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Abstract. Public key cryptographic algorithms are typically based on group exponentiation algorithms where the
exponent is private. A collision attack is typically where an adversary seeks to determine whether two operations in
an exponentiation have the same input. In this paper we extend this to an adversary who seeks to determine whether
the output of one operation is used as the input to another. We describe implementations of these attacks to a 192-
bit scalar multiplication over an elliptic curve that only require a single power consumption trace to succeed with a
high probability. Moreover, our attacks do not require any knowledge of the input to the exponentiation algorithm.
These attacks would therefore be applicable to algorithms such as EC-DSA, where an exponent is ephemeral, or
to implementations where an exponent is blinded. Moreover, we define attacks against exponentiation algorithms
that are considered to be resistant to collision attacks and prove that collision attacks are applicable to all addition
chain-based exponentiation algorithms. Hence, we demonstrate that a side-channel resistant implementation of a
group exponentiation algorithm will require countermeasures that introduce enough noise such that an attack is not
practical.

1 Introduction

It has been shown in the literature that an adversary can potentially derive a private key used to generate an RSA [1]
or EC-DSA [2] signature by observing the power consumption during the computation of a naı̈vely implemented
group exponentiation algorithm. The attack, defined by Kocher et al. [3], targets implementations of group multipli-
cation and squaring operations used in the binary exponentiation algorithm. This vulnerability was present because
the instantaneous power consumption during the computation of a group squaring operation was different to that of a
group multiplication, and could, therefore, be distinguished by simply inspecting a power consumption trace. Many
group exponentiation algorithms have since been proposed in the literature, designed such that an adversary cannot
implement side-channel attacks by inspecting a power consumption trace (see [4] for a survey).

In this paper we present attacks that are applicable to scalar multiplication algorithms that one would use, for
example, in implementing EC-DSA [2] on a resource constrained device that is potentially vulnerable to side-channel
analysis. We exploit collisions between variables used in group operations required to compute a scalar multiplication.
Analyzing collisions in variables was first proposed by Schramm et al. [5] to attack block ciphers (see [6] for recent
results and a survey of relevant publications).

Typically, one would assume that an input point is blinded such that the input to an exponentiation algorithm is
not known to an adversary. Walter [7] observed that one could potentially derive the bits of an exponent by comparing
two parts of a consumption trace corresponding to two operations in a group exponentiation and described some
simulations. Amiel and Feix [8], and Kim et al. [9] describe some attacks and implementations of this strategy applied
to the BRIP exponentiation algorithm [10]. A similar attack has been described by Witteman et al. [11] applicable to



Coron’s double-and-add-always exponentiation algorithm, and Kim et al. [9] also describe how one could apply such
an attack to the Montgomery ladder [12, 13].

One feature of all these attacks is that an adversary will attempt to determine whether the input to two group
operations is the same [8–11, 14]. In this paper we extend this to consider an adversary who is able to determine
whether the output of one operation is used as the input to another operation. Thus allowing an adversary to apply
collision attacks to more algorithms, and overcoming the countermeasures described by Kim et al. [9] to protect the
Montgomery ladder.

The common requirement for the implementations of the attacks described in the literature is that the adversary
needs numerous traces with the same input and same exponent to derive an unknown exponent using collisions [8–11,
14]. That is, an adversary will take numerous acquisitions and reduce noise in the acquired power consumption traces
by computing a mean trace.

1.1 Contribution

In this paper, we first show the practical analysis using a single trace based on previous work detailing attacks on the
reuse of values in operations. We extend this attack model to some countemeasures previously thought to be secure
against attacks described in the literature.

In existing attacks, an adversary typically attempts to determine whether the input to two group operations is the
same [8–11, 14, 15]. However, we extend this to consider an adversary who is able to determine whether the output
of one operation is used as the input to another operation. Thus, an adversary can apply our collision attacks to some
more algorithms, secure against all existing collision attacks.

The common requirement for the the attacks described in the literature is that an adversary needs numerous traces
with the same exponent to derive an unknown exponent using collisions [8–11, 14]. That is, an adversary will take
numerous acquisitions and reduce noise in the acquired power consumption traces by computing a mean trace. In this
paper we introduce an extended attack model which only requires a single trace to succeed.

Some collision attacks using chosen-plaintext [16–19] cannot be exploited to attack ECDSA (Elliptic Curve Digital
Signature Algorithm) [20] using typical DPA countermeasures. However, in the case of our attacks, an adversary does
not need to know the plaintext. In addition, because our attack uses only one trace, the secret key of ECDSA and the
countermeasures can be easily exposed. In the case of ECDSA, our attack method finds the ephemeral key k from the
power consumption trace while generating the signature (r, s). As is widely known, this means that an adversary can
find the private key d as r−1(k s − h(m)) mod q where h(m) and q denote the hash value of the message m and the
order of a generator of the elliptic curve, respectively (see [20] for a thorough description of ECDSA).

Given that our practical work justifies our extended adversarial model for collision attacks, we define attacks that
could be applied to exponentiation algorithms that are considered to be resistant to collision attacks. Specifically, the
exponentiation algorithm MIST proposed by Walter [21] and two exponentiation algorithms recently proposed by
Belenky et al. [22]. We then prove that it is not possible to define a countermeasure that prevents collision attacks
being applied to an addition chain-based exponentiation algorithm.

1.2 Organization

The rest of this paper is organised as follows. In Section 2 we give preliminary definitions. In Section 3 we discuss
the previous work related to the attacks described in this paper. In Section 4 we define our attacks, and describe our
experiments in Section 5. In Section 6 we define attacks against exponentiation algorithms that are considered to be
resistant to collision attacks. In Section 7 we prove that the results can be applied to any exponentiation algorithm. We
conclude in Section 8.

2 Preliminaries

In this section we provide some background and notation that we will refer to in later sections.
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2.1 Addition Chain-based Exponentiation

Addition chain-based exponentiation methods are used to find a sequence of elements, in a given multiplicative group
G, such that the first number is 1G and the last is sχ for some arbitrary s ∈ G and χ ∈ Z>0. Each member of the
sequence is the product of two previous members of the sequence. A more formal definition now given.

Definition 1. An addition chain of length τ in group G for a group element s ∈ G is a sequence of group elements
(ω0, ω1, ω2, . . . , ωτ ) such that ω0 = 1G, ω1 = s and ωk = ωi⊗ωj , 0 ≤ i ≤ j < k ≤ τ and ⊗ is the group operation.
The values of i and j are chosen such that ωk is a chosen power of ω1.

Kocher et al. [3] demonstrated that under some circumstances it is possible to distinguish a multiplication from a
squaring operation using some side-channel, thus revealing all or part of the exponent. To counter this many highly
regular exponentiation algorithms have been proposed in the literature [13, 23]. We define highly regular as the fol-
lowing:

Definition 2. A group G exponentiation algorithm is defined as highly regular if it consists of an operation on g ∈ G
that is composed of g ⊗ · · · ⊗ g ⊗ g, where ⊗ is the group operation, g occurs κ ∈ Z>0 times and κ is fixed for an
exponent of a given bit length.

We describe some examples of highly regular exponentiation algorithms alongside our attacks in Section 4.

