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Abstract. Direct Anonymous Attestation (DAA) is one of the most complex cryptographic protocols deployed
in practice. It allows an embedded secure processor known as a Trusted Platform Module (TPM) to attest to the
configuration of its host computer without violating the owner’s privacy. DAA has been standardized by the Trusted
Computing Group.
The security of the DAA standard and all existing schemes is analyzed in the random oracle model. We provide the
first constructions of DAA in the standard model, that is, without relying on random oracles.
As a building block for our schemes, we construct the first efficient standard-model signatures of knowledge, which
have many applications beyond DAA.
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1 Introduction

Direct Anonymous Attestation (DAA) is a protocol for a secure embedded processor known as a Trusted Platform
Module (TPM) to authenticate itself and sign messages attesting to the state of its host while preserving the privacy
of its owner. The first DAA protocol by Brickell, Camenisch and Chen [13] was standardized in 2004 by the Trusted
Computing Group (TCG) [45] as the TPM 1.2 standard; since then millions of TPMs have been shipped with personal
computers. In DAA a party owning a TPM can join a group and then sign messages as a member of this group.
A DAA signature is created on a pair consisting of the message and a basename, which can be thought of as an
identity of the verifier for which the message is intended. Messages signed by the same user under the same basename
are linked: a verifier can trace which signatures using his basename were signed by the same user. Apart from this
however, signatures are anonymous: two verifiers comparing signatures under their respective basenames cannot tell
if a signature under one basename was produced by the same user as another signature under a different basename.
Many subsequent papers [14–17, 23–28] have advanced the state of the art in two areas. First, since the discovery
of cryptographic applications of bilinear pairings over elliptic curves, authors have proposed more efficient pairing-
based DAA protocols, first in the symmetric then in the asymmetric setting. Secondly, the security model for DAA has
evolved and improved over the years. The first schemes used a simulation-based model. Starting with Brickell, Chen
and Li in 2009 [14], recent papers have switched to game-based models to analyze security of DAA protocols. In this
paper, we use the most recent security model by Bernhard et al. [6].

All previous DAA schemes rely on the random-oracle heuristic [30, 4] to reason about their security. However, a
series of papers starting with Canetti, Goldreich and Halevi [19] shows that it is impossible to implement a random
oracle securely. Since a security “proof” requiring random oracles rests on an assumption known to be unachievable,
it is nowadays common practice to strive for provably secure constructions in the standard model, where one does not
rely on a random oracle. There, numerous computational assumptions have been proposed and their relative merits
are hard to assess. Efficient standard-model protocols often use complex assumptions such as “strong” or interactive
assumptions. We construct two standard-model DAA protocols in this paper. The first relies on non-interactive as-
sumptions only. Our second protocol, while still in the standard model, uses some components whose security is based
on interactive assumptions from the literature to achieve greater efficiency.

A Blueprint for DAA. Our DAA scheme is in the model of Bernhard et al. [6], who argued that all existing DAA
schemes follow the same “blueprint” and are built from the same three basic building blocks. We will seek to follow
this blueprint in our DAA constructions and explain where it is necessary to make changes.

The first building block for DAA is a Randomizable Weakly Blind Signature (RwBS). Blind signatures allow a user
to submit messages to a signer and receive signatures on them such that the signer is unable to tell which messages he



signed. The blindness property also ensures that signatures cannot be linked to their signing sessions. This is captured
via a game where the adversary freely chooses a pair of messages and then asks the honest user to request signatures
on those two messages in an order unknown to him. If both signing sessions complete successfully, the adversary gets
the two final signatures and wins if he successfully tells with a probability non-negligibly greater than 1/2 the order in
which the messages were signed. RwBS are weaker in the sense that blindness only holds for signers that never see
the messages to be signed in the first place: the user may pick a message at random, run the blind-signing protocol and
the signer should not be able to discover the message.

The second building block for DAA is a Linkable Indistinguishable Tag (LIT). This tag is similar to a message
authentication code but is deterministic and requires different security properties. LITs are linkable in the sense that it
is easy to tell if two tags were made with the same signing key on the same data (in fact these two tags will be identical)
but given two tags on different data, it is hard to tell whether or not they were produced with the same signing key.

The final building block is a Signature of Knowledge (SoK). A SoK enables signing of messages like a digital
signature, but does so w.r.t. an arbitrary NP statement, whose witness serves as the signing key.

In DAA users can join groups and then produce signatures that can be verified as coming from a group member,
but they cannot be traced to the signer. To join a group, a user chooses a key and obtains a RwBS as a credential on his
key. To sign a message under a basename, the user first randomizes his credential and produces a LIT under his key on
the basename. He then makes a SoK on the message proving knowledge of a key on which the randomized credential
and the LIT verify.

The security model in [6] considers pre-DAA schemes, which are fully functional DAA schemes in which the
TPM handles the whole user-side computation without delegating non-security-critical operations to its host computer.
This delegation and its security analysis can then be handled separately from that of the scheme itself. In effect, the
computations and data that a TPM can safely delegate to its host in the existing schemes are exactly the ones that the
adversary controls in the pre-DAA security model. We will construct and analyze a standard-model pre-DAA scheme;
delegation to the host can then be realized securely with any of the methods described in the security model from [6]
(as delegation operations are independent of a random oracle).

LIT in the Standard Model. A LIT is a deterministic tag under a key on a basename, which should look random,
so that tags under different keys are indistinguishable. This property is trivially achievable by using a random oracle.
Like Verifiable Random Functions (VRF) [43], LITs are a lot harder to construct in the standard model, in particular
for large input spaces. LITs are a somewhat stronger primitive than VRFs, and we do not know of any large-domain
VRF that would yield an LIT. We discuss LITs and their relation to VRFs in greater detail in Sect. 4.3.

For DAA, we believe that it is reasonable to postulate that the number of possible basenames is polynomial in the
security parameter. While the set of messages which users can sign must be large, the number of possible verifiers
(corresponding to basenames) will be efficiently enumerable. For polynomial-size domains, we construct a standard-
model LIT using the VRF by Dodis and Yampolskiy [29]. In addition, we show how a standard-model LIT for a large
basename space could be constructed at the cost of using an interactive assumption. This LIT can then be used in our
generic construction, leading to a DAA scheme with large basename spaces, which satisfies thus the full model of [6].

Our Contribution. We present the first constructions of DAA in the standard model. Our paper contains two such
constructions: the first in Sect. 5 avoids not only random oracles but also interactive assumptions; the second in Sect. 6
is still in the standard-model and its efficiency exceeds that of the best standard-model instantiations of comparable
primitives, such as group signatures.

We start by constructing the first efficient standard-model signatures of knowledge. While SoKs exist for all NP
statements [20], these generic constructions are highly inefficient. Our realization is based on Groth-Sahai (GS) proofs
[36], which are the only known efficient standard-model Non-Interactive Zero-Knowledge (NIZK) proof systems.

GS proofs can be set up to offer either of two properties known as simulation and extraction but not both at once,
yet this is precisely what is required in the security model for SoK. This is in contrast to the ROM where proof systems
typically offer both of these properties simultaneously. Making a SoK out of GS proofs is thus a non-trivial matter that
we deal with in detail in Sect. 3. We revert to a known technique, used e.g. in [35]: the signer proves that she knows
a witness to the actual statement or that she knows a signature on this statement under a public key included in the
public parameters. The corresponding secret key can then e used to simulate signatures without knowing a witness.

The obstacles in getting this approach to standard-model DAA to work are the following. First, all statements of
the proof used in the SoK, as well as their disjunction, need to be encoded in the language of GS proofs. Secondly,
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GS proofs only allow the extraction of group elements rather than group exponents, as was common in ROM DAA
schemes. Together with forgoing random oracles, this places restrictions on the type of LITs and RwBSs we can use
and in particular excludes all previous constructions. Finally, all this needs to be done as efficiently as possible. We
stress that we cannot hope to compete for efficiency with instantiations in the ROM, as there, pseudorandomness (for
the LIT) and simulation-extractable NIZKs (used to construct the SoK) come essentially for free.

We construct two new standard model RwBSs. The first construction is based on Abe et al.’s signature scheme [1],
which we use in our first DAA construction to certify group members’ keys upon joining. We make use of its partial
randomizability which allows us to include parts of the certificate in the clear in a DAA signature and prove knowledge
of the remainder. In our second DAA construction we deploy a new RwBS scheme, which is compatible with GS proofs
and satisfies the full model from [6]. We derive it from a recent signature scheme by Ghadafi [32]. By using a novel
approach, we moreover show how to avoid expensive SoKs and rely directly on standard GS proofs instead.

As a last building block we derive a standard-model LIT, based on the VRF of Dodis and Yampolskiy [29]. Basing
it on a non-interactive assumption, it requires a basename space that has polynomial size. However, if one is willing to
assume an interactive assumption, the LIT would be secure even for exponential-sized basename spaces.

2 Preliminaries

Notation. A bilinear group is a tuple P = (p,G1,G2,GT , e, P1, P2) where p is a prime, G1,G2,GT are groups of
order p; P1, P2 are generators of G1 and G2 respectively and e is a non-degenerate bilinear map G1×G2 → GT (i.e.,
e(P1, P2) generates GT and for any Q1 ∈ G1, Q2 ∈ G2, x, y ∈ Zp : e([x]Q1, [y]Q2) = e(Q1, Q2)xy). We assume
that the operations in all groups are efficiently computable and write [x]P to denote the x-fold composition of a group
element P with itself. We use asymmetric bilinear groups (which are more efficient), meaning that there are no known
efficiently computable homomorphisms from G1 to G2 or vice versa. We let G× := G \ {0G}.

2.1 Hardness Assumptions

Our schemes rely on different assumptions from the literature, all of which are stated here.

Definition 1 (SXDH Assumption). For i = 1, 2, we have: given (Pi, [a]Pi, [b]Pi) for random a, b← Zp, it is hard to
distinguish [ab]Pi from a random element of Gi, i.e. the DDH assumption holds in both groups G1 and G2.

Definition 2 (CDH+ Assumption [21, 7]). Given (P1, P2, [a]P1, [b]P1, [a]P2) it is hard to compute [ab]P1. This is
identical to CDH in symmetric bilinear groups.

Definition 3 (q-SDH Assumption [10]). Given (P1, [x]P1 . . . , [xq]P1, P2, [x]P2) for x ← Z×p , it is hard to output a
pair (c, [ 1

x+c ]P1) ∈ Zp ×G1 for an arbitrary c ∈ Zp\{−x} .

Definition 4 (q-DDHI Assumption [8, 2]). Given (Pi, [x]Pi, [x2]Pi, . . . , [xq]Pi) where x ← Z×p it is hard to distin-
guish [ 1

x ]Pi from a random element of Gi. Here i can be either 1 or 2.

Definition 5 (q-SFP Assumption [1]). Given GZ , FZ , GR, FU ∈ G2, (A, Ã), (B, B̃) ∈ G1 × G2 and q random
tuples (Z,R, S, T, U, V,W ) each satisfying

e(A, Ã) = e(Z,GZ) e(R,GR) e(T, S) e(B, B̃) = e(Z,FZ) e(U,FU ) e(W,V )

it is hard to find another such tuple for which Z is neither 1 nor equal to any of the given Z-values.

Definition 6 (DH-LRSW Assumption [32]). Given ([x]P2, [y]P2) for a random (x, y) ← Z2
p and an oracle that on

input a pair (M1,M2) ∈ G1×G2 of the form1 ([m]P1, [m]P2) for some m ∈ Zp picks a random a← Zp and outputs
a DH-LRSW tuple of the form ([a]P1, [ay]P1, [ay]M1, [ax]P1 + [axy]M1), it is hard to compute ([m′]P1, [m′]P2) that
was never queried to the oracle and a corresponding DH-LRSW tuple.

1 The set of such messages ([m]P1, [m]P2) was called “Diffie-Hellman pairs” in [1] and can be efficiently decided by checking
e(M1, P2) = e(P1,M2).
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2.2 Groth-Sahai Proofs

Groth-Sahai (GS) proofs [36, 37] are non-interactive zero-knowledge proofs (NIZK) in the common reference string
(CRS) model. We will use GS proofs that are secure under the SXDH assumption (which as noted by [33] yields the
most efficient instantiation of the proof system) and that prove knowledge of witnesses to pairing-product equations.
These are equations of the form

n∏
j=1

e(Aj , Yj)
m∏
i=1

e(Xi, Bi)
m∏
i=1

n∏
j=1

e(Xi, Yj)γi,j =
M∏
`=1

e(G`, H`) (1)

(the variables are underlined, all other values are constants). The language for these proofs is of the form L :=
{statement | ∃witness : E(statement,witness) holds } where E is a set of pairing-product equations.

The GS proof system is formally defined by a tuple of algorithms

(GSSetup,GSProve,GSVerify,GSExtract,GSSimSetup,GSSimProve) .

