
Computational Soundness

without Protocol Restrictions∗

Michael Backes1, Ankit Malik2 and Dominique Unruh3

1 Saarland University, Germany and MPI-SWS
2 Dept. of Math., IIT Delhi

3 University of Tartu, Estonia

August 22, 2012

Abstract

The abstraction of cryptographic operations by term algebras, called Dolev-Yao models, is
essential in almost all tool-supported methods for verifying security protocols. Recently
significant progress was made in establishing computational soundness results: these results
prove that Dolev-Yao style models can be sound with respect to actual cryptographic real-
izations and security definitions. However, these results came at the cost of imposing various
constraints on the set of permitted security protocols: e.g., dishonestly generated keys must
not be used, key cycles need to be avoided, and many more. In a nutshell, the cryptographic
security definitions did not adequately capture these cases, but were considered carved in
stone; in contrast, the symbolic abstractions were bent to reflect cryptographic features and
idiosyncrasies, thereby requiring adaptations of existing verification tools.

In this paper, we pursue the opposite direction: we consider a symbolic abstraction for
public-key encryption and identify two cryptographic definitions called PROG-KDM (pro-
grammable key-dependent message) security and MKE (malicious-key extractable) security
that we jointly prove to be sufficient for obtaining computational soundness without impos-
ing assumptions on the protocols using this abstraction. In particular, dishonestly generated
keys obtained from the adversary can be sent, received, and used. The definitions can be
met by existing cryptographic schemes in the random oracle model. This yields the first
computational soundness result for trace-properties that holds for arbitrary protocols using
this abstraction (in particular permitting to send and receive dishonestly generated keys),
and that is accessible to all existing tools for reasoning about Dolev-Yao models without
further adaptations.

∗A short version of this paper appears at ACM CCS 2012 [7].

Contents

1 Introduction 2

2 The symbolic model 4

3 Definitions of computational soundness 6

4 Computational soundness proofs in CoSP 7

5 Restrictions in the proof and how to solve them 9
5.1 Sending secret keys . 9
5.2 Receiving decryption keys . 15

6 The main result 19

7 Proof sketch 20

A Symbolic model 24

B Computational implementation 25

C Computational soundness proof 26
C.1 Construction of the simulator . 26
C.2 The faking simulators . 30
C.3 The actual proof . 32

References 50

Symbol index 52

Index 55

1 Introduction

Proofs of security protocols are known to be error-prone and, owing to the distributed-system
aspects of multiple interleaved protocol runs, awkward for humans to make. Hence work towards
the automation of such proofs started soon after the first protocols were developed. From the
start, the actual cryptographic operations in such proofs were idealized into so-called Dolev-Yao
models, following [23, 24, 30], e.g., see [25, 34, 1, 28, 33, 13]. This idealization simplifies proof
construction by freeing proofs from cryptographic details such as computational restrictions,
probabilistic behavior, and error probabilities. The success of these Dolev-Yao models for the
tool-supported security analysis stems from their conceptual simplicity: they only consist of a
small set of explicitly permitted rules that can be combined in an arbitrary manner, without any
further constraints on the usage and combination of these rules. Recently significant progress was
made in establishing so-called computational soundness results: these results prove that Dolev-
Yao style models can be sound with respect to actual cryptographic realizations and security
definitions, e.g., see [2, 26, 10, 8, 27, 31, 22, 19, 11, 21].

However, prior computational soundness results came at the price of imposing various con-
straints on the set of permitted protocols. In addition to minor extensions of symbolic models,
such as reflecting length information or randomization, core limitations were to assume that the

2

surrounding protocol does not cause any key cycles, or – more importantly – that all keys that
are used within the protocol have been generated using the correct key generation algorithm.
The latter assumption is particularly problematic since keys exchanged over the network might
have been generated by the adversary, and assuming that the adversary is forced to honestly
generate keys can hardly be justified in practice.

In a nutshell, these constraints arose because the respective cryptographic security definitions
did not adequately capture these cases, but were considered carved in stone; in contrast, the
symbolic abstractions were bent to reflect cryptographic features and idiosyncrasies. As a result,
existing tools needed to be adapted to incorporate extensions in the symbolic abstractions, and
the explicitly imposed protocol constraints rendered large classes of protocols out-of-scope of
prior soundness results. Moreover, if one intended to analyze a protocol that is comprised by
such prior results, one additionally had to formally check that the protocol meets the respective
protocol constraints for computational soundness, which is not necessarily doable in an automated
manner.

Our Contribution. In this paper, we are first to pursue the opposite direction: we consider an
unconstrained symbolic abstraction for public-key encryption and we strive for avoiding assump-
tions on the protocols using this abstraction. We in particular permit sending and receiving of
potentially dishonestly generated secret keys. Being based on the CoSP framework, our result
is limited to trace properties. We do not, however, see a principal reason why it should not be
possible to extend it to equivalence properties.

To this end, we first identify which standard and which more sophisticated properties a cryp-
tographic scheme for public-key encryption needs to fulfill in order to serve as a computationally
sound implementation of an unrestricted Dolev-Yao model, i.e., eliminating constraints on the
set of permitted cryptographic protocols. This process culminates in the novel definitions of
an PROG-KDM (programmable key-dependent message) secure and an MKE (malicious-key ex-
tractable) secure encryption scheme. Our main result will then show that public-key encryption
schemes that satisfy PROG-KDM and MKE security constitute computationally sound implemen-
tations of unrestricted Dolev-Yao models for public-key encryption. The definitions can be met
by existing public-key encryption schemes. (A number of additional conditions are needed, e.g.,
that a public key can be extracted from a ciphertext. But these can be easily enforced by suitable
tagging. See Appendix B for the full list.)

Our computational soundness result in particular encompasses protocols that allow honest
users to send, receive and use dishonestly generated keys that they received from the adversary,
without imposing further assumptions on the symbolic abstraction. This solves a thus far open
problem in the cryptographic soundness literature.1

In a nutshell, we obtain the first computational soundness result that avoids to impose con-
straints on the protocols using this abstraction (in particular, it permits to send, receive, and
use dishonestly generated keys), and that is accessible to all existing tools for reasoning about
Dolev-Yao models without further adaptations.

Related work. Backes, Pfitzmann, and Scedrov [9] give a computational soundness result
allowing key-dependent messages and sending of secret keys. But they impose the protocol
condition that no key that is revealed to the adversary is every used for encrypting. Adão, Bana,
Herzog, and Scedrov [3] give a computational soundness result allowing key-dependent messages,
but only for passive adversaries. No adaptive revealing of secret keys is supported. Mazaré and

1In an interesting recent work, Comon-Lundh et al. [20] also achieved a computational soundness result for
dishonest keys. Their work is orthogonal to our work in that they proposed an extension of the symbolic model
while keeping the standard security assumptions IND-CPA and IND-CTXT for the encryption scheme. As explained
before, we avoid symbolic extensions at the cost of novel cryptographic definitions.

3

Warinschi [29] give a computational soundness that allows for adaptive revealing of secret keys
(in the case of symmetric encryption). But they disallow key-dependent messages, encrypting
of keys, key-dependent messages, encryptions of ciphertexts, or forwarding of ciphertexts. They
show that under these conditions, IND-CCA2 security is sufficient. Bana and Comon-Lundh
[12] have a computational soundness result not imposing any restrictions on the protocol. Their
symbolic modeling, however, is weakened so that no secrecy (even symbolically) is guaranteed
when key dependent messages or adaptive revealing of secret keys occur.

Outline of the Paper. First, we introduce our symbolic abstraction of unconstrained public-
key encryption within the CoSP framework in Section 2. We give the notion of computation
soundness in Section 3 and review how prior computational soundness proofs were conducted
in CoSP in Section 4 for the sake of illustration. We identify where the aforementioned restric-
tions arise in these proofs and explain how to overcome these limitations in Section 5. The
corresponding formal result is established in Section 6. Full proofs are deferred to the appendix

2 The symbolic model

We first describe our symbolic modeling here. The model is fairly standard and follows that of
[4], except that we added some additional operations on secret keys.

Constructors and nonces. Let C := {enc/3, ek/1, dk/1, sig/3, vk/1, sk/1, pair/2, string0/1,
string1/1, empty/0, garbageSig/2, garbage/1, garbageEnc/2} and N := NP ∪NE. Here NP and
NE are countably infinite sets representing protocol and adversary nonces, respectively. (f/n
means f has arity n.) Intuitively, encryption, decryption, verification, and signing keys are
represented as ek(r), dk (r), vk (r), sk (r) with a nonce r (the randomness used when generating
the keys). enc(ek (r′),m, r) encrypts m using the encryption key ek(r′) and randomness r.
sig(sk(r′),m, r) is a signature of m using the signing key sk(r′) and randomness r. The con-
structors string0 , string1 , and empty are used to model arbitrary strings used as payload in a
protocol (e.g., a bitstring 010 would be encoded as string0 (string1 (string0 (empty)))). garbage,
garbageEnc, and garbageSig are constructors necessary to express certain invalid terms the ad-
versary may send, these constructors are not used by the protocol.

Message type.2 We define T as the set of all terms T matching the following grammar:

T ::= enc(ek (N), T,N) | ek (N) | dk (N) |

sig(sk (N), T,N) | vk (N) | sk(N) |

pair (T, T) | S | N |

garbage(N) | garbageEnc(T,N) |

garbageSig(T,N)

S ::= empty | string0(S) | string1(S)

where the nonterminal N stands for nonces.

