
Improved Key Recovery Attacks on Reduced-Round AES
in the Single-Key Setting

Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean

École Normale Supérieure, 45 Rue d’Ulm, 75005 Paris, France
{Patrick.Derbez,Pierre-Alain.Fouque,Jeremy.Jean}@ens.fr

Abstract. In this paper, we revisit meet-in-the-middle attacks on AES in the single-key model and
improve on Dunkelman, Keller and Shamir attacks of Asiacrypt 2010. We present the best attack
on 7 rounds of AES-128 where data/time/memory complexities are below 2100. Moreover, we are
able to extend the number of rounds to reach attacks on 8 rounds for both AES-192 and AES-256.
This gives the best attacks on those two versions with a data complexity of 2107 chosen-plaintexts,
a memory complexity of 296 and a time complexity of 2172 for AES-192 and 2196 for AES-256.
Finally, we also describe the best attack on 9 rounds of AES-256 with 2120 chosen-plaintexts and
time and memory complexities of 2203. All these attacks have been found by carefully studying the
number of reachable multisets in Dunkelman et al. attacks.

1 Introduction

The Rijndael block cipher has been designed by Daemen and Rijmen in 1997 and accepted as
the AES (Advanced Encryption Standard) standard since October 2000 by the NIST. Nowadays,
it is probably the most used block cipher. It has very good performances in both software and
hardware on various platforms and it is provably resistant against differential and linear attacks
thanks to the wide trail strategy.

However, new attacks have been recently developed using many ideas from the cryptanalysis
of hash functions. The first analysis studies AES in the strong adversarial model where the
adversary can ask the encryption of a message under a related-key by specifying the relation.
Biryukov, Khovratovich and Nikolic show some drawbacks of the key-schedule algorithms and
how to exploit it in order to mount an attack on the full versions of AES-192 and AES-256
in [4,5,6]. In a second analysis, Dunkelman, Keller and Shamir show more efficient meet-in-the-
middle attacks using ideas from Boomerang attacks on hash function in [12]. Finally, the biclique
attack [7] also uses meet-in-the-middle ideas for preimage attacks on hash functions by Sasaki
et al. [1]. It has been developed by Bogdanov, Khovratovich and Rechberger in [7] and allows to
mount an attack on the full AES for all versions with a marginal time complexity over exhaustive
search.

1.1 Overview of the attacks on AES

The first attack against the AES is the SQUARE attack, proposed by Daemen, Knudsen and
Rijmen against the SQUARE block cipher [8]. In [9], Daemen and Rijmen remark that if we
encrypt a δ-set, i.e. a set of 256 plaintexts where a byte (called active byte) can take all values
and the 15 other bytes are constant, after 3 rounds of Rijndael, the sum of each byte of the 256
ciphertexts equals zero. This distinguishing property can be used to mount efficient attacks up
to 6 rounds. The first attack has a time complexity of 272 encryptions and requires 232 messages,
but it has been improved by Ferguson et al. in time 246 in [13].

Then, Gilbert and Minier show in [14] that this property can be made more precise using
functions of the active byte, which allows to build a distinguisher on 3 rounds. The main idea is to
consider the set of functions mapping one active byte to one byte after 3 rounds. This set depends



on 9 one-byte parameters so that the whole set can be described using a table of 272 entries of
a 256-byte sequence (f(0), . . . , f(255)). Their attack allows to break 7 rounds of AES with a
marginal time complexity over exhaustive search. This idea has been generalized at Fse 2008
by Demirci and Selçuk in [10] using meet-in-the-middle techniques, whereas Gilbert and Minier
used collision between the functions. More specifically, they show that on 4 rounds, the value of
each byte of the ciphertext can be described by a function of the active byte parameterized by 25
in [10] and 24 8-bit parameters in [11]. The last improvement is to notice the 25th parameter is
a key byte which is constant for all functions. Consequently, by considering (f(0)− f(0), f(1)−
f(0), . . . , f(255)− f(0)) we can use only 24 parameters. The main drawback of the meet-in-the-
middle attack is the memory requirement. Indeed, the basic attack only works for the 256-bit
version and then Demirci and Selçuk have to use a time/memory tradeoff to extend the attack
for 192-bit version.

Another idea has been developed by Biham and Keller [3] and is based on a 3-round impossible
differential. Bahrak and Aref in [2] show that there exists a 4-round impossible differential. Later,
this idea has been refined by Lu, Dunkelman, Keller and Kim in [16]. At the present time, it is
the most efficient attack on 7-round AES-128.

At Asiacrypt 2010, Dunkelman, Keller and Shamir develop many new ideas to solve the
memory problems of the Demirci and Selçuk attacks. First of all, they show that instead of storing
the whole sequence, we can only store the associated multiset, i.e. the unordered sequence with
multiplicity rather than the ordered sequence. This reduces the table by a factor 4 and avoids to
guess one key byte during the attack. The second and main idea is the differential enumeration
which allows to reduce the number of parameters that describes the set of functions from 24 to
16. However, to reduce this number, they rely on a special property on a truncated differential
characteristic. The idea consists in using a differential truncated characteristic whose probability
is not too small. The property of this characteristic is that the set of functions from one state
to the state after 4 rounds can only take a restricted number of values, which is much smaller
than the number of all functions. The direct consequence is an increase of the amount of needed
data, but the good news are that the memory requirements are reduced to 2128 and the same
analysis also applies to the 128-bit version. However, this attack is not better than the impossible
differential attack even though many tradeoffs could be used.

Finally, at Crypto 2011, Bouillaguet, Derbez and Fouque describe new meet-in-the-middle
attacks that allow to efficiently break a small number of rounds of AES using a very small amount
of data. These attacks have been found automatically. Similar attacks have been developed
against other symmetric schemes that reuse AES component such as the Pelican-MAC message
authentication code or the LEX stream cipher. However, the complexity of the algorithm that
looks for the best attack is exponential in the number of variables and if we try to take into
account more rounds or more plaintext/ciphertext pairs, then the program does not find anything
of interest. This tool looks promising since improvements on existing attacks usually considered
a small number of rounds. For instance, if we want to improve on Dunkelman et al. attacks, we
need to study 4 rounds of AES.

1.2 Dunkelman, Keller and Shamir’s Attack

In [12], a new attack is developed using ideas from differential and meet-in-the-middle attacks.
In a first stage, differential attacks find a differential characteristic with high or low probabil-
ity covering many rounds. Then, in the online stage, the adversary asks for the encryption of
many pairs: for each pair, the adversary tries to decrypt by guessing the last subkey and if the
differential characteristic is followed, then the adversary increases the counter of the associated



subkey. If the probability of the characteristic is high enough, then the counter corresponding to
the right secret-key would be among the higher counters. In some case, it is also possible to add
some rounds at the beginning by guessing part of the first subkeys.

