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Abstract. Efficient signature scheme whose security is relying on reliable assumptions is important. There
are few schemes based on the standard assumptions such as the Diffie-Hellman (DH) in the standard model.
We present a new approach for (hash-and-sign) DH-based signature scheme in the standard model. First,
we combine two known techniques, programmable hashes and a tag-based signature scheme so that we
obtain a short signature scheme with somewhat short public key of Θ( λ

log λ
) group elements. Then, we

developed a new technique for asymmetric trade between the public key and random tags, which are part
of signatures. Roughly speaking, we can dramatically reduce the public key size by adding one field element

in each signature. More precisely, our proposal produces public key of Θ(
√

λ
log λ

) group elements, where λ

is the security parameter. The signature size is still short, requiring two elements in a group of order p and
two integers in Zp.

In our approach, we can guarantee the security against adversaries that make an a-priori bounded number
of queries to signing oracle (we call bounded CMA). i.e., the maximum number q of allowable signing queries
is prescribed at the parameter generating time. Note that for polynomial q, we limit ourselves to dealing
with only polynomial-time reductions in all security proofs.

1 Introduction

Digital signature scheme is one of fundamental primitives of modern cryptography and is used in many cryp-
tographic protocols as an important building block. From both a practical and theoretical standpoint, it is
important to design efficient signature schemes whose security is proven under reliable assumptions. Most of
efficient signature schemes follow a hash-and-sign paradigm (rather than a tree-based approach [17, 13]) to ob-
tain efficient signature scheme, in particular short signatures; collision-resistant hash functions mapping from an
arbitrarily long message to a short bit-string are first used, then the hashed message is signed onto. Each of them
requires strong assumptions (e.g., random oracles [19, 36, 34, 2, 7, 22, 21], strong RSA assumptions [20, 15, 18],
q-strong type assumptions [6, 35, 24, 26], or LRSW assumption [9]), inefficient signing/verification processes [28,
24], long public parameters [38], or that the signer must keep state [27].

Our Results. In this paper, we propose a new approach to practical signature scheme from standard as-
sumptions in the standard model. To this end, we first introduce a new adversarial model which we call a
bounded chosen-message-attack (bounded CMA). In such an adversarial model, the maximum number q of al-
lowable queries to the signing oracle is prescribed at the parameter generating time. The concept of bounded
queries is already used in Cramer et al.’s bounded CCA2 security notion for encryption schemes, in which the
adversary is restricted to making an a-priori bounded number of queries to the decryption oracle [14]. In the
chosen-message-attack (CMA) security notion, the adversary can select any polynomial number of messages and
receive the corresponding signatures so that the bounded CMA security is a weaker notion than the standard
CMA security. Even if there is a standard model stateless signature scheme under the standard assumption (e.g.,
Waters signature scheme from the Diffie-Hellman (DH) assumption) that is secure against the chosen message
attack, there is a simple reason why a weaker security notion is important in practice. The Waters signature
scheme is the sole construction in the category of the standard model DH-based stateless signature schemes, but
it suffers from the large public key size. (In this paper, we only focus on schemes based on prime-order groups
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since it usually allows shorter signatures in practice.) We aim at designing a practical signature scheme under
DH assumption in reasonable adversarial model.

In our new adversarial model, we propose the first (hash-and-sign) stateless signature scheme that has

sublinear public key of Θ(
√

λ
log λ ) group elements and secure under the Diffie-Hellman (DH) assumption in the

standard model. In our scheme, a signature is comprised of two elements in a group of order p and two integers
in Zp. This is roughly double size of the Waters signatures, which was the sole construction in a category of
hash-and-sign stateless signatures under the DH-based assumption in the standard model.1 From a practical
standpoint, the public key size of the proposed scheme is much shorter than that of the Waters signatures
for practical parameters, and the signature size of our scheme is still short. (We can reduce signature size to
two group elements and one field element by applying tag compression technique and will explain the detail
later.) For example, in our scheme, public key consists of at most 16 group elements when λ ∈ [80, 256] and
q ∈ {230, 240}, where q is the maximum of the number of signing queries issued by adversary and the reduction
loss of the proposed scheme is comparable with that of Waters signature scheme in [38]. For the same setting,
the public key of the Waters signature scheme consists of 164 to 516 group elements (that is, 2λ+ 4).

The signer of the proposed signature scheme does not need to maintain certain states [27] so that our
construction is a stateless signature scheme. Naccache [32] proposed a variant of Waters signatures that offers
a trade-off between the public key size and the concrete security level, but the asymptotic behavior is the
same as the Waters signatures. Note that the variant, in which Naccache’s trade-off is applied, requires a
super-polynomial time reduction to obtain (asymptotically) the same public key size as ours. In this paper, for
polynomial q, we limit ourselves to dealing with only polynomial-time reductions in the security proof.

Our Strategy for Sub-linear Public Key. We first apply a well-known technique for a generic transformation
from weakly-secure signatures to fully-secure signatures using a chameleon hash [29]. In contrast to the full
security model, the adversary should send all messages for signing queries before receiving the public key in the
weak security model. There is an efficient chameleon hash that is secure under the Discrete Logarithm (DL)
assumption [29]. Since the description of the DL-based chameleon hashes consists of two group elements and
the DL assumption is weaker than the DH assumption, the generic transformation using chameleon hashes does
not inflict a loss in the security and the asymptotic efficiency of the proposed signature scheme.

Next, we explore two different techniques of obtaining short signatures. One technique is to use so-called
programmable hash functions [26] so that one can obtain weakly secure (stateless) DH-based signatures with a
large public key. The other technique is to use tags and so in the security proof the simulator can restrict the
adversaries to forging in the polynomial number of tags by maintaining states so that one can obtain stateful
DH-based signatures with both short public key and signatures [27]. Since our aim is a stateless signature
scheme, we should modify this technique so that the signer does not maintain the current index but randomly
chooses it from some fixed set for each signature. The naive combination of these two different techniques allows
us to obtain short and stateless DH-based signatures with somewhat short public key of Θ( λ

log λ ) group elements.

To achieve sublinear public key of Θ(
√

λ
log λ ) group elements, we develop a new technique for asymmetric

trade between the public key and random tags, which are part of signatures. A trivial proof strategy for the
resulting signature scheme would end up in an inefficient (super-polynomial time) reduction. We introduce a
new proof technique for an efficient (polynomial time) reduction. The proposed security proof is based on the
lemma, which is given in the section 3.2, about a generalization of the ‘generalized birthday bound’, which was
essentially used for designing short signatures based on the RSA and the q-DH assumptions in [24, 26]. In other
words, we can consider Hofheinz et al.’s generalized birthday bound as a special case of our lemma. Our proof
technique is of independent interest.

Related Works (Hash-and-Sign Signatures). By relying on the random oracle heuristic, many constructions
for efficient signature schemes in several settings have been proposed (e.g., DL setting [19, 36, 34, 7, 22], RSA
setting [2], and Lattice setting [21]). However, there have been some studies showing the limitations of the
random oracles [10, 16, 30].

1 There are some variants of the Waters signatures [32, 28, 25]. However, the basic framework of construction is essentially
same as the Waters signatures.
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In the DL setting, Boneh and Boyen [6] proposed the first signature scheme in the standard model where
signature size is comparable with that of BLS signature scheme [7] in the random oracle model. Okamoto [35]
proposed a signature scheme which is more effective in many applications such as blind signatures, group
signatures, and anonymous credentials. Recently, Hofheinz, Jager, and Kiltz [24, 26] proposed short signatures
using programmable hash functions where the signature size is a bit shorter than previous schemes. However, the
security of all these signature schemes are proven under non-static q-type assumptions. The size of the problem
instance of q-type assumptions is (linearly) increased according to the number of signing queries. There are
analyses for the q-type assumptions [8, 12]. Camenisch and Lysyanskaya [9] proposed a signature scheme which
can be used to construct efficient group signatures, identity escrow schemes, and anonymous credential systems.
They proved security of their signature scheme under interactive assumption, called the LRSW assumption [31].
Interactive assumptions are non-falsifiable and there is a criticism for non-falsifiable assumptions [33].

To the best of our knowledge, there were only two signature scheme based on the standard DH assumption
in the standard model [38, 27]. However, the signer of the signature scheme in [27] needs to maintain certain
states, i.e., stateful signature scheme. Therefore, there was only one construction for stateless signatures [38]
that is proven secure under the standard DH assumption in the standard model. However, the signature scheme
in [38] has a large public key Θ(λ) as compared with all aforementioned signature schemes based on the strong
assumptions.