Destructors. D := {dec/2, isenc/1, isek/1, isdk/1, ekof /1, ekofdk/1, verify/2, issig/1, isvk/1,
issk/1, vkof /2, vkofsk/1, fst/1, snd/1, unstring0/1, unstring1/1, equals/2}. The destructors isek ,

2In the CoSP framework, the message type represents the set of all well-formed terms. Having such a restriction
(and excluding, e.g., enc(dk (N), . . .) or similar) makes life easier. However, when applying the computational
soundness result to a calculus that does not support message types, one needs to remove the restriction that only
terms in the message type are considered. [4] give a theorem that guarantees that this can be done without losing
computational soundness.

4

dec(dk (t1), enc(ek(t1),m, t2)) = m

isenc(enc(ek (t1), t2, t3)) = enc(ek(t1), t2, t3)

isenc(garbageEnc(t1, t2)) = garbageEnc(t1, t2)

isek (ek (t)) = ek(t)

isdk (dk (t)) = dk (t)

ekof (enc(ek(t1),m, t2)) = ek(t1)

ekof (garbageEnc(t1 , t2)) = t1

ekofdk (dk(t1)) = ek(t1)

verify(vk (t1), sig(sk(t1), t2, t3)) = t2

issig(sig(sk(t1), t2, t3)) = sig(sk(t1), t2, t3)

issig(garbageSig(t1, t2)) = garbageSig(t1, t2)

isvk (vk(t1)) = vk(t1)

issk(sk (t)) = sk(t)

vkof (sig(sk(t1), t2, t3)) = vk(t1)

vkof (garbageSig(t1, t2)) = t1

vkofsk (sk(t1)) = vk(t1)

fst(pair (x, y)) = x

snd(pair (x, y)) = y

unstring0(string0(s)) = s

unstring1(string1(s)) = s

equals(t1, t1) = t1

Figure 1: Rules defining the destructors. A destructor application matching none of these rules
evaluates to ⊥.

isdk , isvk , issk , isenc, and issig realize predicates to test whether a term is an encryption key,
decryption key, verification key, signing key, ciphertext, or signature, respectively. ekof ex-
tracts the encryption key from a ciphertext, vkof extracts the verification key from a signature.
dec(dk (r), c) decrypts the ciphertext c. verify(vk(r), s) verifies the signature s with respect to the
verification key vk(r) and returns the signed message if successful. ekofdk and vkofsk compute
the encryption/verification key corresponding to a decryption/signing key. The destructors fst

and snd are used to destruct pairs, and the destructors unstring0 and unstring1 allow to parse
payload-strings. (Destructors ispair and isstring are not necessary, they can be emulated using
fst , unstringi, and equals(·, empty).)

The destructors are defined by the rules in Figure 1; an application matching none of these
rules evaluates to ⊥:

Deduction relation. ⊢ is the smallest relation satisfying the rules in Figure 2. This deduction
relation specifies which terms the adversary can deduce given already known messages S. We
use the shorthand evalf for the application of a constructor or destructor. evalf (t1, . . . , tn) =
f(t1, . . . , tn) if f(t1, . . . , tn) 6= ⊥ and f(t1, . . . , tn) ∈ T and evalf (t1, . . . , tn) = ⊥ otherwise.

5

m ∈ S

S ⊢ m

N ∈ NE

S ⊢ N

S ⊢ t t ∈ T F ∈ C ∪D evalF (t) 6= ⊥

S ⊢ evalF (t)

Figure 2: Deduction rules for the symbolic model

Protocols. We use the protocol model from the CoSP framework [4]. There, a protocol is
modeled as a (possibly infinite) tree of nodes. Each node corresponds to a particular protocol
action such as receiving a term from the adversary, sending a previously computed term to the
adversary, applying a constructor or destructor to previously computed terms (and branching
depending on whether the application is successful), or picking a nonce. We do not describe the
protocol model in detail here, but it suffices to know that a protocol can freely apply constructors
and destructors (computation nodes), branch depending on destructor success, and communicate
with the adversary. Despite the simplicity of the model, it is expressive enough to embed powerful
calculi such as the applied π-calculus (shown in [4]) or RCF, a core calculus for F# (shown in
[6]).

Protocol execution. Given a particular protocol Π (modeled as a tree), the set of possible
protocol traces is defined by traversing the tree: in case of an input node the adversary non-
deterministically picks a term t with S ⊢ t where S are the terms sent so far through output
nodes; at computation nodes, a new term is computed by applying a constructor or destructor
to terms computed/received at earlier nodes; then the left or right successor is taken depending
on whether the destructor succeeded. The sequence of nodes we traverse in this fashion is called
a symbolic node trace of the protocol. By specifying sets of node traces, we can specify trace
properties for a given protocol. We refer to [4] for details on the protocol model and its semantics.

3 Definitions of computational soundness

We now sketch how computational soundness is defined. For details, we refer to [4]. In order to
say whether we have computational soundness or not, we first need to specify a computational
implementation A. Following [4], this is done by specifying a partial deterministic function
AF : ({0, 1}∗)n → {0, 1}∗ for each constructor or destructor F/n.3 Also AN is an distribution of
bitstrings modeling the distribution of nonces. Given a computational implementation, we can
execute a protocol in the computational model. This execution is fully analogous to the symbolic
execution, except that in computation nodes, instead of applying constructors/destructors F to
terms, we apply AF to bitstrings, and in input/output nodes, we receive/send bitstring from/to
a polynomial-time adversary.

Definition 1 (Computational soundness – simplified [4]) We say a computational imple-
mentation A is a computationally sound implementation of a symbolic model for a class P of
protocols if the following holds with overwhelming probability for any polynomial-time adversary
A and any protocol Π ∈ P : The node trace in the computational protocol execution is a valid
node trace in the symbolic protocol execution.

3Probabilistic algorithms such as encryption are modeled by an explicit additional argument that takes a nonce
as randomness.

6

A Sim Π

τ

β

Figure 3: A typical CoSP simulator

4 Computational soundness proofs in CoSP

Before we proceed and present the computational assumptions, we first give an overview on how
prior computational soundness proofs were conducted. Since we based our result on the proof in
the CoSP framework, we review the proof as it was performed there [4]. The problems we will
face are not specific to their proof though.

Remember that in the CoSP framework, a protocol is modeled as a tree whose nodes corre-
spond to the steps of the protocol execution; security properties are expressed as sets of node
traces. Computational soundness means that for any polynomial-time adversary A the trace in
the computational execution is, except with negligible probability, also a possible node trace in
the symbolic execution. The approach for showing this is to construct a so-called simulator Sim.
The simulator is a machine that interacts with a symbolic execution of the protocol Π on the
one hand, and with the adversary A on the other hand; we call this a hybrid execution. (See
Figure 3.) The simulator has to satisfy the following two properties:

• Indistinguishability: The node trace in the hybrid execution is computationally indistin-
guishable from that in the computational execution with adversary A.

• Dolev-Yaoness: The simulator Sim never (except for negligible probability) sends terms t
to the protocol with S 0 t where S is the list of terms Sim received from the protocol so
far.

The existence of such a simulator (for any A) then guarantees computational soundness: Dolev-
Yaoness guarantees that only node traces occur in the hybrid execution that are possible in
the symbolic execution, and indistinguishability guarantees that only node traces occur in the
computational execution that can occur in the hybrid one.

How to construct a simulator? In [4], the simulator Sim is constructed as follows: Whenever
it gets a term from the protocol, it constructs a corresponding bitstring and sends it to the
adversary, and when receiving a bitstring from the adversary it parses it and sends the resulting
term to the protocol. Constructing bitstrings is done using a function β, parsing bitstrings
to terms using a function τ . (See Figure 3.) The simulator picks all random values and keys
himself: For each protocol nonce N , he initially picks a bitstring rN . He then translates, e.g.,
β(N) := rN and β(ek (N)) := Aek (rN) and β(enc(ek (N), t,M)) := Aenc(Aek (rN), β(t), rM).
Translating back is also natural: Given m = rN , we let τ(m) := N , and if c is a ciphertext that
can be decrypted as m using Adk (rN), we set τ(c) := enc(ek (N), τ(m),M). However, in the last
case, a subtlety occurs: what nonce M should we use as symbolic randomness in τ(c)? Here we
distinguish two cases:

If c was earlier produced by the simulator: Then c was the result of computing β(t) for some
t = enc(ek (N), t′,M) and some nonce M . We then simply set τ(c) := t and have consistently
mapped c back to the term it came from.