2.2 Elliptic Curves

Let Fq be a finite field. An elliptic curve E over Fq consists of points (x, y), with x, y in Fq , that satisfy the full
Weierstraß equation

E : y2 + α1 x y + α3 y = x3 + α2 x
2 + α4 x+ α6

with αi ∈ Fq (1 ≤ i ≤ 6), and the point at infinity denotedOOO. The set E(Fq) is defined as

E(Fq) = {(x, y) ∈ E |x, y ∈ Fq} ∪ {OOO} ,

where E(Fq) forms an Abelian group under the chord-and-tangent rule andOOO is the identity element.
The addition of two points PPP = (x1, y1) andQQQ = (x2, y2) with PPP 6= −QQQ is given by PPP +QQQ = (x3, y3) where

x3 = λ2 + α1 λ− α2 − x1 − x2, y3 = (x1 − x3)λ− y1 − α1 x3 − α3 (1)

with λ =


y1 − y2

x1 − x2
if PPP 6= QQQ ,

3x1
2 + 2α2 x1 + α4 − α1 y1

2 y1 + α1 x1 + α3
if PPP = QQQ .

Provided that the characteristic of field Fq is not 2 or 3, we can take α1 = α2 = α3 = 0. In the following we will also
assume that q = p is prime. We define the short Weierstraß form over prime field Fp by the equation

y2 = x3 + αx+ b . (2)

Note that the slope λ in the doubling then becomes λ = (3x1
2 +α)/(2 y1), which can be rewritten as 3(x1− 1)(x1 +

1)/(2 y1) when α = −3.
The scalar multiplication of a given point is equivalent to an addition chain-based exponentiation and is a fun-

damental operation in cryptographic algorithms that use elliptic curve arithmetic, i.e. kPPP for some integer k < |E|.
In this paper we concentrate on the short Weierstraß form since it is used in standards such as the FIPS 186-3 [2],
WTLS [24] and ANSI X9.62 [20].
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3 Previous Work

One of the first examples of a collision attack applicable to public key cryptographic algorithms is referred to as the
doubling attack, proposed by Fouque and Valette [16], which requires an adversary to acquire traces of a suitable
side-channel during the computation of two scalar multiplications where the input messages are chosen. Specifically,
the scalar multiplication would be made to operate on the chosen points PPP and 2PPP . An adversary could then focus on
adjacent operations executed during the computation of kPPP and k(2PPP ). If we consider, for example, Coron’s double-
and-add-always algorithm [25] (see Algorithm 2), an adversary would seek to compare the doubling operations in
steps i + 1 and i of the computation of kPPP and k(2PPP ) respectively. When the side-channel information acquired
during the computation of these doubling operations are observed to be identical (taking into account a certain amount
of noise), it can be assumed that the two doubling operations have the same input point. This would allow an adversary
to deduce that the i-th bit of k is equal to zero, since otherwise the addition in the i-th round will mean that one
doubling operation is operating on xPPP and the other on (x + 1)PPP for some integer x. The authors show that two of
Coron’s three countermeasures [25] do not provide any resistance against this type of attack. The extension of this
attack to exponentiation in Zn is straightforward, but it does not apply to right-to-left or non-redundant exponentiation
algorithms.

Yen at al. [17] extended the attack proposed by Fouque and Valette [16] to apply it to the Montgomery ladder [12,
13]. The attack functioned using the same chosen input as described above, i.e. points PPP and 2PPP , but an adversary is
only able to deduce whether two adjacent bits of the scalar are equal (if a collision occurred) or not (otherwise).

A more recent result on the doubling attack has been presented by Homma et al. [18]. The proposed attack explores
a collision between two traces at arbitrary (not necessary adjacent) steps in modular exponentiation algorithms. The
idea is to use two input messages M1 and M2 that satisfy the equation Mπ

1 = Mψ
2 mod N , where π and ψ are given

constants. The value of π is chosen to provide information on a certain bit, while ψ ≤ π is chosen arbitrarily. This
attack requires two power traces for each bit of the exponent, and the application to elliptic curve scalar multiplication
algorithms is straightforward. This attack also applies to both left-and-right and right-to-left exponentiation algorithms
includingm-ary and sliding window methods. In addition, Homma et al. demonstrated the effectiveness of their attacks
on a PowerPC processor and a FPGA. Some further extensions have recently been proposed by Yen et al. [19] who
provide some simulated results of their atacks.

The above attacks require that an adversary is able to choose the input to a group exponentiation algorithm. How-
ever, one would typically assume that an input point is blinded such that the input to an exponentiation algorithm is
not known to an adversary. Walter [7] observed that one could potentially derive the bits of an exponent by comparing
two parts of the same power consumption trace corresponding to two operations in a group exponentiation. However,
Walter only presented results based on simulations. Amiel and Feix [8], and Kim et al. [9] describe some attacks
implementing a collision attack strategy proposed by Okeya and Sakura [14]. They describe a collision attack on the
BRIP exponentiation algorithm [10]. They observed that in the i-th round the first operation will operate on the same
value as the last operation in round (i − 1) depending on the value of bits of the exponent. An adversary can then
compute the correlation between two power consumption traces taken while computing these operations to determine
if the same value was used. A similar attack has been described by Witteman et al. [11] applicable to Coron’s double
and add always exponentiation algorithm. Witteman et al. demonstrate that this attack works on an ASIC implemen-
tation. However, all the attacks described in the literature require numerous acquisitions to be taken to reduce noise
to the point where an attack will function. Kim et al. [9] also describe how one could apply such an attack to the
Montgomery ladder [12, 13] and how one could prevent these collision attacks by modifying the algorithm. We show
how this countermeasure can be overcome in Section 4.3.

The work described above either requires an adversary to choose the input to a group exponentiation algorithm or
to acquire a set of traces where the same exponent is used. In the attacks described in this paper we shall assume that
the input is unknown and that the exponent will be different for each execution of the group exponentiation algorithm.
This provides a more realistic model than considered previously, since one would expect a secure implementation to
use blinded inputs and a blinded (or ephemeral) exponent. Moreover, all of the attacks in the literature require that
a value used in one operation is reused in another operation. We extend this model in later sections leading to new
attacks.
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4 Attacking Addition Chain-based Exponentiation Algorithms

In this section we describe some attacks that could be applied to an elliptic curve group exponentiation algorithms
using collisions. Two principle strategies appear in the literature that one could use to protect a group exponentiation
algorithm from side-channel analysis.

1. The first countermeasure to protect a group exponentiation algorithm was proposed by Coron [25], where dummy
operations are included to provide a regular structure to a group exponentiation algorithm.

2. A set of highly-regular algorithms have been defined where a group exponentiation algorithm is broken up into
indistinguishable atomic operations, as first described by Chevallier-Mames et al. [26].

In the remainder of this section we consider one example of each of these strategies to define an attack an adversary
could use that would be applicable to many other algorithms defined in the literature. We also consider the Montgomery
ladder [12, 13] since the version described resists all the collision-based attacks described in the literature, and we
describe a novel attack against this version. We describe some implementations of these attacks using a single trace in
Section 5 and generalize the methods in Sections 6 and 7.

4.1 Highly-Regular Right-to-Left Scalar Multiplication

In the additive group formed over an elliptic curve, a group exponentiation has been defined by Joye that only uses
additions [23] as shown in Algorithm 1. The attack described below is a straightforward variant of the attacks described
by Kim et al. [9] and Witteman et al. [11] applied to a different algorithm.