GSSetup takes as input the description of a bilinear groupP and outputs a binding reference string crs and an extraction
key xk. GSProve takes as input a set of equations statement, the string crs and a witness, and outputs a proof Ω for
the satisfiability of the equations. For ease of notation, we write GSProve(crs, {witness} : statement ∈ L). We
write GSProveZK if the proof to be produced is zero-knowledge, whereas we write GSProveWI if it is only witness
indistinguishable. GSVerify takes as input a set of equations, a string crs and a proof Ω and outputs 1 if the proof is
valid or 0 otherwise.

GSExtract takes as input a binding reference string crs, the extraction key xk and a valid proof Ω, and outputs
the witness used for the proof. GSSimSetup takes as input a bilinear group P and outputs a hiding string crsSim and
a trapdoor key tr that allows to simulate proofs. GSSimProve takes as input crsSim, a statement and the simulation
trapdoor tr and produces a simulated proof ΩSim without a witness. The distributions of strings crs and crsSim are
computationally indistinguishable and simulated proofs are indistinguishable from proofs generated by an honest
prover. The proof system has the following properties:

• Prefect Completeness: On a correctly generated reference string crs and a proof Ω output by GSProve on a valid
witness, the algorithm GSVerify always accepts.

• Perfect Soundness: On a correctly generated crs, it is impossible to generate a proof unless the equations are
satisfiable; moreover, GSExtract extracts a witness for satisfiability.

• Composable Witness-Indistinguishability: The CRS crs output by GSSetup is computationally indistinguish-
able from the CRS crsSim output by GSSimSetup. Moreover, for any PPT adversaries A that is given (crsSim, tr)
and is allowed to choose any statement y and two witnesses w0 and w1 for the statement y, we have

Pr
[
b← {0, 1};Ω ← GSProve(crsSim, wb, y); b′ ← A(Ω) : b = b′ ∧ (w0, y) ∈ R ∧ (w1, y) ∈ R

]
=

1
2

+ ν(λ) .

• Composable Zero-Knowledge: Again, the CRS crs output by GSSetup is computationally indistinguishable from
the CRS crsSim output by GSSimSetup. Moreover, we have for all PPT adversaries A that

Pr

 (crsSim, tr)← GSSimSetup(P);
(w, y)← A(crsSim, tr);
Ω ← GSProve(crsSim, w, y) : A(Ω) = 1

 = Pr

 (crsSim, tr)← GSSimSetup(P);
(w, y)← A(crsSim, tr);
Ωsim ← GSSimProve(crsSim, tr, y) : A(ΩSim) = 1

 ,
where (w, y) output by A must satisfy (w, y) ∈ R.

2.3 Direct Anonymous Attestation: The pre-DAA Model

The syntax and security model for pre-DAA were defined in [6]. A pre-DAA scheme consists of a tuple of algorithms(
Setup,GKg,UKg, 〈Join, Iss〉,GSig,GVf, IdentifyT, IdentifyS, Link

)
.

All the algorithms (bar Setup, GKg and UKg) take as an implicit input the common public parameters param output
by the Setup algorithm.
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Setup(1λ) takes as input the security parameter λ and outputs common public parameters param.

GKg(param) takes as input param and outputs a pair (gmpk, gmsk) of public/secret keys for the group issuer. The
space of group issuer secret keys gmsk is denoted by GMSK.

UKg(param) takes as input param and outputs a secret key sk for a user. The space of such keys is denoted SK.

〈Join(ski, gmpk), Iss(gmsk, gmpk)〉 are the user- and issuer-side procedures for an interactive protocol by means of
which a user joins a group. The user takes a secret key ski and the issuer’s public key gmpk as input, whereas
the issuer has as input a key pair (gmpk, gmsk). For the uniqueness property of transcripts, we refer to the user’s
random coins in this protocol as RU and the issuer’s as RI . If this protocol completes successfully, the user obtains
a group signing key gsk. We assume without loss of generality that a group signing key thus obtained contains the
group manager public key gmpk.

GSig(gski, ski,m, bsn) is the signing algorithm. It takes as input a group signing key gski, a user secret key ski, a
message m and a basename bsn and it outputs a signature σ on the message m under the basename bsn.

GVf(gmpk, σ,m, bsn) is the verification algorithm. It takes as input the group public key gmpk, a signature σ, a mes-
sage m and a basename bsn. It returns 1 if the signature verifies with respect to these parameters, otherwise 0.

IdentifyT(gmpk, T , ski) is a transcript tracing algorithm. It is used mainly in the security model rather than the actual
DAA protocol, although it could be used to trace dishonest users who reveal their secret key. This algorithm takes
as input the group public key gmpk, a transcript T of a join/issue protocol execution and a secret key ski and
outputs 1 if this transcript could have been produced by a honest user with secret key ski, otherwise 0.

IdentifyS(gmpk, σ,m, bsn, ski) is a signature tracing algorithm. Like the transcript tracing algorithm, its use is in the
security model and possibly to trace dishonest users. Its inputs are the group public key gmpk, a signature σ, a
message m, a basename bsn and a secret key ski. It outputs 1 if the signature σ could have been produced by a
honest user with the secret key ski provided.

Link(gmpk,m0, σ0,m1, σ1, bsn) is the linking algorithm. Its inputs are a group public key gmpk, two messages and
signatures m0,m1, σ0, σ1 and a basename bsn. The linking algorithm outputs 1 if both signatures were produced
by the same user on their respective messages, under the basename bsn, otherwise 0.

2.4 Security Definitions of pre-DAA

We briefly present the formal definitions of pre-DAA scheme security [6]. All oracles (and the underlying experiments)
maintain the following global lists: a list HU of initially honest users, a list CU of corrupted users which are controlled
by the adversary, a list BU of “bad” users which have been compromised (these are previously honest users which
have since been corrupted), a list SL of queries to the signing oracle, and a list CL of queries to the challenge oracle.
All the lists are assumed to be initially empty. The lists CL and SL are used to restrict the two relevant oracles so that
one cannot trivially win the anonymity or non-frameability games, respectively.

The oracles are given in Fig. 1 and the security games in Fig. 2.

Correctness of Linking. The Link algorithm is supposed to indicate whether two signatures were produced by the
same user on the same, non-empty basename. We require that if Link(gmpk,m0, σ0,m1, σ1, bsn) outputs 1 then the
following must hold: bsn is not empty and both signatures verify with respect to bsn i.e. GVf(gmpk, σ0,m0, bsn) = 1
and GVf(gmpk, σ1,m1, bsn) = 1.

Uniquely Identifiable Transcripts. In some of the security games, a formal definition is required for the property
that a signature was produced by a certain user. The anonymity game ensures that no one can exploit this property but
it must be defined nonetheless.

The solution chosen for the security model in [6] is that each execution of the join/issue protocol and each signature
is bound in a mathematical way to a user secret key, i.e. there is a function that takes a transcript or signature and a key
and tells if this object was created with the given key. These functions are called IdentifyT and IdentifyS respectively.

For the linking and traceability properties, it is essential that these tracing functions cannot trace the same transcript
to two different keys. This property is called uniquely identifiable transcripts and is formally defined as follows:
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AddU(i)

• If i ∈ HU ∪ CU then return ⊥.
• HU := HU ∪ {i}.
• ski ← UKg(param).

CrptU(i)

• If i ∈ HU ∪ CU then return ⊥.
• CU := CU ∪ {i}.

InitU(i)

• If i 6∈ HU \ BU then return ⊥.
• gski :=⊥, deciI = cont.
• StiU := (gmpk, ski).
• StiI := (gmpk, gmsk).
• (StiU ,MI , deciU )← Join(StiU ,⊥).
• While (deciI = cont and deciU = cont) do

◦ (StiI ,MJ , deciI)← Iss(StiI ,MI).
◦ (StiU ,MI , deciU )← Join(StiU ,MJ).

• gski := StiU .

USK(i)

• If i 6∈ HU or (i, ?) ∈ CL then return ⊥.
• BU := BU ∪ {i}.
• Return (ski, gski).

GSK(i)

• If i 6∈ HU then return ⊥.
• Return gski.

Sign(i, gsk,m, bsn)

• If i ∈ CU ∪ BU then return ⊥.
• SL := SL ∪ {(i,m, bsn, σ)}.
• Return GSig(gsk, ski,m, bsn).

SndToI(i,M)

• If i 6∈ CU ∪ BU or deciI 6= cont then return ⊥.
• If StiI is undefined then StiI := (gmpk, gmsk).
• (StiI ,M

′, deciI)← Iss(StiI ,M).
• Return (M ′, deciI).

SndToU(i,M)

• If i 6∈ HU \ BU or deciU 6= cont or gski 6=⊥
◦ Return ⊥.

• If StiU is undefined
◦ StiU := (gmpk, ski).

• (StiU ,M
′, deciU )← Join(StiU ,M)

• If deciU = accept then
◦ gski := StiU .

• Return (M ′, deciU ).

CHb(i0, i1, bsn,m)

• If i0 or i1 ∈ CU ∪ BU, or gski0 =⊥, or gski1 =⊥
◦ Return ⊥.

• CL := {(i0, bsn), (i1, bsn)}.
• σ ← GSig(gskib , skib ,m, bsn).
• Return σ.

Fig. 1. Oracles used in the security games for a pre-DAA scheme

Definition 7. Let GMSK and SK be the spaces of all possible issuer and user secret keys, respectively. Also, let RI
and RU be the spaces of randomness used by the issuer and the user in the Join/Iss protocol, respectively. A pre-DAA
scheme has uniquely identifying transcripts if there exists a predicate

CheckT : {0, 1}∗ × GMSK× SK× RI × RU → {0, 1}

such that the following holds:

• Suppose both parties are honest and run (Join, Iss) with inputs sk and gmsk, and randomness rU and rI , respec-
tively. Then the resulting transcript T satisfies CheckT (T , gmsk, sk, rI , rU ) = 1.

• For all (possibly dishonest) protocols Join′ interacting with Iss producing T , if the issuer accepts then there is at
most one value sk ∈ SK (but possibly many values of rU ) such that we have CheckT (T , gmsk, sk, rI , rU ) = 1.
Here gmsk is the issuer’s input and rI his random coins; as the user-side algorithm may be dishonest, we let it
take arbitrary input.

Security Requirements. Security of pre-DAA consists of the following requirements whose formal security games
are given in Fig. 2.

• Correctness: This demands that signatures produced by honest users are accepted by the verifier, and that the
user who produced a valid signature can be traced. Moreover, two signatures by the same user and on the same
non-empty basename are linked.
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Experiment: Expcorr
A (λ)

• param← Setup(1λ);
• (gmpk, gmsk)← GKg(param).
• HU := ∅.
• (i,m0,m1, bsn)← A(gmpk : AddU, InitU).
• If gski =⊥ then return 0.
• σ0 ← GSig(gski, ski,m0, bsn).
• σ1 ← GSig(gski, ski,m1, bsn).
• If GVf(gmpk, σ0,m0, bsn) = 0 then return 1.
• If GVf(gmpk, σ1,m1, bsn) = 0 then return 1.
• If bsn 6=⊥ then

◦ If Link(gmpk, σ0,m0, σ1,m1, bsn) = 0
then return 1.

• If IdentifyS(gmpk, σ0,m0, bsn, ski) = 0 then return 1.
• Let Ti denote the (Join, Iss) transcript for user i.
• If IdentifyT(gmpk, Ti, ski) = 0 then return 1.
• Return 0.

Experiment: Exptrace
A (λ)

• param← Setup(1λ);
• (gmpk, gmsk)← GKg(param).
• CU := ∅.
• (σ,m, bsn, {sk′i}`i=1)← A1(gmpk : SndToI,CrptU).
• Let T denote the set of all transcripts accepted by the

honest issuer via use of SndToI.
• If the following three conditions all hold then return 1

◦ GVf(gmpk, σ,m, bsn) = 1.
◦ ∀T ∈ T ∃i ∈ [1, `]: IdentifyT(gmpk, T , sk′i) = 1.
◦ ∀i ∈ [1, `], IdentifyS(gmpk, σ,m, bsn, sk′i) = 0.

• (σ0,m0, σ1,m1, bsn, sk′)← A2(gmpk, gmsk)
• If bsn =⊥ then return 0.
• If the following three conditions all hold then return 1,

◦ ∀b ∈ {0, 1}, GVf(gmpk, σb,mb, bsn) = 1.
◦ ∀b ∈ {0, 1}, IdentifyS(gmpk, σb,mb, bsn, sk′) = 1
◦ Link(gmpk, σ0,m0, σ1,m1, bsn) = 0

• Return 0.

Experiment: Expanon-b
A (λ)

• param← Setup(1λ).
• (gmpk, gmsk)← GKg(param).
• CU,HU,BU,CL, SL := ∅.
• d← A(gmpk, gmsk :

AddU, SndToU,CrptU,USK,GSK,Sign,CHb).
• If ∃i,m, σ, bsn s.t. bsn 6= ⊥, (i, bsn) ∈ CL

and (i,m, bsn, σ) ∈ SL then abort the game.
• Return d.