Here, Dunkelman et al. propose a novel differential attack. Instead of increasing a counter
once a pair is found, the adversary uses another test to eliminate the wrong guesses of the first
or last subkeys. This test decides with probability one whether the middle rounds are covered
with the differential. The idea is that the middle rounds follow a part of the differential and the
function f which associates each byte of the input state to one byte of the output state can be
stored efficiently. Demirci and Selçuk propose to store in a table the function with no differential
characteristic, which turns out to be much larger that this one. Consequently, in Dunkelman et
al.’s attack, the adversary guesses the first and last subkeys and looks for a pair that follows
the beginning and last rounds of the differential characteristic. Once such a pair is found, the
adversary takes one of the messages that follows the characteristic and constructs a structure to
encrypt which is related to a δ-set for the intermediate rounds. From the encryption of this set,
the adversary can decrypt the last rounds and check whether the encryption of this δ-set belongs
to the table. If this is the case, then the part of the first and last subkeys are correct and an
exhaustive search on the other parts of the key allows to find the whole key.

In order to construct the table, the idea is similar to the attack. We need to find a pair of
messages that satisfies the truncated differential characteristic. Then, we take one message in
the pair and we compute the function f . Dunkelman et al. use a rebound technique to find the
pair that follows the characteristic.

1.3 Our Results

Dunkelman et al. show that by using a particular 4-round differential characteristic with a not
too small probability, the active states in the middle of the characteristic can only take 264 values.
In their characteristic, they also need to consider the same 8 key bytes as Demirci and Selçuk.
They claim that In order to reduce the size of the precomputed table, we would like to choose
the δ-set such that several of these parameters will equal to predetermined constants. Of course,
the key bytes are not known to the adversary and thus cannot be "replaced" by such constants.
Here, we show that it is possible to enumerate the whole set of solutions more efficiently that
by taking all the values for the key bytes such that every values of these bytes are possible. We
show that the whole set can take only 280 values with this efficient enumeration technique. Of
course, it might be possible to improve this result to 264 but not any further since the key bytes
may take all the 264 possible values. Using the same ideas, we show that it is possible to have an
efficient enumeration for a 5-round differential characteristic which allows us to mount an attack
on 9 rounds for AES-256. The bottleneck of the attack is no longer the memory, but the time
and data complexities.

In this paper, we show that the number of parameters describing the functions can be further
reduced to 10 and that this attack is now more efficient that the impossible differential attack [16].
We also show that it allows us to attack one more round on AES-256, and for the AES-192 the
attack is comparable even though some improvements can be made. To this end, we use several
tradeoffs proposed by Dunkelman et al. and we use a more careful analysis of the enumeration
technique.

1.4 Organization of the paper

In Section 2, we describe the AES and some properties used by the previous attacks on this
block cipher. In Section 3, we present our basic attack on 7 rounds for all AES versions. Then,



in section Section 4, we show that we can also attack 8 rounds for AES-192 and AES-256 and
even 9 rounds for AES-256.

2 AES and Previous Work

2.1 Description of the AES

The Advanced Encryption Standard (AES) [19] is a Substitution-Permutation Network that can
be instantiated using three different key bit-lengths: 128, 192, and 256. The 128-bit plaintext
initializes the internal state viewed as a 4×4 matrix of bytes as values in the finite field GF (28),
which is defined via the irreducible polynomial x8 + x4 + x3 + x+ 1 over GF (2). Depending on
the version of the AES, Nr rounds are applied to that state: Nr = 10 for AES-128, Nr = 12
for AES-192 and Nr = 14 for AES-256. Each of the Nr AES round (Figure 1a) applies four
operations to the state matrix (except the last one where we omit the MixColumns):

– AddRoundKey (AK) adds a 128-bit subkey to the state.
– SubBytes (SB) applies the same 8-bit to 8-bit invertible S-Box S 16 times in parallel on

each byte of the state,
– ShiftRows (SR) shifts the i-th row left by i positions,
– MixColumns (MC) replaces each of the four column C of the state by M × C where M is

a constant 4× 4 maximum distance separable matrix over GF (28),

AK SB

S

x
x
x
x

SR

C ←M × C

x
x

x
x

MC

wi−1 xi yi zi wi

(a) An AES round applies MC ◦ SR ◦ SB ◦ AK to the state.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(b) Ordering.

Figure 1: Description of one AES round and the ordering of bytes in an internal state.

After the Nr-th rounds has been applied, a final subkey is added to the internal state to
produce the ciphertext. The key expansion algorithms to produce the Nr+1 subkeys for all AES
variants are described in Appendix C (Figure 5). We refer to the original publication [19] for
further details.

Proposition 1 (Differential Property of S). Given ∆i and ∆o two non-zero differences in
F256, the equation

S(x) + S(x+∆i) = ∆o, (1)

has one solution in average. This property also applies to S−1.

Proof. To prevent the prediction of the propagation of differences in the AES, the SBox S as
been chosen so that all differences behave equivalently: none is more frequent than the others.
Consequently, the number of solutions N(∆i, ∆o) of the 8-bit equation (1) is almost constant
for any choice of ∆i and ∆o. In average, we get a constant number of solutions: in general zero
or two, and more rarely four. In detail, for a fixed ∆i, among the 28 − 1 possible ∆o, there are
27−1 of them for which N(∆i, ∆o) = 0, another 27−1 so that N(∆i, ∆o) = 2 and the remaining



one gives N(∆i, ∆o) = 4. Due to symmetry, an even number of solutions means that both x and
x+∆i are valid. In other words, in average, there is one solution to this equation. Consequently,
if both input and output differences ∆i and ∆o are known, then the values are also known. This
property allows to deduce the values from the knowledge of the differences. ut

Notations and units. In this paper, we count the AES rounds from 0 and we refer to a
particular byte of an internal state x by x[i], as depicted in Figure 1b, or x[i, . . . , j] for bytes
as positions between i and j. Moreover, as shown in Figure 1a, in the ith round, we denote the
internal state after AddRoundKey by xi, after SubBytes by yi, after ShiftRows by zi and
after MixColumns by wi. To refer to the difference in a state x, we use the notation ∆x. The
first added subkey is the master key k−1, and the one added after round i is denoted ki. In
some cases, we are interested in swapping the order of the MixColumns and AddRoundKey
operations. As these operations are linear they can be interchanged, by first XORing the data
with an equivalent key and applying the MixColumns operation afterwards. We denote the
equivalent subkey for this new round-function description by:

ui = MC−1(ki) =


14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14

× ki (2)

We measure memory complexities of our attacks in number of 128-bit AES blocks and time
complexities in terms of AES encryptions.

In the following sections, we use particular structures of messages captured by Definition 1
and Definition 2.

Definition 1 (δ-set, [9]). Let a δ-set be a set of 256 AES-states that are all different in one
state bytes (the active byte) and all equal in the other state bytes (the inactive bytes).

Definition 2 (Multisets of bytes). A multiset generalizes the set concept by allowing elements
to appear more than once. Here, a multiset of 256 bytes can take as many as

(
28+28−1

28

)
≈ 2506.17

different values. From the point of view of information theory, we can represent such a multiset
on 512 bits: we propose a way to do so in Appendix A.