In the RSA setting, the first standard model construction was developed by Gennaro, Halevi, and Rabin [20].
Subsequently, Cramer and Shoup [15] and Fischlin [18] proposed more efficient signature scheme. However, these
schemes were proven secure under the strong RSA assumption. Hohenberger and Waters proposed the first
hash-and-sign signatures [27] from the RSA assumption. However, their scheme requires the signer to maintain
states, i.e., stateful signature scheme. In the same year they proposed first stateless RSA-based signatures [28].
Subsequently, Hofheinz, Jager, and Kiltz [24] and Yamada, Hanaoka, and Kunihiro [39] improved its efficiency.
However, all these signature schemes based on the RSA assumption require a large number of primality tests at
signing and verifying.

Independent Work. Independently of our work, Böhl et al. [4] propose essentially the same DH-based signature
scheme but different security analysis. They propose a new strategy (call confined guessing) for constructing
signature schemes and proving the security of schemes, and the DH-based signature scheme is one instantiation of
their strategy. Their analysis leads better security statement and asymptotic efficiency than ours. More precisely,
in contrast to our analysis theirs do not need to restrict the adversarial model, and they achieve shorter public

key of size O(log λ) group elements, which is asymptotically shorter than ours O(
√

λ
log λ ). Note that the short

public key yielded from their analysis is attained at the price of a worse security reduction (though it is still a
polynomial time reduction). For practical security parameters (and realistic bound of allowable signing queries),
therefore, our analysis provides more efficient parameters such as group size than Böhl et al.’s analysis.

Outline. In the next section, we give preliminaries to explain our results. In Section 3, we explain our intuition
behind our construction, a new proof strategy, and the proposed signature scheme. Section 4 analyze the security
and efficiency of the proposed scheme. In Section 5, we give several extensions for shorter signatures using a
pseudorandom function and using asymmetric pairings.

2 Preliminary and Definitions

Notation. We use [a, b] to denote a set of integers between two integers, a and b. For a set S, s
$← S denotes

that the element s is uniformly chosen from S. For an algorithm Alg, Alg(x)→ a means that Alg outputs a on
input x. If the input of Alg is clear from the context, we sometimes omit it and simply write Alg → a.

Signature Scheme. A signature scheme consists of three algorithms, KeyGen, Sign, and Verify.

KeyGen(λ): It takes the security parameter λ and outputs a keypair (PK,SK).
Sign(PK,M,SK): It takes the public key PK, the secret key SK, and a message M and outputs a signature σ.
Verify(PK,M,σ): It takes the public key PK, a message M, and a signature σ and returns 1 if the signature is

valid; otherwise, 0.
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q-bounded Chosen Message Attack. We define two new security notions for signatures, called existential
unforgeability with respect to q-bounded chosen-message-attacks (EU-q-CMA) and existential unforgeability with
respect to q-bounded weak chosen-message-attacks (EU-q-wCMA). These security notions are similar as well-
known security notions EU-CMA formalized by Goldwasser, Micali, and Rivest [23] and its weaker version,
EU-wCMA [27], respectively, but our definitions are weaker notions than previous ones, respectively since
adversaries are allowed to queries to the signing oracle at most prefixed q times. The adversary in both new
security models is given the public key and access to a signing oracle, and wins if he can produce a valid pair of a
signature and a message on which the adversary did not query to the signing oracle. In the EU-q-CMA security
model, the adversary is allowed to query any time (at most q times) before he outputs a forgery. However, the
adversary in the EU-q-wCMA model should send the challenger an entire list of messages (of size at most q) he
wants to query before receiving the public key. We provide the formal definition of EU-q-CMA and EU-q-wCMA
below. Let SIG = (KeyGen,Sign,Verify) be a signature scheme. We consider two following experiments.

ExpEU-q-CMA
SIG,A (λ)

(PK,SK)← KeyGen(λ);
(M,σ)← ASign(·)(PK);
Let List be the set of messages queried
by the adversary such that |List| ≤ q;

If M 6∈ List and Verify(PK,M, σ) = 1 return 1;
Otherwise, return 0.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ExpEU-q-wCMA
SIG,A (λ)

(M1, . . . ,Mq′ , st)← A(st) s.t. q′ ≤ q;
(PK,SK)← KeyGen(λ);
For ∀i ∈ [1, q′], σi ← Sign(PK,Mi, SK);
(M,σ)← A(PK, σ1, . . . , σq′ , st);
If for ∀i ∈ [1, q′], M 6= Mi and Verify(PK,M, σ) = 1
return 1; Otherwise, return 0.

We define

AdvEU-q-CMA
SIG,A (λ) = Pr

[
ExpEU-q-CMA

SIG,A (λ) = 1
]

and AdvEU-q-wCMA
SIG,A (λ) = Pr

[
ExpEU-q-wCMA

SIG,A (λ) = 1
]
.

Definition 1 Let SIG be a signature scheme. If for fixed polynomial q(λ) and any probabilistic polynomial-

time adversary A, AdvEU-q-CMA
SIG,A (λ) (AdvEU-q-wCMA

SIG,A (λ), respectively) is a negligible function in λ, we say that
the signature scheme SIG is EU-q-CMA secure (EU-q-wCMA secure, respectively). More precisely, if for any

algorithm A with issuing at most (polynomial) q signing queries and running time T , AdvEU-q-CMA
SIG,A (λ) < ε

(AdvEU-q-wCMA
SIG,A (λ) < ε, respectively), then we say that SIG is (q, ε, T )-EU-CMA secure ((q, ε, T )-EU-wCMA

secure, respectively).

Chameleon Hash Functions and Generic Transformation. Krawczyk and Rabin [29] formalized the
notion of chameleon hash function and provided a simple construction based on the DL assumption in the
standard model. A chameleon hash function H takes two inputs m (message) and r (randomness) and outputs
a hash value H(m; r). It satisfies three properties, collision-resistance, trapdoor collisions, and uniformity. The
collision-resistance property states that it is infeasible (for the polynomial-time adversary) to find two distinct
messages m and m′ and randomness r and r′ such that H(m; r) = H(m′; r′). The uniformity means that for
each message m, H(m; r) has the same probability distribution where r is chosen uniformly at random. The
trapdoor collisions property states that, given some trapdoor information, any pair m, r, and any additional
message m′, it is possible to efficiently find a randomness r′ such that H(m; r) = H(m′; r′).

We review the chameleon hashes based on the DL assumption [29].2 Let Gch is a group generator that takes
security parameter λ as input and outputs a cyclic group of prime order p′ of 2λ-bits (e.g., an elliptic curve
group generator).

CHSetup(λ) : Gch(λ)→ Gch.
Choose gch

$← Gch and β
$← Zp′ and compute hch = gβch.

Output {gch, hch}, as the description of H(·; ·), and trapdoor tr = {β},
where H(·; ·) : Zp′ × Zp′ → Gch is defined by (x, r) 7→ gxchh

r
ch.

Trapdoor collision(tr, x, r, x′) : Solve the equation x+ βr = x′ + βr with a variable r′.
Output r′

2 In [29], the chameleon hash function is constructed over a multiplicative subgroup of a finite field. We can easily
generalize it to the chameleon hash function over any cyclic groups, in which the DL assumption holds.
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We can easily check that the above scheme satisfies three properties of chameleon hashes. In particular, the
collision resistance of the above scheme tightly comes from the DL assumption on Gch; that is, if there exists
an adversary finding collisions of the above chameleon hashes with εch probability in time Tch, then we can
construct an algorithm solving the DL problem with εch probability in time T ′ch such that T ′ch ≈ Tch.

The generic transformation from EU-wCMA secure signatures to EU-CMA secure signatures was used in
many previously proposed signature schemes (e.g., [29, 37, 6, 27, 28]). Similarly, we can construct a generic trans-
formation from EU-q-wCMA secure signatures to EU-q-CMA secure signatures. Suppose that (G,S,V) is a EU-
q-wCMA secure signature scheme for arbitrary length messages and CHSetup is a generator for description of
a chameleon hash based on the DL assumption. Then, the following scheme is a EU-q-CMA secure signature
scheme for fixed length messages.3

KeyGen(λ): Run CHSetup(λ) → (H(·; ·), tr) and G(λ) → (pk, sk), publish PK = (pk,H), and then keep
SK = {sk}.

Sign(PK,M,SK): Pick a random r ∈ Zp, compute y = H(M ; r), run S(pk, y, sk) → σ′, and then output the
signature σ = (σ′, r).