Algorithm 1 Joye’s Add-Only Scalar Multiplication [23]
Require: PPP a point on elliptic curve E , an n-bit scalar k = (kn−1, kn−2, . . . , k0)2

Ensure: QQQ = kPPP
1: RRR0 ←OOO
2: RRR1 ← PPP
3: RRR2 ← PPP
4: for i← 0 to n− 1 do
5: b← 1− ki
6: RRRb ← RRRb +RRR2

7: RRR2 ← RRR0 +RRR1

8: end for
9: return RRR0

Lemma 1. In one loop of Algorithm 1,RRR0 remains the same when ki+1 = 0 andRRR1 remains the same when ki+1 = 1.

Proof. We assume that an adversary knows the ` least significant bits of the scalar, and define k′ = (k`−1 . . . k0)2 then
we wish to show that the (`+ 1)-th bit can be derived. The intermediate values inRRR0,RRR1 andRRR2 at the end of the `-th
loop will be

RRR0 = k′PPP , RRR1 = (2` − k′)PPP and RRR2 = 2`PPP .

In the (`+ 1)-th loop we consider the change in the registersRRR0 andRRR1:
If k`+1 = 0 then, from the end of the `-th round where RRR0 = k′PPP andRRR1 = (2` − k′)PPP , the updated values

change to
RRR0 = k′PPP and RRR1 = (2`+1 − k′)PPP

in the (`+ 1)-th round. Conversely where k`+1 = 1 then, the values at the end of the `-th round instead change to

RRR0 = (2`+1 + k′)PPP and RRR1 = (2` − k′)PPP

in the (` + 1)-th round. We can see that RRR0 remains the same when k`+1 = 0 , while RRR1 remains the same when
k`+1 = 1 . ut
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4.2 Scalar Multiplication with Dummy Operations

The first countermeasure defined to prevent the identification of group operations was proposed by Coron [25]. In the
additive group formed over an elliptic curve the resulting algorithm is shown in Algorithm 2. Witteman et al. [11]
describe an attack based on the observation that in the i-th round the first operation will operate on the same value as
the last operation in round (i − 1) if the output of this operation is discarded under the assumption that the operation
is the same.

Algorithm 2 Coron’s Double-and-Add-Always Algorithm [25]
Require: PPP a point on elliptic curve E , an n-bit scalar k = (kn−1, kn−2, . . . , k0)2

Ensure: QQQ = kPPP
1: RRR0 ← PPP
2: RRR1 ← PPP
3: for i← n− 2 down to 0 do
4: RRR0 ← 2RRR0

5: b← 1− ki
6: RRRb ← RRR0 +PPP
7: end for
8: return RRR0

Lemma 2. In one loop of Algorithm 2, if the bit treated in the loop is equal to zero the input to the dummy operation
RRR0 will be the same as the input to the subsequent doubling operation.

Proof. Trivially, we assume that an adversary knows the ` most significant bits of the scalar. Then in the (` + 1)-th
loopRRR0 remains the same when (`+ 1)-th most significant bit of the scalar is equal to 0 and changes when it is equal
to 1. ut

Given Lemma 2, an adversary can make a comparison between two subtraces from a power consumption trace taken
while computing these operations to determine if the same value was used. Witteman et al. required numerous ac-
quisitions to be taken to reduce noise to the point where an attack will function. For this attack to function on an
implementation of a group exponentiation over an elliptic curve, a method of comparing an addition and a doubling
operation will be required since one typically uses different algorithms to compute these operations. We demonstrate
how to do this in Section 5.2.
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4.3 Montgomery Ladder

Another variant of addition chain-based exponentiation is the Montgomery ladder [12, 13] as shown in Algorithm 3.

Algorithm 3 Montgomery Ladder [12, 13]
Require: PPP a point on elliptic curve E , an n-bit scalar k = (kn−1, kn−2, . . . , k0)2

Ensure: QQQ = kPPP
1: RRR0 ←OOO
2: RRR1 ← PPP
3: for i = n− 1 down to 0 do
4: RRR¬ki ← RRRki +RRR¬ki
5: RRRki ← 2RRRki
6: end for
7: return RRR0

A method of attacking the Montgomery ladder is described by Kim et al. [9]. However, it requires that Line 4 in
Algorithm 3 is

RRR¬ki = RRR0 +RRR1 .

This is because they used the collision between input operands of addition and doubling operation. In each loop their
implementation computesRRR0 +RRR1 andRRR0 +RRR0 when a bit of the scalar is 0, andRRR0 +RRR1 andRRR1 +RRR1 when a bit of
the scalar is 1. That is, the second operands are different when a given bit of a scalar is equal to 0 and equal otherwise.

This attack described by Kim et al. [9] cannot be applied to Algorithm 3 since Line 4 is

RRR¬ki ← RRRki +RRR¬ki .

However, one can still observe collisions between variables:

Lemma 3. In Algorithm 3, if the bits treated in two consecutive loops are the same then the output of the operation in
Line 5 in the first loop will be the input to the operation in Line 5 in the second loop.

Proof. We assume that an adversary knows the ` most significant bits of the scalar, and define k′ = (kn−1 . . . kn−`)2.
The intermediate results at the end of the `-th loop will be

RRR0 = k′PPP , and RRR1 = (k′ + 1)PPP .

If k′ is even, then the bit kn−` is necessarily equal to zero hence RRR0 was calculated via the doubling operation. Then
if the next bit, kn−`−1, is also equal to zero, the following (`+ 1)-th loop will compute the doubling operation

RRR0 ← 2 (k′PPP ) , otherwise RRR0 ← k′PPP + (k′ + 1) PPP .

Likewise, if k′ is odd, then the bit kn−` is necessarily equal to one henceRRR1 was calculated via the doubling operation.
Then if the next bit, kn−`−1, is also equal to one, the following (`+ 1)-th loop will compute the doubling operation

RRR1 ← 2 ((k′ + 1)PPP ) , otherwise RRR1 ← k′PPP + (k′ + 1) PPP .

That is, for a given value of the bit kn−` then the output of the doubling operation in the `-th round will be used as the
input to the doubling operation in the next round if the next bit of the scalar is equal to kn−`. ut

Lemma 4. In Algorithm 3, if the bits treated in two consecutive loops are different then the output of the operation in
Line 4 in the first loop will be the input to the operation in Line 5 in the second loop.
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Proof. We assume that an adversary knows the ` most significant bits of the scalar, and define k′ = (kn−1 . . . kn−`)2,
and the intermediate results at the end of the `-th loop will be

RRR0 = k′PPP , and RRR1 = (k′ + 1)PPP .

If k′ is odd, then the bit kn−` is necessarily equal to one hence RRR0 was calculated via the addition operation. Then if
the next bit is now equal to zero, the following (`+ 1)-th loop will compute the doubling operation

RRR0 ← 2 (k′PPP ) , otherwise RRR0 ← k′PPP + (k′ + 1) PPP .

Likewise, if k′ is even, then the bit kn−` is necessarily equal to zero hence RRR1 was calculated via the addition
operation. Then if the next bit, kn−`−1, is now equal to one, the following (` + 1)-th loop will compute the doubling
operation

RRR1 ← 2 ((k′ + 1)PPP ) , otherwise RRR1 ← k′PPP + (k′ + 1) PPP .

That is, for a given value of the bit kn−` then the output of the addition in the `-th round will be used as the input to
the doubling operation in the next round if the next bit of the scalar is not equal to kn−`. ut

Given Lemma 3 and Lemma 4 an attack is not straightforward since one cannot compare field operations directly. This
is because one wishes to compare the input of one operation with the output of another operation. We describe how
one can achieve this in the following section.