If c was not produced by the simulator: In this case it is an adversary generated encryption,
and M should be an adversary nonce to represent that fact. We could just use a fresh nonce
M ∈ NE , but that would introduce the need of additional bookkeeping: If we compute t := τ(c),

7

and later β(t) is invoked, we need to make sure that β(t) = c in order for the Sim to work
consistently (formally, this is needed in the proof of the indistinguishability of Sim). And we
need to make sure that when computing τ(c) again, we use the same M . This bookkeeping can be
avoided using the following trick: We identify the adversary nonces with symbols Nm annotated
with bitstrings m. Then τ(c) := enc(ek (N), τ(m), N c), i.e., we set M := N c. This ensures that
different c get different randomness nonces N c, the same c is always assigned the same N c, and
β(t) is easy to define: β(enc(ek (N),m,N c)) := c because we know that enc(ek(N),m,N c) can
only have been produced by τ(c). To illustrate, here are excerpts of the definitions of β and τ
(the first matching rule counts):
• τ(c) := enc(ek (M), t, N) if c has earlier been output by β(enc(ek(M), t, N)) for some
M ∈ N, N ∈ NP

• τ(c) := enc(ek (M), τ(m), N c) if c is of type ciphertext and τ(Aekof (c)) = ek(M) for some
M ∈ NP and m := Adec(Adk (rM), c) 6= ⊥
• β(enc(ek (N), t,M)) := Aenc(Aek (rN), β(t), rM) if M ∈ NP

• β(enc(ek (M), t, Nm)) := m if M ∈ NP

Bitstrings m that cannot be suitably parsed are mapped into terms garbage(Nm) and similar
that can then be mapped back by β using the annotation m.

Showing indistinguishability. Showing indistinguishability essentially boils down to show-
ing that the functions β and τ consistently translate terms back and forth. More precisely,
we show that β(τ(m)) = m and τ(β(t)) = t. Furthermore, we need to show that in any pro-
tocol step where a constructor or destructor F is applied to terms t1, . . . , tn, we have that
β(F (t1, . . . , tn)) = AF (β(t1), . . . , β(tn)). This makes sure that the computational execution
(where AF is applied) stays in sync with the hybrid execution (where F is applied and the result
is translated using β). The proofs of these facts are lengthy (involving case distinctions over
all constructors and destructors) but do not provide much additional insight; they are very im-
portant though because they are responsible for most of the implementation conditions that are
needed for the computational soundness result.

Showing Dolev-Yaoness. The proof of Dolev-Yaoness is where most of the actual crypto-
graphic assumptions come in. In this sketch, we will slightly deviate from the original proof
in [4] for easier comparison with the proof in the present paper. The differences are, however,
inessential. Starting from the simulator Sim, we introduce a sequence of simulators Sim2, Sim4,
Sim7. (We use a numbering with gaps here to be compatible with our full proof in Appendix C.)

In Sim2, we change the function β as follows: When invoked as β(enc(ek(N), t,M)) with
M ∈ NP , instead of computing Aenc(Aek (rN), β(t), rM), β invokes an encryption oracle ON

enc

to produce the ciphertext c. Similarly, β(ek (N)) returns the public key provided by the oracle
ON

enc . Also, the function τ is changed to invoke ON
enc whenever it needs to decrypt a ciphertext

while parsing. Notice that if c was returned by β(t) with t := enc(. . .), then τ(c) just recalls
the term t without having to decrypt. Hence ON

enc is never asked to decrypt a ciphertext it
produced. The hybrid executions of Sim and Sim2 are then indistinguishable. (Here we use that
the protocol conditions guarantee that no randomness is used in two places.)

In Sim4, we replace the encryption oracleON
enc by a fake encryption oracleON

fake that encrypts

zero-plaintexts instead of the true plaintexts. Since ON
enc is never asked to decrypt a ciphertext

it produced, IND-CCA2 security guarantees that the hybrid executions of Sim2 and Sim4 are
indistinguishable. Since the plaintexts given to ON

fake are never used, we can further change
β(enc(N, t,M)) to never even compute the plaintext β(t).

Finally, in Sim7, we additionally change β to use a signing oracle in order to produce signa-
tures. As in the case of Sim2, the hybrid executions of Sim4 and Sim7 are indistinguishable.

8

Since the hybrid executions of Sim and Sim7 are indistinguishable, in order to show Dolev-
Yaoness of Sim , it is sufficient to show Dolev-Yaoness of Sim7.

The first step to showing this is to show that whenever Sim7 invokes β(t), then S ⊢ t holds
(where S are the terms received from the protocol). This follows from the fact that β is invoked
on terms t0 sent by the protocol (which are then by definition in S), and recursively descends
only into subterms that can be deduced from t0. In particular, in Sim4 we made sure that β(t)
is not invoked by β(enc(ek(N), t,M)); t would not be deducible from enc(ek(N), t,M).

Next we prove that whenever S 0 t, then t contains a visible subterm tbad with S 0 tbad such
that tbad is a protocol nonce, or a ciphertext enc(. . . , N) where N is a protocol nonces, or a
signature, or a few other similar cases. (Visibility is a purely syntactic condition and essentially
means that tbad is not protected by an honestly generated encryption.)

Now we can conclude Dolev-Yaoness of Sim7: If it does not hold, Sim7 sends a term t = τ(m)
where m was sent by the adversary A. Then t has a visible subterm tbad . Visibility implies that
the recursive computation of τ(m) had a subinvocation τ(mbad) = tbad . For each possible case
of tbad we derive a contradiction. For example, if tbad is a protocol nonce, then β(tbad) was never
invoked (since S 0 tbad) and thus mbad = rN was guessed by the simulator without ever accessing
rN which can happen only with negligible probability. Other cases are excluded, e.g., by the
unforgeability of the signature scheme and by the unpredictability of encryptions. Thus, Sim7

is Dolev-Yao, hence Sim is indistinguishable and Dolev-Yao. Computational soundness follows.

5 Restrictions in the proof and how to solve them

The proof of computational soundness from [4] only works if protocols obey the following restric-
tions:
• The protocol never sends a decryption key (not even within a ciphertext).
• The protocol never decrypts using a decryption key it received from the net.
• The protocol avoids key cycles (i.e., encryptions of decryption keys using their correspond-

ing encryptions keys). This latter condition is actually already ensured by never sending
decryption keys, but we mention it explicitly for completeness.

(Similar restrictions occur for signing keys in [4], however, those restrictions are not due to
principal issues, removing them just adds some cases to the proof.)

We will now explain where these restrictions come from and how we avoid them in our proof.

5.1 Sending secret keys

The first restriction that we encounter in the above proof is that we are not allowed to send
secret keys. For example, the following simple protocol is not covered by the above proof:

Alice picks a encryption/decryption key pair (ek , dk) and publishes ek . Then Alice sends
enc(ek , N) for some fresh nonce N . And finally Alice sends dk .

When applying the above proof to this protocol, the faking simulator (more precisely, the
function τ in that simulator) will translate enc(ek , N) into an encryption c of 0 (as opposed to
an encryption of rN). But then, when dk is sent later by the symbolic protocol, the simulator
would have to send the corresponding computational decryption key. But that would allow the
adversary to decrypt c, and the adversary would notice that c is a fake ciphertext.

The following solution springs to mind: We modify the faking simulator such that he will
only produce fake ciphertexts when encrypting with respect to a key pair whose secret key will
never be revealed. Indeed, if we could do so, it might solve our problem. However, in slightly
more complex protocols than our toy example, the simulator may not know in advance whether
a given secret key will be revealed (this may depend on the adversary’s actions which in turn

9

may depend on the messages produced by the simulator). Of course, we might let the simulator
guess which keys will be revealed. That, however, will only work when the number of keys is
logarithmic in the security parameter. Otherwise the probability of guessing correctly will be
negligible.4

(Notice also that the problem is also not solved if the simulator does not produce fake ci-
phertexts if in doubt: Then our argument that the bitstring mbad is unguessable would become
invalid.)

To get rid of the restriction, we take a different approach. Instead of forcing the simulator
to decide right away whether a given ciphertext should be a fake ciphertext or not, we let him
decide this later. More precisely, we make sure that the simulator can produce a ciphertext c
without knowing the plaintext, and later may “reprogram” the ciphertext c such that it becomes
an encryption of a message m of his choice. (But not after revealing the secret key, of course.)

At the first glance, this seems impossible. Since the ciphertext c may already have been sent
to the adversary, c cannot be changed. It might be possible to have an encryption scheme where
for each encryption key, there can be many decryption keys; then the simulator could produce
a special decryption key that decrypts c to whatever he wishes. But simple counting arguments
show that then the decryption key would need to be as long as the plaintexts of all ciphertexts
c produced so far together. This would lead to a highly impractical scheme, and be impossible
if we do not impose an a-priori bound on the number of ciphertexts. (See [32].)

However, we can get around this impossibility if we work in the random oracle model. (In
the following, we use the word random oracle for any oracle chosen uniformly out of a family of
functions; thus also the ideal cipher model or the generic group model fall under this term. The
“standard” random oracle [15] which is a uniformly randomly chosen function from the set of all
functions we call “random hash oracle” for disambiguation.)

In the random oracle model, we can see the random oracle as a function that is initially
undefined, and upon access, the function table is populated as needed (lazy sampling). This
enables the following proof technique: When a certain random oracle location has not been
queried yet, we may set it to a particular value of our choosing (this is called “programming
the random oracle”). In our case this can be used to program a ciphertext c: As long as we
make sure that the adversary has not yet queried the random oracle at the locations needed for
decrypting c (e.g., because to find these locations he needs to know the secret key), we can still
change the value of the oracle at these locations. This in turn may allow us to change the value
that c decrypts to.

Summarizing, we look for an encryption scheme with the following property: There is a
strategy for producing (fake) keys and ciphertexts, and for reprogramming the random oracle
(we will call this strategy the “ciphertext simulator”), such that the following two things are
indistinguishable: (a) (Normally) encrypting a value m, sending the resulting ciphertext c, and
then sending the decryption key. (b) Producing a fake ciphertext c. Choosing m. And sending
the decryption key.