Verify(PK,M, σ): Parse σ as (σ′, r), compute y = H(M ; r), and then output V(pk, y, σ′).

Lemma 1 If (G,S,V) is (q, ε, T )-EU-wCMA secure and CHSetup is a generator for secure chameleon hashes,
then the above scheme is (q, 2(ε+εch), T ′)-EU-CMA secure signature scheme, where the chameleon hash satisfies
(εch, Tch)-collision resistance and T ′ ≈ T ≈ Tch.

Proof. Proof is essentially same as that for the generic transformation from EU-wCMA secure signatures to
EU-CMA secure signatures, given in [28].4

Bilinear Groups. We define bilinear groups of prime order. The proposed signature scheme essentially uses a
bilinear map.

Definition 2 We say that G is a bilinear group generator, if on inputting the security parameter λ, it outputs a
tuple (p,G1,G2,Gt, e), where p is a (2λ+ 1)-bit prime, G1, G2, and Gt are finite abelian groups of order p, and
e : G1 ×G2 → Gt is a non-degenerate bilinear map, that is, (bilinearity) for all a, b ∈ Zp and g ∈ G1, g′ ∈ G2,
e(ga, g′b) = e(g, g′)ab and (non-degeneracy) for generators g ∈ G1 and g′ ∈ G2, e(g, g′) 6= 1.

If G1 = G2, then we use a notation G to denote G1 = G2 and we say that e is a type-1 pairing. If G1 6= G2

but there is an efficiently computable homomorphism φ : G2 → G1, then we say that e is a type-2 pairing.
Otherwise (that is, G1 6= G2 and there are no efficiently computable homomorphisms between G1 and G2), we
say that e is a type-3 pairing.

(Computational) Diffie-Hellman Assumption. We define the (computational) DH assumption in the bi-
linear group setting.

Definition 3 Let G be a bilinear group generator. We say that G satisfies the (εdh, Tdh)-DH assumption if for
any Tdh-time probabilistic algorithm B the following advantage AdvDH

B is less than εdh:

AdvDH
G,B = Pr

[
A(p,G,Gt, e, g, ga, gb)→ gab

∣∣∣G(λ)→ (p,G,Gt, e), a, b
$← Zp, g

$← G
]
.

3 Short Signatures with Short Public Key

In this section, we first propose a EU-q-wCMA secure signature scheme with somewhat short public key by
combining two techniques in [24, 27], and then propose a EU-q-wCMA secure signature scheme with short

3 For signing arbitrary length messages, the signer can first apply collision-resistance hash functions.
4 In [28], a generic transformation is given for EU-wCMA secure signature scheme for fixed length messages. Note that

we can easily generalize it and prove an analogous lemma for arbitrary length messages. In fact, if the message size of
EU-q-wCMA secure signature scheme is larger than or equal to the size of the representation of the chameleon hash
values, then the generic transformation derives EU-q-CMA secure signature scheme.
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KeyGen(λ) : Run G → (p,G,Gt, e) and choose v, u1, . . . , uq, g
$← G and α

$← Zp.
Output PK = {v, u1, . . . , uq, g, g

α} and SK = {α}.
Sign(PK,M,SK) : Compute σ = (v

∏q
i=1 u

Mi

i )α, and output σ.

Verify(PK,M, σ) : Check whether e(σ, g)
?
= e(gα, v

∏q
i=1 u

Mi

i )
: Output 1 if the equation holds; otherwise, 0.

Fig. 1. Short signatures with large public key

KeyGen(λ) : Run G → (p,G,Gt, e) and choose v, u1, . . . , um, g1, h, g
$← G, α $← Zp.

Output PK = {v, u1, . . . , um, g1, h, g, g
α} and SK = {α}.

Sign(PK,M,SK) : Choose t
$← Zp and s1

$← [1, Q].

Compute σ1 = (v
∏m
i=1 u

Mi

i )α(hgs11 )t and σ2 = g−t.
Output σ = (σ1, σ2, s1).

Verify(PK,M, σ) : Parse σ to (σ1, σ2, s1).
Check whether s1 ∈ [1, Q]. If not, abort and output 0.

Check whether e(σ1, g)e(σ2, hg
s1
1 )

?
= e(gα, v

∏m
i=1 u

Mi

i ).
Output 1 if the equation holds; otherwise, 0.

Fig. 2. Construction for somewhat short public key

public key. The proposed signature scheme is for fixed length messages, but we note that we can easily modify
it for arbitrary length messages by using collision resistant hash functions; first, compute a hash value of a long
message, and then use it as a message for the signature scheme.

We use λ to denote the security parameter and q to denote the maximum number of signing queries. Since
we restrict the adversary to be computationally bounded (that is, we only consider the probabilistic polynomial
time adversary), q is a polynomial in λ.

3.1 Combining Two Techniques: ‘Somewhat’ Short Public Key

We begin with exploring two techniques for obtaining short signatures in the standard model. In the simulation
of the EU-q-wCMA model, the simulator should give a set of signatures on messages queried by the adversary,
but the simulator should not be able to create signatures on all messages other than those queried by the
adversary. If the simulator can create signatures on all messages, then the simulator does not need help from the
adversary to obtain the forgery since the simulator can sign on all messages himself; hence, we cannot extract
the solution of the DH problem from the output of the adversary. We can use programmable hash functions [26]
to allow the simulator to produce only signatures on messages queried by the adversary. In particular, we use
weak programmable hash functions [24] to construct EU-q-wCMA secure short signatures. We describe the
short signature scheme with a polynomial size public key in Figure 1. We assume that the public key contains
the bilinear group description. For a 2λ-bit message M , we consider M as an element of Zp. (v

∏q
i=1 u

Mi

i ) is a
weak programmable hash function on input M that, in the EU-q-wCMA model, allows the simulator to sign on
at most q messages, which are given by the adversary before generating the public key.5 Furthermore, we can
construct a simulator that extracts the solution of gab from the forgery by imbedding ga in v and ui and setting
g and gα by g and gb, respectively.

There is the other technique that obtains short signatures with short public key by maintaining the index
counter in the signer side [27]. The idea of this technique is first to restrict the adversary to attack one of the
polynomially many indexes and then uses the technique for selectively-secure signatures such as that used in the
Boneh-Boyen signature scheme [5]. We can combine this technique with programmable hash functions. Since our
aim is a stateless signature scheme, we should modify this technique so that the signer does not maintain the
current index but randomly chooses it from some fixed set for each signature. Then, we obtain a short signature

5 M i is not the i-th bit of M , but the i times product of M .
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KeyGen(λ) : Run G → (p,G,Gt, e).
Choose v, u1, . . . , um, g1, . . . , gk, h, g

$← G, α
$← Zp.

Output PK = {v, u1, . . . , um, g1, . . . , gk, h, g, g
α} and SK = {α}.

Sign(PK,M,SK) : Uniformly choose t
$← Zp and s1, . . . , sk

$← [1, Q].

Compute σ1 = (v
∏m
i=1 u

Mi

i )α(h
∏k
i=1 g

si
i )t and σ2 = g−t.

Output σ = (σ1, σ2,
−→s ), where −→s = (s1, . . . , sk) ∈ [1, Q]k.

Verify(PK,M, σ) : Parse σ to (σ1, σ2,
−→s ).

Check whether −→s ∈ [1, Q]k. If not, abort and output 0.

Check whether e(σ1, g)e(σ2, h
∏k
i=1 g

si
i )

?
= e(gα, v

∏m
i=1 u

Mi

i ).
Output 1 if the above equation holds; otherwise, 0.

Fig. 3. Main construction for short public key

with somewhat short public key and give the description of the scheme in Figure 2. In Figure 2, s1 plays the role
of index in [27] and we call s1 tag. In Figure 2, we set Q to be polynomial in λ. The strategy of the simulation
in the EU-q-wCMA model is as follows: The simulator guesses s∗1, the tag of the forgery, (with non-negligible 1

Q

probability) and uses the technique for the selectively-secure signature scheme of the Boneh-Boyen signatures.
For each signature, the tag is randomly chosen so that there may exist several signatures containing the same
tag as s∗1 among the resulting signatures of singing queries. Under normal circumstances, the simulator cannot
produce signatures with tag s∗1 (since we use technique for selectively-secure scheme). We can resolve this by
using the weak programmable hash functions. If we uniformly choose a tag from [1, Q] at most q times for
polynomial Q ≥ q, there are at most Θ( λ

log λ ) same tags as the tag of the forgery with overwhelming probability.

