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Abstract. Confidentiality and authenticity are two fundamental security requirement of
Public key Cryptography. These are achieved by encryption scheme and digital signatures
respectively. Here we present a provably secure signcryption scheme in random oracle
model by modifying Libert et al’s scheme [2]. Our scheme is more efficient and secure
than Libert et al’s scheme. Tan [1] proved that this scheme is not secure against non-
adaptive chosen cipher text attacks. It has been also proved that the semantically secure
symmetric encryption scheme proposed in the Libert et al’s scheme is not sufficient to
guarantee to be secure against adaptive chosen ciphertext attacks. Here we proposed a
modified version of Libert et al’s scheme. The security of which is proven using two as-
sumptions, namely the Strong Diffie-Hellman (SDH) and Diffie-Hellman Inversion (DHI)
in the random oracle model.
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1 Introduction

Signcryption, first proposed by Zheng [3], is a cryptographic primitive that performs signature
and encryption simultaneously, at lower computational costs and communication overheads than
those required by the traditional sign-then-encrypt approach. Due to its advantages, there have
been many signcryption schemes proposed after Zhengs publication. However, in some applica-
tions, sometimes people need both confidentiality and authentication and sometimes they just
need confidentiality or authentication separately. For that case, applications must often contain
at least three cryptographic primitives: signcryption, signature, and encryption, which will def-
initely increase the corresponding computation and implementation complexity and even will
be infeasible in some resources-constrained environments such as embedded systems, sensor net-
works, and ubiquitous computing. Motivated by this, in 2006, Han et al. [4] proposed the concept
of GSC which can implement the separate or joint encryption and signature functions in a single
primitive.

2 Previous Works

In 1997, Zheng [3] introduced the concept of signcryption where both these properties are achieved
in a single logical step, but in a more efficient way.

The notion of identity based cryptography was introduced by Shamir [5] in 1984. It is a form
of public key cryptography in which the users do not obtain certificates for their public keys.



Instead, public keys are generated using arbitrary identifiers such as email addresses, telephone
numbers and social security numbers that uniquely identifies a user in the system. This greatly
reduces the problem of certificate management, considered to be cumbersome in PKI based
systems. The private keys corresponding to the public keys are generated by a trusted authority
called Private Key Generator (PKG). The first fully practical identity based encryption scheme
was proposed by Boneh and Franklin [6] in 2001. Malone-Lee [7] proposed the first identity based
signcryption scheme.

Yu et al. [9] proposed the first ID based signcryption scheme in the standard model and have
been prove that the scheme is insecure against chosen message attack and adaptive cipher attack
[8] [9] [10].

3 Preliminaries

3.1 Notation

Bilinear maps

Definition 1. Let k be a security parameter and q be a k-bit prime number. Let (G1,+) and
(G2,+) be two cyclic additive groups of same prime order p. (GT , .) is an is a multiplicative group
of prime order p and P,Q be generators of the group G1 and G2 respectively. We say (G1,G2,GT )
are Asymmetric Bilinear Map Groups if there exist a bilinear map e : G1XG2 → GT

satisfying the following properties:

– Bilinear: ∀(U, V ) ∈ G1XG2, ∀a, b ∈ Z∗
p, we have the relation e(aU, bV ) = e(U, V )ab.

– Non-degenerate: ∀U ∈ G1, e(U, V ) = 1 ∀V ∈ G2 ⇔ U = 1G1
.

– Computability: ∀ (U, V ) ∈ G1XG2, e(U, V ) is efficiently computable.
– There exists an efficient and publicly computable ( but not necessarily invertible) isomorphism
ψ : G2 → G1 such that ψ(Q) = P .

3.2 Mathematical Assumption

Definition 2. q-Diffie-Hellman Inversion Problem(q-DHIP): Given a (q + 1)-tuple of el-
ements (P1, αP2, α

2P2 . . . α
qP2) ∈ G1XG

q+1
2 , computing 1

α
P1 ∈ G1 for a random α ∈ Z∗

p. We
say that the (t, ǫ, q)-DHI assumption holds in G if no t-time algorithm has advantage at least ǫ
in solving the q-DHI problem in G1.