2.2 Attack Scheme

In this section, we present a unified view of the previously known meet-in-the-middle (MITM)
attacks on AES [10,12,14], where n rounds of the block cipher can be split into three consecutive
parts of n1, n2 and n3 rounds, n = n1 + n2 + n3, such that a particular set of messages may
verify a certain property that we denote F in the sequel in the middle n2 rounds (Figure 2).

n1 rounds n2 rounds n3 rounds

F

Figure 2: General scheme of the meet-in-the-middle attack on AES, where some messages in the middle rounds
may verify a certain F property used to perform the meet-in-the-middle.



The general attack uses three successive steps:

Precomputation phase

1. In this phase, we build a lookup table T containing all the possible sequences constructed
from a δ-set such that one message verifies the F property.

Online phase

2. Then, in the online phase, we need to identify a δ-set containing a message m verifying
the desired property.

3. Finally, we partially decrypt the associated δ-set through the last n3 rounds and check
whether it belongs to T .

The two steps of the online phase require to guess some key bytes while the goal of this attack
is to filter some of their values. In the best case, only the right ones should pass the test.

Demirci and Selçuk Attack. The starting point is to consider the set of functions

f : {0, 1}8 → {0, 1}8

that maps a byte of a δ-set to another byte of the state after four AES rounds. A convenient way
is to view f as an ordered byte sequence (f(0), . . . , f(255)) so that it can be represented by 256
bytes. The crucial observation made by the generalizing Gilbert and Minier attack is that this
set is tiny since it can be described using 25 byte-parameters (225·8 = 2200) compared with the
set of all functions of this type which counts as many as 28·28 = 22048 elements. Considering the
differences (f(0)− f(0), f(1)− f(0), . . . , f(255)− f(0)) rather than values, the set of functions
can be described by 24 parameters. Dunkelman et al. identify these parameters as follows:

– the full state x3 of message 0,
– four bytes of state x2 of message 0,
– four bytes of subkey k3.

The four bytes of the state x2 which are needed only depend on the column of z1 where the
active byte of the δ-set is located; for instance, if it is column 0, then those bytes are x2[0, 1, 2, 3].
Similarly, the four bytes of k3 depend on the column of x5 where the byte we want to determine
is located; as an example, if it is column 0, then those bytes are k3[0, 5, 10, 15].

In their attacks [10], Demirci and Selçuk use the F property that does not filter any message.
Consequently, they do not require to identify a particular message m. The data complexity of
their basic attack is very small and around 232. However, since there is no particular property, the
size of the table T is very large and the basic attack only works for the AES-256. To mount an
attack on the AES-192, they consider some time/memory tradeoff. More precisely, the table T
does not contain all the possible states, but only a fraction α. Consequently, a specific δ-set may
not be in the table T , so that we have to wait for this event and redo the attack O(1/α) times
on average. The attack becomes probabilistic and the memory requirement makes the attack
possible for AES-192. The consequence of this advanced version of the attack, which also works
for AES-256, is that the amount of data increases a lot. The time and memory requirement of
the precomputation phase is the construction of table T that contains messages for the n2 = 4
middle rounds, which counts as many as 2 8·24 = 2192 ordered sequences of 256 bytes.

Finally, it is possible to remove from each function some output values. Since we know that
these functions can be described by the key of 24 or 32 bytes, one can reduce T by a factor 10
or 8 by storing only the first differences. Such observation has been used by Wei et al. in [20].



Dunkelman et al. Attack. In [12], Dunkelman, Keller and Shamir introduced two new
improvements to further reduce the memory complexity of [10]. The first uses multisets, behaving
as unordered sequences, and the authors show that there is enough information so that the attack
succeeds. The second improvement uses a particular 4-round differential characteristic (Figure 3)
to reduce the size of the precomputed lookup table T , at the expense of trying more pairs of
messages to expect at least one to conform to the truncated characteristic.

z1

MC

ARK

x2

SB

y2

SR MC

ARK

x3

SB

y3

SR MC

ARK

x4

SB

y4

SR MC

AK

x5

Figure 3: The four middle rounds used in the 7-round attack from [12]. Dashed bytes are active, others inactive.

The main idea of the differential characteristic is to fix the values of as many state-bytes as
possible to a constant. Assume now we have a message m such that we have a pair (m,m′) that
satisfies the whole 7-round differential characteristic and our goal is to recover the key. Contrary
to classical differential attacks, where the adversary guesses some bytes of the last subkey and
eliminates the wrong guess, the smart idea of Dunkelman et al. is to use to table to recover the
right key more efficiently. Usually, differential attacks do not use memory to recover the key or
to find the right pair. The attack principle consists in constructing the δ-set from m which can
be made since we already have to guess some key bytes to check if the pair (m,m′) has followed
the right differential characteristic. Then, the table allows to identify the right key from the
encryption of the δ-set.

It is now easy to see that the differential characteristic can be described using only 16 bytes.
The states x3 and y3 can only take 232 possible differences each, so that the number of solutions for
these two states is 264. We also have the 4 key-bytes of u2 and the 4 key-bytes of k3 corresponding
to the active bytes of Figure 3 in states z2 and x4.

The following Table 1 shows the best cryptanalysis of AES variants, including our new results
detailed in this article.

3 New Attack on AES

In this section, we describe our basic attack on AES, which is independent of its key schedule
algorithms. We begin in Section 3.1 by describing an efficient way to enumerate and store all
the possible multisets in the middle that are used to mount the meet-in-the-middle attack. We
continue in Section 3.2 by applying the general scheme previously described to construct a key-
recovery attack on all AES versions reduced to 7 rounds. Finally, in Section 3.3, we show that
modifying slightly the property for the middle rounds allows to trade some memory for data and
time.

3.1 Efficient Tabulation

As in the previous results, our attack also uses a large memory lookup table constructed in the
precomputation phase, and used in the online phase. Dunkelman, Keller and Shamir showed that
if a message m belongs to a pair of states conforming to the truncated differential characteristic
of Figure 3, then the multiset of differences ∆x5[0] obtains from the δ−set constructed from m
in x1 can only take 2128 values, because 16 of the 24 parameters used to build the multisets can



Table 1: Current cryptanalysis of (reduced-round) AES variants in the secret-key model.

Cipher Rounds Data (CP) Time Memory Technique Reference

AES-128

7 2112.2 2117.2 2112.2 Impossible Differential [16]
7 2106.2 2110.2 290.2 Impossible Differential [17]
7 2116 2116 2116 Meet-in-the-Middle [12]
7 2105 299 290 Meet-in-the-Middle Section 3
7 299 299 296 Meet-in-the-Middle Section 3
8 288 2125.3 28 Bicliques [7]

10 (full) 288 2126.2 28 Bicliques [7]

AES-192

7 2116 2116 2116 MITM [12]
7 299 299 296 Meet-in-the-Middle Section 3
8 2113 2172 2129 Meet-in-the-Middle [12]
8 2113 2172 282 Meet-in-the-Middle Section 4.1
8 2107 2172 296 Meet-in-the-Middle Section 4.1
9 280 2188.8 28 Bicliques [7]

12 (full) 280 2189.4 28 Bicliques [7]

AES-256

7 2116 2116 2116 Meet-in-the-Middle [12]
7 299 298 296 Meet-in-the-Middle Section 3
8 2113 2196 2129 Meet-in-the-Middle [12]
8 2113 2196 282 Meet-in-the-Middle Section 4.1
8 2107 2196 296 Meet-in-the-Middle Section 4.1
9 2120 2251.9 28 Bicliques [7]
9 2120 2203 2203 Meet-in-the-Middle Section 4.2

14 (full) 240 2254.4 28 Bicliques [7]
CP: Chosen-plaintext.

take only 264 values instead of 2128. We make the following proposition that reduces the size of
the table by a factor 248.