Experiment: Expnon-frame
A (λ)

• param← Setup(1λ).
• (gmpk, gmsk)← GKg(param).
• CU,HU,BU, SL := ∅.
• (σ, i,m, bsn)← A1(gmpk, gmsk :

AddU,SndToU,CrptU,USK,GSK, Sign).
• If the following four conditions all hold then return 1.

◦ GVf(gmpk, σ,m, bsn) = 1.
◦ i ∈ HU \ BU.
◦ ∀σ′ : (i,m, bsn, σ′) 6∈ SL.
◦ IdentifyS(gmpk, σ,m, bsn, ski) = 1.

• (σ0,m0, bsn0, σ1,m1, bsn1, sk)← A2(gmpk, gmsk).
• If one of the following condition holds then return 0:

◦ ∃ b ∈ {0, 1} : GVf(gmpk, σb,mb, bsnb) = 0.
◦ ∀ b ∈ {0, 1} :

Link(gmpk, σ0,m0, σ1,m1, bsnb) = 0.
• If one of the following conditions holds then return 1:

◦ IdentifyS(gmpk, σ0,m0, bsn0, sk) = 1 and
IdentifyS(gmpk, σ1,m1, bsn1, sk) = 0.

◦ bsn0 6= bsn1 or bsn0 =⊥ or bsn1 =⊥.
• Return 0.

Fig. 2. Security experiment for correctness, anonymity, traceability and non-frameability

For any adversary A and any λ ∈ N, we define Advcorr
A (λ) := Pr[Expcorr

A (λ) = 1] and say the scheme is correct if
Advcorr

A (λ) = 0 for all adversaries A.
• Anonymity: An adversary, who may control the group issuer, cannot distinguish which of two users of his choice

signed a message as long as he cannot trivially decide this using the linking property. This is formulated by the
game Expanon

A (λ) in Fig. 2.
For an adversary A, λ ∈ N, we define Advanon

A (λ) :=
∣∣Pr[Expanon-0

A (λ) = 1]− Pr[Expanon-1
A (λ) = 1]

∣∣ and say the
scheme is anonymous if Advanon

A (λ) is negligible in λ for all probabilistic polynomial-time (PPT) adversaries A.
• Traceability: No group of users can create an untraceable signature as long as the issuer is honest. (A dishonest

issuer could always join untraceable users to his group.) The game consists of two subgames which deal with
untraceable signatures and signatures that do not link although they should. Since unlike in group signatures,
users do have public keys corresponding to their secret keys, the group-join transcript is used to identify the user.
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For an adversary A and λ ∈ N we define Advtrace
A (λ) := Pr[Exptrace

A (λ) = 1] and say the scheme is traceable if
Advtrace

A (λ) is negligible in λ for all PPT adversaries A.
• Non-frameability: No adversary, who may even control the group issuer, can frame an honest user by claiming

that he signed a message if he never did. This game is again split into two subgames to deal with framing a user by
creating a signature that traces to his key or one that links to a previous signature created by the user in question.
For an adversary A and λ ∈ N we define Advnon-frame

A (λ) := Pr[Expnon-frame
A (λ) = 1] and say the scheme is

non-frameable if Advnon-frame
A (λ) is negligble in λ for all PPT adversaries A.

3 Efficient Signatures of Knowledge without Random Oracles

Let L be an NP language, defined by a polynomial-time computable relation R as L = {x | ∃w : (x,w) ∈ R}. We
call x a statement in L and w with (x,w) ∈ R a witness for x. A signature of knowledge (SoK) for L consists of
the following three algorithms: SoKSetup takes a security parameter 1λ and outputs parameters par. If (x,w) ∈ R
then SoKSign(par, R, x, w,m) outputs a signature σ on the message m w.r.t. statement x. The signature is verified by
SoKVerify(par, R, x,m, σ) which outputs 0 or 1. Signatures produced by SoKSign on inputs par output by SoKSetup,
and any (R, x,w,m) such that (x,w) ∈ R should be accepted by SoKVerify. The (game-based) security definition for
SoK, called SimExt security, was introduced in [20] and requires the following:

• Simulatability: There exists a simulator which can simulate signatures without having a witness for the statement.
The simulator consists of the algorithms SoKSimSetup and SoKSimSign: the former outputs parameters together
with a trapdoor tr and the latter outputs signatures on input (par, tr, R, x,m). It is required that no adversary
can distinguish the following two situations: (1) It is given par output by SoKSetup and access to a SoKSign
oracle; or (2) it is given par output by SoKSimSetup and an oracle SoKSim that on input (R, x,w,m) outputs
SoKSimSign(par, tr, R, x,m) if (x,w) ∈ R.

• Extraction: There exists an algorithm SoKExtract such that if an adversary, given par ← SoKSimSetup and an
oracle SoKSim as above, outputs a tuple (R, x,m, σ), we have the following: if SoKVerify(par, R, x,m, σ) = 1
and the adversary never queried (R, x,w′,m), for anyw′, to its SoKSim oracle then SoKExtract extracts a witness
for x from σ with overwhelming probability.

Chase and Lysyanskaya [20] offer a generic construction satisfying the above model, but it is inefficient due to the
use of general Zero-Knowledge (ZK) proofs. The first efficient non-interactive ZK proofs without random oracles
were introduced by Groth and Sahai [36]; however these proofs only apply to a restricted language. We will use their
results to construct the first efficient signatures of knowledge in the standard model for the same language, namely
satisfiability of sets of Pairing-Product Equations (PPE) (for which Groth-Sahai proofs are proofs of knowledge).
Attempting to construct SoKs which satisfy SimExt security using GS proofs, we face the following dilemma: if we
generate a regular Common Reference String (CRS) using GSSetup then this leads to sound proofs and we can use
GSExtract to extract a valid witness from a correct proof. However, in order to simulate GS proofs, we need to set
up the CRS via GSSimSetup. As such proofs are information-theoretically independent of the witnesses, we cannot
extract anymore.

In order to achieve simulatability and extractability at the same time, we revise the approach to simulatability
using a well-known trick that has also been employed in the context of PPEs by Groth [35]. We include in the CRS
a verification key for an appropriate signature scheme and then require the prover to prove the following modified
statement: to know a witness for the original statement or to know a signature on the original statement and the
message to be signed, under the key contained in the CRS.

To simulate SoKs, we can now use the signing key to sign the statement and the message, and use this signature
as a witness for the modified statement. (Computational) witness indistinguishability of GS proofs guarantees that
simulated signatures are indistinguishable from honestly created signatures, which use the witness of the original
statement. Using a binding CRS, extractability follows since from an adversarially created SoK we can extract a
witness for the modified statement. The witness is thus either a witness for the original statement, or it is a signature
on a statement/message pair which was never signed by the SoKSim oracle, and thus is a forgery.
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Choosing the Signature Scheme. We need to prove knowledge of a valid signature using GS proofs. We thus require
a scheme whose signatures consist of group elements and whose validity is verified by evaluating PPEs.

In order to not rely on any additional assumptions other than those already required by Groth-Sahai proofs, an
optimal candidate would be Waters’ signatures [46], which are secure under the computational Diffie-Hellman (CDH)
assumption. (Their main drawback is a long public key, which will result in long parameters for our SoK.) Since these
signatures were defined over symmetric bilinear groups (where G1 = G2), they would limit the language to statements
over such groups. Using the Groth-Sahai instantiation under the decision-linear assumption [11], which implies CDH,
we would thus get signatures of knowledge for the same statements and under the same assumption as Groth-Sahai
proofs.

To allow for a more general class of statements, we use the following generalization of Waters signatures to
asymmetric groups, used by [21, 7]:

Parameter Generation. Given a bilinear group P , to sign messages of the form m = (m1, . . . ,mN ) ∈ {0, 1}N ,
choose (Q,U0, . . . , UN )← GN+2

1 .

Key Generation. Choose a secret key sk← Zp and define the public verification key as vk := [sk]P2.

Signing. To sign (m1, . . . ,mN ) using key sk, choose a random r ← Zp and output(
W1 := [sk]Q+ [r](U0 +

∑N
i=1[mi]Ui), W2 := [−r]P1, W3 := [−r]P2

)
.

Verification. Check whether e(W1, P2) e(U0 +
∑N
i=1[mi]Ui,W3) = e(Q, vk) and e(W2, P2) = e(P1,W3).

This construction is unforgeable under chosen-message attack under the CDH+ assumption. In order to sign arbitrary
messages, we assume a collision-resistant hash functionH : {0, 1}∗ → {0, 1}N (for a suitable N ).

Disjunctions of Pairing-Product Equations. Groth [35] shows how to express disjunctions of sets of PPEs as a
new set of PPEs. The idea is the following: introduce a “selector equation” of the form e(P1, S + T − P2) = 1,
which can only be satisfied if either S or T are different from 0. Setting one of them to 0 will enable us to simulate
one clause of the disjunction: for each variable Xi, Groth introduces an auxiliary variable X ′i and adds the equation
e(Xi − Xi

′, S) = 1, which is satisfied if S = 0, meaning we can set X ′i to 0 in order to simulate. On the other
hand, when simulating the other clause by setting T = 0, we must have S = P2 to satisfy the selector equation, and
furthermore Xi = X ′i . This guarantees soundness, as we need to have a satisfying witness for at least one clause.

We choose a more efficient approach inspired by that from [36]. In order to simulate equations of the form (1),
it suffices to replace the constants G` by auxiliary variables G′`, as then, setting all variables to 0 is a satisfying
assignment for (1). Now it only remains to ensure that a signer without the trapdoor is forced to set G′` to G`, which is
done by adding equations e(G` −G′`, S) = 1, where S can only be set to 0 when the prover knows a signature under
the public key from the CRS.

With this intuition we now define our signature of knowledge of a satisfying witness of a set of pairing-product
equations. Regarding the Chase-Lysyanskaya definition, we have fixed the relationR to be the set of all pairs

(
(Ek)Kk=1,

((Xi)mi=1, (Yj)
n
j=1)

)
such that ((Xi), (Yj)) ∈ Gm

1 ×Gn
2 satisfies Ek for all 1 ≤ k ≤ K.

3.1 A Concrete Construction of Signatures of Knowledge without Random Oracles

Setup. On input P , run (crs, xk) ← GSSetup(P) and choose parameters (Q,U0, . . . , UN ) ← GN+2
1 and a key pair

for Waters signatures: choose t ← Zp and set T := [t]P2. SoKSetup outputs par := (crs, (Q,U0, . . . , UN , T )),
whereas SoKSimSetup additionally outputs (xk, t) as an extraction/simulation trapdoor.

Signing. Let E := (Ek)Kk=1 be the set of equations representing the statement w.r.t. which we sign, where Ek is

n∏
j=1

e(Ak,j , Yj)
m∏
i=1

e(Xi, Bk,i)
m∏
i=1

n∏
j=1

e(Xi, Yj)γk,i,j =
Mk∏
`=1

e(Gk,`, Hk,`) , (Ek)

and let ((Xi)mi=1, (Yj)
n
j=1) be a witness of satisfiability of E. We first define a set of equations E′:

9



(i) Modified equations. For all 1 ≤ k ≤ K∏
e(Ak,j , Yj)

∏
e(Xi, Bk,i)

∏
e(G′k,`, Hk,`)

∏∏
e(Xi, Yj)γk,i,j = 1 .

(ii) Selector equations. For all 1 ≤ k ≤ K, 1 ≤ ` ≤Mk : e(Gk,` −G′k,`, T − T ′) = 1.
(iii) Signature-verification equations.

e(W1, P2) e(U0 +
∑N
i=1[hi]Ui,W3) = e(Q,T ′) e(W2, P2) = e(P1,W3) .

To sign a message m ∈ {0, 1}∗ under par := (crs, (Q,U0, . . . , UN , T )) for the statement E using witness
((Xi), (Yj)) proceed as follows:
• Set T ′ = W1 = W2 = W3 := 0 and G′k,` := Gk,`, for all k and `.
• Compute h = (h1, . . . , hN ) := H(E‖m) ∈ {0, 1}N , where E is an encoding of the original equations.
• The SoK is a GS proof (of knowledge) Σ of satisfiability of the set of equations E′, using as witness

(T ′,W1,W2,W3, X1, . . . , Xm, Y1, . . . , Yn, G
′
1,1, . . . , G

′
K,MK

) . (2)

Verification. To verify a signature of knowledgeΣ onm for the statementE under par := (crs, (Q,U0, . . . , UN , T )),
verify that Σ is valid under crs on the statement E′ for the values Ak,j , Bk,i, Gk,`, Hk,` and γk,i,j from the
description of E, values T and (Q,U0, . . . , UN ) from par and h defined asH(E‖m).

Theorem 1. The above is a signature-of-knowledge scheme satisfying SimExt security for the language of sets of
(simulatable) pairing-product equations.

Proof sketch. To simulate a signature without knowing a witness, one uses the trapdoor t to make a signature (W1,W2,
W3) on (h1, . . . , hN ) := H(E‖m), and sets T ′ = T and all remaining witnesses components Xi = Yj = G′k,` := 0,
which is easily verified to satisfy E′. Simulatability then follows from witness indistinguishability of GS proofs.