Definition 3. q-Strong Diffie-Hellman Problem(q-SDHP): Let (G1,G2) be bilinear map
groups of generators P1 and P2. ∃ an isomorphism ψ : G2 → G1 such that ψ(P1) = P2. Given
a (q + 1)-tuple (P1, αP2, α

2P2 . . . α
qP2) ∈ G1XGq+1, computing pair ( 1

α+c
P, c) ∈ Z∗

pXG1 where
c ∈ Z∗

p. We say that the (t, ǫ, q)-SDH assumption holds in G1 if no t-time algorithm has advantage
at least ǫ in solving the q-SDH problem in G1.

Definition 4. (q+1)-Exponent Problem(q-EP): Given a (q+1)-tuple (P1, αP2, α
2P2 . . . α

qP2) ∈
G1XGq+1, computing pair αq+1P1 for a random α ∈ Z∗

p. We say that the (t, ǫ, q+1)-EP assump-
tion holds in G1 if no t-time algorithm has advantage at least ǫ in solving the q + 1-exponent
problem in G1.

(p+ 1)-EP is no harder than the CDH problem and p-DHI problem is polynomially equivalent o
(p+ 1)-EP.



4 Security Discussions

4.1 Security of Signcryption

Definition 5. (Confidentiality) An signcryption scheme is semantically secure or has in-
distinguishbility against adaptive chosen ciphertext attack (IND−SC−CCA2) is no polynomially
bounded(PPT) adversary has a non-negligible advantage in the following game.

1. The challenger C runs the Setup algorithm with the security parameter k as input and
generates a private and public key pair (skU , pkU ). skU is kept secret while pkU is to be
sends to the adversary A.

2. The adversary A performs polynomial bounded number of queries to the oracles provided to
A by C. The description of the queries in the first phase are listed below:
– Signcryption oracle : σ ← Signcrypt(m, pki, skU ). A submits a message m ∈ M and

arbitrary public key pki to the challenger C. C use the private key skU and runs the
algorithm.

– DeSigncryption oracle: (m,σ) ← DeSigncrypt(σ, skU ). A submits a ciphertext σ
together with a sender’s public key if the obtained signed plain-text is valid for recovered
sender’s and returns the symbol ⊥ otherwise for rejection. A can present its queries
adaptively i.e every request may depend on the response to the previous queries.

3. A chooses two messages m0,m1 ∈M and an arbitrary private key skS of sender on which A
wishes to be challenged. The challenger C flips a coins chooses a random bit b ∈ {0, 1} and
computes signcryption cipher-text σ∗ = Signcrypt(mb, skS , pkU ) of mb with the sender’s
private key skS under the attacked public key pkU . The ciphertext σ is sent to the adversary
A as a challenge.

4. A performs polynomial bounded number of new queries in the first stage, with the restrictions
that A cannot query the de-signcryption oracle with (σ∗) and extraction oracle. These queries
may be made adaptively i.e each query may depend on the answer to the previous queries.

5. At the end of the game A returns a bit b
′

and wins the game if b
′

= b. The success probability
is defined by:

AdvIND−SC−CCA2(A) = |Pr[b
′

= b]− 1
2 |

Here Adv is called the advantage for the adversary in the above game.

Definition 6. (Unforgeability) An signcryption scheme (SC) is said to be existentially un-
forgeable against adaptive chosen-messages attacks (EUF-SC-CMA) if no polynomial bounded
adversary (PPT) has a non-negligible advantage in the following game:

1. The challenger C generates a private and public key pair (skU , pkU ). skU is kept secret while
pkU is to be sends to the adversary A.

2. A performs polynomial bounded number of queries to the following oracles which are simu-
lated by the challenger C. The queries may be adaptive i.e the current query may depend on
the previous query responses.

3. Challenger C generates a key pair (skU , pkU ) and pkU is given to the forger F .
4. F adaptively performs queries to the same oracles as in the above definition.
5. F eventually produces a ciphertext σ and a key pair (skR, pkR) and wins if the result of
Designcrypt(σ, skR) is a triple (m, s, pkU ) such that the pair (m, s) is valid for the public
key pkU and no query to the signcryption oracle involving the message m and some receiver’s
public key pk∗R return in a ciphertext σ∗ for which the output of DeSincrypt(σ∗, sk∗R) is
(m, s, pkU ).