5 Case Studies: Implementing the Attacks

In this section we describe how one can attack different group exponentiation algorithms using collisions between
group operations. The discussion is somewhat informal since the aim is to provide a guide to the steps required
to conduct collision attacks. For each attack we shall assume that a adversary is obliged to attack individual traces
independently rather than build up knowledge from numerous traces. This represents a significant advantage over the
implementations of collision attacks described in the literature that typically require numerous traces to succeed [8–
11, 14].

In the following we describe instances of the attacks defined in Section 4 using a single power consumption
trace. The aim in each case is to produce a hypothesis for the scalar that will enable the actual scalar to be derived in a
practical amount of time. This is determined to be less than 254 operations, based on the boundary set for block ciphers
by Biryukov et al. [27]. It can only be considered to be an approximate guide since public key algorithms typically
require significantly more time to compute than a block cipher. We also define an attack of time complexity less than
240 to be trivial (while not strictly trivial this represents an arbitrary threshold for what could be achieved with modest
resources). We note that these attacks typically cannot determine the first and last bit treated by the exponentiation
algorithm, which also impacts the time complexity of the subsequent analysis.

The expected number of operations can be determined using Stinson’s algorithm [28], where an t-bit error in a
n-bit hypothesis leads to the exponent in time complexity O

(
n
∑dt/2e
i=0

(
n/2
i

))
(see the Appendix for details). Hence,

we define t ≤ 21 to be a practical attack and t ≤ 13 to be a trivial attack.
Once a guess for the exponent used in an implementation of the Montgomery ladder is deduced using the attack

described in Section 4.3, one cannot directly apply Stinson’s algorithm. This is because each time one wishes to flip a
bit all the bits that are less significant also need to be flipped. However, adapting the algorithm is straightforward and
the expected time complexity of an attack will be the same.

5.1 Attack Platforms

We focus on implementations of a scalar multiplication over elliptic curves because of their use in standards, as
described in Section 2.2. Specifically, we discuss attacks on a scalar multiplication where the scalar and coordinates
are 192-bit values given in one of the example curves in the FIPS 186-3 standard [2]. In each implementation we use
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projective coordinates [29] where the base point is blinded by replacing the z-coordinate with a 192-bit random value
and modifying the x and y-coordinates as required.

For each of the three chosen exponentiation algorithms which are suitable for use in resource-constrained devices
we describe attack strategies for attacking implementations on two platforms. The purpose of these implementations is
to demonstrate the feasibility of the attack on both software and hardware platforms. The implementation choices were
different in each case since the intention is not to evaluate the platforms but the resistance of the chosen algorithms to
collision attacks. The details of the two platforms are as follows:

ARM7 An embedded software implementation on an ARM7TDMI microprocessor, using homogenous projective
coordinates and the point addition algorithm proposed by Izu and Takagi [30]. The implementation was based on
a series of functions for manipulating large numbers written in the ARM7 assembly language. The multiplication
instructions were used such that no change in the execution time would occur for different inputs by using algorithms
defined by Großschäedl et al. [31]. These functions were used as part of an implementation in C.

Of the implementations discussed below, the implementations of Joye’s add-only [23] and Coron’s double-and-
add-always [25] algorithms used Montgomery multiplication [32] as the basic operation. The implementation of the
Montgomery ladder [12, 13] used a multi-precision multiplication followed by a rapid reduction algorithm, made
possible since the underlying prime field is a generalized Mersenne prime [33]. The results attained attacking this
implementation were similar to those attained attacking an implementation using Montgomery multiplication. Only
one set of results are given since this difference in implementation had no significant impact on the results.

The power consumption acquisitions were taken with the microprocessor clocked at 7.37 MHz. The entire scalar
multiplication generation was recorded at 125 MS/s and then filtered using a low-pass filter with a corner frequency
set to 7.37 MHz. Experimentation while conducting the attacks described below determined that this improved the
success rate of any subsequent side-channel analysis.

Virtex-II A VHDL implementation on a SASEBO-G FPGA board [34], using a Montgomery multiplier based on
the CIOS algorithm [35] containing a single 32-bit single-precision multiplier. Homogenous projective coordinates
are used in conjunction with the point addition algorithm proposed by Cohen et al. [36], and the doubling algorithm
proposed by Bernstein and Lange [37]. The underlying architecture is similar to that presented in [38], with a single
ALU containing a modular Montgomery multiplication unit and an addition/subtraction unit, controlled via ROM
programmed during synthesis. The power consumption acquisitions were taken with the FPGA clocked at 24 MHz.
The entire scalar multiplication algorithm was recorded at 250 MS/s and filtered with both a high pass filter to remove
a DC drift in the traces, and a low pass filter to remove high frequency noise.

5.2 Implementing the Attacks

In each case described below we assume that an adversary has divided up the acquired power consumption traces into
smaller traces corresponding to individual operations. That is, if we consider a trace T we can describe the trace as a
series of m subtraces

T = {O1, O2, O3, . . . , Om−1, Om} ,

where the exponentiation algorithm consists of m group operations. That is, Oi for i ∈ {1, . . . ,m} will be the power
consumption during the i-th group operation in trace T . A group operation is defined as either an addition, a doubling
or a field operation and it should be clear from the context to which we refer. A description of how one achieves this,
and a description of an attack using these subtraces as a set of traces is given by Clavier et al. [39].

To give an example of how one can extract these subtraces, Figure 1 shows a portion of two power consumption
traces, each of which show nine field multiplications visible as a repeating pattern.

The attacks described in the literature typically require that an adversary takes a certain number of traces and
generate a mean trace by computing the mean power consumption at each point in the set of traces [8–11, 14]. This
strategy gives a trace that is representative of the power consumption without high frequency noise, since noise will
be removed as one computes the mean.
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Fig. 1. Example power consumption trace showing the individual field multiplication operations in a group operation for the ARM7
(upper) and Virtex-II (lower) implementations.

In our implementations we took a different strategy. We took all the subtraces {O1, O2, O3, . . . , Om−1, Om} and
computed a mean subtrace Ô. This mean trace was then subtracted point-by-point from each element in {O1, O2, O3, . . . , Om−1, Om}
to give {O′1, O′2, O′3, . . . , O′m−1, O

′
m}. The resulting set of subtraces will have the effect of the instructions being ex-

ecuted removed and one is left with noise and variation caused by the manipulated data.
A description of an implementation of the attacks defined in Section 4 to our target implementations is now given

below.

Highly-Regular Right-to-Left Scalar Multiplication Given Lemma 1, we wish to compare the power consumption
during the second addition of a given round with the first addition of the next round. To reduce the amount of compu-
tation required to conduct the attack, all of the acquisitions used were also compressed by only keeping the maximum
point per clock cycle [40]. If we consider the u-point addition traces ai that make up the power consumption trace A
taken during the computation of a n-bit scalar multiplication as defined in Algorithm 1. Then

A = {a1,1 . . . a1,u , a2,1 . . . a2,u , . . . , am,1 . . . am,u}

using the notation above O′i = ai,1 . . . ai,u = āi for all 1 ≤ i < m, i.e. each āi is a trace consisting of u points. For a
n-bit scaler, m is equal to 2n (see Algorithm 1) since there are always two point additions per round.