Therefore, we can set m = Θ( λ
log λ ) and the simulator can create m signatures, which has the same tag as

that of the forgery. We omit detailed analysis since the analysis for the generalized scheme, which is our main
construction, is given in Section 4.

Remark. We used the combination of two techniques in this section for signature schemes based on the DH
assumption. There is similar approach for signature schemes based on the RSA assumption and q-DH assump-
tion [24]. Note that our original contribution is explained in Section 3.2.

3.2 Asymmetric Trade: Realizing Short Public Key

Let Q, m, and k be functions in λ. For readers who want to see the specific parameters a little early, we give an
example parameter below. We will explain about selecting parameters in Section 4.3.

Example Parameter 1. Q = 23q, m =
⌈√

λ
log λ

⌉
, and k =

⌈√
λ

log λ

⌉
.

We describe our main signature scheme in Figure 3.
For each signature σ = (σ1, σ2,

−→s ), we call −→s tag vector. In contrast to the scheme discussed in the previous
section, we use a vector −→s instead of an integer s1 in signatures. Roughly speaking, our analysis shows that
the signature scheme in Figure 3 satisfies weak unforgeability (against bounded CMA) when mk = Ω( λ

log λ )

(this result contains the signatures with somewhat short public key in Figure 2). In addition (roughly speaking
again), since the public key size is Θ(m+ k) group elements, we can attain the minimal public key size when m
and k are nearly equal. On the other hand, the size of signatures will increase when the parameter k increases.
However, each si is a logQ-bit integer, and so −→s is asymptotically much shorter than Θ(λ)-bit (if we set Q as
a polynomial in λ). This is an asymmetric trade between the public key and tag vectors. When we apply the
example parameter 1, the signature size will be bounded by two group and a field element, that is, the signature
size is Θ(λ) bits. We give precise analysis of the efficiency of the proposed signature scheme in Section 4.3.

Our construction of the short signatures with short public key in Figure 3 is a simple generalization of
the short signatures with somewhat short public key in Figure 2. However, the analysis of the security in the
EU-q-wCMA model is more challenging than the construct itself. The basic strategy of the simulator in the
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EU-q-wCMA model of the signature scheme in Figure 2 is guessing the tag s∗1 of the forgery and then using the

programmability of the weak programmable hash function (v
∏m
i=1 u

Mi

i ) to sign for the signature with the same
tag. We cannot naively apply this proof strategy to the generalized construction. To obtain short public key,
we should set k sufficiently large (but not too much). However, if k is large, then the simulator cannot guess
the tag vector of the forgery, −→s ∗ ∈ [1, Q]k, with non-negligible probability. That is, we would fail to construct
a polynomial-time reduction. We developed a proof technique to resolve this problem.

Our proof strategy. We now explain our proof strategy for polynomial-time reduction from solving the
DH problem to the breaking the weak unforgeability of the proposed signature scheme. In particular, we explain
the method to guess the tag vector −→s ∗ of the forgery with non-negligible probability. In fact, we cannot guess
all the bits of −→s ∗, but only part of −→s ∗ with non-negligible probability. This is sufficient for our proof strategy.

We begin with defining notations for efficient explanation. Let S and Si be sets [1, Q] and [1, Q]i (i times
canonical product set), respectively. For j ∈ [1, q], let −→s j ∈ Sk be the tag vector (randomly chosen by the
simulator) of the signature on the jth message (queried by the adversary). Let −→s ∗ = (s∗1, . . . , s

∗
k) ∈ Sk be the

tag vector of the forgery output by the adversary. For −→s ∈ Sk and i ≤ k, let −→s (i) ∈ Si be the first i entries of
−→s (e.g., −→s = (s1, . . . , sk) and −→s (i) = (s1, . . . , si)). We separate the adversaries into several types according to
the relations between −→s ∗ and {−→s i}i∈[1,q]. To this end, for fixed {−→s i}i∈[1,q], we first define the set Si as

{ŝ ∈ Si | ∃ at least (m+ 1) distinct j1, . . . , jm+1 ∈ [1, q] such that ŝ = −→s (i)
j1

= . . . = −→s (i)
jm+1
}.

Let us consider an example to help the readers understand the definition of Si.

Example. Suppose that
−→s (i)

1 = . . . = −→s (i)
m+2 6=

−→s (i)
j for j ∈ [m+ 3, q],

−→s (i+1)
1 = . . . = −→s (i+1)

m+1 6=
−→s (i+1)
j for j ∈ [m+ 2, q],

and −→s (i)
m+3, . . . ,

−→s (i)
q are distinct. Then,{−→s (i)

j ∈ Si for j ∈ [1,m+ 2]
−→s (i)
j 6∈ Si for j ∈ [m+ 3, q],

,

{−→s (i+1)
j ∈ Si+1 for j ∈ [1,m+ 1]

−→s (i+1)
j 6∈ Si+1 for j ∈ [m+ 2, q],

and |Si| = |Si+1| = 1. �

We can easily see that |Si+1| ≤ |Si|. Let n be the largest integer in [1, k] such that Sn 6= ∅. If we choose m,
k, and Q appropriately, we then obtain the following two properties with overwhelming probability, where the
probability is taken over the choice of {−→s i}i∈[1,q].
1. |S1| < λ
2. n < k (equivalently Sk = ∅, that is, |Sk| < 1)

When Q ≥ q, the following lemma implies the above two properties. (e.g., we obtain the above properties
when we apply the example parameter 1 to Lemma 2.)

Lemma 2 Pr−→s 1,...,
−→s q

$←Sk
[|Si| ≥ j] < ( qm+1

(m+1)!Qim )j.

We prove Lemma 2 in the next section.
For now, let us assume that we have m, k, and Q such that the above two properties hold. We separate the

types of adversaries according to −→s ∗ as follows.

Type-1 : −→s ∗(1) 6∈ S1.
Type-2 : −→s ∗(1) ∈ S1, and −→s ∗(2) 6∈ S2.

...
Type-i : −→s ∗(i−1) ∈ Si−1, and −→s ∗(i) 6∈ Si.

...
Type-n : −→s ∗(n−1) ∈ Sn−1, and −→s ∗(n) 6∈ Sn.

Type-(n+ 1) : −→s ∗(n) ∈ Sn.

8



Here, −→s ∗(i−1) ∈ Si−1 implies that −→s ∗(j) ∈ Sj for all j ∈ [1, i−1]. Therefore, we can see that the above n+1 types
of adversaries are pairwise disjoint and cover all possible adversaries. For the type-i adversary, the simulator
can guess −→s ∗(i) with probability 1

|Si−1|·|S| ; it guesses −→s ∗(i−1) with 1
|Si−1| and s∗i with 1

|S| (we use the second

property for the case i = n+ 1). Since the simulator can guess the type of the adversary with probability 1
k , it

can guess the tag vector of the forgery with at least probability 1
kλQ (we use the first property for the inequality

|Si−1| ≤ |S1| < λ).
The other parts of the proof strategy are similar to the strategy for the short signatures with somewhat

short public key in Figure 2 as we mentioned in Section 3.1; (1) guess −→s ∗(i), (2) use the proof technique for
the reduction from solving the DH problem to breaking the selectively secure signatures, and (3) generate for
the signature with the same tag vector as −→s ∗(i), using the programmability of the weak programmable hash
functions. Since −→s ∗(i) 6∈ Si (for i = n + 1,−→s ∗(i) 6∈ Si = ∅) implies that there are at most m tag vectors
same as −→s ∗(i), the simulator can response m signatures with tag vector −→s ∗(i) using the programmability of
(v
∏m
i=1 u

Mi

i ). If kλQ is bounded by a polynomial in λ, then we obtain the polynomial-time reduction.
By applying the above strategy, we give the following theorem.

Theorem 1 The signature scheme in Figure 3 is (q, ε, T )-EU-wCMA secure assuming the (ε′, T ′)-DH assump-
tion holds such that

ε′ =
1

kλQ
(ε− qm+1

(m+ 1)!Qkm
− q

p
− (

qm+1

(m+ 1)!Qm
)λ) and T ≈ T ′.