5 Previous Work

6 Libert et al.’s Scheme

In this section we have described the signcrytion scheme proposed by Benoit Libert and jean-
Jacques Quisquater [2]. This scheme consists of following four PPT algorithms

– Common-Keygen: Given a security parameter k, this algorithm outputs a k-bit prime
number p and the description of bilinear map groups (G1,G2,GT ) of order p. Let l1 and
l2 be polynomials in k respectively denoting the bit-length of elements from G1 and G2.
The algorithm also chooses generators P1 ∈ G1 and P2 with P1 = ψ(P2), hash func-
tions H1 : {0, 1} → Zp,H2 : G3 → {0, 1}k+l and H3 : {0, 1}k → {0, 1}λ . Let H

′

be

a pseudo-random function, H
′

: {0, 1}∗ → {0, 1}. The common public parameters are
param = {p,G1,G2, P1, P2,H1,H2,H3,H

′

, n}. Where n denotes the length of message
m ∈M i.e |m| = n.

– Keygen each users selects xu ∈ Zp and computes yu = xu · P2 ∈ G2 obtains a public and
private keys pairs (pku, sku) = (Yu, xu).

– Signcrypt Given a message m ∈ {0, 1}n, the recipient’s public key YR and her private key
xs, the sender does the following:
1. Select γ ∈ Z∗

p and compute r = γH1((bm‖m‖YS)+xs)
−1 mod p, where bm = H

′

(xs,m) ∈
{0, 1}.

2. Set C1 = rP1 ∈ G1, C2 = (γ‖bm) ⊕H2(C1‖YRrψ(YR)) ∈ {0, 1}k+l and C3 = (m‖YS).
H3(γ) ∈ {0, 1}

n+l2. The ciphertext is C = 〈C1, C2, C3〉.
– DeSigncrypt Given the input ciphertext C = 〈C1, C2, C3〉

1. Compute (γ‖bm) = C2 ⊕H2(C1‖YR‖xRC1) ∈ {0, 1}
k.

2. Compute (m‖YS) = C3 ⊕H3(γ) ∈ {0, 1}
n+l2.

3. Compute σ = γ−1C1 ∈ G1 and accept the message if e(σ, YS + H(bm‖m‖YS) · P2) =
e(P1, P2).

7 Security Analysis of Libert et al.’s Scheme

Chilk-How TAN [1] proves that Libert et al’s scheme is not secure against non-adaptive chosen
ciphertext and is not sufficiently guarantee their signcryption to be secure against adaptive cho-
sen ciphertext attacks. The proof are shown by the following two claims.

Claim 1: The Libert-Quisquaters q-DH signcryption scheme is not secure against non-
adaptive chosen ciphertext attacks.

Assume that given the receiver’s public key xr and the adversary eA first chooses a sender
secret key xs and two equal length messages m0 and m1 such that bm0

= H
′

(xs,m0) = 0 and
bm1

= H
′

(xs,m1) = 1 and send xs,m0 and m1 to the challenger. The challenger then compute
the challenge ciphertext C∗ = 〈b∗mb

, C∗
1 , C

∗
2 , C

∗
3 〉 where b ∈ {0, 1}. Upon receipt of the challenge

ciphertext C∗, then bmb
must be equal to either bm0

or bm1
. Hence the adversary A can make

a correct guess b
′

which is equal to b. Therefore, we conclude that the Libert-Quisquater q-DH
signcryption scheme is not secure against non-adaptive chosen cipher-text attacks.