To locate the points in the group addition trace where collisions would occur, one can compute a trace where we
assume that a collision always occurs at every possible location identified by Lemma 1, i.e. we assume that the input
of the second addition in round ` is always equal to the first addition in round `+ 1. This gives

C = ρ((ā2, ā4, . . . , ām−2) , (ā3, ā5, . . . , ām−1))

where ρ computes Pearson’s correlation coefficient for each of the u points in the group addition trace independently.
The correlation trace C consisting of u points will show a significant correlation where a collision could be detected if
present. That is, enough of (āi, āi+1) will collide, without knowing which, that it will be visible in a correlation trace
to find the relevant points in time. An example trace is shown in Figure 2.

A threshold can then be chosen where all points that have a magnitude above this threshold have their index noted,
where the choice of threshold depends on the platform one is attacking and must be decided on a case-by-case basis.
Extracting these points, one can form a trace from v-point subtraces by concatenating the points at the selected indices
from each āi. For example, we can denote

A′ = {a′1,1 . . . a′1,v, a′2,1 . . . a′2,v, . . . , a′m,1 . . . a′m,v}
= {ā′1, ā′2, . . . , ā′m}
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Fig. 2. An example correlation trace showing the correlation across one operation assuming that a collision occurs in every loop of
the exponentiation. The example is generated from one power consumption trace taken while a Virtex-II FPGA was computing an
exponentiation using Joye’s add-only exponentiation algorithm.

This trace is then used to determine whether a collision occurs between individual operations. For example, using
Pearson’s correlation coefficient to detect a collision one computes a trace

D = d1 . . . dn−1

= {ρ(ā′2, ā
′
3) , ρ(ā′4, ā

′
5) , . . . , ρ(ā′m−2, ā

′
m−1)}

= {ρ(ā′2, ā
′
3) , ρ(ā′4, ā

′
5) , . . . , ρ(ā′2n−2, ā

′
2n−1)}

The correlation coefficients in D can then be converted to hypothetical values for bits of the exponent by observing
whether they fall above or below the mean correlation across all di for i ∈ {1, . . . , n− 1}. Here ρ can be replaced by
another distinguisher such as the Euclidean distance. Hence, the value of di will give a hypothesis for the i-th bit of
the exponent for i ∈ {1, . . . , n− 1}.

An attack, as described above, was applied to each trace individually in a set of 1000, taken while an ARM7 micro-
processor was computing an exponentiation, and 8000 taken while a SASEBO board was computing an exponentiation
using Joye’s add-only exponentiation algorithm. The only difference in the way that the attack was applied was in the
way that the threshold used to select points from C is chosen. In the application to the SASEBO board the threshold
was set to the mean correlation of c1 . . . cu. This approach could not be taken with the implementation of the attack
applied to the ARM7 implementation because of the number of points in each trace. An arbitrarily chosen threshold
of 0.55 was chosen to select the majority of peaks in the observed traces.

In both cases we studied, an attack can be defined where an adversary can deduce the exponent with a high
probability. Indeed, the majority of the values for the time complexity fall well below our defined threshold for a trivial
attack. However, the correlation coefficient is less effective than the Euclidean distance. The results are summarized
in Table 1.

Scalar Multiplication with Dummy Operations The attack described in the previous section only needs to consider
collisions between point additions. That is, the power consumption traces corresponding to the operations of interest
can be superposed. However, for an exponentiation implemented using Coron’s dummy-and-add-always algorithm,
see Section 4, one would typically use a different algorithms to compute an addition and a doubling operation (as
described in Section 2.2) which prevents use of the method previously described.

We consider a trace T made up of subtraces corresponding to doubling operations δi and additions αi as follows:

T = {δ1, α1, δ2, α2 . . . , δn−1, αn−1}

where a doubling operation δi and addition αi for i ∈ {1, . . . , n − 1} consist of f and h field multiplications re-
spectively. We assume that the power consumption taken during one field multiplication consists of u points. One can
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Table 1. The probability of successfully attacking an implementation of the add-only exponentiation algorithm on an ARM7
microprocessor given 1k observations and a Virtex-II FPGA given 8k observations.

Platform Algorithm Matching Method E (#Errors) σ Pr(trivial attack) Pr(practical attack)

ARM7

Add-only
Euclidean distance 5.78 4.30 0.926 0.991
Correlation Coefficient 5.52 4.96 0.935 0.993

Dummy
Euclidean distance 6.10 7.10 0.894 0.968
Correlation Coefficient 8.40 8.66 0.820 0.920

Montgomery
Euclidean distance 14.7 4.35 0.306 0.926
Correlation Coefficient 21.7 4.74 0.0110 0.409

SASEBO
Add-only

Euclidean distance 7.69 2.68 0.955 1
Correlation Coefficient 24.8 4.93 0.00338 0.190

Dummy
Euclidean distance 37.7 5.88 0.00188 0.00225
Correlation Coefficient 24.4 4.88 0.00525 0.207

then use all the available operations to compare all the field multiplications in a doubling operation with those in the
following addition in a manner similar to that described in Section 4.1, i.e. assuming that a collision occurs in every
round given Lemma 2. This gives the f × h matrix

C =


c̄1,1 c̄1,2 . . . c̄1,h
c̄2,1 c̄2,2 . . . c̄2,h

...
...

. . .
...

c̄f,1 c̄f,2 . . . c̄f,h


where each c̄i,j , for 1 ≤ i ≤ f and 1 ≤ j ≤ h, is a u-point trace. For convenience only the field multiplications were
considered and the other field operations are discarded.

Two different approaches of using this matrix were explored. In applying the collision attack to traces taken while
an ARM7 microprocessor was computing an exponentiation using Coron’s dummy-and-add-always we noted that
a significant number of operations that should have no linear relation produced significant correlation coefficients.
We therefore computed a second matrix where no collisions were possible, i.e. by randomly selecting operations
to compare. This matrix was then subtracted from the first matrix point-by-point to remove spurious peaks in the
correlation matrix.

As for the attack described in Section 4.1, an arbitrary threshold set to 0.55 was used to determine which points
from which operations were selected. If there are v indices that are selected then we form one trace from the points
indicated on one dimension by extracting the relevant points from each subtrace in T . Then, as in Section 5.2, we
define

A′ = {a′1,1 . . . a′1,v , a′2,1 . . . a′2,v , . . . , a′2 (n−1),1 . . . a
′
2 (n−1),v}

= {ā′1 , ā′2 , . . . , ā′2 (n−1)} ,

from points indicate in one dimension and

B′ = {b′1,1 . . . b′1,v , b′2,1 . . . b′2,v , . . . , b′2 (n−1),1 . . . b
′
2 (n−1),v}

= {b̄′1 , b̄′2 , . . . , b̄′2 (n−1)} ,

from the other. That is, computing ρ(ā′i , b̄
′
i) will compute the correlation coefficient between all the combinations of

points indicated by C.
As previously, one can use these traces points to generate a trace of correlation coefficients,

D = d1 . . . dn−1

= {ρ(ā′2 , b̄
′
3) , ρ(ā′4 , b̄

′
5) , . . . , ρ(ā′2n−4 , b̄

′
2n−3)}
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The mean of these coefficients was used to determine whether a given bit of the exponent is set to 1 or 0, and hence
generate a hypothesis for the exponent. The attack was repeated on 1000 power consumption traces as before with the
results are summarized in Table 1.