Such a scheme could then be used in our computational soundness proof: Sim2 would encrypt
messages m normally. Sim4 would produce fake ciphertexts c instead, and only when revealing
the decryption key, reprogram the ciphertexts c to contain the right messages m. Then, we would
consider an additional simulator Sim5 that does not even compute m until it is needed. This will
then allow us to argue that the bitstring mbad corresponding to a “bad” subterm tbad cannot be
guessed because the information needed for guessing this bitstring was never computed/accessed.

A security definition for encryption schemes with the required properties has been presented
in [35] (called PROG-KDM), together with a natural construction satisfying the definition. In

4This is closely related to selective opening security (SOA) [14]. However, although selective SOA addresses a
similar problem, it is not clear how SOA could be used to prove computational soundness.

10

the following, we present and explain their definition and how it allows us to get computational
soundness for protocols sending secret keys.

Formally defining PROG-KDM security turns out to be more complex than one might expect.
We cannot just state that the ciphertext simulator is indistinguishable from an honest encryption
oracle. The ciphertext simulator has a completely different interface from the honest encryption
oracle. In particular, it expects the plaintext when being asked for the secret key, while the
encryption oracle would expect these upon encryption. To cope with this problem, we define
two “wrappers”, the real and the fake challenger. The real challenger essentially gives us access
to the encryption algorithm while the fake challenger, although it expects the plaintexts during
encryption (to be indistinguishable from the real challenger), uses the plaintexts only when the
decryption key is to be produced. These two challengers should then be indistinguishable. (The
challengers additionally make sure that the adversary does not perform any forbidden queries
such as submitting a ciphertext for decryption that was produced by the challenger.)

We first define the real challenger. The real challenger needs to allows us to query the en-
cryption and decryption keys, to perform encryptions and decryptions, and to give us access
to the underlying random oracle. However, if we only have these queries, situations like the
following would lead to problems: The adversary wishes to get Enc(ek1,Enc(ek2,m)). We do
not wish the adversary to have to request Enc(ek2,m) first and then resubmit it for the sec-
ond encryption, because this would reveal Enc(ek2,m), and we might later wish to argue that
Enc(ek2,m) stays secret. To be able to model such setting, we need to allow the adversary to
evaluate sequences of queries without revealing their outcome. For this, we introduce queries
such as R := encch(N,R1). This means: Take the value from register R1, encrypt it with the
key with index N ∈ {0, 1}∗, and store the result in register R. Also, we need a query to apply
arbitrary functions to registers: R := evalch(C,R1, . . . , Rn) applies the circuit C to registers
R1, . . . , Rn. (This in particular allows us to load a fixed value into a register by using a circuit
with zero inputs (n = 0). Finally, we have a query revealch(R1) that outputs the content of a
register.

Formally, the definition of the real challenger is the following:

Definition 2 (Real challenger) Fix an oracle O and an encryption scheme (K,E,D) relative
to that oracle. The real challenger RC is an interactive machine defined as follows. RC has
access to the oracle O. RC maintains a family (ekN , dkN)N∈{0,1}∗ of key pairs (initialized as
(ekN , dkN)← K(1η) upon first use), a family (regN)N∈{0,1}∗ of registers (initially all regN = ⊥),
and a family of sets cipherN (initially empty). RC responds to the following queries (when no
answer is specified, the empty word is returned):
• R := getekch(N): RC sets regR := ekN .
• R := getdkch(N): RC sets regR := dkN .
• R := evalch(C,R1, . . . , Rn) where C is a Boolean circuit:5 Compute m := C(regR1

, . . . ,
regRn

) and set regR := m.
• R := encch(N,R1): Compute c← EO(ekN , regR1

), append c to cipherN , and set regR := c.
• oraclech(x): Return O(x).
• decch(N, c): If c ∈ cipherN , return forbidden where forbidden is a special symbol (differ-

ent from any bitstring and from a failed decryption ⊥). Otherwise, invoke m← DO(dkN , c)
and return m.
• revealch(R1): Return regR1

.
Here N and c range over bitstrings, R ranges over bitstrings with regR = ⊥ and the Ri range
over bitstrings R with regRi

6= ⊥.

5Note that from the description of a circuit, it is possible to determine the length of its output. This will be
important in the definition of FCLen below.

11

Notice that the fact that we can do “hidden evaluations” of complex expressions, also covers
KDM security (security under key-dependent messages): We can make a register contain the
computation of, e.g., Enc(ek , dk) where dk is the decryption key corresponding to ek .

We now proceed to define the fake challenger. The fake challenger responds to the same
queries, but computes the plaintexts as late as possible. In order to do this, upon a query such
as R := encch(N,R1), the fake challenger just stores the symbolic expression “encch(N,R1)” in
register R (instead of an actual ciphertext). Only when the content of a register is to be revealed,
the bitstrings are recursively computed (using the function FCRetrieve below) by querying the
ciphertext simulator. Thus, before defining the fake challenger, we first have to define formally
what a ciphertext simulator is:

Definition 3 (Ciphertext simulator) A ciphertext simulator CS for an oracle O is an in-
teractive machine that responds to the following queries: fakeenccs(R, l), deccs(c), enccs(R,m),
getekcs(), getdkcs(), and programcs(R,m). Any query is answered with a bitstring (except
deccs(c) which may also return ⊥). A ciphertext simulator runs in polynomial-time in the total
length of the queries. A ciphertext simulator is furthermore given access to an oracle O. The
ciphertext simulator is also allowed to program O (that is, it may perform assignments of the
form O(x) := y). Furthermore, the ciphertext simulator has access to the list of all queries made
to O so far.6

The interesting queries here are fakeenccs(R, l) and programcs(R,m). A fakeenccs(R, l)-
query is expected to return a fake ciphertext for an unspecified plaintext of length l (associated
with a handle R). And a subsequent programcs(R,m)-query with |m| = l is supposed to program
the random oracle such that decrypting c will return m. The ciphertext simulator expects to
get all necessary programcs(R,m)-queries directly after a getdkcs()-query revealing the key.
(Formally, we do not impose this rule, but the PROG-KDM does not guarantee anything if the
ciphertext simulator is not queried in the same way as does the fake challenger below.) We
stress that we allow to first ask for the key and then to program. This is needed to handle
key dependencies, e.g., if we wish to program the plaintext to be the decryption key. The
definition of the fake challenger will make sure that although we reveal the decryption key before
programming, we do not use its value for anything but the programming until the programming
is done.

Note that we do not fix any concrete behavior of the ciphertext simulator since our definition
will just require the existence of some ciphertext simulator.

We can now define the real challenger together with its recursive retrieval function
FCRetrieve:

Definition 4 (Fake challenger) Fix an oracle O, a length-regular encryption scheme
(K,E,D) relative to that oracle, and a ciphertext simulator CS for O. The fake challenger
FC for CS is an interactive machine defined as follows. FC maintains the following state:
• A family of instances (CSN)N∈{0,1}∗ of CS (initialized upon first use). Each ciphertext

simulator is given (read-write) oracle access to O.
• A family (regR)R∈{0,1}∗ of registers (initially all regR = ⊥). Registers regN are either

undefined (regN = ⊥), or bitstrings, or queries (written “getekch(N)” or “getdkch(N)” or
“evalch(C,R1, . . . , Rn)” etc.).
• A family (cipherN)N∈{0,1}∗ of sets of bitstrings. (Initially all empty.)

FC answers to the same queries as the real challenger, but implements them differently:

6Our scheme will not make use of the list of the queries to O, but for other schemes this additional power
might be helpful.

12

• R := getekch(N) or R := getdkch(N) or R := evalch(C,R1, . . . , Rn) or R :=
encch(N,R1): Set regR := “getekch(N)” or regR := “getdkch(N)” or regR :=
“evalch(C,R1, . . . , Rn)” or regR := “encch(N,R1)”, respectively.
• decch(N, c): If c ∈ cipherN , return forbidden. Otherwise, query deccs(c) from CSN and

return its response.
• oraclech(x): Return O(x).
• revealch(R1): Compute m ← FCRetrieve(R1). (FCRetrieve is defined below in

Definition 5.) Return m.

Definition 5 (Retrieve function of FC) The retrieve function FCRetrieve has access to
the registers regR and the ciphertext simulators CSN of FC. It additionally stores a family
(plainN)N∈{0,1}∗ of lists between invocations (all plainN are initially empty lists). FCRetrieve

takes an argument R (with regR 6= ⊥) and is recursively defined as follows:
• If regR is a bitstring, return regR.
• If regR = “getekch(N)”: Query CSN with getekcs(). Store the answer in regR. Re-

turn regR.
• If regR = “evalch(C,R1, . . . , Rn)”: Compute mi := FCRetrieve(Ri) for i = 1, . . . , n.

Compute m′ := C(m1, . . . ,mn). Set regR := m′. Return m′.
• If regR = “encch(N,R1)” and there was no getdkcs()-query to CSN yet: Compute l :=
FCLen(R1). (FCLen is defined in Definition 7 below.) Query CSN with fakeenccs(R, l).
Denote the answer with c. Set regR := c. Append (R 7→ R1) to the list plainN . Append c
to cipherN . Return c.
• If regR = “encch(N,R1)” and there was a getdkcs()-query to CSN : Compute m :=
FCRetrieve(R1). Query CSN with enccs(R,m). Denote the answer with c. Set regR := c.
Append (R 7→ R1) to plainN . Append c to cipherN . Return c.
• If regR = “getdkch(N)”: Query CSN with getdkcs(). Store the answer in regR. If this

was the first getdkcs(N)-query for that value of N , do the following for each (R′ 7→ R′
1) ∈

plainN (in the order they occur in the list):
– Invoke m := FCRetrieve(R′

1).
– Send the query programcs(R

′,m) to CSN .
Finally, return regR.