Claim-2 :The semantically secure symmetric encryption scheme (E ,D) in the Libert-Quisquaters
q-DH signcryption scheme does not sufficiently guarantee their signcryption to be secure against
adaptive chosen ciphertext attacks.
Proof: Let the semantically secure symmetric encryption scheme be (Ē , D̄) is constructed. Let



the receiver’s public key Xr, the adversary A first selects a sender’s secret key xS and two equal
length messages m0 and m1 and send to the challenger C. The challenger then computes the
challenge ciphertext C̄ = 〈 ¯bmb

, C̄1, C̄2, C̄3〉, where b ∈ {0, 1}. Upon receipt of the challenge ci-
pher C̄ = 〈 ¯bmb

, C̄1, C̄2, C̄3〉, the adversary first make a wild guess that b to be 0 and construct
a new cipher text by choosing a random message m̂ whose length is equal to that of m0 and
computing the following:

X̂S = Xsg
H1( ¯bmb

‖m0)−H1(0‖m̂)

Ĉ3 = C̄3 ⊕ (m0 ⊕ m̂)‖(XS ⊕ X̂S)

Then the adversary A sent the ciphertext Ĉ = 〈0, C̄1, C̄2, Ĉ3〉 to the challenger for de-cryption.
Upon receipt the query, the challenger computes ŵ = C̄2 ⊕H2(C̄1, XR, C̄1

xR). If ŵ /∈ Z∗
p, then

returns ⊥, otherwise computes the following:

k = H3(ŵ),m
′

‖X
′

S = D̄k(Ĉ3), σ̂ = C̄1
ŵ−1

.

If e(σ̂, X
′

Sg
H1(0‖m

′

) = e(g, g), then the challenger returns the message m
′

, otherwise reject the

message. If the response from the challenger is m
′

which is equal to m̂, then adversary A will
know that m0 is the plaintext for the challenger ciphertext . If the response is rejected, then m1

is the plaintext for the challenge ciphertext. Hence the adversary can make a correct guess of b.

8 Signcryption Scheme

8.1 Framework of Signcryption Scheme

An signcryption scheme comprises following four probabilistic polynomial time (PPT) algorithms:

– Setup: (p)← Set(1k) takes a security parameter k ∈ N and generates a k-bit prime number
p. Given a security parameter k, this algorithm outputs a k-bit prime number p.

– Keygen: (Qu, xu) ← KeyGen(1k, param) takes a security parameter k, the global param-
eters param, each user select xu ∈ Z∗

p randomly, generates the public and private key pairs
(Qu, xu) by computing Qu = xuP2 ∈ G2.

– Signcrypt: C ← Signcrypt(1k, param,QR, xS ,m). Given a message m ∈ {0, 1}n, where
m ∈ M, the algorithm takes a security parameter k, global parameters param, recipient’s
public key QR and sender’s private key xS generate ciphertext C.

– De–Signcrypt: (m,σ)/⊥ ← DeSigncrypt(1k, param,C) takes a security parameter k, the
global parameters param, cipher text C, private key of the receiver xR to generate the
plain-text m and a signature σ or ⊥ otherwise.

– Verify: (V alid/⊥)← V erify(1k, param,m, σ). The algorithm takes a security parameter k,
a global parameters param, message m, signature σ outputs V alid or ⊥ for invalid signature.

9 Proposed Signcryption Scheme

The scheme comprise four randomized polynomials algorithms.

– Setup: (p)← Set(1k) takes a security parameter k ∈ N and generates a k-bit prime number p.
Given a security parameter k, this algorithm outputs a k-bit prime number p . The algorithm
chooses groups (G1,G2) of prime order p. A bilinear map ê : G1XG1 → G2. Let l1 and l2
be polynomials in k respectively denoting the bit-length of elements from G1 and G2. The
algorithm also chooses generators P1 ∈ G1 and P2 with P1 = ψ(P2), collision resistant hash
functions H1 : {0, 1}∗ → Z

∗
p,H2 : G1XG1XG1 → {0, 1}

k+l, H3 : {0, 1}k → {0, 1}µ and

H
′

: {0, 1}∗ → Z∗
p. The common public parameters are



param = {p,G1,G2, P1, P2,H1,H2,H3,H
′

, n}.

Where n denotes the length of message m ∈M i.e |m| = n.
– Keygen : Each user select xu ∈ Z∗

p randomly and computes Qu = xuP2 generates the public
and private key pairs (Qu, xu).