For “Extraction”, consider an adversary that has never queried a signature for a pair (E,m), but outputs a SoK Σ
for it. By soundness of GS proofs, using xk we can extract from Σ a witness for E′ of the form (2). We must have
T ′ 6= T , as otherwise (W1,W2,W3) would be a forgery on (E‖m) (which was never queried to the simulator) by
equations (iii) of E′. Together with equations (ii) of E′, T ′ 6= T implies that G′k,` = Gk,` for all k, `, and therefore,
by (i), ((Xi), (Yj)) is a witness for the original equation E. We have thus extracted a witness for the statement E. �

Note that to reduce the parameter size, but relying on stronger (“q-type”) assumptions, we could use any of the
structure-preserving signatures defined by Abe et al. [1] instead of Waters signatures.

4 New Building Blocks

4.1 Partially Weak Blind Signatures

Bernhard et al. [6] introduce Randomizable Weakly Blind Signatures (RwBS) as one of the building blocks for DAA.
These are similar to blind signatures [22, 39, 44] except that blindness has to hold only against adversaries that never
get to see the message they signed, that is, a signature should not be linkable to its issuing session. Moreover, random-
izability means that given a signature, anyone can produce a fresh signature on the same message.

Definition 8. A randomizable blind signature scheme BS (with a two-move signature request phase) consists of six
probabilistic polynomial-time algorithms

BS := (BSSetup,BSKeyGen,BSRequest,BSIssue,BSVerify,BSRandomize) .

The syntax of these algorithms is defined as follows; all algorithms (bar BSSetup) are assumed to take as implicit
input a parameter set paramBS as output by BSSetup.

• BSSetup(1λ) takes as input a security parameter λ and outputs a parameter set paramBS, assumed to contain a
description of the key and message spaces for BS.
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BSKeyGen(paramBS)

• GR, FU ← G×2 , a, b← Z×p .
• For i = 1, . . . , k :

ci, di ← Z×p , Gi := [ci]GR, Fi := [di]FU .
• cZ , dZ ← Z×p , GZ := [cZ ]GR, FZ := [dZ ]FU .
• Pick (A0, A1, Ã0, Ã1) randomly such that e(A0, Ã0)e(A1, Ã1) = e([a]P1, GR).
• Pick (B0, B1, B̃0, B̃1) randomly such that e(B0, B̃0)e(B1, B̃1) = e([b]P1, FU ).
• sk := (a, b, cz, dz, (ci, di)

k
i=1).

• pk := (GZ , FZ , GR, FU , (Gi, Fi)
k
i=1, A0, A1, Ã0, Ã1, B0, B1, B̃0, B̃1).

• Return (sk, pk).

BSSign(M = (Mi)
k
i=1 ∈ Gk

1)

• z, r, t, u, w ← Z×p .
• Z := [z]P1, R := [r − czz]P1

Pk
i:=1[−ci]Mi,

S := [t]GR, T := [(a− r)/t]P1,
U := [u− dzz]P1

Pk
i:=1[−di]Mi,

V := [w]FU , W := [(b− u)/w]P1 .
• σ := (Z,R, S, T, U, V,W ).
• Return σ.

BSVerify(pk, σ,M)

• Parse σ as (Z,R, S, T, U, V,W ), M as (Mi)
k
i=1.

• Parse pk as (GZ , FZ , GR, FU , (Gi, Fi)
k
i=1, A0, A1, Ã0, Ã1, B0, B1, B̃0, B̃1).

• Return 1 if the following equations hold or 0 otherwise:
◦ e(Z,GZ)e(R,GR)e(T, S)

Q
i e(Mi, Gi) = e(A0, Ã0)e(A1, Ã1)

◦ e(Z,FZ)e(U,FU )e(W,V )
Q
i e(Mi, Fi) = e(B0, B̃0)e(B1, B̃1)

Fig. 3. The structure-preserving AHO signature from [1].

• BSKeyGen(paramBS) takes as input the system parameters and outputs a pair (pkBS, skBS) of public/secret keys
for the signer.

• (BSRequest0,BSIssue1,BSRequest1) is an interactive protocol run between a user and a signer. The user goes
first by calling BSRequest0(m, pkBS) to obtain a value ρ0 and some state information St0R (which is assumed to
contain m). Then the signer and user execute, respectively,

(β1,St1I)← BSIssue1(ρ0, skBS) and (σ, St1R)← BSRequest1(β1,St0R) ,

where σ is a signature on the original message m (or the abort symbol ⊥). We write

σ ←
(
BSRequest(m, pkBS)⇐⇒ BSIssue(skBS)

)
for the output of correctly running this interactive protocol on the given inputs.

• BSVerify(m,σ, pkBS) is the public signature verification algorithm, which outputs 1 if σ is a valid signature on m
and 0 otherwise.

• BSRandomize(σ) is given a signature σ on an unknown message m and produces another valid signature σ′ on
the same message.

The blind signature scheme is correct if signatures verify when both parties behave honestly, i.e. for all parameter sets
output by BSSetup we have

Pr [ (pkBS, skBS)← BSKeyGen(paramBS), m←M,

σ ← (BSRequest(m, pkBS)⇐⇒ BSIssue(skBS)) : BSVerify(m,σ, pkBS) = 1 ] = 1 .
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Experiment: Exppart-w-blind
BS,A (λ)

• paramBS ← BSSetup(1λ).
• (pkBS, skBS)← BSKeyGen(paramBS).
• m0,m1 ←M.
• (ρ0, StR)← BSRequest0(pkBS,m0).
• (β1,StA)← A(paramBS, pkBS, skBS, ρ0).
• σ0 ← BSRequest1(β1, StR).
• If σ0 =⊥ or BSVerify(pkBS,m0, σ0) = 0 then abort.
• b← {0, 1}.
• If b = 0 then σ1 ← BSRandomize(σ0).
• Else (ρ0,StR)← BSRequest0(pkBS,m1)

β1 ← BSIssue(skBS, ρ0)
σ0 ← BSRequest1(β1, StR).

• b∗ ← A(StA, π(σ0), π(σ1)).
• Return 1 if b = b∗ else return 0.

Fig. 4. The partial weak blindness game.

In addition, randomizing a signature should result in a valid signature, i.e. for all parameter sets output by SetupBS

and key pairs (pkBS, skBS) output by BSKeyGen we have for all m and σ

BSVerify(m,σ, pkBS) = 1 =⇒ BSVerify(m,BSRandomize(σ), pkBS) = 1 .

For our first construction of DAA we need a standard-model signature which is secure under non-interactive
assumptions. In addition, to work with our signatures of knowledge, it is required to be structure-preserving: the
signatures and the messages it signs must be group elements and the verification equations must be pairing-product
equations.

We use a signature scheme by Abe et al. [1] signing vectors of group elements, which we call AHO after its
authors, presented in Fig. 3. (We have transposed G1 and G2, since our messages are in G1 rather than in G2 as in [1].)
Its security relies on the q-SFP assumption (see Sect. 2.1). Abe et al. show that the six elements (R,S, T, U, V,W ) of
an AHO signature can be randomized. (We are not aware of a fully randomizable structure-preserving scheme based
on non-interactive assumptions.)

This randomizability is useful, since we show that if the signer is given parts of a (partial) randomization of a
signature he issued earlier then this does not reveal anything about the message. This means that, when used as a
certificate for DAA, we only need to hide part of the certificate in a DAA signature to guarantee anonymity. We
therefore relax the notion of weak blindness from [6] to partial weak blindness defined w.r.t. a projection function π.
In the security game the signer gets the projection of a (partial) randomization of a signature and should not be able to
tell whether it is from a signature he issued or a signature on a random message.

Definition 9 (Partial Weak Blindness). A blind signature scheme consisting of (BSSetup,BSKeyGen, 〈BSRequest,
BSIssue〉,BSRandomize,BSVerify) has (perfect) partial weak blindness with respect to a projection function π if
no efficient (unbounded) adversary can win the game Exppart-w-blind

BS,A in Fig. 4 with advantage non-negligibly greater
than 1/2.

We show that for an appropriate projection function the AHO signature is actually a partially weak blind signature,
where BSRequest simply sends the message in the clear and BSIssue is defined as Sign.

Lemma 1. The AHO signature scheme as a blind-signature scheme has partial weak blindness under the projection
function π(Z,R, S, T, U, V,W ) = (S, T, V,W ) .

Abe et al. [1] show that after a partial randomization of a signature, the components (R,S, T, U, V,W ) are uni-
formly random conditioned on the signature satisfying the verification equations. The adversary in the game knows
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BSSetup(1λ)

P ← BGrpSetup(1λ).
(crs1, xk1)← GSSetup(P).
(crs2, xk2)← GSSetup(P).
Output paramBS := (P, crs1, crs2).

BSKeyGen(paramBS)

x, y ← Zp; X := [x]P2; Y := [y]P2.
Output (skBS := (x, y), pkBS := (X,Y )).

BSRequest0(pkBS, (M1,M2))

Ω1 = GSProveZK (crs1, {M2} : M1 ∈ L1).
Output (ρ0 := (M1, Ω1), St0R := (M1,M2)).

BSIssue1(skBS, ρ0)

Parse ρ0 as (M1, Ω1).
If GSVerify(crs1,M1 ∈ L1, Ω1) = 0 then return ⊥.
a← Z×p ; A := [a]P1; B := [ay]P1

C := [ay]M1; D := [ax]P1 + [axy]M1

Ω2 ←GSProveZK(crs2, {[ay]P2} : (B,C,M1) ∈ L2).
Output β1 := ((A,B,C,D), Ω2).

BSRequest1(pkBS, β1,St0R)

Parse β1 as ((A,B,C,D), Ω2).
Parse St0R as (M1,M2).
Return ⊥ if any of the following hold:
◦ A = 0.
◦ e(A, Y ) 6= e(B,P2).
◦ e(D,P2) 6= e(A+ C,X).
◦ GSVerify(crs2, (B,C,M1) ∈ L2, Ω2) = 0.

Output σ ← BSRandomize((A,B,C,D)).

BSVerify(pkBS, (M1,M2), (A,B,C,D))

If A = 0 or e(A, Y ) 6= e(B,P2)
or e(C,P2) 6= e(B,M2)
or e(D,P2) 6= e(A+ C,X) then return 0.
Return 1.

BSRandomize(σ)

Parse σ as (A,B,C,D).
r ← Z×p ; A′ := [r]A; B′ := [r]B;
C′ := [r]C; D′ := [r]D.
Return (A′, B′, C′, D′).

Fig. 5. A RwBS construction from the NCL signature scheme

the original signature and gets (S, T, V,W ) of a randomization thereof. Since for every tuple (Z, S, T, V,W ) and for
every message vector M there exist exactly one pair (R,U) that satisfies the verification equations, the message is
information-theoretically hidden from the adversary.

In our DAA construction we can thus give the part (S, T, V,W ) of a (randomized) certificate in the clear (and
prove knowledge of the remaining components) and still satisfy anonymity.

4.2 A Fully Randomizable Weakly Blind Signature Scheme for Group Elements

In order to provide a more efficient DAA scheme, we give a fully randomizable weakly blind signature satisfying
the original definition of [6]. Ghadafi [32] presents a signature scheme called NCL, which is effectively a structure-
preserving variant of CL-signatures [18], based on a variant of the LRSW assumption [42], given in Sect. 2.1.

Messages of the scheme are pairs of the form ([m]P1, [m]P2) ∈ G1 ×G2 (cf. Footnote 1, on p. 3). The secret and
verification keys are of the form (x, y) ∈ Z2

p and ([x]P2, [y]P2), respectively, and a signature on a message (M1,M2)
is a 4-tuple (

A := [a]P1, B := [y]A, C := [ay]M1, D := [x](A+ C)
)

for a random a ← Z×p . The verification equations are A 6= 0, e(B,P2) = e(A, Y ), e(C,P2) = e(B,M2),
e(D,P2) = e(A,X) e(C,X) and e(M1, P2) = e(P1,M2).

A signature is fully randomizable by choosing a′ ← Z×p and setting A′ := [a′]A, B′ := [a′]B, C ′ := [a′]C,
D′ := [a′]D. Moreover, observe that to compute a signature on a message (M1,M2), only M1 is required, whereas
verification of the signature could be done using M2 only. A first idea, which turns out to work, to construct a weakly
blind signature from NCL, would be to define BSRequest as only sending M1.

However, in the reduction of weak blindness, the simulator (playing the user) will not have M2 (otherwise it could
break the notion itself) and can therefore not verify the correctness of the adversary’s signature. The signer must
therefore make a NIZK of correctness of the signature. Moreover, in the reduction of blind-signature unforgeability
to unforgeability of NCL signatures, the simulator (playing the signer) needs the full message (M1,M2) to query its
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signing oracle. In BSRequest the user makes thus a NIZK of knowledge of M2 corresponding to M1. The NIZKs use
different CRSs (as we use different properties in the reductions) and can be efficiently implemented using Groth-Sahai
proofs. We show that the resulting blind-signature scheme satisfies weak blindness under DDH in G1.