The retrieve function uses the auxiliary function FCLen that computes what length a bitstring
associated with a register should have. This function only makes sense if we require the encryption
scheme to be length regular, i.e., the length of the output of the encryption scheme depends only
on the lengths of its inputs.

Definition 6 (Length regular encryption scheme) An encryption scheme (K,E,D) is
length-regular if there are functions ℓek , ℓdk , ℓc such that for all η ∈ N and all m ∈ {0, 1}∗

and for (ek , dk) ← K(1η) and c ← E(ek ,m) we have |ek | = ℓek(η) and |dk | = ℓdk(η) and
|c| = ℓc(η, |m|) with probability 1.

Definition 7 (Length function of FC) The length function FCLen has (read-only) access to
the registers regR of FC. FCLen takes an argument R (with regR 6= ⊥) and is recursively defined
as follows:
• If regR is a bitstring, return |regR|.
• If regR = “evalch(C,R1, . . . , Rn)”: Return the length of the output of the circuit C. (Note

that the length of the output of a Boolean circuit is independent of its arguments.)
• If regR = “getekch(N)” or regR = “getdkcs(N)”: Let ℓek and ℓdk be as in Definition 6.

Return ℓek(η) or ℓdk (η), respectively.

13

• If regR = “encch(N,R1)”: Let ℓc be as in Definition 6. Return ℓc(η, FCLen(R1)).

We are now finally ready to define PROG-KDM security:

Definition 8 (PROG-KDM security) A length-regular encryption scheme (K,E,D) (rela-
tive to an oracle O) is PROG-KDM secure iff there exists a ciphertext simulator CS such that
for all polynomial-time oracle machines A,7 Pr[ARC(1η) = 1] − Pr[AFC(1η) = 1] is negligible
in η. Here RC is the real challenger for (K,E,D) and O and FC is the fake challenger for CS
and O. Notice that A does not directly query O.

If we assume that the computational implementation of ek , dk , enc, dec is a PROG-KDM
secure encryption scheme, we can make the proof sketched in Section 4 go through even if the
protocol may reveal its decryption keys: The simulator Sim2 uses the real challenger to produce
the output of β. He does this by computing all of β(t) inside the real challenger (using queries
such as R := evalch(C, . . .)). Then Sim4 uses the fake challenger instead. By PROG-KDM
security, Sim2 and Sim4 are indistinguishable. But Sim4 still provides all values needed in the
computation early (because the real challenger needs them early). But we can then define Sim5

which does not use the real challenger any more, but directly accesses the ciphertext simulator
(in the same way as the fake challenger would). Sim5 is then indistinguishable from Sim2, but,
since the fake challenger performed all computations on when needed, Sim2 now also performs all
computations only when actually needed. This has the effect that in the end, we can show that
the bitstring mbad represents a contradiction because it guesses values that were never accessed.

[35] shows that PROG-KDM security can be achieved using a standard construction, namely
hybrid encryption using any CCA2-secure key encapsulation mechanism, a block cipher (modeled
as an ideal cipher) in CBC-mode, and encrypt-then-MAC with an arbitrary one-time MAC.

We have now removed the restriction that a protocol may not send its decryption keys. (And
in one go, we also enabled key-cycles because PROG-KDM covers that case, too.) It remains to
remove the restriction that we cannot use decryption keys received from the adversary,

The need for PROG-KDM security. The question that arises in this context is whether
we actually need such a strong notion as PROG-KDM in this context. Obviously, IND-CCA2
security alone is not sufficient, there are schemes that are IND-CCA2 secure and break down in
the presence of key-cycles.8 But what about, e.g., KDM-CCA2 [18] that covers key dependent
messages and active attacks?

To illustrate the necessity of a notion stronger than KDM-CCA2, consider the following
example: Assume a protocol in which we want to share a secret s with n parties in such a way
that n/2 parties are needed to recover the secret s. We do this by distributing n decryption
keys to the n parties, and by producing a number of nested encryptions such that n/2− 1 of the
decryption keys are not sufficient to recover s. More precisely, we use the following protocol:9

• The dealer D chooses a nonce s and n key pairs (ek i, dk i).
• D chooses additional key pairs (ek i,j , dk i,j) for i = 0, . . . , n/2 and j = 0, . . . , n.

7Here we consider A polynomial-time if it runs a polynomial number of steps in η, and the number of steps
performed by RC or FC is also polynomially-bounded. This additional requirement is necessary since for an
encryption scheme with multiplicative overhead (say, length-doubling), a sequence of queries Ri := encch(N,Ri−1)
of polynomial length will lead to the computation of an exponential-length ciphertext.

8Take, e.g., an IND-CCA2 secure encryption scheme (KeyGen,Enc,Dec) and modify it such that Enc(ek , dk) :=
dk if ek and dk are a valid key pair, and let Dec(dk , dk) := dk . It is easy to see that the modified scheme is still
IND-CCA2 secure, but the key cycle Enc(ek , dk) reveals the decryption key.

9A simpler protocol would be to publish eI := Enc(dk i1 , . . .Enc(dk in/2
, s) . . .) for each set I = {i1, . . . , in/2 of

size n/2. But that protocol would need to send an exponential number of ciphertexts I.

14

• D computes ei,j ← Enc(ek j , (Enc(ek i−1,0, dk i,j), . . . ,Enc(ek i−1,j−1, dk i,j))) for all i =
1, . . . , n/2, j = 1, . . . , n, and publishes all ei,j , dk0,j . (dk i,j can then be computed if dk j is
known and at least i keys from dk1, . . . , dk j are known.)
• D computes ej ← Enc(ekn/2,j , s) for j = 1, . . . , n, and publishes all ej.

(s can then be computed if dkn/2,j is known for some j. Thus, s can be computed if n/2
of the dk j are known.)
• The adversary may choose n/2− 1 indices j ∈ {1, . . . , n}, and D sends dk j for each of the

selected j.
• The adversary wins if he guesses the secret nonce s.

It is easy to see that given n/2 keys dk j , one can recover s. But in a reasonable symbolic model
(e.g., the one from Section 2), the adversary cannot win.10 So a computational soundness result
without restrictions on sending and encrypting decryption keys would imply that the protocol
is secure in the computational setting. Hence any security notion that allows us to derive the
computational soundness result must also be sufficient to show that the protocol is secure in a
computational setting. (Notice that situations similar to the one in this protocol could occur,
e.g., if we enforce some complex authorization policy by a suitable set of nested encryptions.)

But it seems that IND-CCA2 or KDM-CCA2 security does not allow us to prove the security
of this protocol. In a proof using one of these notions, one typically first defines a game G1 which
models an execution of the protocol. Then one defines a modified game G2 in which some of the
ciphertexts are replaced by encryptions of 0. Then one uses IND-CCA2 or KDM-CCA2 to show
that G1 and G2 are indistinguishable. Finally, one uses that in game G2, the secret s is never
accessed, because we have replaced all occurrences of s by 0. If we would know in advance which
keys dk j the adversary requests, this proof would indeed go through. However, the selection of
the dk j by the adversary can be done adaptively, even depending on the values of the ei,j . (E.g.,
the adversary could produce a hash of all protocol messages and use the bits in the hash value
to decide which keys to reveal.) Hence, when encrypting, we do not know yet which ciphertexts
will be opened. Since there are an exponential number of possibilities, we cannot guess. There
seems to be no other way of choosing which ciphertexts should be 0-encryptions. Because of this,
IND-CCA2 and KDM-CCA2 seem unapplicable for this protocol.11

Also notions such as IND-SO-CPA and SIM-SO-CPA which are designed for situations with
selective opening of ciphertexts (cf. [17]) do not seem to match this protocol. Possibly extensions
of these notions might cover this case, but it is not clear what these extensions should look like
(in particular if we extend the protocol such that some of the ei,j may depend on other ei,j, e.g.,
by including the latter in some of the plaintexts of the former).

So, it seems that the only known security notion for encryption schemes that can show the
security of the above protocol is PROG-KDM. Thus it is not surprising that we need to use
PROG-KDM security in our proof.

5.2 Receiving decryption keys

The second restriction we face in the proof sketched in Section 4 is that a protocol is not allowed
to receive decryption keys. This is due to the way the simulator Sim parses a bitstring into a
term (using the function τ): When receiving a ciphertext c for which the decryption key d is

10Proof sketch: Fix a set I ⊆ {dk1, . . . , dkn}. Let S := {ej , ei,j , dk0,j} ∪ I. By induction over i, we have
that S ⊢ dk i,j implies |I ∩ {dk1, . . . , dk j}| ≥ i. If S ⊢ s there is a j with S ⊢ dkn/2,j , and hence |I| ≥
|I ∩ {dk1, . . . , dkj}| ≥ n/2.

So S ⊢ s only if |I| ≥ n/2, i.e., the adversary can only recover s by requesting at least n/2 keys.
11Of course, this is no proof that these notions are indeed insufficient. But it shows that at least natural proof

approaches fail. We expect that an impossibility result relative to some oracle can be proven but we have not
done so.