Proposition 2. If a message m belongs to a pair of states conforming to the truncated differ-
ential characteristic of Figure 3, then the multiset of differences ∆x5[0] obtains from the δ−set
constructed from m in x1 can only take 280 values. More precisely, the 24 parameters (which are
state bytes of m) can take only 280 values in that case. Reciprocally, for each of these 280 values
it exists a tuple (m,m′, k) such that m is set to the chosen value and the pair (m,m′) follows the
truncated differential path.

Proof. The proof uses rebound-like arguments borrowed from the hash function cryptanalysis
domain [18]. Let (m,m′) be a right pair. We show in the following how the knowledge of 10
particular bytes restricts the values of the 24 parameters used to construct the multisets, namely:

x2[0, 1, 2, 3], x3[0, . . . , 15], x4[0, 5, 10, 15]. (3)

In the sequel, we use the state names mentioned in Figure 4. The 10 bytes

∆z1[0], x2[0, 1, 2, 3], ∆w4[0], z4[0, 1, 2, 3]. (4)

can take as many as 280 possible values, and for each of them, we can determine the values of
all the differences shown on Figure 4: linearly in x2, applying the SBox to reach y2, linearly for
x3 and similarly in the other direction starting from z4. By the differential property of the AES



x1

SB

y1

SR

z1

MC

w1

Round 1

u1

MC

k1

ARK

x2

SB

y2

SR

z2

MC

w2

Round 2

u2

•

•
•
• MC

k2

ARK

x3

SB

y3

SR

z3

MC

w3

Round 3

u3

MC

k3
•
•
•
• ARK

x4

SB

y4

SR

z4

MC

w4

Round 4

u4

MC

k4

ARK

x5

SB

y5

Figure 4: Truncated differential characteristic used in the middle of the 7-round attacks on AES.

SBox (Proposition 1), we get in average one value for each of the 16 bytes of state x31. From the
known values around the two AddRoundKey layers of rounds 3 and 4, this suggests four bytes
of the equivalent subkey u2 = MC−1(k2) and four others in subkey k3: those are u2[0], u2[7],
u2[10], u2[13] and k3[0], k3[5], k3[10], k3[15]; they are marked by a bullet (•) in Figure 4.

The reciprocal is now trivial: the only difficulty is to prove that for each value of the 8 key
bytes, there exists a corresponding master key.

To construct the multiset for each of the 280 possible choice for the 10 bytes from (4), we
consider all the 28 − 1 possible values for the difference ∆y1[0], and propagate them until x5.
This leads to a multiset of 28 − 1 differences in ∆x5[0]. Finally, as the AES SBox behaves as a
permutation over F256, the sequence in ∆y1[0] allows to derive the sequence in ∆x1[0]. Note that
in the present case where there is a single byte of difference between m and m′ in the state x1,
both messages belongs to the same δ-set. This does not hold if we consider more active bytes
as we will see in Section 4. We describe in an algorithmic manner this proof in Algorithm 3 of
Appendix B (ConstructTable). ut

3.2 Simple Attack

Precomputation phase. In the precomputation phase of the attack, we build the lookup table
that contains the 280 multisets for difference ∆x5 by following the proof of Proposition 2. This
step is performed by first iterating on the 280 possible values for the 10 bytes of (4) and for each
of them, we deduce the possible values of the 24 original parameters. Then, for each of them,
we construct the multiset of 28 − 1 differences. Using the differential property of the AES SBox
(Proposition 1), we can count exactly the number of multisets that are computed:

280 ×
(
4× 28 − 1

(28 − 1)2
+ 2× (28 − 1)(27 − 1− 1)

(28 − 1)2

)16

≈ 280.09. (5)

1In fact, only 264 values of the 10 bytes lead to a solution for x3 but for each value, there are 216 solutions
for x3.



Finally, the lookup table of the 280.09 possible multisets that we simplify to 280 requires about 282

128-bit blocks to be stored. To construct the table, we have to perform 280 partial encryptions
on 256 messages, which we estimate to be equivalent to 284 encryptions.

Online phase. The online phase splits into three parts: the first one finds pairs of messages
that conform to the truncated differential characteristic of Figure 6, which embeds the previous
4-round characteristic in the middle rounds. The second step uses the found pairs to create a
δ-set and test them against the precomputed table and retrieve the secret key in a final phase.

To generate one pair of messages conforming to the 7-full-round characteristic where there
are only four active bytes in both the plaintext and the ciphertext differences, we prepare a
structure of 232 plaintexts where the diagonal takes all the possible 232 values, and the remaining
12 bytes are fixed to some constants. Hence, each of the 232 × (232 − 1)/2 ≈ 263 pairs we can
generate satisfies the plaintext difference. Among the 263 corresponding ciphertext pairs, we
expect 263 · 2−96 = 2−33 to verify the truncated difference pattern. Finding one such pair then
requires 233 structures of232 messages and 232+33 = 265 encryptions under the secret key. Using
this secret key, the probability that the whole truncated characteristic of Figure 6 is verified is
2−2×3×8 = 2−48 because of the two 4 → 1 transitions in the MixColumns of rounds 0 and 5.
By repeating the previous procedure to find 248 pairs, one is expected to verify the full 7-round
characteristic. All in all, we ask the encryptions of 248+65 = 2113 messages to find 248 pairs of
messages. Note that we do not have to examine each pair in order to find the right one. Indeed,
if a pair verifies the full 7-round characteristic, then the ciphertext difference has only four active
bytes. Thus, we can store the structures in a hash table indexed by the 12 inactive bytes to get
the right pairs in average time one.

For each of the 248 pairs, we get 28×(8−2×3) · 28 = 224 suggestions for the 9 key bytes:

k−1[0, 5, 10, 15], u5[0], u6[0, 7, 10, 13]. (6)

Indeed, there are 28 possibilities for the bytes from k−1 since the pair of diagonals in x0 need
to be active only in w0 after the MixColumns operation. Among the 232 possible values for
those bytes, only 232 × 2−24 = 28 verifies the truncated pattern. The same reasoning applies for
u6[0, 7, 10, 13], and the last byte u5[0] can take all the 28 values.

For every 224 possibility, we construct a δ-set to use the precomputed table. To do so, we
partially decrypt the diagonal of one message, using the four known bytes from k−1 and consider
the 28 − 1 possible non-zero differences for ∆x1[0]. This gives one set of 28 plaintexts, whose
corresponding ciphertexts may be partially decrypted using the four known bytes from u6 and
the one from u5. Once decrypted, we can construct the multiset of differences for ∆x5 and check
if it lies in the precomputed lookup table. If not, we can discard the subkey with certainty. On the
other hand, the probability for a wrong guess to pass this test is smaller than 280 ·2−467.6 = 2−387.6

so, as we try 248 · 224 = 272 multisets, only the right subkey should verify the test. Note that the
probability is 2−467,6 (and not 2−506.17) because the number of ordered sequences associated to
a multiset is not constant.