In applying the collision attack to traces taken while a SASEBO board was computing an exponentiation using
Coron’s dummy-and-add-always, we generated traces by selecting traces from the matrix C given our knowledge of
the algorithms used to compute additions and doubling operations. That is, concatenating the subtraces of interest
from C that should allow a collision to be determined. Given the algorithms used, six field multiplications could be
compared to allow collisions to be detected and the mean value of the concatenated subtraces was used as a threshold
to extract the points that would be used to generate A′ and B′. These traces were then used to generate a series of
correlation coefficients D to form hypotheses on the bits of the exponent as described in Section 5.2. The attack was
repeated on 8000 power consumption traces and the results are summarized in Table 1.

The ARM7 implementation can be attacked readily as the median case is well below our defined threshold for
a trivial attack. Contrary to the previous attack, the correlation coefficient provides a better distinguisher than the
Euclidean distance when applied to our SASEBO implementation. An attack using the correlation coefficient will
require approximately 280 traces, where each exponent may be distinct, to produce a result that can be analysed with
a trivial complexity. That is, if one expended a maximum effort of 240 operations per trace a valid attack will have an
overall time complexity of 248 before the key can be broken.

Montgomery Ladder As previously, we consider a trace T made up of subtraces corresponding to doubling opera-
tions Di and additions Ai as follows:

T = {α1, δ1, α2, δ2, . . . , αn−1, δn−1}

We wish to compare the output of a doubling operations with the input of the subsequent addition and doubling
operations. That is, we wish to detect collisions shown to be present by Lemma 3 and Lemma 4 to determine if two
consecutive bits of the exponent are the same.

Then to evaluate whether a collision occurs, as indicated by Lemma 4, we wish to compare the power consumption
during the creation of the output of an addition with the power consumption during the processing of the input to a
doubling operation. We shall assume that the power consumption corresponding to a group doubling and a group
addition operation consist of ud and ua points respectively. We determine a matrix of correlation coefficients C

C =


c̄1,1 c̄1,2 . . . c̄1,ua

c̄2,1 c̄2,2 . . . c̄2,ua

...
...

. . .
...

c̄ud,1 c̄ud,2 . . . c̄ud,ua


where c̄i,j is the correlation of the i-th point from the doubling operation with the j-th point from the addition across
all the pairs of operations indicated by Lemma 4.

As with the attack described in Section 5.2, the correlation coefficients generated in the matrix contained many
spurious, yet seemingly significant, correlation coefficients. A second matrix was then generated where no collisions
were likely and subtracted from the matrix to remove the spurious correlation coefficients. From this differential matrix
we chose all the indices where the correlation coefficient was superior to an arbitrarily chosen threshold of 0.15. As
previously, if there are v indices that are selected then we form one trace from the points indicated on one dimension
by extracting the relevant points from each subtrace in T , giving

A′ = {a′1,1 . . . a′1,v , a′2,1 . . . a′2,v , . . . , a′2 (n−1),1 . . . a
′
2 (n−1),v}

= {ā′1 , ā′2 , . . . , ā′2 (n−1)} ,

and another trace from points indicated on the other dimension

B′ = {b′1,1 . . . b′1,v , b′2,1 . . . b′2,v , . . . , b′2 (n−1),1 . . . b
′
2 (n−1),v}

= {b̄′1 , b̄′2 , . . . , b̄′2 (n−1)} .
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Hence, computing ρ(ā′i , b̄
′
i) will compute the correlation coefficient between all the combinations of points indicated

by C.
One can then use these reduced traces to generated a series of correlation coefficients

D = d1 . . . dn−1

= {ρ(ā′2 , b̄
′
3) , ρ(ā′4 , b̄

′
5) , . . . , ρ(ā′2n−4 , b̄

′
2n−3)}

as described in Section 4.1 and the mean of these coefficients used to generate hypotheses for the exponent.
This can be repeated to compare a doubling operation with the following doubling operation to evaluate the colli-

sions indicated by Lemma 3. This analysis produced two traces of correlation coefficients that can be used to produce
hypotheses for each bit of the exponent. Where the hypotheses differ we selected the hypothesis with the largest
difference from the mean correlation coefficient under the assumption that this will be the strongest distinguisher.

The ARM7 implementation can be defined readily as the median case is well below our defined threshold for a
trivial attack when the correlation coefficient is used. The results of the attack applied to 1000 traces are summarized
in Table 1.

No practical attack was derived for for our SASEBO implementation. We assume that the leakage required to
conduct this attack is not present. That is, the data does not leak in a similar at two different points in time.

6 Other Exponentiation Algorithms

In the previous section we demonstrate that an attacker is able to analyze implementations that use a variety of methods
to compute a group exponentiation. In the following we shall define what we consider an attacker is able to do based
on our experiments. Using this model we shall demonstrate how an attack can be applied to algorithms that have
previously been considered resistant to attacks exploiting collisions.

6.1 Attack Model

We shall consider an attacker capable of the following

1. An attacker can take traces during the computation of a group exponentiation algorithm. However, the exponent
used each time is considered to be distinct, i.e. it is a nonce or blinded.

2. An attacker is able to distinguish individual group operations and extract these as subtraces.
3. An attacker is only able to distinguish if an operation is a squaring where the algorithm is different (as with a

doubling operation in elliptic curve arithmetic). For ease of expression we shall not take into account any infor-
mation available via this side-channel. However, an attacker is able to compare dissimilar operations as described
in Section 5.2.

4. An attacker is able to detect collisions where the same input is used in two different operations with a high
probability (as shown in Sections 5.2 and 5.2). Note that ordering is important as the variables need to appear in
the same points in the trace. That is, for a given group operation ⊗ and group elements x, y and z, an attacker can
detect a collision between x⊗ z and x⊗ y, but not x⊗ z and y ⊗ x.

5. An attacker is able to detect a collision where any input or output of an operation is used in another operation with
a high probability (as shown in Section 5.2), but less than for Property 4. In the above example an attacker would,
for example, be able to detect a collision between x⊗ z and y⊗ x, or where an operation uses the output of some
previous operation.

Hence, an attacker will seek to determine collisions where the same input can be seen in more than one operation.
Where necessary an attacker will attempt to determine collisions between arbitrary elements using the method de-
scribed in Section 5.2. However, the observing the same variable in the same position is preferable since that form of
the attack will succeed with a higher probability.
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Table 2. An Example of a Table

(r, r′) Triples

(2, 0) (111)

(2, 1) (112, 133)

(3, 0) (112, 121)

(3, 1) (112, 133, 121)

(3, 2) (112, 233, 121)

(5, 0) (112, 121, 121)

(5, 1) (112, 133, 121, 121)

(5, 2) (112, 233, 121, 121)

(5, 3) (112, 121, 133, 121)

(5, 4) (112, 222, 233, 121)

6.2 MIST

The MIST algorithm [21] was proposed by Walter as a side-channel resistant exponentiation algorithm. Walter studied
the problem of how much information one could determine on a hidden exponent from a single trace [15]. Here we
summarize and extend his work.

The MIST algorithm is defined as a random-ary exponentiation method similar to a right-to-left m-ary expo-
nentiation algorithm. However, digits are be read from the exponent with a randomly varying base. This produces
Algorithm 4 where Walter defines S = {2, 3, 5}.