We prove Theorem 1 in the next section.
For a EU-q-CMA secure signature scheme, we can apply the generic transformation from a EU-q-wCMA

secure scheme to a EU-q-CMA secure scheme given in Lemma 1.6 From Theorem 1 and Lemma 1, we obtain
the following corollary (by using a (εch, Tch)-collision resistant hash function if need be).7

Corollary 1. Let SIG be the signature scheme for fixed length messages described in Figure 3 and SIG′ be
the signature scheme for arbitrary length messages obtained from SIG and a (εch, Tch)-collision resistant hash
function. Let CHSetup is a generator for the chameleon hashes based on the DL assumption. Let SIG′′ be the
signature scheme resulting from the generic transformation in Lemma 1 on SIG′ and CHSetup. If G satisfies

( 1
kλQ ( ε4 −

qm+1

(m+1)!Qkm
− q

p − ( qm+1

(m+1)!Qm )λ), Tdh)-DH assumption and Gch satisfies the (εdl, Tdl)-DL assumption,

then SIG is (q, ε + 4εcrh + 2εdl, T )-EU-CMA secure, where G and Gch are group generators used in SIG and
CHSetup, respectively, q is the maximum number of signatures the adversary can obtain, and Tdh ≈ Tdl ≈ T .

If the collision resistant hash function is not used (that is, the representation of the output of chameleon
hashes needs less than or equal to 2λ-bit), and so SIG′′ is the signature scheme resulting from the generic
transformation on SIG and CHSetup, then SIG′′ is (q, ε2 + 2εdl, T )-EU-CMA secure.

Proof. By Theorem 1, SIG is (q, ε4 , T )-EU-wCMA secure. By the standard hybrid argument, we can show that
SIG′ is (q, 2( ε4 + εcrh), T )-EU-wCMA secure. Lastly, by Lemma 1, SIG′′ is (q, 2(2( ε4 + εcrh) + εdl), T )-EU-CMA
secure since the chameleon hash function based on the (εdl, Tdl)-DL assumption has (εdl, Tdl)-collision resistance.
If the collision resistant hash function is not used, then Theorem 1 and Lemma 1 directly imply that SIG′′ is
(q, 2( ε4 + εdl), T )-EU-CMA secure. ut

To derive a meaningful result about the asymptotic security from Theorem 1 and Corollary 1, we need the
following three conditions.

6 If the representation of a chameleon hash value needs more than 2λ-bit, then we first apply (εcrh, Tcrh)-collision
resistant hash function for messages of the EU-q-wCMA secure signature scheme for arbitrary length messages since
the chameleon hash values are messages of EU-q-wCMA secure signatures.

7 If we use elliptic curve groups as the base group Gch, over which the chameleon hashes are defined, then the represen-
tation of the chameleon hash values are sufficiently short to be used as messages for EU-q-wCMA secure signatures
without firstly applying collision-resistance hash functions. However, if we use multiplicative subgroups of finite fields
as Gch, then we need collision-resistance hash functions to map the chameleon hash values into short messages for
EU-q-wCMA secure signatures.
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Condition 1. kλQ is polynomially bounded in λ.

Condition 2. qm+1

(m+1)!Qkm
is a negligible function in λ.

Condition 3. ( qm+1

(m+1)!Qm )λ is a negligible function in λ.

We give asymptotic values of m, k, and Q for satisfying the above conditions and short public key in Section 4.3.
For such parameters (e.g., example parameter 1), we obtain the following corollary.

Corollary 2. Let SIG′′ be a signature scheme in given in Corollary 1 with parameter m, k, and Q satisfying the
above three conditions. Then, SIG′′ is (q, ε+4εcrh+2εdl, T )-EU-CMA secure assuming ( ε

4kλQ −neg(λ), Tdh)-DH

assumption holds, where neg(λ) is a negligible function in λ and T ≈ Tdh.

If SIG′′ is the signature scheme resulting from the generic transformation on SIG and CHSetup (that is, the
collision resistant hash function is not used), then SIG′′ is (q, ε2 + 2εdl, T )-EU-CMA secure assuming ( ε

4kλQ −
neg(λ), Tdh)-DH assumption holds, where neg(λ) is a negligible function in λ and T ≈ Tdh.

4 Analysis

4.1 Proof of Lemma 2

In this subsection, we prove Lemma 2. Let F be the set of all functions from [1, q] to Si. For −→y ∈ Si and f ∈ F ,
let |f−1(−→y )| be the number of the distinct pre-images of −→y . Let Tf be the set of all −→y ∈ Im(f) such that
|f−1(−→y )| ≥ m+1, where Im(f) means the set of all images of f . Then, we can consider Pr−→s 1,...,

−→s q
$←Sk

[|Si| ≥ j]
as

Pr
f

$←F
[|Tf | ≥ j].

To compute Pr
f

$←F
[|Tf | ≥ j], we count all functions f such that |Tf | ≥ j, then divide the result by |Si|q (the

number of all elements in F ). In fact, we count the number of f such that |Tf | ≥ j, allowing duplications, so
that we compute the upper bound of Pr

f
$←F

[|Tf | ≥ j]. To define an f , we choose j distinct subsets A1, . . . , Aj

of size m+ 1 from [1, q] and j distinct vectors −→y 1, . . . ,
−→y j from Si, and then set f(a) = −→y t for all a ∈ At and

t ∈ [1, j]. For other integers a ∈ [1, q]\ (A1∪ . . .∪Aj), we arbitrarily define f(a). This way of defining a function
covers all f such that |Tf | ≥ j. We count all f that are defined as above. Then, the number of such f is bounded
by ( j−1∏

t=0

(
q − t(m+ 1)

m+ 1

)
· (|Si| − t)

)
· (|Si|)(q−j(m+1)),

where the notation
(·
·
)

denotes the binomial coefficient.

Therefore, we can obtain the desired result as follows:

Pr−→s 1,...,
−→s q

$←Sk
[|Si| ≥ j] = Pr

f
$←F

[|Tf | ≥ j]

<

(∏j−1
t=0 (q−t(m+1)

m+1 )·(Qi−t)
)
·(Qi)(q−j(m+1))

|Si|q

<

(
qm+1

(m+1)!

)j
Qij+i(q−j(m+1))

Qiq

= ( qm+1

(m+1)!Qim )j .

Remark. The result in Lemma 2 is similar as the lemma given in [24] called ‘generalized birthday bound’. Note
that Lemma 2 is more general than ‘generalized birthday bound’; e.g., if we set i = 1 and j = 1, then the result
in Lemma 2 provides a more tighter upper bound than ‘generalized birthday bound’ given in [24].
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4.2 Proof of Theorem 1

In this subsection, we prove Theorem 1. Suppose that there exists a probabilistic (polynomially bounded)
adversary A which makes at most q signing queries and outputs a valid forgery with probability ε. We construct
an algorithm B that uses A as an internal sub-algorithm and breaks the DH assumption.

Simulation Description. We now describe an algorithm B on input (g, ga, gb), the uniform instance of the
DH problem. Let A = ga and B = gb. We use the notations S, Si, and Si defined in 3.2.

KeyGen: Without loss of generality, we assume that A makes the maximum q queries for signing. First, B
receives a list L of messages M1, . . . ,Mq on which A requests signatures. B uniformly generates random vectors
−→s 1, . . . ,

−→s q
$← Sk such that −→s j will be used in the j-th signing query on Mj . B separately behaves according to

whether n = k. If n = k, we say that the event E1 occurs. When E1 occurs, B acts as a real challenger by running
the KeyGen algorithm. When E1 does not occur, B guesses the tag vector of the forgery; B uniformly chooses
` from [1, n + 1], (s′1, . . . , s

′
`−1) from S`−1 except for the case ` = 1, and s′` from S such that (s′1, . . . , s

′
`) 6∈ S`.

Since |S`| ≤ Q
m+1 < Q = |S|, there always exists such a s′`. We use notation −→s ′(`) to denote (s′1, . . . , s

′
`).

Next, B generates a public key. Since −→s ′(`) 6∈ S`, there exist at most m distinct integers j1, . . . , jm ∈ [1, q]

such that −→s ′(`) = −→s (`)
j1

= . . . = −→s (`)
jm

. Let J be a set of such integers, so that |J | ≤ m. Let f(x) be a polynomial
defined as

f(x) =

{∏
i∈J(X −Mi) if |J | ≥ 1,

1 otherwise.

Let x0, . . . , xm be coefficients of f(x) such that f(x) =
∑m
i=0 xiX

i (for i > |J |, set xi = 0). B uniformly

chooses integers y0, . . . , ym, z0, . . . , z`, w0, . . . , wk
$← Zp. If for some j ∈ [1, q] \ J ,

∑`
i=1(sji − s′i)zi = 0, where

−→s j = (sj1, . . . , sjk), then we say that the event E2 occurs. If E2 occurs, B behaves like a real challenger running
the KeyGen algorithm and using −→s j in the j-th signing query. Otherwise (E2 does not occur), B generates a
public key as follows.

v := Ax0gy0 , ui := Axigyi for i ∈ [1,m],

h := A−
∑`
i=1 s

′
izigw0 , gi :=

{
Azigwi for i ∈ [1, `]
gwi for i ∈ [`+ 1, k]

,

g := g, gα := B.