The construction is provided in Fig. 5 using the following languages:

L1 :
˘
(M1,M2) : e(P1,M2) = e(M1, P2)

¯
L2 :

˘
((B,C,M1), B2) : e(P1, B2) = e(B,P2) ∧ e(M1, B2) = e(C,P2)

¯
Theorem 2. Under the SXDH and the DH-LRSW assumption the scheme in Fig. 5 is an unforgeable weakly blind
signature scheme as defined in [6], with message spaceM := {([m]P1, [m]P2) |m ∈ Zp}.

Proof. The following two lemmas prove Theorem 2.

Lemma 2. If the DH-LRSW assumption holds, the GS proof system used in Request0BS is sound and the GS proof
system used in Issue1

BS is zero-knowledge then the above scheme is unforgeable (as defined in [6]). More formally, if
A is an adversary against the unforgeability of the scheme, then there exist adversaries B1,B2 and B3 against the
DH-LRSW assumption, the soundness of the GS proof system used in Request0BS and the zero-knowledge property of
the GS proof system used in Issue1

BS, respectively such that

Advforge
BS,A(λ) ≤ AdvDH-LRSW

B1
(λ) + AdvSoundness

GS,B2
(λ) + AdvZK

GS,B3
(λ) + AdvSXDH

B4
(λ) .

Proof. The GS CRS crs1 is instantiated in the binding setting yielding perfectly sound proofs, whereas the CRS
crs2 is instantiated in the hiding setting yielding perfectly witness-indistinguishable/zero-knowledge proofs. By the
perfect soundness of GS proofs in the binding setting we have that AdvSoundness

GS,B2
(λ) = 0. Also, by the perfect zero-

knowledge of GS proofs in the hiding setting we have that AdvZK
GS,B3

(λ) = 0. Also, note that by the hardness of the
SXDH assumption, the adversary has a negligible advantage in telling apart a binding CRS from a hiding one and
therefore this only negligibly changes B3’s success probability. The details of the reduction to the security of the
SXDH assumption is given in [37] and hence we skip it.

Now we turn to show how adversary A can be used to construct an adversary B1 which breaks the DH-LRSW
assumption. Let (X,Y ) be B1’s input which it passes to A as the public key of the scheme. The CRS crs1 is chosen
to be a binding CRS while crs2 is chosen to be a hiding CRS. Algorithm A proceeds to make a series of oracle calls
to the blind signature issuer. To obtain a valid tuple (A,B,C,D) for a challenge (M1, Ω1), algorithm B1 extracts
the witness M2 from the GS proof Ω1 and then it forwards (M1,M2) to its DH-LRSW oracle to obtain the tuple
(A,B,C,D). Algorithm B1 also uses the CRS crs2 to produce a simulated proof Ω2. By the perfect zero-knowledge
property of GS proofs we have that real proofs are indistinguishable from simulated proofs. Algorithm B1 now returns
(A,B,C,D,Ω2) to A.

Eventually, A will terminate with a tuple

(((M1,1,M1,2), σ1), . . . , ((Mk+1,1,Mk+1,2), σk+1))

for the forgery game. IfA is successful in winning its game then all entries verify, and thereforeΩ2,i for i = 1, . . . , k+
1 are all correct DH-LRSW-tuples for the entries (Mi,1,Mi,2). The oracle was called at most k times (or A would not
have won) yet there are k + 1 distinct messages with valid signatures in A’s output. By looking at the oracle log, we
can identify a valid NCL signature that was never queried to the DH-LRSW oracle and output it. Therefore B1 breaks
the DH-LRSW assumption with the same advantage as A has of creating a forgery. ut

Lemma 3. If the DDH assumption holds in group G1, the GS proof system used in Request0BS is zero-knowledge and
the GS proof system used in Issue1

BS is sound then the above scheme satisfies the weak blindness property (defined
in [6]). More formally, if A is an adversary against the weak blindness property of the scheme, then there exist
adversaries B1,B2 and B3 against the DDH assumption in group G1, the zero-knowledge property of the GS proof
system used in Request0BS and the soundness of the GS proof system used in Issue1

BS, respectively such that

Advweak-blind
BS,A (λ) ≤ AdvDDH

B1
(λ) + AdvZK

GS,B2
(λ) + AdvSoundness

GS,B3
(λ) + AdvSXDH

B4
(λ) .
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Proof. In the game, we choose crs1 as a hiding CRS while the CRS crs2 is chosen to be binding. By the perfect zero-
knowledge property of GS proofs in the hiding setting we have that AdvZK

GS,B2
(λ) = 0. Also, by the perfect soundness

of GS proofs in the binding setting we have that AdvSoundness
GS,B3

(λ) = 0.
Also, by the hardness of the SXDH assumption, the adversary has a negligible advantage in telling apart a binding

CRS from a hiding one and therefore this only negligibly changes B2’s success probability. Again, the details of the
reduction to the security of the SXDH assumption is given in [37] and hence we skip it.

We now turn to show how adversary A against the weak blindness property, whose aim is to distinguish a reran-
domisation of a signature he has seen earlier from a fresh signature on a new message, can be used to construct an
adversary B1 that breaks the DDH assumption in group G1. Let (R = [α]P1, S = [β]P1, T = [γ]P1) be the input
to adversary B1, where (α, β) are independent uniform random elements of Zp, and either γ = αβ, or γ is also an
independent uniform random element of Zp. The goal of algorithm B1 is to determine which of the two possibilities
has been given to it.

Algorithm B1 picks a secret key skBS for the blind signature scheme by selecting x, y ← Zp and passes it to
algorithm A. Then algorithm B1 requests a blind signature on the message (M1,M2) = ([α]P1, [α]P2), by passing
the element R along with a simulated proof Ω1 (since it does not know the component [α]P2) to A as the message
ρ0 in the Request phase. Algorithm A will then respond with a tuple ((A,B,C,D), Ω2). By checking the proof Ω2

algorithm B1 is guaranteed that the value (A,B,C,D) returned is a valid signature on (M1,M2).
To produce the challenge for A, algorithm B1 now forms the challenge

(A∗, B∗, C∗, D∗) := (S, [y]S, [y]T, [x]S + [xy]T )

and passes back to A the pair of tuples (A,B,C,D) and (A∗, B∗, C∗, D∗). Since (A,B,C,D) is a valid signature
on (M1,M2), we claim that if T = [αβ]P1, the challenge will be identically distributed to the weak blindness game
where b = 0; whilst if T = [γ]P1, the challenge will be identically distributed to the weak blindness game with b = 1.
In other words, Algorithm B1 will solve DDH with essentially the same advantage as that of A against the weak
blindness game. This is done as follows:

• If γ = αβ: In the weak blindness game, A first sees [m]P1 for some uniformly random message m. In our
game, he sees [α]P1 where α is uniformly random, hence the distribution is identical. Since we have a proof that
(A,B,C,D) are computed correctly, there is some value a ∈ Z∗p such thatA = [a]P1,B = [ay]P1, C = [ayα]P1

and D = [ax(1 + yα)]P1.
A re-randomization of (A,B,C,D) has the form ([r]A, [r]B, [r]C, [r]D) for some r ← Zp, whereas the tuple
we sent was of the form ([β]P1, [yβ]P1, [yαβ]P1, [xβ + xyαβ]P1). We substitute r = β/a in and note that
because β is independent of everything else and uniformly random, r is also uniform in Zp. Thus, the challenge
is also a correct NCL signature on the message ([α]P1, [α]P2). This exactly corresponds to case b = 0 of the
weak-blindness game.

• If γ is random: Here we argue identically up to the point where we send our tuple. This will be ([β]P1, [yβ]P1,
[yγ]P1, [xβ + xyγ]P1) and we substitute δ = γ/β getting ([β]P1, [yβ]P1, [βyδ]P1], [βx(1 + yδ)]P1). Because
γ is independent and uniformly distributed, δ is also uniformly distributed. Therefore, we have a correct NCL
signature on the message ([δ]P1, [δ]P2) which corresponds to case b = 1.

4.3 Linkable Indistinguishable Tags

The second building block introduced to construct DAA schemes generically in [6] is a Linkable Indistinguishable Tag
(LIT). These tags are similar to Message Authentication Codes (MACs); however, they have additional and stronger
security requirements. LIT schemes are defined w.r.t. a one-way function PK() such that a tag created with a secret
key sk can be verified given PK(sk) rather than sk. Thus, PK(sk) can be thought of as a public key for the tag. A LIT
scheme is defined by the following algorithms. We have made one small change to the definition of [6] in that we
allow the key generation algorithm to depend on global parameters, such as a bilinear group, and we generate these
parameters with a new algorithm GlobalSetup. The LITs presented in the cited paper actually also depend on such
parameters.

• GlobalSetup generates global parameters par.
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Experiment: Expw-f -IND
LIT,A (λ)

• par← GlobalSetup(1λ).
• sk0, sk1 ← LITKeyGen(par).
• b← {0, 1}.
• (m1, . . . ,mq,m

∗, St)← A1(1
λ).

• For i = 1 to q do
◦ If mi = m∗ then τi := ⊥
◦ Else τi ← LITTag(sk0,mi).

• τ∗ := LITTag(skb,m
∗).

• b∗ ← A2(St, par, f(sk0), τ1, . . . , τq, τ
∗).

• Return 1 if b∗ = b, else 0.

Experiment: Expw-LINK
LIT,A (λ)

• (sk0,m0, sk1,m1, τ)← A(par).
• Return 1 if and only if :

◦ LITTag(sk0,m0) = τ .
◦ LITTag(sk1,m1) = τ .
◦ Either (sk0 = sk1 and m0 6= m1)

or (sk0 6= sk1 and m0 = m1).

Fig. 6. Security games for indistinguishability (left) and linkability (right) of LIT.

• LITKeyGen(par) takes global parameters par (such as a bilinear group) and outputs a secret key sk. (From now on
we implicitly assume par.)

• LITTag(sk,m) is deterministic, takes as input a secret key sk and message m, and outputs a tag τ .
• LITVerify(PK(sk),m, τ) is given the image of sk under PK, a message m and a tag τ and checks whether τ is a

valid tag on the message m w.r.t. sk, outputting 1 or 0.

Security. Besides correctness, [6] define the notions linkability and indistinguishability, of which we will only require
relaxations. A LIT is weakly linkable if the following holds: if two tags are identical then they are either w.r.t. the
same key and the same message, or both keys and both messages are different. In particular, two tags under different
keys on the same message (or under the same key on different messages) must be different. Weak linkability was used
implicitly in [6]. We formalize it by experiment Expw-LINK

LIT,A (λ) in Fig. 6 and say a LIT scheme is weakly linkable if the
advantage Advw-LINK

LIT,A (λ) := Pr[Expw-LINK
LIT,A (λ) = 1] is a negligible function of λ for any PPT adversary A.

For a LIT f -indistinguishability is defined w.r.t. a one-way function f and states that no adversary, having access
to a LITTag(sk, ·) oracle, can distinguish a tag on a message of his choice (for which he did not query the oracle)
from a tag produced under a different random key. This should hold even if the adversary is given the image f(sk) of
the secret key in question. We weaken this property by requiring that the adversary submit all the oracle queries and
announce the message to be challenged on before seeing the parameters and the one-way image. This is formalized by
Expw-f -IND

LIT,A (λ) in Fig. 6 and a LIT scheme is weakly f -indistinguishable if Advw-f -IND
LIT,A (λ) :=

∣∣2·Pr[Expw-f -IND
LIT,A (λ) = 1]

− 1
∣∣ is negligible in λ for any polynomial-time adversary A.

Small message spaces. If the size of the message space is polynomial in the security parameter then f -indistin-
guishability defined by [6] is implied by its weak version: assuming an adversary A breaking the standard no-
tion, we construct an adversary B breaking the weak notion as follows: Let {m1, . . . ,m`} be the message space,
with ` = poly(λ). Then B randomly picks i ← {1, . . . , `} and outputs its queries and the challenge as (m1,
. . . ,mi−1,mi+1, . . . ,m`,m

∗ := mi). With non-negligible probability A will ask to be challenged on mi, in which
case B can simulate all Tag queries and use A to break weak f -indistinguishability.

A Weak LIT in the Standard Model. The weak Boneh-Boyen signature scheme [9] was used in [29, 2] to construct
Verifiable Random Functions (VRF) [43] for small message spaces under two variants of the DDHI assumption. The
proof of pseudorandomness uses a technique similar to that for the unforgeability of weak Boneh-Boyen signatures
in [9]: if the messages m1, . . . ,mn on which the VRF is to be evaluated and the challenge m∗ (whose VRF value
is to be distinguished from random) are known in advance then given a DDHI instance, we can set up the VRF
parameters and the public key so that we can (1) construct the VRF values on m1, . . . ,mn and (2) use the DDHI
challenge to construct a challenge for pseudorandomness for m∗. (Note that this effectively corresponds to a weak
notion of pseudorandomness for VRFs where the adversary needs to announce all queries and the challenge message in
advance.) This weak notion is then used to simulate the actual pseudorandomness game for VRFs with small domains
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LITKeyGen(P)

Return sk← Zp.
LITTag(sk,m)

If m = −sk then return ⊥.
Return τ := [ 1

sk+m
]P1.