15

known, Sim computes τ(c) := enc(ek(Ne), τ(m), N c) where m is the plaintext of c and e the
corresponding encryption key. If d is not known (because c was produced by the adversary with
respect to a key that the protocol did not pick), Sim computes τ(c) := garbageEnc(ek (Ne), N c).
Notice that in the latter case we are cheating: even though c may be a valid ciphertext (just
with respect to an encryption key whose decryption key we do not know), we declare it to be an
invalid ciphertext. But the fact that we will never use the decryption key saves us: we will never
be caught in a lie. The situation is different if we receive decryption keys from the adversary.
Then the adversary might first send c which we parse to garbageEnc(ek(Ne), N c). Then later
he sends us the corresponding decryption key d which we parse to dk (Ne). But then in the
computational execution, decrypting c using d works, while in the hybrid execution, decrypting
garbageEnc(ek (Ne), N c) necessarily fails.

So if we allow the protocol to receive decryption keys, we need to change the simulator so that
it parses τ(c) := enc(ek (Ne), t, N c) when receiving a valid ciphertext c, even if the he cannot
decrypt c. But then, how should the simulator compute the term t? And for that matter, how
should the simulator know that c is valid? (It might be invalid, and then should be parsed as
garbageEnc(ek (Ne), N c).)

A solution for this problem has been proposed in the first revision of [5] (not contained in later
versions!) but has not been applied there. The idea is to allow the simulator to partially parse
terms (lazy simulator). That is, we allow the simulator to output terms that contain variables,
and to only after the hybrid execution we ask the simulator to decide what terms these variables
stand for.

In our case, we change the simulator such that when parsing a ciphertext c (corresponding
to a key not picked by the simulator), the simulator just outputs τ(c) := xc. (Here we assume
an infinite set of variables x indexed by ciphertexts.) And in the end, when the hybrid execution
finished, the simulator outputs a “final substitution” ϕ that maps xc to either enc(Ne, τ(m), N c)
if by the end of the execution the simulator has learned the corresponding decryption key and
can compute the plaintext m, or to garbageEnc(Ne, N c) if the decryption key was not received
or decryption fails.

Unfortunately, to make this go through, the simulator gets an additional tasks. In the orig-
inal hybrid execution, terms sent to the protocol do not contain variables, and whenever we
reach a computation node in the protocol, we can apply the constructor or destructor to the
arguments of that node and compute the resulting new term. This is not possible any more. For
example, what would be the output a dec-node with plaintext argument xc? Thus, the hybrid
execution will in this case just maintain a “destructor term”, in which the destructors are not
evaluated. (E.g., a node might then store the term dec(dk (Ne), xc).) That leaves the follow-
ing problem: A computation node branches to its yes- or no-successor depending on whether
constructor/destructor application succeeds or fails. But in the hybrid execution, the construc-
tor/destructor application is not evaluated, we do not know whether it succeeds or fails. This
leads to an additional requirement for the simulator: After each computation node in the hybrid
execution, the simulator is asked a “question”. This question consists of the destructor term
that is computed at the current node, and the simulator has to answer yes or no, indicating
whether the application should be considered to have succeeded or failed. (And then the yes- or
no-successor of the current node is taken accordingly.)

In our case, to answer these questions, the simulator will just reduce the term as much as
possible (by evaluating destructors), replace variables xc by enc- or garbageEnc-terms wherever
we already know the necessary keys, and make the “right” choices when destructors are applied
to xc. If all destructors succeed, the simulator answers yes. A large part of the full proof is
dedicated to showing that this can be done in a consistent fashion.

In [5], it is shown that if a lazy simulator with the following four properties (sketched below)

16

exists, then we have computational soundness:
• Indistinguishability: The hybrid and the computational execution are indistinguishable (in

terms of the nodes passed through in execution).
• DY-ness: Let ϕ be the final substitution (output by the simulator at the end of the execu-

tion). Then in any step of the execution it holds that Sϕ ⊢ tϕ where t is the term sent by
the simulator to the protocol, and S is the set of the terms received by the protocol (note
that although S, t may be destructor terms, Sϕ and tϕ do not contain variables any more
and thus reduce to regular terms without destructors).
• Consistency: For any question Q that was asked from the simulator, we have that the

simulator answered yes iff evaluating Qϕ (which contains destructors but no variables)
does not return ⊥.
• Abort-freeness: The simulator does not abort.
In the proof we construct such a simulator and show all the properties above. (Indistin-

guishability is relatively similar to the case without lazy parsing, but needs some additional
care because the invariants need to be formulated with respect to unevaluated destructor terms.
DY-ness follows the same lines but becomes considerably more complicated.)

The need for malicious-key extractability. In the proof of DY-ness, it does, however, turn
out that lazy sampling does not fully solve the problem of receiving decryption keys. In fact,
PROG-KDM security alone is not sufficient to guarantee computational soundness in this case
(and neither is IND-CCA2). We illustrate the problem by an example protocol:

Alice picks a key ek (N), a nonce M and sends a ciphertext c := enc(ek (N),M,R) over the
network (i.e., to the adversary). Then Alice expects a ciphertext c∗. Then Alice sends dk(N).
Then Alice expects a secret key sk∗. Finally, Alice tests whether dec(sk∗, c∗) = (M,M).

It is easy to see that in the symbolic model, this test will always fail. But in the computa-
tional setting, it is possible to construct encryption schemes with respect to which the adver-
sary can produce c∗, sk∗ such that this test succeeds: Start with a secure encryption scheme
(KeyGen′,Enc′,Dec′). Then let KeyGen := KeyGen′, and Enc := Enc′, but modify Dec′ as follows:
Given a secret key of the form sk = (special,m), and a ciphertext c = (special), Dec(sk , c)
outputs m. On other inputs, Dec behaves like Dec′. Now the adversary can break the above pro-
tocol by sending sk

∗ := (special, (M,M)). Notice that if (KeyGen′,Enc′,Dec′) was PROG-KDM
(or IND-CCA2), then (KeyGen,Enc,Dec) is still PROG-KDM (or IND-CCA2): Both definitions
say nothing about the behavior of the encryption scheme for dishonestly generated keys.

Of course, the above encryption scheme can easily be excluded by adding simple conditions on
encryption schemes: Encryption keys should uniquely determine decryption keys and vice versa,
any valid decryption key should successfully decrypt any ciphertext that was honestly generated
using the corresponding encryption key, ciphertexts should determine their encryption key.

But even then a more complex construction works: Let C be some class of circuits such that
for each C ∈ C, there exists at most one x, y such that C(x, y) = 1. Let KeyGen := KeyGen′.
Modify Enc′ as follows: Upon input ek = (special, ek ′, C), Enc(ek ,m) runs Enc′(ek ′,m).
For other inputs, Enc behaves like Enc′. And Dec′ is modified as follows: Upon input
dk = (special, dk ′, C, x, y) and c = (special, ek ′, C) with C(x, y) = 1, Dec(dk , c) returns x.
Upon dk = (special, dk ′, C, x, y) with C(x, y) = 1 and different c, Dec(dk , c) returns Dec′(dk ′, c).
And upon all other inputs, Dec′ behaves like Dec. Again, this construction does not loose PROG-
KDM or IND-CCA2 security.

The adversary can break our toy protocol by choosing C as the class of circuits Cc defined
by Cc((M,M), sk) = 1 if Dec(sk , c) = M and Cc(x, y) = 0 in all other cases. Then after
getting c, the adversary chooses (ek ′, dk ′)← KeyGen′, c∗ := (special , ek ′, Cc) and after receiving
a decryption key dk from Alice, he chooses dk∗ := (special , dk ′, Cc, (M,M), dk).

17

Notice that this example can be generalized to many different protocols where some m is
uniquely determined by the messages sent by Alice, and the adversary learns m only after
producing c but before sending the corresponding decryption key: Simply choose a different
class C of circuits such that C(m,x) = 1 is a proof that m is the message encoded by Alice.

Clearly, the above example shows that PROG-KDM alone does not imply computational
soundness. To understand what condition we need, let us first understand where the mismatch
between the symbolic and the computational model is. In the symbolic model, the adversary
can only produce an encryption of some message if he knows the underlying plaintext. In the
computational model, however, even if we require unique decryption keys, it is sufficient that the
underlying plaintext is fixed, it is not necessary that the adversary actually knows it.

Thus, to get computational soundness, we need to ensure that the adversary actually knows
the plaintext of any message he produces. A common way for modeling knowledge is to require
that we can extract the plaintext from the adversary. Since we work in the random oracle model
anyway (as PROG-KDM only makes sense there), we use the following random-oracle based
definition:12

Definition 9 We call an encryption scheme (KeyGen,Enc,Dec) malicious-key extractable if for
any polynomial-time (A1, A2), there exists a polynomial-time algorithm MKE (the malicious-
key-extractorsuch that the following probability is negligible:

Pr
[

DecO(d, c) 6= ⊥ ∧ DecO(d, c) /∈M : (z, c)← AO
1 (1

η),

M ← MKEO(1η, c, queries), d← AO
2 (1

η, z)
]

Here O is a random oracle. And queries is the list of all random oracle queries performed by A1.
And M is a list of messages (of polynomial length).

This definition guarantees that when the adversary produces a decryption key d that decrypts
c to some message m, then he must already have known m while producing c.