The secret key is b, which is unknown to B.

Sign: When E1 or E2 occurs, B behaves like a real challenger by running the Sign algorithm except for using
−→s 1, . . .,

−→s q generated in the KeyGen phase.
Otherwise (both E1 and E2 do not occur), B generates signatures on M1, . . . ,Mq as follows. For the j-th

signing query, B separately signs on Mj according to whether j ∈ J .

Case j ∈ [1, q] \ J : Since E2 does not occur,
∑`
i=1(sj1 − s′i)zi 6= 0. Choose t′

$← Zp and compute

σj1 = B
(
∑m
i=0 yiM

i
j )−(w0+

∑k
i=1 sjiwi)

(
∑m
i=0 xiM

i
j)

(
∑`
i=1

(sj1−s′i)zi) · (A(
∑`
i=1(sj1−s

′
i)zi)gw0+

∑k
i=1 sjiwi)t

′

and σj2 = B(
∑m
i=0 xiM

i
j )/(

∑`
i=1(sj1−s

′
i)zi) · g−t′ .

Case j ∈ J : Choose t
$← Zp and compute

σj1 = B(
∑m
i=0 yiM

i
j )(gw0+

∑k
i=1 sjiwi)t and σj2 = g−t.

For both cases, we define the j-th signature σ(j) on Mj as (σj1, σj2,
−→s j).

Response: B sends A the public key PK = (v, u1, . . . , um, h, g1, . . . , gk, g, g
α) along with signatures σ(1), . . . , σ(q).

Extract solution of DH problem from forgery: When E1 or E2 occurs, B outputs a random group element as
the answer of the DH problem. Otherwise, do the following.
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B receives a message M∗ along with a forgery σ∗ = (σ∗1 , σ
∗
2 , −→s ∗) on M∗ from A such that M∗ 6∈ L. If Ver-

ify(PK,M∗, σ∗) = 0, B aborts. If−→s ∗(`) 6= −→s ′(`), B aborts. Otherwise,M∗ 6∈ L, so that f(M∗) =
∑m
i=0 xi(M

∗)i 6=
0. B outputs (σ∗1 ·B−

∑m
i=0 yi(M

∗)i · (σ∗2)w0+
∑k
i=1 s

∗
iwi)

1
f(M∗) .

During an interaction between A and B, B randomly chooses a group element from G and outputs it if B
aborts or A quits the interaction.

Analysis (Distribution of Simulated Transcript). First, we argue that the distribution of the public
key and signatures on M1, . . . ,Mq generated by B are identical to that of the real challenger. −→s 1, . . . ,

−→s q are
uniformly distributed. Even if E1 and E2 are determined by −→s 1, . . . ,

−→s q, the tag vectors −→s 1, . . .,
−→s q are used no

matter whether E1 or E2 occurs. Therefore, in the view of A, −→s 1, . . . ,
−→s q are uniformly distributed, so we only

focus on the other randomness used in the public key and signatures. When the events E1 or E2 occurs, B acts
as the real challenger, so that the distributions generated by B and the real challenger are identical. Otherwise,
y0, . . . , ym, and w0, . . . , wk are uniformly chosen from Zp and are independent from E1 and E2. Furthermore,
the DH instance is also uniformly generated. Therefore, the distributions of the public key generated by B are
identical to those of the output of the KeyGen algorithm.

Next, we consider the distribution of the j-th signature on Mj when E1 and E2 do not occur (that is,∑`
i=1(sj1−s′i)zi 6= 0). If j ∈ [1, q]\J , randomness t is distributed as if t = − (

∑m
i=0 xiM

i
jb)

(
∑`
i=1(sj1−s′i)zi)

+ t′. More precisely,

we can check the following equations from the equality t = − (
∑m
i=0 xiM

i
jb)

(
∑`
i=1(sj1−s′i)zi)

+ t′.

σj1 = B
(
∑m
i=0 yiM

i
j )−(w0+

∑k
i=1 sjiwi)

(
∑m
i=0 xiM

i
j)

(
∑`
i=1

(sji−s′i)zi) · (A
∑`
i=1(sj1−s

′
i)zigw0+

∑k
i=1 sjiwi)t

′

= B(
∑m
i=0 yiM

i
j )(gab)

∑m
i=0 xiM

i
j · (A

∑`
i=1(sji−s

′
i)zigw0+

∑k
i=1 sjiwi)

(−
∑m
i=0 xiM

i
jb)

(
∑`
i=1

(sji−s′i)zi) · (A
∑`
i=1(sji−s

′
i)zigw0+

∑k
i=1 sjiwi)t

′

= (
∏m
i=0(Axigyi)M

i
j )b · (A−

∑`
i=1 s

′
izigw0 ·

∏`
i=1(Azigwi)sji ·

∏k
i=`+1(gwi)sji)t

= (v
∏m
i=1 u

Mi
j

i )b(h
∏k
i=1 g

sji
i )t

and

σj2 = B(
∑m
i=0 xiM

i
j )/(

∑`
i=1(sj1−s

′
i)zi) · g−t′ = g−t.

Since t′ is uniformly chosen from Zp and independent of all other values in
(
∑m
i=0 xiM

i
jb)

(
∑`
i=1(sj1−s′i)zi)

, t is also uniformly

distributed. Therefore, the distribution of σj1 and σj2 is identical to that of the output of Sign algorithm.
If j ∈ J , t is uniformly distributed, that is,

σj1 = B(
∑m
i=0 yiM

i
j )(gw0+

∑k
i=1 sjiwi)t

= B(
∑m
i=0 yiM

i
j )(gab)

∑m
i=0 xiM

i
j · (A

∑`
i=1(sji−s

′
i)zigw0+

∑k
i=1 sjiwi)t

= (
∏m
i=0(Axigyi)M

i
j )b · (A−

∑`
i=1 s

′
izigw0

∏`
i=1(Azigwi)sji

∏k
i=`+1(gwi)sji)t

= (v
∏m
i=1 u

Mi
j

i )b(h
∏k
i=1 g

sji
i )t

By the definition of J and f(x), f(Mj) = (
∑m
i=0 xiM

i
j) = 0 and sji = s′i for all j ∈ J and i ∈ [1, `]. This implies

that the second equality holds. Since σj2 = g−t, σj1 and σj2 are distributed as the output of Sign algorithm.

Analysis (Success Probability). We now show that the success probability of B breaking the DH assumption.
We separate the types of adversaries according to −→s ∗ as follows.

Type-1: −→s ∗(1) 6∈ S1.
Type-2: −→s ∗(1) ∈ S1, and −→s ∗(2) 6∈ S2.
...
Type-i: −→s ∗(i−1) ∈ Si−1, and −→s ∗(i) 6∈ Si.
...
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Type-n: −→s ∗(n−1) ∈ Sn−1, and −→s ∗(n) 6∈ Sn.
Type-(n+ 1): −→s ∗(n) ∈ Sn.

As we mentioned in Section 3.2, we can see that the above n + 1 types of the adversaries are pairwise disjoint
and cover all possible adversaries.

We define several events. Let `∗ be the type of adversary and C be the event such that `∗ = ` and −→s ∗(`) =
−→s ′(`). Let D be the event such that |S1| ≥ λ, F be the event such that A successfully (weakly) forges a signature,
and S be the event such that B outputs gab. From the definition of events, we derive the followings.

Pr[S] > Pr[S ∧ C ∧ ¬E1 ∧ ¬E2 ∧ ¬D ∧ F ]
= Pr[S ∧ C|¬E1 ∧ ¬E2 ∧ ¬D ∧ F ] · Pr[¬E1 ∧ ¬E2 ∧ ¬D ∧ F ]
= Pr[S|¬E1 ∧ ¬E2 ∧ ¬D ∧ F ∧ C] · Pr[C|¬E1 ∧ ¬E2 ∧ ¬D ∧ F ] · Pr[¬E1 ∧ ¬E2 ∧ ¬D ∧ F ],

where the probability is over all randomness used by A and B in the simulation.
We first show that the probability

Pr[S|¬E1 ∧ ¬E2 ∧ ¬D ∧ F ∧ C] = 1.