We summarize the above description if the following Algorithm 1, where the initial call to
the function ConstructTable(0, 0) constructs the lookup table for ∆x1 and ∆x5 both at position
0 (Figure 4) and is defined in Appendix B.

To evaluate the complexity of the online phase of the simple attack, we count the number
of AES encryptions. First, we ask the encryption of 2113 chosen-plaintexts, so that the time
complexity for that step is already 2113 encryptions. Then, for each of the 248 found pairs,
we perform 224 partial encryptions/decryptions of a δ-set. We evaluate the time complexity of



Algorithm 1 – A simple attack.
1: function SimpleAttack
2: T0,0 ← ConstructTable(0, 0). # Construction of the Table
3: while true do # 281 times on average
4: Ask for a structure S of 232 plaintexts Pm where bytes in diagonals 0 assume all values.
5: Empty a hash table T of list of plaintext.
6: for all corresponding ciphertexts Cm do
7: index← MC−1(Cm)[1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15].
8: for all P ∈ T [index] do
9: Consider the pair (P, Pm). # 2−33 pairs by structure on average
10: for all k−1[0, 5, 10, 15] s.t. ∆w0[1, 2, 3] = 0 do # 28 times on average
11: Construct δ-set D from P . # The δ-set belongs to the structure
12: for all u6[0, 7, 10, 13] s.t. ∆z5[1, 2, 3] = 0 do
13: Decrypt column 0 of x6 for D.
14: for all u5[0] do # 28 times
15: Decrypt byte 0 of x5 for D.
16: Construct multiset M of ∆x5.
17: if M ∈ T0,0 then
18: return ExhaustiveSearch()
19: T [index]← T [index] ∪ {Pm}.
20: end while

this part to 248+24+8 · 2−5 = 275 encryptions since we can well ordering the computations as
see in Algorithm 1. All in all, the time complexity is dominated by 2113 encryptions, the data
complexity is 2113 chosen-plaintexts, and the memory complexity is 282 since it requires to store
280 multisets.

3.3 Efficient Attack: New Property F
Unlike the previous attacks where the bottleneck complexity is the memory, our attack uses
a smaller table which makes the time complexity to find the pairs being the dominating one.
Therefore, we would like to decrease the time spent in that phase. The natural idea is to find a
new property F for the four middle rounds that can be checked more efficiently. To do so, we
reuse the idea of Dunkelman et al. from [12], which adds an active byte in the second round of
the differential characteristic. The sequence of active bytes becomes:

8
R0−→ 2

R1−→ 4
R2−→ 16

R3−→ 4
R4−→ 1

R5−→ 4
R6−→ 16, (7)

with the constraint that the two active bytes of the second round belong to the same diagonal
to be transformed in a column in the next round.

As a consequence, it is now easier to find pairs conforming to that truncated differential
characteristic. Indeed, the size of the structures of plaintexts may take as many as 264 different
values, so that we can construct at most 264 · (264 − 1)/2 = 2127 pairs from each. Therefore, it
is enough to ask the encryption of 28·3·3/2127−8·12 = 241 structures to get 272 pairs, and expect
one to conform to the 7-round characteristic of Figure 7. Consequently in this new setting, we
only need 2105 chosen plaintexts. In return, the number of pairs that the adversary have to
consider is increased by a factor 224 and so the time complexity too. Furthermore, we now need
11 parameters to generate the 24 of the precomputed table increasing the memory requirement
by a factor 28. All in all, the time complexity of this attack is 224+75 = 299 encryptions, the data
complexity is 2105 chosen plaintexts and the memory requirement is 282+8 = 290 128-bit blocks.



Assuming that the bytes of diagonals 0 and 2 of the structure of plaintexts takes all the
values2, the two differences in the first state of the second round can take four different positions:
(0, 10), (1, 11), (2, 8) and (3, 9). Similarly, the position of the active byte in the penultimate round
is not constrained; it can be placed anywhere on the 16 positions. These possibilities actually
define tweaked versions of the property F and allows to trade some time for memory: with less
data, we can check more tables for the same final probability of success. Namely, by storing
4×16 = 26 tables to cover all the cases by adapting the proof of Proposition 2, the encryption of
241/26 = 235 structures of 264 plaintexts suffices to expect a hit in one of the 26 tables. Therefore,
the memory complexity reaches 296 AES blocks and the time complexity remains unchanged since
we analyze 26 times less pairs, but the quantity of work to check one pair is multiplied by the
same factor.

Algorithm 2 – An efficient attack.
1: function EfficientAttack
2: for all (i, j) ∈ {0, . . . , 3} × {0, . . . , 15} do # Construction of the 26 Tables
3: Ti,j ← ConstructTable2(i, j).
4: while true do # 235 times on average
5: Ask for a structure S of 264 plaintexts Pm where bytes in diagonals 0 and 1 assume all values.
6: for all k ∈ {0, . . . , 3} do # Position of the non-zero column of ∆x6
7: Empty a hash table T of list of plaintext.
8: for all corresponding ciphertexts Cm do
9: index← (SR−1 ◦MC−1(Cm))[{0, . . . , 15} − {4k, . . . , 4k + 3}].
10: for all P ∈ T [index] do
11: Consider the pair (P, Pm). # 233 pairs by structure on average
12: for all (i, lj) ∈ {0, . . . , 3} × {0, . . . , 3} do
13: j ← 4k − 3lj mod 16. # Assume mod give a positive result.
14: OnlinePhase ((P, Pm) , i, j, Ti,j , S).
15: T [index]← T [index] ∪ {Pm}.
16: end while
1: function OnlinePhase((m,m′) , i, j, T, S)
2: bj ← (j − 4× (j mod 4)) mod 16. # Retrieving the right positions
3: cj ← bbj/4c. # because of the ShiftRows.
4: Colj ← {4cj , . . . , 4cj + 3}
5: for all k−1[0, 5, 10, 15] s.t. ∆w0[{0, . . . , 3} − {i}] = 0 do
6: Construct δ-set D from m.
7: for all SR(u6)[Colj ] s.t. ∆z5[Colj − {j}] = 0 do
8: Decrypt column cj of x6 for D.
9: for all u5[bj ] do
10: Decrypt byte j of x5 for D.
11: Construct multiset M of ∆x5.
12: if M ∈ T then
13: return ExhaustiveSearch()

3.4 Turning the distinguisher into a key recovery

In this section, we present an efficient way to turn this distinguisher into a key recovery. First, let
us summarize what the opponent has in his possession at the end of the efficient attack: a pair

2Those are bytes 1, 3, 4, 6, 9, 11, 12 and 14.