Notice that malicious-key extractability is easy to achieve: Given a PROG-KDM secure
encryption scheme, we modify it so that instead of encrypting m, we always encrypt (m,H(m))
where H is a random hash oracle (and decryption checks the correctness of that hash value).
The resulting scheme does not loose PROG-KDM security and is malicious-key extractable.

In Definition 9, we only require that the extractor can output a list of plaintexts, one of which
should be the correct one. We could strengthen the requirement and require the extractor to
output only a single plaintext. This definition would considerably simplify our proof (essentially,
we could get rid of lazy sampling since we can decrypt all adversary generated ciphertexts).
However, that stronger definition would, for example, not be satisfied by the scheme that simply
encrypts (m,H(m)). Since we strive for minimal assumptions, we opt for the weaker definition
and the more complex proof instead.

How is malicious-key extractability used in the proof of computational soundness? We extend
the simulator to call the extractor on all ciphertexts he sees (Sim3). In the original proof, a
simulator that is not DY implied that a term t with Sϕ 0 tϕ is produced by τ in some step i.
This means that tϕ has a “bad” subterm tbad . This, however, does not immediately lead to a
contradiction, because tbad could be a subterm not of t, but of ϕ(xc) for some variable xc in t.
Since ϕ(xc) is produced at some later point, we cannot arrive at a contradiction (because the
bitstring mbad which is supposed to be unguessable in step i, might already have been sent in
step j). But if the simulator runs the malicious-key extractor in step i, we can conclude that the

12This is closely related to the notion of plaintext-awareness [16], except that plaintext-awareness applies only
to the case of honestly generated keys.

18

bitstring mbad corresponding to the subterm tbad of ϕ(xc) has already been seen during step i.
This then leads to a contradiction as before.

6 The main result

We are now ready to state the main result of this paper. First, we state the conditions a symbolic
protocol should satisfy.

Definition 10 A CoSP protocol is randomness-safe if it satisfies the following conditions:
1. The argument of every ek -, dk-, vk -, and sk-computation node and the third argument of

every E- and sig-computation node is an N -computation node with N ∈ NP . (Here and
in the following, we call the nodes referenced by a protocol node its arguments.) We call
these N -computation nodes randomness nodes. Any two randomness nodes on the same
path are annotated with different nonces.

2. Every computation node that is the argument of an ek-computation node or of a dk -
computation node on some path p occurs only as argument to ek - and dk -computation
nodes on that path p.

3. Every computation node that is the argument of a vk -computation node or of an sk-
computation node on some path p occurs only as argument to vk- and sk -computation
nodes on that path p.

4. Every computation node that is the third argument of an E-computation node or of a sig-
computation node on some path p occurs exactly once as an argument in that path p.

5. There are no computation nodes with the constructors garbage, garbageEnc, garbageSig , or
N ∈ NE.

In contrast to [4], we do not put any restrictions on the use of keys any more. The requirements
above translate to simple syntactic restrictions on the protocols that require us to use each
randomness nonce only once. For example, in the applied π-calculus, this would mean that
whenever we create a term enc(e, p, r), we require that r is under a restriction νr and used only
here.

In addition to randomness-safe protocols, we put a number of conditions on the computa-
tional implementation. The cryptographically relevant conditions are PROG-KDM security and
malicious-key extractability of the encryption scheme, and strong existential unforgeability of
the signature scheme. In addition, we have a large number of additional conditions of syntactic
nature, e.g., that the pair-constructor works as expected, that from a ciphertext one can effi-
ciently compute the corresponding encryption key, or that an encryption key uniquely determines
its decryption key. These requirements are either natural or can be easily achieved by suitable
tagging (e.g., by tagging ciphertexts with their encryption keys). The full list of implementation
conditions are given in Appendix B.

Theorem 1 The implementation A (satisfying the implementation conditions from Appendix B)
is a computationally sound implementation of the symbolic model from Section 2 for the class
of randomness-safe protocols. (Note that our definition of computational soundness covers trace
properties, not equivalence properties.)

The full proof of this theorem is given in Appendix C. From this result, we get, e.g., immediately
computational soundness in the applied π-calculus (see [4]) without the restrictions on keys
imposed there.

19

7 Proof sketch

We now present a proof sketch of Theorem 1. We have highlighted the changes with respect of
the proof sketch to the original CoSP result (Section 4) in blue. There is a certain amount of
redundancy with Section 4 since we tried to make this section self-contained. The full proof is
presented in Appendix C.

Remember that in the CoSP framework, a protocol is modeled as a tree whose nodes corre-
spond to the steps of the protocol execution; security properties are expressed as sets of node
traces. Computational soundness means that for any polynomial-time adversary A the trace
in the computational execution is, except with negligible probability, also a possible node trace
in the symbolic execution. The approach for showing this is to construct a so-called simulator
Sim . The simulator is a machine that interacts with a symbolic execution of the protocol Π
on the one hand, and with the adversary A on the other hand; we call this a hybrid execution.
(See Figure 3.) In contrast to the situation described in Section 4, we allow the simulator to
produce incomplete terms. These may contain variables xm, standing for subterms the simulator
has not figured out yet. Whenever the protocol makes a decision that depends on the as yet
undetermined values of these variables (e.g., when branching depends on the applicability of a
destructor which in turn depends on the value to be assigned to xm), the simulator is asked what
the correct decision would be (i.e., the simulator is asked whether the destructor application
would succeed).

The simulator has to satisfy the following three properties:

• Indistinguishability: The node trace in the hybrid execution is computationally indistin-
guishable from that in the computational execution with adversary A.

• Dolev-Yaoness: The simulator Sim never (except for negligible probability) sends terms t
to the protocol with S 0 t where S is the list of terms Sim received from the protocol so
far.

• Consistency: The simulator outputs an assignment ϕ to all variables xc in the end of the
execution. This assignment must guarantee that any decision the simulator made for the
protocol was correct. I.e., when the simulator said a destructor application D (containing
variables xc) succeeds, then Dϕ must actually succeed. And vice versa.

• Abort-freeness: The simulator does not abort. Since our simulator will not have an abort
instruction, this property will be automatically fulfilled.

The existence of such a simulator (for any A) then guarantees computational soundness: Dolev-
Yaoness together with consistency guarantees that only node traces occur in the hybrid execution
that are possible in the symbolic execution, and indistinguishability guarantees that only node
traces occur in the computational execution that can occur in the hybrid one.

How to construct the simulator? In [4], the simulator Sim is constructed as follows: When-
ever it gets a term from the protocol, it constructs a corresponding bitstring and sends it to the
adversary, and when receiving a bitstring from the adversary it parses it and sends the result-
ing term to the protocol. Constructing bitstrings is done using a function β, parsing bitstrings
to terms using a function τ . (See Figure 3.) The simulator picks all random values and keys
himself: For each protocol nonce N , he initially picks a bitstring rN . He then translates, e.g.,
β(N) := rN and β(ek (N)) := Aek (rN) and β(enc(ek (N), t,M)) := Aenc(Aek (rN), β(t), rM).
Translating back is also natural: Given m = rN , we let τ(m) := N , and if c is a ciphertext that
can be decrypted as m using Adk (rN), we set τ(c) := enc(ek (N), τ(m),M). However, in the last

20

case, a subtlety occurs: what nonce M should we use as symbolic randomness in τ(c)? Here we
distinguish two cases:

If c was earlier produced by the simulator: Then c was the result of computing β(t) for some
t = enc(ek (N), t′,M) and some nonce M . We then simply set τ(c) := t and have consistently
mapped c back to the term it came from.

If c was not produced by the simulator: In this case it is an adversary generated encryption,
and M should be an adversary nonce to represent that fact. We could just use a fresh nonce
M ∈ NE , but that would introduce the need of additional bookkeeping: If we compute t := τ(c),
and later β(t) is invoked, we need to make sure that β(t) = c in order for the Sim not to
introduce contradictory mappings (formally, this is needed in the proof of the indistinguishability
of Sim). And we need to make sure that when computing τ(c) again, we use the same M . This
bookkeeping can be avoided using the following trick: We identify the adversary nonces with
symbols Nm annotated with bitstrings m. Then τ(c) := enc(ek(N), τ(m), N c), i.e., we set
M := N c. This ensures that different c get different randomness nonces N c, the same c is always
assigned the same N c, and β(t) is easy to define: β(enc(ek (N),m,N c)) := c because we know
that enc(ek(N),m,N c) can only have been produced by τ(c).

However, what do we do if we have to parse a ciphertext c that we cannot decrypt? In
the original CoSP proof (where secret keys are never sent), we could safely parse τ(c) :=
garbageEnc(ek (Ne), N c) for suitable nonces Ne, N c; as the decryption key is never revealed,
we never notice if τ(c) is actually a valid encryption. But this approach leads to problems in
out setting when the decryption key is later revealed. Then we suddenly notice that τ(c) should
be enc(ek(Ne),m,N c) for some plaintext m. We avoid this problem by not deciding right away
whether τ(c) should be garbageEnc(. . .) or enc(. . .). The simulator just returns τ(c) := xc, and
only at end of the execution, he assigns ϕ(xc) := enc(. . .) if he has learned the decryption key by
then, and ϕ(xc) := garbageEnc(. . .) otherwise. (And we extend the definition of β to translate
β(xc) = c as expected.)

