.  The Dimitrova 

and Markovski algorithm failed the Approximate Entropy, 

Rank, Serial and Longest Run tests; of the others, none scored 

above the 34th percentile.  Results show that the LOQG PRNG 

performs as well or better than Godavarty and MGK. 

Encryption using proposed random number generator: 

We take plain text and combine it with random values from 

the LOQG PRNG algorithm using a quasigroup stream cipher 

as discussed in section 2.  Therefore, the operands on the left 

hand side of the equation are 8-bit words from the plaintext 

and 8-bit words from the stream of random numbers.  The 

result value is the cipher text.  When decoding, an identical 

stream of random values must be recombined with the cipher 

text to reproduce the plain text. 

We encrypted PCM audio [22] then evaluated the encrypted 

cipher text with the NIST-STS suite for randomness. Here we 

compare P-values produced by the NIST-STS suite. P-value is 

the probability that an examined stream of numbers is as 

random as a “perfect” random sequence.  TABLE 2 shows that 

the P-value of the original audio was nearly zero in all cases. 

However, the P-values for the random numbers and the 

ciphertext were very close to each other showing that the 

ciphertext had properties similar to random numbers, 

essentially “destroying” the information contained within the 

plaintext. 

 

 
Figure 2. LOQG PRNG vs. Other QG PRNGS: This chart compares the 

Godavarty [19]  and MGK [18] QG PRNGS with LOQG PRNG order 256.  

The vertical axis is the number of successful tests for each NIST test areas.  

One thousand (1000) tests were conducted for each PRNG.  The Dimitrova-

Markovski QG PRNG is not included because its performance maximized at 

33.9%, with complete failure on Serial 1 and 2. 

 

 
Figure 3. Use of proposed quasigroup random number generator to encrypt a 

stream of audio data. The operation can be inverted if the receiver knows the 

initialization state for the random number generator. 

 

Compression tests: The GNU-zip utility was chosen to test 

the compressibility of data produced by the PRNGs.  Figure 3 

demonstrates results from compressing each of the 1000, 222 

bit data files with the GNU-zip compression utility.  The 

compression rates are a ratio of the compressed data size 

versus the original data size, shown are the average, minimum 

and maximum compression rates across the 1000 samples 

from each algorithm.  With the exception of the Dimitrova-

Markovski output, each PRNG produced data, which when 

compressed became larger instead of smaller (the Dimitrova-

Markovski output compressed to approximately 1/1000th of 

the original size). Consequently, fig. 4 is actually measuring 

the expansion of data when run through GNU-zip. 

VI. CONCLUSIONS 

We have presented a novel quasigroups based low overhead 

pseudo random number generator.  The algorithm requires the 

storage of ʹ݊ ή ݈ܿ݁݅݅݊݃ሺ݈݃݋ଶ݊ሻ bits, where n is the order of the 

quasigroup. The algorithm is computationally efficient, as it 

requires matrix lookup operations and limited number of 

writes to memory.  The quality of random numbers produced 

by the proposed algorithm is compared against other well-

known PRNGs and the results show that the proposed 

algorithm outperforms any given PRNG in majority of the 

tests. We also presented the results of using the stream of 

random numbers generated to encrypt audio data. 
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TABLE 2. AUDIO ENCRYPTION SUCCESS RATES FOR 1000 RUNS. RAND IS THE STREAM OF RANDOM NUMBERS AND C-TEXT IS 

THE CIPHER TEXT 

Org Audio Average P-Value StdDev-P Var-P Number of successes 

P-value Rand C-Text Rand C-Text Rand C-Text Rand C-Text 

AF 0.0000 0.4796 0.5071 0.2837 0.2879 0.0805 0.0829 990 989 

BG 0.0000 0.5177 0.4977 0.2837 0.2843 0.0805 0.0808 993 992 

CS-F 0.0000 0.5042 0.5091 0.2852 0.2942 0.0813 0.0866 989 987 

CS-R 0.0000 0.5101 0.5076 0.2872 0.2934 0.0825 0.0861 992 988 

FFT 0.0102 0.5056 0.4962 0.2983 0.2936 0.0890 0.0862 982 990 

FREQ 0.0000 0.4965 0.4983 0.2805 0.2885 0.0787 0.0833 992 988 

Longest Run 0.0000 0.5031 0.4908 0.2841 0.2805 0.0807 0.0787 992 994 

Rank 0.0000 0.4905 0.4949 0.2800 0.2863 0.0784 0.0819 991 982 

Runs 0.0000 0.5014 0.4951 0.2906 0.2877 0.0845 0.0828 988 987 

Serial1 0.0000 0.5162 0.5079 0.2861 0.2866 0.0819 0.0822 995 995 

Serial2 0.0000 0.5153 0.5048 0.2834 0.2821 0.0803 0.0796 990 988 

 

 
Figure 3. This graph shows minimum, average, and maximum compression 

rates of the pseudo random data generated by the tested suites.  The GNU-libc 

(glibc) random data, which was used to drive the MGK suite, is also included. 
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