Algorithm 4 MIST [21]
Require: PPP a point on elliptic curve E , an n-bit scalar k
Ensure: QQQ = kPPP

1: RRR0 ← PPP
2: RRR1 ←OOO
3: while k > 0 do
4: Choose a random base r from set S
5: r′ ← k mod r
6: if r′ 6= 0 then
7: RRR1 ← r′RRR0 +RRR1

8: end if
9: RRR0 ← rRRR0

10: k ← k/r
11: end while
12: return RRR1

Given our attack model we shall assume that an attacker is able to extract the group operations and determine how
many operations there are in one loop, given that the effect of line 10 should be visible in a trace.

When studying the side-channel resistance of MIST, Walter carefully constructed sequences of operations using
three registers to limit the information available to an attacker. These operations can be expressed as a triplet {i, j, k},
denoting register i combined with register j using the group operation, and writing the result to register k. A sequence
of these triplets correspond to each possible combination of r and r′ as shown in Table 2. In order to extract an
exponent one needs to be able to identify all the pairs of values (r, r′) used.

Walter details how one could attack Algorithm 4 by detecting collisions between variables being reused in oper-
ations. We omit the details for brevity and refer the reader to Walter [15]. However, Walter focuses on the reuse of
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variables, Property 4 in our model, which limits the amount of information an attacker can deduce, resulting in the
following Theorem:

Theorem 1. (Theorem 8 [15]) If an attacker can determine operand re-use from side-channel leakage, then he can
almost certainly deduce the sequence of pairs (r, r′) used in the MIST exponentiation scheme up to an ambiguity
between (2, 1) and (3, 0). This reduces the search space for the current exponent k to about k1/3.

Given that Property 5 of our model allows an attacker to find collisions between the output of one operation and the
input of another Theorem 1 is not sufficient. In order to distinguish between (2, 1) and (3, 0) one needs to distinguish
the sequences

(112, 133) and (112, 121)

respectively. We note that the output of the first operation, 112 in both cases, is used as the input to the second operation
when (r, r′) = (3, 0) and not when (r, r′) = (2, 1). Hence, an attacker would be able to use this difference to detect
a collision on the use of the second register. This would reduce the number of hypotheses for k from k1/3 to 1 with a
probability determined by the platform being attacked.

6.3 Belenky et al.

A more recent attempt to define algorithms that are resistant to attacks exploiting collisions has been proposed by
Belenky et al. [22]. In the following we detail how their algorithms can be attacked using the attack model defined in
Section 6.1. The first algorithm defined by Belenky et al. is given in Algorithm 5.

Algorithm 5 Belenky et al. Exponentiation Algorithm I [22]
Require: PPP a point on elliptic curve E , an addition chain e(j) (∈ {0, 1}) of a scalar k for j ∈ Z, 0 ≤ j ≤ n− 2
Ensure: QQQ = kPPP

1: RRR0 ← PPP
2: RRR1 ← PPP
3: for i← 0 to n− 1 do
4: RRRe(i) ← RRR1−e(i) +RRRe(i)
5: end for
6: return RRR0 +RRR1

A collision characteristic for Algorithm 5 can be defined as follows:

Lemma 5. If the bit values e(i) and e(i+ 1), for some i ∈ {0, . . . , n− 3}, treated in two consecutive loops are same,
the first input operands of two operations are the same.

Proof. If we consider that two consecutive loops of Algorithm 5, say rounds ` and ` + 1, we define the contents of
register Ri,j as the contents of register i in loop j. Then for i ∈ {0, 1} and j ∈ {0, 1},

t(u) = i, t(u+ 1) = j =⇒

{
RRRi,`+1 ← RRR¬i,` +RRRi,` ,

RRRj,`+2 ← RRR¬j,`+1 +RRRj,`+1 .

Hence, e(`) = e(`+ 1) =⇒ RRR¬e(`),` = RRR¬e(`+1),`+1 . ut

Given Lemma 5 and using Property 4 from our attack model, an attacker will be able to determine hypotheses for
all e(`) for ` ∈ {1, . . . , n− 1} given a guess for e(0).

The second algorithm proposed by Belenky et al. is shown in Algorithm 6, which is a right-to-left exponentiation
algorithm using dummy operations.
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Algorithm 6 Belenky et al. Exponentiation Algorithm II [22]
Require: PPP a point on elliptic curve E , an n-bit scalar k = (kn−1, kn−2, . . . , k0)2

Ensure: QQQ = kPPP
1: RRR0 ← PPP
2: RRR1 ←OOO
3: RRR2 ← PPP
4: for i← 0 to n− 2 do
5: RRRki ← RRRki +RRR2

6: RRR2 ← RRR2 +RRR2

7: end for
8: RRR0 ← RRR0 +RRR1

9: RRR0 ← RRR0 +RRR1

10: RRR1 ← RRR1 +RRR2

11: return RRR0 +RRR1

A collision characteristic for Algorithm 6 can be defined as follows:

Lemma 6. If the bit values ki and ki+1, for some i ∈ {0, . . . , n− 3}, treated in two consecutive loops are the same,
them the result in line 5 of loop i will be used in the input to in line 5 of loop i+ 1.

Proof. Trivially, we assume that an adversary knows the ` least significant bits of the scalar. Then in the (` + 1)-th
loopRRRki remains the same when (`+ 1)-th least significant bit of the scalar is equal to `-th least significant bit. ut

Given Lemma 6 and using Property 5 from our attack model, an attacker can form hypotheses on the bits of k and
implement a practical attack.

7 Countermeasures

In the above we show that an adversary can determine if two variables are used at arbitrary points in an exponentiation
algorithm. To resist such attacks an exponentiation algorithm would need to to be more than highly regular, as defined
in Definition 2. If values are reused once created then, to resist our attacks, the order that they are used should not
reveal any information to an adversary. That is, an adversary cannot find meaningful collisions based on comparing
the output of one operation with the input or output of another operation. Hence, we define the following property:

Definition 3. An exponentiation is defined as to be totally regular if it consists of operations g1, g2, . . . , gκ that are
composed gκ ◦ · · · ◦ g2 ◦ g1, where κ ∈ Z is fixed for an exponent of a given bit length and each gi is of the form
zi = gi(xi, yi) for i ∈ {1, . . . , κ}. The function H = gi for i ∈ {1, . . . , κ} and some function H and the address is
fixed for each xi, yi, zi for i ∈ {1, . . . , κ}.

However, such an exponentiation algorithm is not possible.

Lemma 7. A totally regular addition chain-based exponentiation algorithm that can compute sχ for any s, χ ∈ Z>0,
assuming χ has a fixed bit length, does not exist.
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Proof. Let A be an addition chain that can be used to compute sχ from n for some arbitrary s, χ ∈ Z>0. That is, there
will exist some function

F : Z>0 −→ Z>0 : s 7−→ sχ

that uses addition chain A to compute F(n) for some arbitrary χ of a given bit length. If F is totally regular this
would imply that A would remain unchanged for all possible exponents that have the same bit length as χ . However,
by Definition 1, the last element of A is sχ, and we note that χ cannot be changed by modifying s0, s1. Hence

F ⇐⇒ A

and a totally regular addition chain-based exponentiation algorithm is not possible. ut

This means that one needs to ensure that such a side-channel produces an attack whose time complexity is too
large to be practical. The reader is referred to Fan and Verbauwhede [41] for a thorough treatment of this topic.