– Signcryption: Let the given message m ∈ M, The sender performs the following steps.
1. Select λ ∈ Z∗

p randomly and computes the following

U = xsP1 and h
′

= m‖H
′

(U)
2. ξ = λ(H1(h

′

‖Qs) + xs)
−1 mod p

3. C1 = ξP1 ∈ {0, 1}
l1, C2 = (λ‖h

′

) ⊕ H2(C1‖QR‖ξψ(QR)) ∈ {0, 1}k+l and C3 =
(m‖QS)⊕H3(λ) ∈ {0, 1}

n+l2.
The ciphertext is C = 〈C1, C2, C3〉

– De–Signcryption:Given C = 〈C1, C2, C3〉, compute the following
1. (λ‖h′) = C2 ⊕H2(C1‖QR‖xrC1) ∈ {0, 1}

k. Return ⊥ if λ /∈ Z∗
p.

2. (m‖Qs) = C3 ⊕H3(λ) ∈ {0, 1}
n+l2.

3. Computes σ = λ−1C1 ∈ G1 . Accept the message if the following equation holds

e(σ,QS +H1(h
′‖QS)P2) = e(P1, P2) (1)

10 Proof of Correctness

e(σ,QS +H1(h
′

‖QS)P2) = e(P1, P2)

e(σ,QS +H1(h
′

‖QS)P2)
= e(λ−1C1, QS +H1(C2‖QS)P2)
= e((ξH1(C1‖QS) + xS)−1(ξP1), xSP2 +H1(h

′‖QS)P2)
= e((ξ−1(H1(h

′

‖QS) + xS)−1(ξP1), xSP2 +H1(h
′

‖QS)P2)
= e((H1(h

′

‖QS) + xS)−1P1, xSP2 +H1(h
′

‖QS)P2)
= e((H1(C1‖QS) + xS)−1P1, (xS +H1(C1‖QS))P2)
= e(P1, P2)

10.1 Security Analysis

Theorem 1 Assume that an adversary A has non-negligible advantage ǫ. in breaking the IND-
SC-CCA2 security of the scheme when running in time T asking qHi

queries to random oracles
Hi for i = 1, 2, 3 and qH′ queries to random oracle H′. qse sincryption (signature/encryption)
queries and qdv desincryption (decryption/verification) queries. Then there exists a PPT algo-
rithm B to solve the q-Diffie-Hellman Inversion problem (qDHI) for q = qH1

with advantage

ǫ
′

≥ ǫ− qdv

2k −
qH3

2n+l2

when running in time T
′

≤ +O(q2H1
Tm) + 2qH2

Tp, where Tm is the maximal cost of scalar
multiplication in G1 and G2, Tp being the time for bilinear map evaluation.

Proof:

– Setup: Suppose B is given a random instances of the (q+1)-DHI problem (P,Q, αQ, α2Q . . . αqQ) ∈
(G1,G2) which is equivalent to q-DHI problem to compute αq+1P ∈ G1. B runs A as a sub-
routine to solve the above random instances and act as A’s challenger in the IND-SC-CCA2
game.



Initial: In a preparation phase B chooses l ∈ {1, 2 . . . qHi
}, elements el ∈ Z∗

p and
w1, w2 . . . wl−1, wl+1 . . . wq ∈ Z

∗
q randomly. For i = 1, 2 . . . l − 1, l + 1 . . . q, it computes

ei = el − wi. B uses its input to compute a generator M ∈ G2 and N = ψ(M) ∈ G1

together with public key R = αM ∈ G2 such that it knows q − 1 pairs (wi, Vi = 1
α+wi

M)
for i ∈ {1, 2 . . . q} l. We can apply the proof technique of Boench and Boyen 2004, B expands
the polynomials as

f(z) =
∏q

i=1,i6=l(z + wi) =
∑q−1

j=0 cjz
j

To obtain c0, c1 . . . cq−1 ∈ Z∗
p such that f(z) =

∑q−1
i=0 (ciz

i). Then it sets generator M ∈ G2

and the public key R are then obtains as

M =
∑q−1

i=0 ci(α
iQ) = f(α)Q and R =

∑q
i=1 ci−1(α

iQ) = αf(α)Q = αM

By applying similar technique of proof in [2], we can obtain the pairs (wi, Vi = 1
wi+α

M) by

expanding fi(z) = f(z)
z+wi

=
∑q−1

i=0 diz
i for i ∈ {1, 2 . . . q} q and computing as

Vi =
∑q−2

j=0 dj(α
jQ) = fj(α)Q = f(α)

α+wi
Q = 1

α+wi
M .