(m,m′) following the truncated differential characteristic, a δ-set containing m, the knowledge
of 9 key bytes and the corresponding multiset for which we found a match in the precomputed
table. Thus, there are still 256, 2120 or 2184 possible keys, if we consider AES-128, AES-192 or
AES-256 respectively. As a consequence, performing an exhaustive search to find the missing
key bytes would drastically increase the complexity of the whole attack, except for the 128-bit
version. Even in that case, it seems nontrivial to recover the 256 possible keys in less than 296,
as the 9 key bytes do not belong to the same subkey.

A natural way to recover the missing bytes would be to replay the attack by using different
positions for the input and output differences. Unfortunately, this increases the complexity, and
it would also interfere with the trade-off since we could not look for all the possible positions of
the differences anymore.

We propose a method that recovers the last subkey and 4 bytes of the penultimate subkey
in a negligible time compared to the 299 encryptions of the efficient attack. This is based on
a simple observation made in Section 2.2: for any fixed position of the active byte of the δ-set
in x1, the set of the 24 parameters necessary to build the multisets of differences in one byte b
of x5 only depends on the column where b is located. Thus, the parameters used in the offline
phase to construct the multiset that was matched during the online phase, can be reused in
order to mount three others tests. More precisely, the adversary begins by recovering the values
of the 24 parameters used to build the checked multiset. For instance, this can be done by
storing this information during the precomputation phase. Then, for each byte of the column
where the output difference is located, the adversary builds the corresponding multiset using the
parameters, guess the four bytes of the last subkey as well as the one of the penultimate necessary
to partially decrypt the δ-set and build the multiset, actually builds the multiset and look for
a match. Only the right values should pass those three tests so that the adversary retrieves the
value of the last subkey and four bytes of the penultimate.

Note that this requires to store 24 × 8 = 192 bits of additional information by multiset. To
reduce it and to keep the complexity around 240, we can only store the values of only 6 of the 11
bytes used to generate the parameters. In return, we have 240 possibilities for the 24 parameters
and so this part would require to store as many multisets.

Some key bytes of u5 are still missing and to recover them, the adversary may apply a 6-
round attack fast enough as the attack of Ferguson et al. in time 246 in [13], or a dedicated
guess-and-determine attack since the adversary already knows 32 key bytes, which spreads over
all the subkeys.

4 Extension to more rounds

4.1 8-round attacks on AES-192 and AES-256

We can extend the simple attack on the AES presented Section 3.2 to an 8-round attack for
both 192- and 256-bit versions by adding one additional round at the end. The main difficulty
compared to the previous attack is that we cannot apply a first step to the structure to filter the
wrong pairs. Indeed, now for each pair from the structure, there exists at least one key such that
the pair follows the differential characteristic. Then our goal is to enumerate, for each pair and
as fast as possible, the key bytes needed to identify a δ-set and construct the associated multiset
assuming that the pair is a right one.

The main idea to do so is the following: if there is a single non-zero difference in a column
of a state before (resp. after) the MixColumns operation, then the difference on same column
in the state after (resp. before) can only assume 28 − 1 values among all the (28 − 1)4 possible



ones. Combined to the key schedule equations and to the differential property of the AES SBox
(Proposition 1), this leads to an attack requiring 2113 chosen plaintexts, 282 128-bit blocks of
storage and and a time complexity equivalent to 2172 (resp. 2196) encryptions on AES-192 (resp.
AES-256).

To reach this time complexity, the position of the output active byte must be chosen carefully.
The position of the input active byte for both the pair and the δ-set must be identical, as well as
the output active byte of the pair and the byte that is to be checked. Then, the output difference
must be located at position 1, 6, 11 or 12 in the case of AES-192. As for the AES-256, it can
be located anywhere, except on bytes 0, 5, 10 and 15. Finally, in both cases, the position of the
input difference does not matter.

Assume that the positions of the input and output active bytes are respectively 0 and 1. In
the first stage of the attack, we ask for the encryption of 281 structures of 232 plaintexts. Then,
the following procedure applied on each of the 281 · 232+31 = 2144 pairs allows to enumerate
the 224 possible values for the needed key bytes in about 224 simple operations for the 192-bit
version:

1. (a) Guess the difference in column 0 of x0.
(b) Deduce the actual values in this column.
(c) Deduce bytes 0, 5, 10 and 15 of k−1.
(d) Store all these values in a hash table T−1 indexed by k−1[15].

2. Guess the difference in column 3 of x6.
3. (a) Guess the difference in columns 0 and 1 of x7.

(b) Deduce the actual values of these two columns.
(c) Deduce the actual values of x6[14] and x6[15].
(d) Deduce u6[3], u6[6] and bytes 0, 1, 4, 7, 10, 11, 13 and 14 of k7 (or u7 if we do not omit

the last MixColumns).
(e) Store all these values in a hash table T7.

4. (a) Similarly, guess the difference in the two other columns of x7 and deduce u6[9], u6[12]
and the 8 others bytes of the last subkey.

(b) Retrieve u6[3], u6[6] and bytes 0, 1, 4, 7, 10, 11, 13 and 14 of k7 (resp. u7) using T7 since
u6[3] and u6[6] are linearly dependent of k7 (and also of u7).

(c) Deduce u5[13] and k−1[15] from k7.
(d) Get bytes 0, 5 and 10 of k−1 using T−1.

The fact we can deduce u5[13], u6[3], u6[6] comes from the following observation.

Proposition 3. By the key schedule of AES-192, knowledge of the subkey k7 allows to linearly
deduce columns 0 and 1 of k6 and column 3 of k5.

In contrast, to deduce k−1[15] from k7, we need a more complicated observation made by Dunkel-
man et al. in [12].

Proposition 4 (Key bridging, [12]). By the key schedule of AES-192, the knowledge of
columns 0, 1, 3 of the subkey k7 allows to deduce column 3 of the whitening key k−1.

Note that it is now easy to see why the choice of the input active byte does not affect the
complexity and why only four positions for the output active byte lead to the minimal complexity.

Finally, for each of the 2144 pairs and for each of the 224 subkeys corresponding to one pair,
the adversary identifies the δ-set and verifies whether the corresponding multiset belongs to the
precomputed table. Thus, the time complexity of this part is equivalent to 2144 ·224 ·28 ·2−4 = 2172

encryptions.

In the case of the 256-bit version, k6 and k7 are independent and the only key schedule
property we can use is the following one.



Proposition 5. By the key schedule of AES-256, knowledge of the subkey k7 allows to linearly
deduce columns 1, 2 and 3 of k5.

Then, there are 248 possible values for the required key bytes and a procedure like the previous
one enumerates them in 248 simple operations.

It is possible to save some data in exchange for memory by considering several differentials in
parallel. We can bypass the fact that all the positions for the output active byte not lead in the
same complexity by performing the check on y5 instead of x5. This is done by just adding one
parameter to the precomputed table and increases its size by a factor 28. Then, we can look for
all the 4 · 16 = 26 differentials in parallel on the same structure. All in all, the data complexity
and the memory requirement become respectively 2107 chosen plaintexts and 296 128-bit blocks.