LITVerify(PK(sk),m, τ)

If e(τ,PK(sk) + [m]P2) = e(P1, P2)
then return 1, else return 0.

Fig. 7. The WBB-based Linkable Indistinguishable Tag (WBB-LIT).

using the ideas discussed in the note on small message spaces above. We define our LIT as the VRF from [2] and use
the first part of their proof of pseudorandomness of VRFs to prove weak f -indistinguishability w.r.t. f(sk) := [sk]P1.

Theorem 3. The WBB-LIT in Fig. 7 is a LIT for PK(sk) := [sk]P2. It is weakly linkable and satisfies weak f -
indistinguishability for f(sk) := [sk]P1 if the DDHI assumption holds in group G1.

Since it is impossible to have τ = LITTag(sk0,m0) = LITTag(sk1,m1) with (sk0 = sk1 andm0 6= m1) or (sk0 6= sk1

and m0 = m1), weak linkability holds unconditionally. Weak f -indistinguishability is proved analogously to the
pseudorandomness property of the VRF under the q-DDHI assumption (see [29, Theorem 2]).

LIT vs. VRF. To construct a LIT which is not only weakly indistinguishable and which supports large domains,
a natural approach would be to consider large-domain VRFs. There have been several such schemes in the recent
literature including the cascade construction of Boneh et al. [12] to increase the domain of the Dodis-Yampolskiy VRF
[29], the BCKL construction [2] applied to the Dodis-Yampolskiy VRF [29] and the Hohenberger-Waters VRF [38].

Unfortunately, all of the abovementioned schemes violate the weak linkability requirement for LITs, as it is easy
to find for example sk0 6= sk1 and m such that LITTag(sk0,m) = LITTag(sk1,m). While in the random-oracle
model pseudorandomness is trivial to achieve, resulting in a simple ROM-LIT construction in [6], it is not clear how
to construct fully indistinguishable LITs for large basename spaces without resorting to interactive assumptions (see
Sect. 7). VRFs are already hard to construct, but due to its strong security requirements (an adversary must be unable
to find tag collisions even if he can choose both the keys and the messages) LITs seem even harder.

5 A Generic Construction of pre-DAA in the Standard Model

Our first construction of pre-DAA uses AHO signatures (Sect. 4.1) as partially weakly blind signatures, the VRF
from [2] as LIT given in Fig. 7 (which has the form of weak Boneh-Boyen signatures [9]) and Waters signatures [46]
implicitly for the signatures of knowledge, which are themselves Groth-Sahai proofs [36]. The setup algorithm outputs
a bilinear group and parameters for the SoK (consisting of a CRS for GS proofs and parameters and a verification key
for Waters signatures).

To generate a group key pair, the issuer creates an AHO signature key pair (gmsk, gmpk). To join a group, a user
creates a LIT key sk and runs the AHO signature request algorithm from the last section on the message F1 := [sk]P1;
the issuer replies using the AHO signing algorithm to produce a credential cred on F1.

To make a DAA signature on a message m under a basename bsn, a user first (partially) rerandomizes his AHO
signature cred and then splits it into a public part credP and a part credH which he will include in the witness for the
SoK. Next, he creates a LIT tag τ := LITTag(sk, bsn) using his key on the basename. He then computes a signature
of knowledge Σ on the message bsn‖m proving knowledge of (a function of) a LIT key sk and the hidden part of an
AHO signature credH such that the tag and the AHO signature both verify with respect to this key. The DAA signature
is σ := (credP , τ, Σ).

We formalize the above. The language of the SoK needs to be a pairing-product equation as in (1) with wit-
nesses in G1 and G2. Rather than proving knowledge of sk, the witness will be F1 := [sk]P1 and F2 := [sk]P2.
The AHO signature is on F1 rather than sk so F1 is also sufficient to verify it. The signature is split into a pub-
lic part credP = π(cred) = (S, T, V,W ), with π as in Lemma 1, and a hidden part credH = (Z,R,U). We let
BSVerify′(gmpk, F1, (credH , credP )) denote the AHO verification algorithm of a split signature on F1. On the other
hand, F2 is the public key for the LIT from Sect. 4.3, so τ can be verified using LITVerify(F2, bsn, τ). It remains to

17



prove that (F1, F2) is a Diffie-Hellman pair, that is the embedding of the same key into both groups. The language of
the signature of knowledge is thus

L :
{(

(gmpk, credP , bsn, τ), (F1, F2, credH)
)

: e(−P1, F2) e(F1, P2) = 1

∧ BSVerify′(gmpk, F1, (credH , credP )) = 1 ∧ LITVerify(F2, bsn, τ) = 1
}
.

If bsn = ⊥ then the DAA signature (which should not link to anything) is (credP , Σ) where Σ is a SoK for the
language

L′ :
{
((gmpk, credP ), (F1, credH)) : BSVerify′(gmpk, F1, (credH , credP )) = 1

}
.

To verify a DAA signature, one verifies the SoK. To link two signatures under the same basename, one compares the
contained tags τ and returns 1 if they are equal; to identify a transcript given sk, one checks if the first message by the
user is the value [sk]P1; and to identify a signature, one checks the LIT tag τ using sk and bsn.

Our construction follows closely the blueprint from [6] (except for proving knowledge of a function of sk and
hiding parts of the certificate) and is proven analogously.

6 A More Efficient pre-DAA Scheme in the Standard Model

Here our goal is to give a truly efficient standard-model pre-DAA scheme. We first replace the partial RwBS from
Sect. 4.1 by the full RwBS from Sect. 4.2; this avoids having to include parts of the certificate in the signatures of
knowledge (SoK).

Moreover, as SoKs, due to their strong security requirements, are less efficient than standard proofs of knowledge
(PoK), we should aim for using a simple Groth-Sahai PoK instead of a SoK in a DAA signature. The main obstacle is
that the user secret key sk is used both for the tag on bsn and (implicitly in the SoK) for the signature on the message
m. Suppose we replaced the SoK of (a function of) sk by a PoK thereof and a regular signature onm. Non-frameability
corresponds to a forgery of a signature on m, to which the notion must be reduced. In the reduction we thus have to
extract a signature from the PoK, and therefore cannot simulate proofs, as Groth-Sahai proofs only allow extraction
or simulation (while SimExt security of SoKs allows both at the same time.) However, if we do not simulate the PoK
then when answering DAA-signing queries, we need to provide actual tags—for which we do not have the user secret
key.

We overcome this by using a novel approach: we use a signature scheme which, in the reduction, allows us to
simulate tags under the same secret key and a tag scheme which allows us to simulate signatures. We do so by choosing
the schemes in a way that tags of one scheme and signatures of the other scheme have the same form—although the
security requirements are different, and are based on different assumptions. In particular, we make use of the fact
that the values of the VRF from [2] are essentially “weak” signatures from [9]. (These signatures are only secure
against weak chosen-message attacks, where the adversary has to make all queries before seeing the public key.) Weak
signatures can easily be turned into standard signatures using a hybrid construction, where one signs a verification key
of a one-time signature and uses the corresponding secret key to sign the actual message. Unlike for the message space
of the LIT, there is no restriction on the message spaces of the signature schemes (and thus the message space of our
DAA is big enough to sign messages of arbitrary length by using a collision-resistant hash function first).

We separate the domains for the messages of the weak signatures (i.e., verification keys of the one-time signature
scheme) and the messages of the tags (i.e., the basenames) by prepending a bit to the messages. In the reduction of
non-frameability to weak signature unforgeability we can then use our (weak) signing oracle to obtain signatures and
to simulate the tags: The basename space is polynomial in size and the verification keys of the one-time signatures
can be produced beforehand. Thus, before starting the simulation of the non-frameability game (and before obtaining
the public key for the weak signature) we can make our “weak” signature queries on all basenames and the one-time
verification keys.

Moreover, in the proof of anonymity we use the trick the other way round and simulate signatures using the tag
oracle. In the reduction to weak f -unlinkability of the tags, we can make all tag queries upfront, since the basename
space is polynomial and the one-time verification keys can be chosen beforehand. Another advantage of this approach
is that, since weak signatures have the form of LITs, they are unlinkable to the key that produced them, which means
that we can include the weak signatures in the clear in the DAA.
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Setup(1λ)

• (P, crs1, crs2)← BSSetup(1λ).
• param := (P, crs1, crs2).
• Return param.

GKg(param)

• (gmpk, gmsk)← BSKeyGen(param).
• Return (gmpk, gmsk).

UKg(param)

• ski ← LITKeyGen(P).
• Return ski.

〈Join, Iss〉
• Run (BSRequest,BSIssue)

for message (f1(ski), f2(ski)) ∈MBS.
• User has input ((f1(ski), f2(ski)), gmpk).
• Issuer has input gmsk.
• User’s output is gski = cred.

GSig(gski, ski,m, bsn)

• cred← BSRandomize(gski).
• (vkots, skots)← OTSKeyGen(1λ).
• σw ← BBSign(ski, 1||vkots).
• If bsn 6=⊥

◦ τ ← LITTag(ski, 0||bsn).
◦ ϕ := (gmpk, cred, bsn, τ, vkots, σw) .
◦ Σ ← GSProve

`
crs1, {(f1(ski), f2(ski))} : ϕ ∈ L

´
.

• Else
◦ τ := ∅.
◦ ϕ := (gmpk, cred, vkots, σw).
◦ Σ ← GSProve

`
crs1, {(f1(ski), f2(ski))} : ϕ ∈ L′

´
.

• σots ← OTSSign(skots, (m, τ, bsn)).
• σ := (cred, τ, σw, vkots, Σ, σots).

GVf(gmpk,m, bsn, σ)

• Parse σ as (cred, τ, σw, vkots, Σ, σots).
• If OTSVerify(vkots, (m, τ, bsn), σots) = 0, return 0.
• If bsn 6=⊥ then

◦ ϕ := (gmpk, cred, bsn, τ, vkots, σw).
◦ Return GSVerify

`
crs1, ϕ ∈ L, Σ

´
.

• If τ = ∅ then
◦ ϕ := (gmpk, cred, vkots, σw).
◦ Return GSVerify

`
crs1, ϕ ∈ L′, Σ

´
.

• Return 0.

IdentifyT(gmpk, ski, T )

• If T is a valid transcript then check if the user mes-
sage in Join0 = BSRequest0 is (f1(ski), Ω), for
some Ω.

• If so return 1, otherwise return 0.

IdentifyS(gmpk, ski,m, bsn, σ)

• Parse σ as (cred, τ, σw, vkots, Σ, σots).
• If BSVerify(gmpk, (f1(ski), f2(ski)), cred) = 0

then return 0.
• If OTSVerify(vkots, (m, τ, bsn), σots) = 0

then return 0.
• Return 1 iff one of the following hold

◦ bsn = ⊥, τ = ∅ and
BBVerify(f2(ski), 1||vkots, σw) = 1.

◦ bsn 6= ⊥, LITVerify(f2(ski), 0||bsn, τ) = 1
and BBVerify(f2(ski), 1||vkots, σw) = 1.

Link(gmpk, σ0,m0, σ1,m1, bsn)

• If GVf(gmpk,m0, bsn, σ0) = 0 return ⊥.
• If GVf(gmpk,m1, bsn, σ1) = 0 return ⊥.
• If bsn =⊥ return 0.
• Parse σ0 as (cred0, τ0, σw0 , vkots0 , Σ0, σots0).
• Parse σ1 as (cred1, τ1, σw1 , vkots1 , Σ1, σots1).
• Return 1 if and only if τ0 = τ1.

Fig. 8. An efficient pre-DAA scheme construction in the standard model

Our construction (shown in Fig. 8) uses the LIT scheme from Fig. 7 and the RwBS scheme from Sect. 4.2. Unlike
the construction in Sect. 5, it replaces the signatures of knowledge by a simple proof of knowledge and a (hybrid)
signature in the clear. As in the generic scheme, the user obtains a credential gsk from the issuer. To make a DAA
signature, the user randomizes gsk to cred, chooses a one-time signature key pair (skots, vkots) and uses his secret key
sk to produce a LIT tag τ on 0‖bsn (if bsn =⊥ then τ := ∅), and a weak signature σw on 1‖vkots. He then produces a
GS PoKΣ of (f1(sk) := [sk]P1, f2(sk) := [sk]P2) showing it is well-formed, that cred is valid on it and that τ and σw
verify under f2(sk). The DAA signature is then defined as σ := (cred, τ, σw, vkots, Σ, σots), where σots is a one-time
signature produced with skots on the tuple (m, τ, bsn). Note that if vkots does not lie in the message space of the LIT,
we can use a collision-resistant hash function to hash it into that space. Moreover, note that the one-time signature also
only needs to be weakly unforgeable, as the message (m, τ, bsn) is known before vkots is chosen.
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The languages for the GS proofs in our construction are defined as follows, where L′ is used when bsn = ⊥ and
L otherwise.