Suppose that the event (¬E1 ∧ ¬E2 ∧ ¬D ∧ F ∧ C) occurs. Since A outputs a valid forgery such that σ∗1 and

σ∗2 satisfy the verification equation (event F ), we can see that σ∗1 and σ∗2 are (v
∏m
i=1 u

M∗i

i )α(h
∏k
i=1 g

s∗i
i )t and

g−t for some t, respectively. From the hypothesis −→s ∗(`) = −→s ′(`) (event C), we know

σ∗1 = (gab)f(M
∗)(gb)

∑m
i=0 yiM

∗i
(gt)w0+

∑k
i=1 s

∗
iwi .

We can show that the output of B is

(σ∗1 ·B−
∑m
i=0 yi(M

∗)i · (σ∗2)w0+
∑k
i=1 s

∗
iwi)

1
f(M∗) = gab.

That is, Pr[S|¬E1 ∧ ¬E2 ∧ ¬D ∧ F ∧ C] = 1.
Next, we show that

Pr[C|¬E1 ∧ ¬E2 ∧ ¬D ∧ F ] ≥ 1

k
· 1

λ
· 1

Q
.

Event E2 is independent from the other events since it is determined by independent variables zi’s, which are
perfectly hidden from adversarial view, so that Pr[C|¬E1 ∧ ¬D ∧ F ] = Pr[C|¬E1 ∧ ¬E2 ∧ ¬D ∧ F ]. Since `∗

should be in [1, n+ 1] and ` is perfectly hidden from adversarial view, Pr[` = `∗|¬E1∧¬D∧F ] = 1
n+1 ≥

1
k (` is

chosen independently from other values used in the simulation so that it is independent from the other events).
Suppose that `∗ = `. Then, −→s ∗(`−1) ∈ S`−1. The event −→s ∗(`) = −→s ′(`) is equal to (−→s ∗(`−1) = −→s ′(`−1))∧(s∗` = s′`)
(except for the case ` = 1). Since −→s ′`−1 and s′` are uniformly chosen from S`−1 and S, respectively and −→s ′` is
perfectly hidden from adversarial view,

Pr[−→s ∗(`) = −→s ′(`)|(` = `∗) ∧ ¬E1 ∧ ¬D ∧ F ] =

{
1
Q if ` = 1

1
|S`−1| ·

1
Q otherwise.

From the condition ¬D, we know that |S`−1| ≤ |S1| < λ. Therefore, Pr[−→s ∗(`) = −→s ′(`)|(` = `∗)∧¬E1∧¬D∧F ] >
1
λQ ; thus,

Pr[C|¬E1 ∧ ¬E2 ∧ ¬D ∧ F ] = Pr[C|¬E1 ∧ ¬D ∧ F ]

= Pr[−→s ∗(`) = −→s ′(`)|(` = `∗) ∧ ¬E1 ∧ ¬D ∧ F ] · Pr[` = `∗|¬E1 ∧ ¬D ∧ F ]
> 1

kλQ .

Next, we show that the probability

Pr[¬E1 ∧ ¬E2 ∧ ¬D ∧ F ] = ε− ( qm+1

(m+1)!Qkm
+ q

p + ( qm+1

(m+1)!Qm )λ).
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By Lemma 2, we see that

Pr[E1] = Pr[|Sk| ≥ 1] <
qm+1

(m+ 1)!Qkm

and

Pr[D] = Pr[|S1| ≥ λ] < (
qm+1

(m+ 1)!Qm
)λ.

The E2 is the event such that for some j ∈ [1, q] \ J ,
∑`
i=1(sji − s′i)zi = 0. For each j ∈ [1, q] \ J , there always

exists a sji such that (sji−s′i) 6= 0 for some i (by the definition of J); and hence, for each j ∈ [1, q]\J we obtain

Pr[
∑̀
i=1

(sji − s′i)zi = 0] =
1

p
,

where the probability goes over the choice of z1, . . . , z`. By the union bound, we obtain

Pr[E2] <
q

p
.

We can easily verify the following.

Pr[¬E1 ∧ ¬E2 ∧ ¬D ∧ F ] = Pr[F ]− Pr[(E1 ∨ E2 ∨D) ∧ F ] > Pr[F ]− (Pr[E1] + Pr[E2] + Pr[D]).

Therefore, we obtain the desired result

Pr[¬E1 ∧ ¬E2 ∧ ¬D ∧ F ] = ε− ( qm+1

(m+1)!Qkm
+ q

p + ( qm+1

(m+1)!Qm )λ).

Putting it all together, we obtain the lower bound of the success probability of B

Pr[S] >
1

kλQ
(ε− qm+1

(m+ 1)!Qkm
− q

p
− (

qm+1

(m+ 1)!Qm
)λ).

4.3 Parameter Selection for Short Public Key

The description of our construction did not explain how to choose m, k, and Q. In this subsection, we show how
to minimize public key size. From Theorem 1, we obtained three conditions for polynomial-time reduction to the

DH problem. First, kλQ should be polynomially bounded in λ. Second, qm+1

(m+1)!Qkm
and ( qm+1

(m+1)!Qm )λ should be

a negligible function in λ. For simple analysis, we assume that Q = Cq for small constant C > 1 and compute

conditions for m and k when qm+1

(m+1)!Qkm
and ( qm+1

(m+1)!Qm )λ are smaller than 1
2λ

. We compute asymptotically

minimal values of m and k for short public key size, and then provide practical parameters with reasonable
reduction loss, which is comparable to that of Waters signature in [38].

Condition 1. kλq is polynomially bounded in λ.

Condition 2. qm+1

(m+1)!Qkm
< 1

2λ
.

Condition 3. ( qm+1

(m+1)!Qm )λ < 1
2λ

.

From the condition 2, at least the denominator should be larger than 2λ. Since Q = Cq and (m + 1)! ≈√
2π(m+ 1)(m+1

e )m+1 (by Stirling’s approximation), where e is the Euler’s number, km = Ω( λ
log λ ) or m =

Ω( λ
log λ ). For minimizing public key size, we should minimize m + k since the size of public key is Θ(m + k).

Therefore, m = Θ(
√

λ
log λ ) and k = Θ(

√
λ

log λ ) are (asymptotically) minimal parameters for minimal public key

size. In fact, if we set m = Θ(
√

λ
log λ ) and k = Θ(

√
λ

log λ ), then the condition 1 and 3 also hold.

Next, we provide practical parameters for λ ∈ {80, 128, 192, 256} and q ∈ {230, 240}, where λ is the security
parameter and q is the bound for adversarial signing queries. If the above condition 2 and condition 3 hold, our
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KeyGen(λ) : Run G → (p,G,Gt, e).
Choose v, u1, . . . , um, g1, . . . , gk, h, g

$← G, α
$← Zp, and pick a PRF key K at random.

Output PK = {v, u1, . . . , um, g1, . . . , gk, h, g, g
α,K} and SK = {α},

where PRF : {0, 1}∗ → {0, 1}kdlogQe be a pseudorandom function family.

Sign(PK,M,SK) : Uniformly choose t
$← Zp.

Compute PRFK(M) = (s1, . . . , sk), σ1 = (v
∏m
i=1 u

Mi

i )α(h
∏k
i=1 g

si
i )t, and σ2 = g−t.

Output σ = (σ1, σ2).
Verify(PK,M, σ) : Parse σ to (σ1, σ2).

Compute PRFK(M) = (s1, . . . , sk).

Check whether e(σ1, g)e(σ2, h
∏k
i=1 g

si
i )

?
= e(gα, v

∏m
i=1 u

Mi

i ).
Output 1 if the above equation holds; otherwise, 0.

Fig. 4. Signatures with tag compression

security proof loses 4kλQ factor in the simulation (when we ignore negligible factors), which is asymptotically
larger than Waters signature scheme’s reduction loss. However, for practical choices of λ and q, k is a small
constant (at most 3 in our example parameters) and Q is Cq with small constant C > 1 (C = 23 in our example
parameters); and thus, the reduction loss in our example parameters is at most 96λq, which is comparable to
that given in [38]8, where we assume that the message size is 2λ.9 The example practical parameters are given
in the table 1, where we set Q = 23q and thus all reduction loss of signature scheme with parameters in the
table 1 are less than or equal to 96λq. To get the table 1, we firstly set Q = 23q and q ∈ {230, 240}, and then
find small m and k satisfying the above three conditions. The size of a tag vector is a kdlogQe-bit string, which

is asymptotically smaller than 2λ if k = Θ(
√

λ
log λ ) and Q is a polynomial in λ; and thus, we can assume that

a tag vector is a field element of Zp. In particular, when we apply practical parameters in the table 1, the size
of a tag vector is still smaller than 2λ (e.g., a tag vector is 129-bit string when k = 3 and Q = 243).