The adversary A is then initialized with the generator M ∈ G2 and N = ψ(M) ∈ G1 and
on the public key R ∈ G2. She will be given access to the oracles. The oracles are simulated
by B and maintain a lists L1 and L2 that are initially empty. These are used to keep track
of answers to queries asked by A to oracles H1, H2 and H3.
Oracle Simulation:
1. H

′

-Queries: For H
′

-queries on input U ∈ G1, B first checks if R = xiM . Here it success
and B can easily compute αq+1P .

2. H1-Queries: These queries are indexed by counter t that is initially set to 1. When a
(d‖R) is submitted in H1 query for the first time, B checks whether d equal to the string
h

′

. If d = h
′

, B returns wt and increments t (in such a way that B is able to generate a
valid signature on m. Otherwise, B returns a random element c ∈ Z∗

p stores (d,R, c) in
L1.

3. H2-Queries: On inputQ1,i‖Q2,i‖Q3,i ∈ G1XG2XG1, B checks if 4-uple (M,Q1,i, Q2,i, Q3,i)
is a valid co-Diffie Hellman tuples, we can write Q3,i = co−DHM (Q1,i, Q2,i) by verifying
the following equation.

e(Q1,i, Q2,i) = e(Q3,i,M) (2)

If the verification is correct, B checks if L2 contains a record (Q1,i, Q2,i, Q3,i, βi) is
in L2, B returns a strings βi ∈ {0, 1}

k+1 and insert (Q1,i, Q2,i, Q3,i, βi, 1) in L2. If
(M,Q1,i, Q2,i, Q3,i) is not a co-DH tuple the entry (Q1,i, Q2,i, Q3,i, βi, 0) is added in
L2. At most 2qH2

pairings must be computed overall.
4. H3-Queries: On input the random element λ ∈ {0, 1}n+l2 return the hashed valued.
5. Signcryption Oracle: Signcryption queries on a plaintext m, for an arbitrary receiver’s

key Q: we assume that m was previously submitted in a H1 query and that the message
dependent hashed value was previously defined. Since H1(h

′

‖R) was or will be defined to
be wj for some j ∈ {1, 2 . . . t}. B knows that previously computedNj = ( 1

wj+α
)N appears

as a valid signature on m from the adversary A’s views. So it computes C1 = λNj ∈ G1

for some λ ∈ Z∗
p, obtains k = H3(λ) ∈ {0, 1}

n+l2 through H3 simulation and computes

C3 = (m‖R) ⊕ k ∈ {0, 1}n+l2. It then checks if L1 contains a record (C1, Q,Q3, β, 1)
indicating that Q3 = co−DHM (C1, Q). If this entry exits, B returns C = 〈C1, C2, C3〉
with C2 = (λ‖h

′

) ⊕ β ∈ {0, 1}k+1. Otherwise returns C = 〈C1, C2, C3〉 for a random
C2 = ∈ {0, 1}k+1 and inserts (C1, Q . . . (λ‖h

′

⊕ C2)) in the special list L2.



6. De-signcryption Oracle:When A submits a ciphertext C = 〈C1, C2, C3〉, B checks
whether L1 contains the unique entry (C1, R,Q, β, 1) for some Q ∈ G1 and β ∈ {0, 1}k+1

indicating that Q = co−DHM :
(a) If it does, B obtains (λ‖h

′

) = C2⊕β ∈ {0, 1}
n+l2. C is also rejected if RS is not a G2.

Finally, B extracts σ = λ−1C1 and returns the plaintext m ∈ {0, 1}n and signature
σ together with the sender’s public key RS ∈ G2 if the verification equation-1 holds.