L :
{(

(gmpk, cred, bsn, τ, vkots, σw), (F1, F2)
)

: e(−P1, F2) · e(F1, P2) = 1
∧ BSVerify(gmpk, (F1, F2), cred) = 1 ∧ LITVerify(F2, 0||bsn, τ) = 1

∧ BBVerify(F2, 1||vkots, σw) = 1
}

L′ :
{(

(gmpk, cred, vkots, σw), (F1, F2)
)

: e(−P1, F2) · e(F1, P2) = 1

∧ BSVerify(gmpk, (F1, F2), cred) = 1 ∧ BBVerify(F2, 1||vkots, σw) = 1
}

6.1 Security of the Construction

Theorem 4. If the RwBS scheme is unforgeable and weakly blind, the LIT scheme is weakly linkable and weakly f -
indistinguishable, the Groth-Sahai proof system is sound and zero-knowledge, and the one-time signature scheme is
weakly unforgeable then the construction in Fig. 8 is a secure pre-DAA scheme.

Proof. We first show correctness and that the scheme has uniquely identifiable transcripts.

Correctness. This follows from the correctness of the RwBS, the LIT and the one-time signature schemes and the
perfect correctness of the GS proof system.

Uniquely Identifiable Transcripts. Given a secret key sk, we define CheckT to check whether the user’s first message
is (f1(sk), Ω), for some Ω. The injectivity of f1 ensures uniqueness.

Anonymity. We prove the following lemma.

Lemma 4. If the blind signature scheme (used in the Join/Issue protocol) is weakly blind, the GS proof system is
zero-knowledge, and the LIT is weakly f -indistinguishable then our pre-DAA scheme has the anonymity property.

Proof. We show that any efficient adversary with a non-negligible advantage in the anonymity game can be used to
break the zero-knowledge property of GS proofs, the weak-blindness of the blind signature scheme, or the indistin-
guishability of the LIT. For b = 0 and b = 1, we define a sequence of six games, where Game 1 is Expanon-b

A (λ) when
the experiment guesses correctly the challenge user, and Game 6 is independent of b. If we then prove that A behaves
differently in two consecutive games only with negligible probability, we have that∣∣∣Pr[Expanon-1

A (λ) = 1]− Pr[Expanon-0
A (λ) = 1]

∣∣∣
is negligible, and thus the scheme satisfies anonymity.

We start by showing that if for an adversary A the winning advantage is non-negligible, then this is still the case
if the game aborts if the challenge user chosen by A is different from a random user which the game has chosen
beforehand. Let qA be the maximum number of users adversary A can create in the game. We randomly pick i ∈
{1, . . . , qA}. Since i is independently chosen, the probability that i equals a particular user is 1

qA
. Thus, we have

Advanon
A (λ) =

∣∣∣Pr[Expanon-1
A (λ) = 1]− Pr[Expanon-0

A (λ) = 1]
∣∣∣

=
∣∣∣Pr[Expanon-1

A (λ) = 1 | i1 = i] · Pr[i1 = i]− Pr[Expanon-0
A (λ) = 1 | i0 = i] · Pr[i0 = i]

∣∣∣
= 1

qA
·
∣∣∣Pr[Expanon-1

A (λ) = 1 | i1 = i]− Pr[Expanon-0
A (λ) = 1 | i0 = i]

∣∣∣ ,
which proves the following:

Claim 1. IfA has non-negligible advantage in winning the anonymity game then the probability thatA wins the game
and that the user ib in the call to CHb is the randomly drawn user i is non-negligible.
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By contraposition, to prove anonymity of the scheme, it suffices to show that the above conditional probabilities
are close. To do so, we fix b = 0 or b = 1 and define a sequence of games arguing that A’s behaviour changes only
negligibly from one game to the next one. The last game will be independent of b; so overall we will have shown that
A’s advantage in winning the anonymity game is negligible.

Note that when the adversary calls the challenge oracle, it gets a signature σ = (cred, τ, σw, vkots, Σ, σots), where
τ and σw are a LIT and a weak signature, both under key skib , and cred is a blind signature on (f1(skib), f2(skib)).
In our sequence of games, we could thus first replace Σ by a simulated GS proof, and simulate the join protocol for
our target user i. Using now the fact that the weak signature σw has the same form as a tag, we could then replace τ
and σw (interpreted as tag) by tags under random keys (by indistinguishability of the LIT), and finally replace cred by
a signature on a random message (by the weak blindness of the RwBS). This last game would then not involve skib
anymore and would thus be independent of the bit b.

It is in the last step that the intuition fails unfortunately, due to the fact that the blind signature is only weakly blind.
The messages to be signed in the weak-blindness game are randomly chosen by the experiment (rather than by the
adversary as for the standard blindness notion). This means that in the last step of the sequence of games, the simulator
does not have the secret key of user i (ski is implicitly chosen by the weak-blindness challenger). As the simulator
must also answer signing queries on behalf of user i, these must be simulated without knowledge of the secret key as
well. We thus first have to replace all the LITs τ (and weak signatures σw) produced by user i (and not only those
contained in the challenge signature) by LITs (and weak signatures) under random keys in the previous game. We
make the hybrid steps precise in the following:

Game 1. Before running the game, we pick i uniformly from {1, . . . , qA} and abort if inA’s challenge-oracle call we
have ib 6= i.

Game 2. We act as in Game 1 but we replace crs1 with a hiding CRS as output by GSSimSetup.

By the security of GS proofs (i.e. the SXDH assumption) the difference between Game 1 and 2 is negligible. Note that
crs1 is the CRS used for the proofs constructed in GSig. Moreover, setting crs1 to enable simulation is what is needed
in the proof of weak blindness of our blind signature scheme.

Game 3. In this game, when the adversary requests user i to join, we use f1(ski) and simulate Ω2, that is the proof of
knowledge of f2(ski). Moreover, whenever a signature is requested from user i (via the Sign or the CHb oracles),
we simulate the proof Σ contained in it.

Both proofs Ω2 and Σ are under crs1, which allows simulation from Game 2 on, by using the trapdoor output when
running (crs1, tr)← GSSimSetup. Under simulated CRSs, simulated proofs and real proofs are distributed identically.
Game 2 is thus information-theoretically indistinguishable from Game 3.

Game 4. Same as Game 3, except that whenever the experiment creates a DAA signature on behalf of user i (i.e. when
A calls CHb or Sign for user i), we do the following: if the basename bsn has already been queried, we use the
same tag τ as in the previous query; if not, we pick independent uniformly random keys and produce the tags τ
using these random keys.

It is the hop from Game 3 to Game 4 that is the main difference to the proof for the random-oracle scheme in
[6]: Interpreting σw as a second LIT, the DAA signatures now contain two tags, and these tags are only weakly f -
indistinguishable (WfI), meaning that the messages to be queried and the challenge have to be announced beforehand.
When replacing a tag τ we also have to simulate the tags σw (as the simulator in the reduction to WfI does not have
the secret key to produce σw), and we have to output all messages to be tagged and the challenge message in advance.

Games 3 and 4 are shown to be negligibly close by a hybrid argument and reduction to the WfI of the LIT. Let sA
be a (polynomial) upper bound on the number of Sign and CHb queries that A makes. We define a sequence of games
(Gj)

sA
j=0 such that in Gj , we answer the first j queries for DAA signatures (Sign or CHb) on different basenames for

user i by using the secret key ski (that was used in the Join protocol) for the LIT tag τ ; from query j + 1 on we use
independent random keys for τ . The tags σw are constructed correctly. This construction gives us GsA = Game 3 and
G0 = Game 4, and the difference between any two consecutive games lies in a single construction of a LIT tag.

21



We now construct an adversary B that breaks weak f -indistinguishability (defined in Fig. 6) if there is a non-
negligible difference between Gj−1 and Gj . B has to output all messages it wants tags on and the one it wants to be
challenged on in advance. B first computes sA key pairs ((vkots)i, (skots)i) for the one-time signature scheme. Let
the set {bsn1, . . . , bsnn} be the (polynomial-sized) set of possible basenames. B picks a random k ← {1, . . . , n}
and outputs the following messages: 0‖bsn1, . . . , 0‖bsnk−1, 0‖bsnk+1, . . . , 0‖bsnn, 1‖(vkots)1, . . . , 1‖(vkots)sA ; and
as challenge message: 0‖bsnk. The challenger then sends B the following: the parameters P , f1(sk0) := [sk0]P1 and
the tags τ1, . . . , τn on the basenames and tags σw1, . . . , σwsA on the verification keys, all under sk0, as well as the
challenge tag τ∗ on 0‖bsnk.

Adversary B then simulates the anonymity game for A using f1(sk0) as the blinded secret key for user i in the
Join protocol. Moreover, B uses the tags σw to simulate the weak signature in all queries and the tags τi from the first
query up to query number j − 1. In the j’th query it does the following: If A does not query a DAA signature for
basename bsnk then B aborts. (Note that B continues with non-negligible probability.) Otherwise, it uses τ∗ from the
challenger. For all remaining queries (for i = j + 1 to sA), B produces tags τ ′i under randomly chosen keys, but uses
σwi given by the challenger. It completes the construction of the DAA signature by simulating the proof of knowledge
Σ and using the secret key skots to compute a one-time signature σots.

If the challenger’s bit b = 0 then τ∗ was produced under the same key sk0 as tags τ1,i, . . . , τ1,j−1;A is thus playing
game Gj . Otherwise, τ∗ was for a random key and A is playing Game Gj−1. Thus, by weak f -indistinguishability of
the LIT scheme, the difference between two games is negligible and therefore so is the difference between Games 3
and 4.

Game 5. Same as Game 4, except that in all queries to CHb or Sign for user i we also replace the signatures/tags σw
by tags under independently uniformly random keys.

The fact that Games 4 and 5 are indistinguishable is shown analogously to the hop from Game 3 to Game 4, that is,
by a hybrid reduction to weak f -indistinguishability of the LIT. Note that this time, we do not have to guess on which
message the challenge LIT will be, since it is the experiment that chooses the keys vkots (which are the messages for
σw) and the order in which they are used.

Game 6. The difference between this game and the previous one is that after running Join for user i, we discard
the obtained gski and replace it with a blind signature on a random secret key. Observe that the game is now
independent of the bit b, as the challenge signature is independent from gski and ski.

If the difference between Games 5 and 6 was non-negligible, we could build an adversary B that breaks weak blindness
of the RwBS scheme as follows. Adversary B receives param, pkBS and skBS from its challenger and hands it to A
as gmpk := pkBS and gmsk := skBS. It simulates Game 5 for A, except when joining user i, it relays A’s messages
impersonating the issuer to its challenger. After obtaining a signature cred from the challenger, B sets gski := cred
and continues the simulation until A outputs d, which B returns to its challenger.

If the challenger’s bit in the weak-blindness game was 0 then gski is a randomization of the signature thatA issued;
A plays thus Game 5. If the bit was 1 then gski is set to a signature on a random message, i.e. a random user key,
which means that A is playing Game 6.

Note that we could not have replaced the blind signature in an earlier game, since it is only weakly blind: the
blindness adversary does not get to see the message, so it could not simulate the anonymity game if the user i’s key
was used elsewhere in the experiment.

We will now prove that our scheme satisfies traceability. We deal with the two ways an adversary could brake this
notion separately.

Traceability Game 1. To win this game, the adversary must output a message, a basename and a signature that verifies
on the latter, as well as a collection of secret keys such that all transcripts accepted by the honest issuer identify to
one of these keys; however the signature does not identify with any of them (and is thus untraceable). Intuitively, the
adversary can win this game is by either forging the blind signature used in the Join/Issue protocol or by breaking
the soundness of the GS proof system by producing a proof for a fake statement. Since GS proofs are perfectly sound
in the binding setting (which is used in Setup), it must be done by a forgery. We will use adversary A against the
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first traceability notion to construct an adversary B1 that wins the unforgeability game of the weak blind signature as
follows:

Adversary B1 receives the public key pkBS from the challenger in the blind-signature unforgeability game and
passes it to A as gmpk. The common reference string crs1 for the GS proof system (used to produce Σ) is chosen to
be a binding one, so we can extract the witness from Σ. In order to win the unforgeability game, we need to output
q+1 signatures on different messages after querying our oracle only q times. The traceability adversary however does
not have a restriction on oracle calls, in particular, he could (according to the instantiation) register one user multiple
times. Now due to randomizability, we can derive many signatures for the same message from one signature, which
will allow us not to “waste” oracle queries.
B1 receives from its challenger the parameters and a public key, which it forwards to A as gmpk. B1 simulates

issuing queries as follows: if A’s message (F1, Ω1), is such that F1 was not contained in any previous query, it
forwards (F1, Ω1) to its BSIssue oracle and forwards the response (A,B,C,D,Ω2) to A. If F1 has already been
queried, it randomizes the oracle’s response it got when it queried it. Note that it cannot adapt Ω2 to a randomization,
which is why this proof has to be zero-knowledge: In the simulation B1 sets up the parameters such that crs2 allows
simulating Ω2. (This was formalized in [6] as requiring “issuer simulatability” from the blind signature scheme.)