5 Extensions

In this section, we provide two extensions of the main construction in Figure 3. We give a (EU-q-wCMA
secure) variant of the main scheme that has shorter signatures (two group elements). Next, an instantiation
using asymmetric pairings (type-2 pairings or type-3 pairings) instead of symmetric pairings (type-1 pairings)
is considered.

5.1 Tag Compression using Pseudorandom Functions

In this subsection, we introduce a trick for tag compression using (non-adaptive) pseudorandom functions (PRF).
Note that similar techniques are used in the RSA-based signatures [27, 28, 24, 39] to compress random prime
numbers used in each signature. If we use this trick, we can reduce the signature size of EU-q-wCMA secure
scheme to two group elements by augmenting signing/verification costs and adding constant factor in public key

size (that is, public key size is still Θ(
√

λ
log λ ) group elements); each signature has a tag vector that is uniformly

chosen from its domain. Thus, a signer can use pseudorandom functions (PRF) mapping from messages to tag
vectors, and publishes the PRF the signer used along with its key. Even though the signer publishes the PRF
key, (in the weak security model) we can use the fact that the distribution of tag vectors is indistinguishable

8 Hofheinz et al. proposed a variant of Waters signatures using a special encoding for optimal security reduction Θ( 1
q
) [25].

In [25], however, they do not provide a concrete constant factor of Θ notation for practical security parameters, but
only asymptotic analysis for optimal security reduction.

9 For arbitrarily large message, both our scheme and Waters’ scheme take a collision resistant hash function value, and
then run signing algorithms. To prevent the birthday attack, the output of hash function should be larger than 2λ.
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KeyGen(λ) : Run G → (p,G1,G2,Gt, e).
Choose v, u1, . . . , um, g1, . . . , gk, h, α

$← Zp, g
$← G2, g

′ $← G1, and pick a PRF key K at random.

Compute v = gv, ui = gui , gi = ggi , h = gh.
Output PK = {v, u1, . . . , um, g1, . . . , gk, h, g ∈ G2, g

′α ∈ G1,K}
and SK = {v, u1, . . . , um, g1, . . . , gk, h, α ∈ Zp, g′ ∈ G1},
where PRF : {0, 1}∗ → {0, 1}kdlogQe be a pseudorandom function family.

Sign(PK,M,SK) : Uniformly choose t
$← Zp

Compute PRFK(M) = (s1, . . . , sk), σ1 = g′(v+
∑m
i=1 uiM

i)α+(h+
∑k
i=1 gisi)t and σ2 = g′−t ∈ G1.

Output σ = (σ1, σ2).
Verify(PK,M, σ) : Parse σ to (σ1, σ2).

Compute PRFK(M) = (s1, . . . , sk).

Check whether e(σ1, g)e(σ2, h
∏k
i=1 g

si
i )

?
= e(g′α, v

∏m
i=1 u

Mi

i ).
Output 1 if the above equation holds; otherwise, 0.

Fig. 5. Instantiation using asymmetric pairings

from the uniform distribution. In some application, short signatures are important even though public key size
and signing/verifying costs increase. Then, the signature scheme with tag compression technique is appropriate
in such applications.

Let PRF : {0, 1}∗ → {0, 1}kdlogQe be a pseudorandom function family. The signer randomly chooses a PRF
key K, uses PRFK(M) as the tag vector associated with the signature of M , and publishes the description of
PRF and the key K of PRF as a part of PK. Then, we can remove tag vectors from signatures since everyone
who knows a message and PK can compute the corresponding tag vector. Hence, the resulting scheme can
have shorter signatures (two group elements). The signature scheme with tag compression technique is given in
Figure 4.

This simple modified signature scheme is also EU-q-wCMA secure; in the security proof, we need the uni-
formity of all tag vectors used in signing queries, which is guaranteed by the proof of Lemma 2. More precisely,
as we mentioned in Section 3.2, two properties |S1| < λ and |Sk| < 1 are essentially used in the security proof.
If each tag vector is computed by −→s i = R(Mi), where R(·) is a random function, then we obtain the above two
properties since Lemma 2 with an appropriate parameter selection of m, k, and Q implies that Pr[|S1| ≥ λ] and
Pr[|Sk| ≥ 1] are negligible functions in λ. (In our choices of practical parameters, both probability are less than
1
2λ

.) Therefore, if we change a random function R to a pseudorandom function PRF with randomly chosen key
K, then we also obtain the same result such that |S1| < λ and |Sk| < 1. If not (that is, |S1| ≥ λ or |Sk| ≥ 1), we
can construct a distinguisher, which distinguish the output of PRFK from random strings, where K is randomly
chosen. Note that for this case, it is no matter whether the key K is published in the public key of the signature
scheme or not. By using these two properties |S1| < λ and |Sk| < 1, we can prove the security of a signature
scheme with tag compression since other parts are essentially same to the proof of Theorem 1.

5.2 Instantiation using Asymmetric Pairings

Although we described our construction using type-1 pairings in Section 3, we can easily modify our construction
to be instantiated using type-2 pairings or type-3 parings as in Figure 5. The scheme using type-1 parings and
its security proof does not use pairing’s symmetry property. Our main idea to achieve sublinear public key is
to divide adversarial types according to tag vectors in the security proof, and this technique is independent of
pairing’s types. Therefore, we can prove the security of the instantiation using asymmetric pairings by following
the same proof strategy used for the scheme with type-1 pairings. For type-2 pairings, the security can be
reduced to the co-DHP: given φ : G2 → G1 and g′, gb ∈ G1, g, g

a ∈ G2 such that g′ = φ(g), compute g′ab.
For type-3 pairings, the security of the proposed DH-based signature scheme can be reduced to the co-DHP∗:
given g′, g′a, g′b ∈ G1, g, g

a ∈ G2, compute g′ab. Note that the security of the Waters signature scheme using
asymmetric pairings is also based on the same problems [1, 11].
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Security Parameter q = 230 q = 240

λ m k PK size Sig. size m k PK size Sig. size

80 w/o tag comp. 7 2 12τG2 + τG1 + 2τGch 2τG1 + 2τZp 8 2 13τG2 + τG1 + 2τGch 2τG1 + 2τZp
w/ tag comp. 7 2 12τG2 + τG1 + 2τGch + |K| 2τG1 + τZp 8 2 13τG2 + τG1 + 2τGch + |K| 2τG1 + τZp

128 w/o tag comp. 7 2 12τG2 + τG1 + 2τGch 2τG1 + 2τZp 8 2 13τG2 + τG1 + 2τGch 2τG1 + 2τZp
w/ tag comp. 7 2 12τG2 + τG1 + 2τGch + |K| 2τG1 + τZp 8 2 13τG2 + τG1 + 2τGch + |K| 2τG1 + τZp

192 w/o tag comp. 7 2 12τG2 + τG1 + 2τGch 2τG1 + 2τZp 8 2 13τG2 + τG1 + 2τGch 2τG1 + 2τZp
w/ tag comp. 7 2 12τG2 + τG1 + 2τGch + |K| 2τG1 + τZp 8 2 13τG2 + τG1 + 2τGch + |K| 2τG1 + τZp

256 w/o tag comp. 7 3 13τG2 + τG1 + 2τGch 2τG1 + 2τZp 8 2 13τG2 + τG1 + 2τGch 2τG1 + 2τZp
w/ tag comp. 7 3 13τG2 + τG1 + 2τGch + |K| 2τG1 + τZp 8 2 13τG2 + τG1 + 2τGch + |K| 2τG1 + τZp

Table 1. Practical parameters for EU-q-CMA secure signature scheme: m and k and are parameters used in
the description of the main construction for signatures scheme, and q is the maximum of the number of signatures that
an adversary can get. In this table, the security reduction loss is at most 96λq, which is comparable to that of Waters
signature scheme in [38]. ‘w/o tag comp.’ means the signature scheme without applying tag compression technique in
the figure 3 and ‘w/ tag comp.’ means the signature scheme with tag compression technique in the figure 4 and figure 5.
‘τG1 ’ and ‘τG2 ’ are the bit-lengths to represent elements in G1 and G2, respectively. For type-1 pairings, τG1 = τG2 . ‘τZp ’
is the size of prime p that is order of cyclic groups G1, G2, and Gt. ‘τGch ’ is the bit length to represent an element in the
group Gch (of order p′ ≤ p), over which the chameleon hashes defined. ‘|K|’ is a size of a PRF key.
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