4.2 9-round attack on AES-256

The 8-round attack on AES-256 can be extended to an attack on 9-round by adding one round
right in the middle (see Figure 9). This only increases the memory requirements: the time and
data complexities remain unchanged. More precisely, the number of parameters needed to con-
struct the precomputed table turns 24 + 16 = 40, but they can only assume 28×(10+16) = 2208

different values. All in all, the data complexity of the attack stays at 2113 chosen-plaintexts, the
time complexity remains 2196 encryptions and the memory requirement reaches about 2210 128-
bit blocks. To reduce its complexity, we can covert only a fraction 2−7 of the possible multisets
stored in the precomputed table. In return, the data and time complexities are increased by a
factor 27 by replaying the attack several times. This way, we reach the complexities mentioned
in Table 1.

5 Conclusion

In this article, we have provided improved cryptanalysis of reduced variants of all the AES ver-
sions in the standard single-key model, where the adversary wants to recover the secret key.
In particular, we present an attack on 7-round of all AES versions that runs in less than 2100

encryptions of chosen-plaintexts. To the best of our knowledge, this is currently the most effi-
cient result on AES-128 in this model. Additionally, we show we can turn this algorithm into
attacks for AES-192 and AES-256 on 8 rounds, in time equivalent to 2172 and 2196 encryptions
respectively, and we even reach an attack on 9 rounds of AES-256 in about 2203 encryptions.

Those results fit into the scheme on both differential and meet-in-the-middle attacks, which
have been extensively studied in the past. In details, our algorithms improve on known techniques
by drastically reducing the memory requirements so that the overall bottleneck switches from
memory complexity in the previous meet-in-the-middle attacks to time or data complexity in
our case.

As those complexities remain merely theoretical and also because the AES provides a good
security margin, the block cipher is not threaten. Nevertheless, we believe the strategy behind
these algorithms may pave the way for new cryptanalysis techniques.

References

1. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA-0 and SHA-1. [15] 70–89
2. Bahrak, B., Aref, M.R.: A Novel Impossible Differential Cryptanalysis of AES. In: WEWoRc. (2007)
3. Biham, E., Keller, N.: Cryptanalysis of Reduced Variants of Rijndael. Technical report, Computer Science

Department, Technion – Israel Institute of Technology (2000)



4. Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key Recovery Attacks of Practical
Complexity on AES-256 Variants with up to 10 Rounds. In Gilbert, H., ed.: Eurocrypt. Volume 6110 of
Lecture Notes in Computer Science., Springer (2010) 299–319

5. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192 and AES-256. In Matsui,
M., ed.: Asiacrypt. Volume 5912 of Lecture Notes in Computer Science., Springer (2009) 1–18

6. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and Related-Key Attack on the Full AES-256. [15]
231–249

7. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the Full AES. In Lee, D.H., Wang,
X., eds.: Asiacrypt. Volume 7073 of Lecture Notes in Computer Science., Springer (2011) 344–371

8. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In Biham, E., ed.: Fse. Volume 1267 of
Lecture Notes in Computer Science., Springer (1997) 149–165

9. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1998)
10. Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In Nyberg, K., ed.: Fse. Volume

5086 of Lecture Notes in Computer Science., Springer (2008) 116–126
11. Demirci, H., Taskin, I., Çoban, M., Baysal, A.: Improved Meet-in-the-Middle Attacks on AES. In Roy, B.K.,

Sendrier, N., eds.: Indocrypt. Volume 5922 of Lecture Notes in Computer Science., Springer (2009) 144–156
12. Dunkelman, O., Keller, N., Shamir, A.: Improved Single-Key Attacks on 8-Round AES-192 and AES-256.

In Abe, M., ed.: Asiacrypt. Volume 6477 of Lecture Notes in Computer Science., Springer (2010) 158–176
13. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.: Improved Cryptanalysis

of Rijndael. In Schneier, B., ed.: Fse. Volume 1978 of Lecture Notes in Computer Science., Springer (2000)
213–230

14. Gilbert, H., Minier, M.: A Collision Attack on 7 Rounds of Rijndael. In: AES Candidate Conference. (2000)
230–241

15. Halevi, S., ed.: Advances in Cryptology - Crypto 2009, 29th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2009. Proceedings. In Halevi, S., ed.: Crypto. Volume 5677 of
Lecture Notes in Computer Science., Springer (2009)

16. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New Impossible Differential Attacks on AES. In Chowdhury,
D.R., Rijmen, V., Das, A., eds.: Indocrypt. Volume 5365 of Lecture Notes in Computer Science., Springer
(2008) 279–293

17. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved Impossible Differential Cryptanalysis
of 7-Round AES-128. In Gong, G., Gupta, K.C., eds.: Indocrypt. Volume 6498 of Lecture Notes in Computer
Science., Springer (2010) 282–291

18. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced
Whirlpool and Grøstl. In Dunkelman, O., ed.: Fse. Volume 5665 of Lecture Notes in Computer Science.,
Springer (2009) 260–276

19. NIST: Advanced Encryption Standard (AES), FIPS 197. Technical report, NIST (November 2001)
20. Wei, Y., Lu, J., Hu, Y.: Meet-in-the-Middle Attack on 8 Rounds of the AES Block Cipher under 192 Key

Bits. In Bao, F., Weng, J., eds.: ISPEC. Volume 6672 of Lecture Notes in Computer Science., Springer (2011)
222–232

A Multiset Representation

As there are about
(
28+28−1

28

)
≈ 2506.17 multisets of 256 elements from F256, we are able to

represent them on 512 bits. Here is one way of doing it for a given multiset M . In the sequel, we
consider that M = {xn1

1 , . . . , x
nm
m }, with

∑m
i=1 ni = 256, that we may represent by

x1 x1 x1 x1︸ ︷︷ ︸
n1

∣∣∣ x2 x2 x2︸ ︷︷ ︸
n2

∣∣∣ . . . ∣∣∣ xm xm xm xm xm︸ ︷︷ ︸
nm

, (8)

where the distinct elements are the m elements xi, which appears each with multiplicity ni. In
M , the order of the elements is undetermined.

Consider the set S = {x1, . . . , xm} deduced from M by deleting any repetition of element in
M . As there are at most 256 elements in S, we can encode whether e ∈ F256 belongs to S in a
256-bit number s by a 1-bit flag at the position e seen as an index in [0, . . . , 255] in s. Then, to
express the repetition of element, we sort M using the natural order in the integers and consider
the sequence of multiplicity of each distinct element: if x1 < · · · < xm, then we consider the
sequence n1, . . . , nm. We use a second 256-bit number t to store the sequence of (

∑i
j=1 nj)i seen

as indexes in t, which actually encodes the positions of the vertical separators in the multiset
representation (8). The 512-bit element (s, t) then represents the multiset M .