Let (σ,m, bsn, sk′1, . . . , sk
′
`) be A’s output where σ = (cred, τ, σw, vkots, Σ, σots). Since σ is valid on m and bsn,

by the soundness ofΣ, we can extract f1(sk∗) and f2(sk∗) on which cred is a valid blind signature and for which τ and
σw are valid on bsn (if bsn 6= ⊥) and vkots, respectively. We have thus IdentifyS(σ,m, bsn, sk∗) = 1. Since IdentifyS

outputs 0 for all sk′i, we have f1(sk∗) 6= f1(sk′i) for all 1 ≤ i ≤ `. Adversary B1 returns (f1(sk∗), f2(sk∗)) and cred
along with the A’s ` different issue queries (f1(sk′i), f2(sk

′
i)) (where f2(sk′i) is extracted from Ω1, which is perfectly

sound) together with the responses of its BSIssue oracle. These are thus `+ 1 different messages and signatures on it,
whereas B1 only made ` oracle queries.

By the unforgeability of the weak blind signature scheme, we have that the probability of this happening is negli-
gible and therefore the pre-DAA scheme satisfies the definition of Traceability 1.

Traceability Game 2. In this game a successful output (σ0,m0, σ1,m1, bsn, sk′) must satisfy the following: σ0 is
valid on m0 and bsn, σ1 is valid on m1 and bsn, both signatures are identified with sk′, but Link on them outputs 0.
For b = 0, 1, let τb be the tag (on bsn) contained in σb. Since winning the game implies bsn 6= ⊥ and both signatures
identify with sk′, we have LITTag(sk′, 0‖bsn) = τ0 and LITTag(sk′, 0‖bsn) = τ1 (by definition of IdentifyS), thus
τ0 = τ1. On the other hand, since σ0 and σ1 do not link and the first three conditions in the definition of Link (see
Fig. 8) are not satisfied we must have τ0 6= τ1. Together, this is a contradiction.

Non-Frameability Game 1. This is the notion whose proof substantially deviates from that of the ROM pre-DAA
scheme in [6] and our first scheme (Sect. 5), which both made use of the fact that we can simulate and extract from
a signature of knowledge at the same time. Using Groth-Sahai proofs directly, we cannot simulate anymore, since we
need to extract a forgery from a successful adversary’s output. We thus deviate from the black-box proof in [6] and
directly use the fact that our tags are weak Boneh-Boyen signatures, and can thus be obtained from a signing oracle.
We give the details:

To win this game, the adversary must output a tuple (σ, i,m, bsn) such that σ = (cred, τ, σw, vkots, Σ, σots) is
valid on m and bsn, and it identifies with honest user i’s key, although that user never produced a signature on m and
bsn. The adversary impersonates the issuer and has at his disposal oracles to join honest users, query signatures from
them, and obtain their secret keys making them dishonest.

By perfect soundness of GS proofs (since crs1 is set up as a binding CRS), from an adversary’s output we can
extract the witness used for Σ contained in σ. Let u(λ) be the maximum number of honest users adversary A creates
in the game (for some polynomial u). We randomly pick a user i ← {1, . . . , u(λ)} and abort if the “framed” user is
not this user i. We have a probability of 1

u(λ) of guessing the correct user.
We first show that by unforgeability of the one-time signature scheme, with overwhelming probability A does

not reuse a value vkots contained in a reply from the Sign oracle: if it does then it must forge a signature σots under
vkots, since it cannot reuse the signature given to it in the response containing vkots. Indeed, let the given one-time
signature’s message be M ′ := (m′, τ ′, bsn′), and let the message of the one contained in the adversary’s output is
M := (m, τ, bsn). We show that M ′ 6= M . Suppose M = M ′, thus m = m′. Moreover, bsn = bsn′ and τ = τ ′,
which (by linkability of the LIT) is only possible if the used secret keys to produce the tags are equal. This now means
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that sk = sk′, meaning the framed user is the same as user i for which the signature was queried. A has thus made a
query (i,m, bsn) to its Sign oracle, and can thus not have won the non-frameability game 1. Moreover, the one-time
signature only needs to be weakly secure, since in the reduction M ′ (which the simulator must query to its signing
oracle) is known before vkots is selected, meaning the simulator can make a weak chosen-message query.

It remains to show that A also has a negligible advantage in winning the game by using a new key vkots. Recall
that the space of basenames is a polynomial-size set {bsn1, . . . , bsnn}. We construct an adversary B against weak
unforgeability of Boneh-Boyen signatures. Let q be the maximum number of Sign queries for user i that A makes in
the game. Adversary B chooses q different one-time-signature key pairs ((skots)j , (vkots)j) for j = 1, . . . , q and sends
the following messages to its challenger to be signed: 0‖bsn1, . . . , 0‖bsnn, 1‖(vkots)1, . . . , 1‖(vkots)q . B receives the
public key (f1(sk), f2(sk)) and the signatures on the requested messages. B can now use these signatures to form the
tags τ and the weak signatures σw in the DAA signatures it must simulate for user i. Moreover, it uses (f1(sk), f2(sk))
as witness to produce an honest proof Σ and skots to make a one-time signature, which completes the simulation of a
DAA signature. B can thus answer any Sign queries on behalf of user i.

If A is successful and has used a vkots that was not used before then σw is a forgery: it is valid on 1‖vkots and
1‖vkots was not queried to the oracle: all keys are different by assumption, and all messages regarding the basenames
start with 0. Together we have that our pre-DAA scheme satisfies the definition of Non-frameability 1.

Non-Frameability Game 2. We argue that it even if the adversary is computationally unbounded, it is impossible for
it to win the second non-frameability game against our pre-DAA scheme construction using the WBB-LIT scheme
and Groth-Sahai proofs.

The adversary wins the game if it can produce two signatures that link with respect to one of two given basenames
and he can demonstrate that they should not have linked due to one of three conditions: a signature verifies to an empty
basename, the signatures verify with respect to different basenames or the signatures do not both trace to the same key.

From the fact that the two provided signatures link with respect to some basename we can deduce that they also
verify with respect to this basename as our linking algorithm outputs ⊥ if they do not.

Let (σ0,m0, bsn0, σ1,m1, bsn1, sk) be a winning adversary’s output. We have that GVf(gmpk, σ0,m0, bsn0) = 1,
GVf(gmpk, σ1,m1, bsn1) = 1 and that Link(gmpk, σ0,m0, σ1,m1, bsn) = 1 for bsn = bsn0 or bsn = bsn1. We
investigate all possible winning conditions:

• Case bsn0 = ⊥: We have that GVf(gmpk, σ0,m0, bsn0) = 1, so the tag τ in σ0 must be ∅. But then the Link
algorithm will reject if bsn =⊥ so it means that we must have bsn = bsn1 6=⊥ but σ0 will not verify to a
non-empty basename when its LIT tag is τ = ∅ (by the definition of the GVf algorithm). Therefore, this is a
contradiction. The same holds for bsn1 = ⊥.

• Case bsn0 6= bsn1, bsn0 6= ⊥ and bsn1 6= ⊥: Here we have that both signatures verify with respect to their distinct
basenames and link with respect to one basename bsn ∈ {bsn0, bsn1}. This means that one of the two signatures
verifies with respect to both basenames.
Let τi for i ∈ {0, 1} be the tag in this signature. Since the signature verifies correctly and the Groth-Sahai proofs in
this setting are perfectly sound, we must have that τi =

[
1

sk+(0‖bsn0)

]
P1 =

[
1

sk+(0‖bsn1)

]
P1. By the deterministic

nature of the WBB-LIT scheme, this implies bsn0 = bsn1, which again is a contradiction.
• Case only one of the signatures identifies to sk: We assume w.l.o.g. that bsn0 = bsn1 6= ⊥ (otherwise, we are in

one of the above cases). The two signatures link with respect to some basename bsn ∈ {bsn0, bsn1} so they must
have identical tags τ0 = τ1. Using the same argument as in the previous case, we have that

[
1

sk+(0‖bsn)

]
P1 =[

1
sk′+(0‖bsn)

]
P1 which, again by the deterministic nature of the WBB-LIT scheme, implies that sk = sk′ which

contradicts the result of applying IdentifyS to one of the signatures (i.e. the one that does not identify w.r.t. sk).

6.2 Efficiency of the Construction

Details of the Verification Equations. We give the details of the equations for the NIZK Groth-Sahai proof contained
in a DAA signature.
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1. Verification Equations for cred = (A,B,C,D):

A 6= 0
e(A, Y ) = e(B,P2) e(C,P ′2) e(−B, f2(sk)) = 1

e(D,P2) = e(A+ C,X)

2. Validity of keys:

e(f1(sk), P2) e(−P1, f2(sk)) = 1

3. Tag and signature validity:

e(τ, f2(sk)) e([(0‖bsn)]τ − P1, P
′
2) = 1

e(σw, f2(sk)) e([(1‖vkots)]σw − P1, P
′
2) = 1

4. Simulation-enabling equation (SEE):

[d]P2 − [d]P ′2 = 0

Following [37], we made the equations simulatable (and thus the proof zero-knowledge) by replacing P2 by a
variable P ′2, which makes the assignment of 0 to all variables a satisfying witness. Note that we rewrote the equations
in 3. above to increase efficiency. SEE in 4. is a multi-scalar multiplication equation in G2 over variables P ′2 ∈ G2

and d ∈ Zp, for which Groth and Sahai [37] also show how to construct proofs. When making a proof, the prover
must make a trivial commitment (which is done using randomness 0 and which does thus not hide the value) to d = 1.
In the soundness setting this gives us P2 = P ′2 and thus soundness of the set of equations. If the CRS is set up for
simulation, GS commitments to Zp elements can be trapdoor-opened to any value. In order to simulate, we set d = 0
and P ′2 = 0, which satisfies the SEE, and allows us to set all other variables to 0 as well.

Efficieny. The group public key contains 2 group elements from G2. Using the weak Boneh-Boyen signatures [9]
as one-time signatures (as done by Groth in a similar construction [34]), a pre-DAA signature is in G25

1 × G11
2 . To

evaluate the performance of our construction, we compare our scheme to standard-model instantiations of the most
related primitive: group signatures satisfying the model from [5]. Groth’s scheme [34] is currently the state of the art
and is the most efficient scheme in the standard model. A group signature consists of 50 group elements of a symmetric
bilinear group.

Transpositions of Groth’s scheme to asymmetric bilinear groups (which are more efficient than their symmetric
counterparts) yield signatures of size G25

1 ×G19
2 and G24

1 ×G15
2 in Type-2 and Type-3 settings, respectively [40]. (In

the notation of [31], an elliptic curve is of Type 2 if G1 6= G2 and there is an efficiently computable isomorphism
from G2 to G1, whereas there is none for Type-3 curves.) We emphasize that linkability, which is inherent to DAA,
is a complex requirement that is not necessitated in group signatures. Moreover, in contrast to the joining protocol
in Groth’s scheme which requires many rounds of interaction, our DAA joining protocol is round-optimal and hence
admits concurrent joining of members.

7 Large Basename Spaces

We note here that by relying on an interactive variant of the q-DDHI assumption used in [41] to construct a pseudo-
random function with a large domain, we would obtain a pre-DAA scheme without any restrictions, i.e., with an
arbitrarily large basename space. The interactive variant of q-DDHI provides the adversary with an oracle for weak
Boneh-Boyen signatures (i.e., VRF or LIT values): the adversary gets Pi, [x]Pi for some random integer x← Zp and
has adaptive access to an oracle which on m replies with [ 1

x+m ]Pi. The adversary is allowed to call the oracle q times
and wins if it can distinguish a BB VRF value on a challenge message of his choice with the condition that such a
message was not queried to the oracle from a random group element from Gi. As the requirement of submitting all
queries upfront is overcome, this immediately yields a fully f -indistinguishable LIT.
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Making this interactive assumption, we can prove the scheme in Sect. 5 anonymous in the same way as the ROM
scheme in [6], now that all components satisfy the original notions.

Unfortunately, for the more efficient scheme given in Fig. 8, the polynomial basename space was also needed in
the proof of non-frameability, where we had to submit all tag queries to our weak signing oracle in advance. (Note
that this problem does not arise in our first scheme, where we rely on the simulation-extractability of the signature of
knowledge, following the proof strategy of [6].)

8 Conclusion and Open Problems

We have constructed the first DAA schemes in the standard model. For our first scheme, we constructed the first
efficient signatures of knowledge which do not require random oracles. In addition, we have provided the first instan-
tiations of randomizable weakly blind signatures in the standard model. As another building block we presented a
linkable indistinguishable tag for a polynomial domain space in the standard model.

We leave as an open problem the construction of a LIT scheme for large domain spaces whose security is based on
standard non-interactive intractability assumptions.

It would also be interesting to investigate under what assumptions our second scheme would support super-
polynomial basename spaces; or what modifications would be necessary. We leave the construction of a scheme with
an efficiency comparable to that of the scheme in Fig. 8 that satisfies the pre-DAA model of [6] without restricting the
number of basenames as another open problem.
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