8 Conclusion

We describe attacks based on collisions of arbitrarily chosen variables manipulated in group operations to determine an
unknown exponent and demonstrate that they can be applied to a single trace without requiring any profiling. This rep-
resents a significant advantage over practical attacks described in the literature that typically require numerous traces
to be acquired [8–11, 14]. Moreover, an adversary does not require any knowledge of the input to the exponentiation
algorithm. However, an adversary may have to independently apply the attack to more than one trace to succeed or
accept that an attack will only succeed with a certain probability.

We chose to apply attacks to Joye’s add-only [23] and Coron’s double-and-add-always [25] exponentiation algo-
rithms to demonstrate their effectiveness against the two main methods of preventing an adversary from deriving an
exponent by inspecting a power consumption trace. That of reducing an exponentiation algorithm to indistinguishable
atomic operations or using dummy operations. Furthermore, we extended the attacks described in the literature by
defining, and implementing, an attack on the Montgomery ladder [12, 13] that would allow an adversary to analyze
versions of the Montgomery ladder that were previously thought to be secure. Again, only one trace is required to
derive the exponent with a high probability.

In Section 5 we present some results of attacking an implementation of a scalar multiplication using the correlation
coefficient and the Euclidean distance as a distinguisher. Hence, demonstrating that the attacks we define can be
implemented using a single trace, justifying the novel extended attack we define for the Montgomery ladder.

We define an attack model based on our practical work and demonstrate that this model can be used to describe
attacks on exponentiation algorithms otherwise considered resistent to collision attacks. Specifically, the exponenti-
ation algorithm MIST proposed by Walter [21] and two exponentiation algorithms recently proposed by Belenky et
al. [22]. Furthermore, we also prove that the attacks described in this paper are applicable to all exponentiation algo-
rithms based on addition chains. This means that a side-channel resistant implementation of a group exponentiation
will require countermeasures that introduce enough noise such that an attack is not practical.

In the case of the Joye’s add-only [23] exponentiation algorithm, using the Chebychev distance returned the expo-
nent with no errors for all 8000 acquired traces the hardware implementation on the SASEBO board. As the Chebychev
distance is simply the maximum absolute distance between the two traces this is somewhat counterintuitive. Examin-
ing the bit transitions during the add-only algorithm using the bundled simulator with Xilinx ISE, it was observed that
when the key-bit was one, there was a transition on a data bus from the prime (consisting mostly of bits set to one) to
zero which caused a disproportionate effect on the resultant collision attack. This essentially reduces the attack to an
SPA attack on the beginning of the point addition operation, where if the power consumption is relatively larger then
the key bit is 1. We do not present this in the main body of our work since we believe it is not likely to be reproduced
on a different platform, and similar results could not be achieved for the other algorithms described in this paper. While
implementation attacks are by their nature implementation specific, this does highlight that unexpected leakage can
lead to simple, effective attacks. Moreover, in evaluating an implementations resistance to the attacks described in this
paper one needs to investigate further than a straightforward implementation of our attacks.
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A The Discrete Logarithm Problem

In this section we describe how the errors in the attacks given in this paper can be corrected so that an adversary could
derive an unknown exponent. To start, we recall the discrete logarithm problem:

Definition 4. Let α ∈ G, for some Abelian group G, and suppose α ∈ 〈β〉. The discrete logarithm logα β is the
unique integer x such that 0 ≤ x ≤ ord(α) − 1 and αx = β. The Discrete Logarithm Problem (DLP) is to compute
logα β, given α and β.

In a side-channel analysis of a given instance of an exponentiation algorithm the results can only give the best
guess of the exponent. Stinson describes a variant of the Baby-Step/Giant-Step algorithm where it is assumed that the
exponent has a small Hamming weight [28]. Stinson’s algorithm requires the existence of a means of splitting a string
of bits into two sets of equal Hamming weight.

Lemma 8. We consider an integer of bit length n, as a string of bits of length n ∈ 2Z and Hamming weight 0 < t < n.
There will exist a set of contiguous bits with Hamming weight bt/2c.
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We present a somewhat simplified version of Stinson’s proof:

Proof. We begin with the case where t is even. Let X be an string of bits of length n with Hamming weight t ∈ 2Z.
Let each Yi for i ∈ {1, . . . , n/2} represent one of the n/2 sets of contiguous bits starting from the i-th bit of the string.
LetH be a function that returns the Hamming weight, thenH(Y1) = t−H(Yn/2). Given thatH(Yi)−H(Yi+1) will
be in {−1, 0, 1} there will be some set of contiguous bits with Hamming weight n/2. If t is odd then the first bit of the
bit string can be set to zero putting us the case described above. The bit can be returned to one once two sets of equal
Hamming weight are found. Giving one set of Hamming weight bn/2c and the other of dn/2e. ut

This is sufficient for our requirements. We refer the reader to Stinson for versions of this proof where n is odd [28].
Given an estimate for the exponent x′ where x = x′ ⊕ e, for some unknown e of Hamming weight t, we can

attempt to determine x by guessing e. We let zi denote the ith bit of z for an n-bit number z. Given an n-bit number z
we define the vector z̊ as follows

z̊i =

 0 If zi = 0 ,
1 If zi = 1 and x′i = 0 ,
−1 If zi = 1 and x′i = 1 .

For a vector z̊ we define

gz̊ =

n∏
i=1

gz̊i·2
n−i

.

If we set β′ = αx
′
, then given a proposed value of e, such that x = x′⊕e, we can test whether it is correct by checking

whether we have β = β′ · αe̊ . The error e can be divided into two sets e1 and e2, where e1 and e2 have a Hamming
weight of t/2 given by a splitting algorithm. We also define a and b as two integers such that x′ = a+ b and the only
bits that can be set to one for a and b are at the indexes defined by the splitting algorithm for e1 and e2 respectively.
Then αx = (αa αe̊1)(αb αe̊2).

We produce a list of error vectors of Hamming weight t/2 where we define the i-th error from the set of possible
errors e1 as ei,1. We define the Giant-Steps to be the table which consists of all pairs

(
β

αa αe̊i,1
, a+ e̊i,1

)
, for all ei,1.

We define the Baby-Steps as pairs
(
αb αe̊j,2 , b+ e̊j,2

)
, for all ej,2. As in the Baby-Step/Giant-Step method we can

terminate the method when a collision is found between
(

β

αa αe̊i,1

)
and

(
αb αe̊j,2

)
for a given i, j. We can then derive

the exponent as x = (a+ e̊i,1) + (b+ e̊j,2).
For an n-bit exponent one would be required to compute

(
n
t/2

)
Giant-Steps and

(
n
t/2

)
Baby-Steps for an error of

Hamming weight t. The above assumes that t is even. If t is odd then the extra bit can be assigned, arbitrarily, to the
computation of baby steps. The required computation then becomes

(
n
bt/2c

)
Giant-Steps and

(
n

bt/2c+1

)
Baby-Steps for

an error of Hamming weight t.
Other than the inclusion of an initial guess this algorithm is the same as that defined by Stinson [28], and has time

complexity of O
(
n
(
n/2
t/2

))
. However, this assumes that t is known. If t is not known then an adversary has to start

with t = 1 and increase the Hamming weight until t is found. One would expect the resulting time complexity to be
O
(
n
∑t
i=0

(
n/2
i/2

))
. However, by Lemma 8 we can ignore the cases where i is odd. Since the required baby and giant

steps will be computed for the cases i − 1 and i + 1. The resulting time complexity is therefore O
(
n
∑dt/2e
i=0

(
n/2
i

))
when t is unknown.
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