B Construction of tables

Algorithm 3 – Construction of the tables.
1: function ConstructTable(i, j)
2: bi ← i− 4(i mod 4) mod 16. # Retrieving the right positions
3: ci ← bbi/4c. # because of the ShiftRows.
4: cj ← bj/4c.
5: Empty a lookup table T .
6: Guess values of the five bytes ∆z1[bi], x2[4ci], x2[4ci + 1], x2[4ci + 2], x2[4ci + 3].
7: Deduce differences in ∆x3.
8: Guess values of the five bytes ∆w4[j], w4[4cj ], w4[4cj + 1], w4[4cj + 2], w4[4cj + 3].
9: Deduce differences in ∆y3.
10: Use the differential property of the AES SBox to deduce the values in x3 and x′3.
11: Deduce SR−1(u2)[4ci], SR−1(u2)[4ci + 1], SR−1(u2)[4ci + 2], SR−1(u2)[4ci + 3].
12: Deduce SR(k3)[4cj ], SR(k3)[4cj + 1], SR(k3)[4cj + 2], SR(k3)[4cj + 3].
13: Empty a multiset M .
14: for all the differences ∆z1[bi] do
15: Obtain a column x2, and then a state x3.
16: Add ∆x5[j] to M .
17: Add M to the lookup table T .
18: return T of size ≈ 280.
1: function ConstructTable2(i, j)
2: bi ← i− 4(i mod 4) mod 16. # x1[i] must be located on column 0
3: ci ← bbi/4c.
4: k ← ((i+ 1) mod 4) + 4. # Position of the active byte on column 1 of x1
5: bk ← k − 4(k mod 4) mod 16.
6: cj ← bj/4c.
7: Empty a lookup table T .
8: Guess values of the six bytes ∆z1[bi], ∆z1[bk], x2[4ci], x2[4ci + 1], x2[4ci + 2], x2[4ci + 3].
9: Deduce differences in ∆x3.
10: Guess values of the five bytes ∆w4[j], w4[4cj ], w4[4cj + 1], w4[4cj + 2], w4[4cj + 3].
11: Deduce differences in ∆y3.
12: Use the differential property of the AES SBox to deduce the values in x3 and x′3.
13: Deduce SR−1(u2)[4ci], SR−1(u2)[4ci + 1], SR−1(u2)[4ci + 2], SR−1(u2)[4ci + 3].
14: Deduce SR(k3)[4cj ], SR(k3)[4cj + 1], SR(k3)[4cj + 2], SR(k3)[4cj + 3].
15: Empty a multiset M .
16: for all the differences ∆z1[bi] do
17: Obtain a column x2, and then a state x3.
18: Add ∆x5[j] to M .
19: Add M to the lookup table T .
20: return T of size ≈ 288.



C All Key-Schedule versions of AES

«S

(a) AES-128.

«S

(b) AES-192

«S

S

(c) AES-256

Figure 5: Key schedules of the variants of the AES: AES-128, AES-192 and AES-256.



D Truncated differential characteristics used in the attacks

D.1 Simple Attack on 7-round AES

P

?
?
?
?

k−1

ARK

x0

SB

y0

SR

z0

MC

w0

Round 0

u0

MC

k0

ARK

x1

SB

y1

SR

z1

MC

w1

Round 1

u1

MC

k1

ARK

x2

SB

y2

SR

z2

MC

w2

Round 2

u2

MC

k2

ARK

x3

SB

y3

SR

z3

MC

w3

Round 3

u3

MC

k3

ARK

x4

SB

y4

SR

z4

MC

w4

Round 4

u4

MC

k4

ARK

x5

SB

y5

SR

z5

MC

w5

Round 5

u5

MC

k5

ARK

x6

SB

y6

SR

z6

MC

w6

Round 6

?

?
?
?

u6

MC

k6

ARK

x7

Figure 6: Complete 7-round truncated differential characteristic used in the simple attack of Section 3.



D.2 Efficient Attack on 7-round AES

P

?
?
?
?

?
?

?
?

k−1

ARK

x0

SB

y0

SR

z0

MC

w0

Round 0

u0

MC

k0

ARK

x1

SB

y1

SR

z1

MC

w1

Round 1

u1

MC

k1

ARK

x2

SB

y2

SR

z2

MC

w2

Round 2

u2

MC

k2

ARK

x3

SB

y3

SR

z3

MC

w3

Round 3

u3

MC

k3

ARK

x4

SB

y4

SR

z4

MC

w4

Round 4

u4

MC

k4

ARK

x5

SB

y5

SR

z5

MC

w5

Round 5

u5

MC

k5

ARK

x6

SB

y6

SR

z6

MC

w6

Round 6

?

?
?
?

u6

MC

k6

ARK

x7

Figure 7: Complete 7-round truncated differential characteristic used in the efficient attack of Section 3.



D.3 Attack on 8-round AES

P

k−1

ARK

x0

SB

y0

SR

z0

MC

w0

Round 0

u0

MC

k0

ARK

x1

SB

y1

SR

z1

MC

w1

Round 1

u1

MC

k1

ARK

x2

SB

y2

SR

z2

MC

w2

Round 2

u2

MC

k2

ARK

x3

SB

y3

SR

z3

MC

w3

Round 3

u3

MC

k3

ARK

x4

SB

y4

SR

z4

MC

w4

Round 4

u4

MC

k4

ARK

x5

SB

y5

SR

z5

MC

w5

Round 5

u5

MC

k5

ARK

x6

SB

y6

SR

z6

MC

w6

Round 6

u6

MC

k6

ARK

x7

SB

y7

SR

z7

MC

w7

Round 7

u7

MC

k7

ARK

x8

Figure 8: Complete 8-round truncated differential characteristic used in the attack of Section 4.1.



D.4 Attack on 9-round AES

P

k−1

ARK

x0

SB

y0

SR

z0

MC

w0

Round 0

u0

MC

k0

ARK

x1

SB

y1

SR

z1

MC

w1

Round 1

u1

MC

k1

ARK

x2

SB

y2

SR

z2

MC

w2

Round 2

u2

MC

k2

ARK

x3

SB

y3

SR

z3

MC

w3

Round 3

u3

MC

k3

ARK

x4

SB

y4

SR

z4

MC

w4

Round 4

u4

MC

k4

ARK

x5

SB

y5

SR

z5

MC

w5

Round 5

u5

MC

k5

ARK

x6

SB

y6

SR

z6

MC

w6

Round 6

u6

MC

k6

ARK

x7

SB

y7

SR

z7

MC

w7

Round 7

u7

MC

k7

ARK

x8

SB

y8

SR

z8

MC

w8

Round 8

u8

MC

k8

ARK

x9

Figure 9: Complete 9-round truncated differential characteristic used in the attack of Section 4.2.


	Introduction
	Overview of the attacks on AES
	Dunkelman, Keller and Shamir's Attack
	Our Results
	Organization of the paper

	AES and Previous Work
	Description of the AES
	Attack Scheme

	New Attack on AES
	Efficient Tabulation
	Simple Attack
	Efficient Attack: New Property 
	Turning the distinguisher into a key recovery

	Extension to more rounds
	8-round attacks on AES-192 and AES-256
	9-round attack on AES-256

	Conclusion
	Multiset Representation
	Construction of tables
	All Key-Schedule versions of AES
	Truncated differential characteristics used in the attacks
	Simple Attack on 7-round AES
	Efficient Attack on 7-round AES
	Attack on 8-round AES
	Attack on 9-round AES