(b) If it does not, B picks a random β picks a random β ∈ {0, 1}k+1 inserts (C1, R . . . β)
into the list L2 so that a subsequent H2-query on (C1, R,co−DHM(C1, R)) will re-
ceive β as an answer, before finalizing the job with random element β. It checks
(λ‖h

′

) = C2 ⊕ β ∈ {0, 1}k+1, k = H3(λ) and so on. The extracted signature
σ = λ−1C1 is checked above.

Probability Analysis: A returns messages m0,m1 and a sender’s private key xs ∈ Z
∗
p.

At this moment B chooses a random θ ∈ Z∗
p and computes C∗

1 = (x + θ) · N ∈ G1 as

C∗
1 = ψ(R)+θ ·N . It expands the polynomials f

′

(z) = f(z)(z+θ) =
∑q

j=0 fjz
j and returns

the challenge C∗ = 〈C∗
1 , C

∗
2 , C

∗
3 〉, where b∗ ∈ {0, 1}, C∗

2 ∈ {0, 1}
k+1, C∗

3 = (mb‖xsM)⊕k for
a random bit b ∈ {0, 1} and k ∈ {0, 1}n+l2. Its probability is qdv/2

k. where C∗ is submitted
in designcryption query before the challenge phase, B aborts. The probability for H3-query
is atmost qH3

/2n+l2 . Therefore we have ǫ
′

≥ ǫ− qdv

2k −
qH3

2n+l2
.

The bound on B’s computation time derives from the fact that B needs q and two scalar
multiplications with q elements in G1 and G2. Total cost is O(q2H1

) scalar multiplication in
G1 and G2. For H2 queries, B needs a cost O(q2H2

) pairings.

Theorem 2 Assume that a forger F has non-negligible advantage ǫ. in breaking the EUF-SC-
CMA security of the scheme when running in time T asking qHi

queries to random oracles Hi

for i = 1, 2, 3 and and qH′ queries to random oracle H′. Let qse be the signature/encryption
queries and qdv decryption/verification queries. Then there exists a PPT algorithm B to solve
the q-Diffie-Hellman Inversion problem (qDHI) for q = qH1

with advantage

ǫ
′

≥ ǫ− 1
2k −

1
2n+l2

when running in time T
′

≤ +O(q2H1
Tm) + 2qH2

Tp, where Tm is the maximal cost of scalar
multiplication in G1 and G2, Tp being the time for bilinear map evaluation.

Proof: We shows B can provide a faithful simulation F and solve the (q + 1)-DHI problem by
interacting with F . B takes as input random instances (P,Q, αQ, α2Q . . . αqQ) ∈ (G1,G2) which
is equivalent to q-DHI problem to compute αq+1P ∈ G1. B runs A as a subroutine to solve the
above random instances and act as F ’s challenger in the EUF-SC-CMA game.
Eventually,F halts and outputs a forged signature embedded into a cipher text C∗ = 〈C∗

1 , C
∗
2C

∗
3 〉

and an arbitrary recipient’s key pairs (x∗R, Q
∗
R), where Q∗

R = x∗RM . These allows B recover the

fake pairs (m∗, σ∗), where σ∗ = (H1(h
′

‖R) + x)
−1
L embedded into C∗, B can extract a solution

to q-SDH as follows: if F is successful, B recovers a valid message-signature pair for the sender’s
public key R by computing λ∗‖h

′

= C2 ⊕ H2(C
∗
1‖Q

∗
R‖x

∗
RC1), m

∗‖R = C∗
3 (λ∗) and σ∗ =

λ∗−1C∗
1 . A q-SDH pair 〈H∗

1 , L
∗〉 can be extracted by expanding f(z)

z+H∗
1

into H∗ = H1(h
∗′, Q∗

S)

and computing N∗ = 1
λ−1 [σ∗ −

∑q−1
i=0 λiψ(αiQ)].

11 Conclusion

In this article we have proposed an efficient signcryption scheme which can be implemented
on low processor and power-constrained mobile devices. The scheme is secure against existential
forgery under chosen message attacks and adaptively chosen ciphertext attacks under the notions
of indistingushability of ciphertext in the random oracle model.
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