It remains to clarify how the simulator answers questions. I.e., given a destructor term D,
how does the simulator decide whether an evaluation of Dϕ succeeds or not (where ϕ maps
each xc to the garbageEnc(. . .) or enc(. . .), depending on information the simulator does not
have yet). It turns out that in most situations, whether a destructor application succeeds or not
does not depend on whether a particular xc is assigned garbageEnc(. . .) or enc(. . .). The only
case where this information would be needed is in an application dec(sk(N), xc), which will only
work if xc is assigned enc(ek(N), . . .). Fortunately, this case only arises when sk(N) occurs.
This in turn only happens when the simulator has already seen the decryption key needed for
decrypting c. And given that decryption key, the simulator can figure out whether xc will be
assigned a term of the form enc(. . .) and what its plaintext is.

To illustrate, here are excerpts of the definitions of β and τ (the first matching rule counts):
• τ(c) := enc(ek (M), t, N) if c has earlier been output by β(enc(ek(M), t, N)) for some
M ∈ N, N ∈ NP

• τ(c) := enc(ek (M), τ(m), N c) if c is of type ciphertext and τ(Aekof (c)) = ek(M) for some
M ∈ NP and m := Adec(Adk (rM), c) 6= ⊥
• τ(c) := xc if c is of type ciphertext
• β(enc(ek (N), t,M)) := Aenc(Aek (rN), β(t), rM) if M ∈ NP

• β(enc(ek (M), t, Nm)) := m if M ∈ NP

• β(xc) := c
Bitstrings m that cannot be suitably parsed are mapped into terms garbage(Nm) and similar
that can then be mapped back by β using the annotation m.

Showing indistinguishability. Showing indistinguishability essentially boils down to showing
that the functions β and τ consistently translate terms back and forth. More precisely, we show

21

that β(τ(m)) = m and τ(β(t)) = t. Furthermore, we need to show that in any protocol step
where a constructor or destructor F is applied to terms t1, . . . , tn, we have that β(F (t1, . . . , tn)) =
AF (β(t1), . . . , β(tn)). (The precise formulation of the invariant is somewhat more complex,
because the actual terms ti are not known during the execution. We only know terms t∗i that
are partially evaluated and still contain destructors and variables. To deal with this, we define
ti := red(t∗i) where red is a suitable reduction algorithm that simplifies the ti and removes all
destructors and some variables.) This makes sure that the computational execution (where AF is
applied) stays in sync with the hybrid execution (where F is applied and the result is translated
using β). The proofs of these facts are lengthy (involving case distinctions over all constructors
and destructors) but do not provide much additional insight; they are very important though
because they are responsible for most of the implementation conditions that are needed for the
computational soundness result. (Our proof is similar to the one in the original CoSP setting,
except that we have a number of additional cases to check and have to deal with the reduction
algorithm red in many places.)

Showing consistency. The proof of the consistency of the simulator consists mainly of checking
that in all cases, the reduction algorithm red returns values compatible with those that will be
assigned to the variables xc in the end and that thus all answers given by the simulator are those
that would be given if the simulator knew these assignments earlier on.

Showing Dolev-Yaoness. The proof of Dolev-Yaoness is where most of the actual crypto-
graphic assumptions come in. Starting from the simulator Sim, we introduce a sequence of
simulators Sim2, Sim3, Sim4, Sim5, Sim7. (We have gaps in the numbering because in this
overview we omit the simulators Sim1 and Sim6 which only serve minor technical purposes.)

In Sim2, we maintain an instance of the real challenger (see Definition 2), and we change the
function β as follows: When invoked as β(enc(ek(N), t,M)) with M ∈ NP , instead of computing
Aenc(Aek (rN), β(t), rM), β uses the real challenger to produce the ciphertext c. More precisely,
β(enc(ek (N), t,M)) sends a sequence of getekch-, getdkch-, evalch-, and decch-queries to the
real challenger that have the effect that the real challenger internally computes m := β(t) and
stores the result in some register regR. Then β issues an encch(N,R)-query to compute an
encryption c of m and a revealch-query to reveal c. Finally, β returns c. Similarly, β(ek (N))
returns the public key provided by the real challenger. Note that this construction makes sure
that the simulator will not see the intermediate values from the computation of the plaintext of c
(they stay inside the registers of the real challenger). This is important since we will have to argue
later that the simulator cannot guess any of the plaintexts that that the adversary would not
know in the symbolic setting. The function τ is changed to issue a decch-query whenever it needs
to decrypt a ciphertext while parsing. Notice that if c was returned by β(t) with t := enc(. . .),
then τ(c) just recalls the term t without having to decrypt. Hence the real challenger is never
asked to decrypt a ciphertext it produced. The hybrid executions of Sim and Sim2 are then
indistinguishable. (Here we use that the protocol conditions guarantee that no randomness is
used in two different places.)

To show that the simulator is Dolev-Yao we have to show that whenever the simulator sends
a term t = τ(m) to the protocol, then Sϕ ⊢ tϕ where S are the terms received so far, and ϕ
assigns terms to variables xc. We do this by showing that if t = τ(m) does not satisfy this
condition, then there is some subterm tbad of tϕ that would not have been output by τ . But
for this reasoning it is necessary that every subterm of tϕ has already been computed at the
time when t is sent. This is not the case since tbad might actually be a subterm of ϕ(xc) for
some xc occurring in t. And those subterms may not be computed when t = τ(m) is invoked,
because to compute them, we would need to know the plaintext m′ of c which may not be known
yet. In order to make sure that τ(m′) is computed, we use the MKE property of the encryption

22

scheme (see Definition 9). This property allows us to construct a simulator Sim3 that, for every
ciphertext it encounters, computes all candidate plaintexts m′, and invokes τ(m′) for each. This
will make sure that later, whenever tbad is a subterm of the term t = τ(m) sent in a certain
iteration, then tbad = τ(mbad) has been computed in that iteration.

In Sim4, we replace the real challenger by the fake challenger. Since the real challenger
is never asked to decrypt a ciphertext it produced, PROG-KDM security guarantees that the
hybrid executions of Sim3 and Sim4 are indistinguishable.

In the original CoSP proof, at this point we argued that, since the fake encryption ora-
cle encrypts 0-plaintexts, we can remove the recursive computation of β(t) in an invocation
β(enc(N, t,M)). This was needed to show that secrets contained in plaintexts are never ac-
cessed. In our setting, the argumentation will be more complex, since still use the true plaintext
β(t), only we outsourced the computation of β(t) for a plaintext t to the fake challenger (see the
construction of Sim2). The next simulator will take care of this.

We now change the simulator Sim4 into a simulator Sim5 that calls the ciphertext simulators
directly. Essentially, we make the definition of the fake challenger explicit. Remember that the
fake challenger lazily computes necessary plaintexts only when needed for opening a ciphertext.
When a ciphertext’s decryption key is not revealed, due to the programmability of the encryption
scheme (the ciphertext simulator provides that programmability), the corresponding plaintext is
not needed and thus never computed.

Now for the simulator Sim5 we can show that whenever β(t) is called for some term t, then
Sϕ ⊢ tϕ. In consequence, β(t) will never access any values that would, symbolically, be secret.
(E.g., if Sϕ 0 N , then no β(t)-invocation will access the computational value rN of the nonce N .)

Finally, in Sim7, we additionally change β to use a signing oracle in order to produce signa-
tures. Analogous to Sim and Sim2, the hybrid executions of Sim5 and Sim7 are indistinguishable.

Since the hybrid executions of Sim and Sim7 are indistinguishable, in order to show Dolev-
Yaoness of Sim , it is sufficient to show Dolev-Yaoness of Sim7.

As described in the construction of Sim5, whenever Sim7 invokes β(t), then Sϕ ⊢ tϕ holds.
We prove that whenever Sϕ 0 tϕ, then tϕ contains a visible subterm tbad with Sϕ 0 tbad

such that tbad is a protocol nonce, or a ciphertext enc(. . . , N) where N is a protocol nonces, or a
signature, or a few other similar cases. (Visibility is a purely syntactic condition and essentially
means that tbad is not protected by an honestly generated encryption.)

Now we can conclude Dolev-Yaoness of Sim7: If it does not hold, Sim7 sends a term t = τ(m)
where m was sent by the adversary A. Then tϕ has a visible subterm tbad satisfying a number
of conditions. Visibility implies that the recursive computation of τ(m) had a subinvocation
τ(mbad) = tbad . (The use of the MKE property in Sim3 ensures that.) For each possible case of
tbad we derive a contradiction. For example, if tbad is a protocol nonce, then β(tbad) was never
invoked (since S 0 tbad) and thus mbad = rN was guessed by the simulator without ever accessing
rN which can happen only with negligible probability. Other cases are excluded, e.g., by the
unforgeability of the signature scheme and by the unpredictability of encryptions. Thus, Sim7

is Dolev-Yao, hence Sim is indistinguishable and Dolev-Yao. Computational soundness follows.

Acknowledgments. Dominique Unruh was supported by the Cluster of Excellence “Multimodal
Computing and Interaction”, by the European Social Fund’s Doctoral Studies and Internation-
alisation Programme DoRa, by the European Regional Development Fund through the Estonian
Center of Excellence in Computer Science, EXCS, by the European Social Fund through the Es-
tonian Doctoral School in Information and Communication Technology, and by grant ETF9171
from the Estonian Science Foundation. Michael Backes was supported by CISPA (Center for
IT-Security, Privacy and Accountability), and by an ERC starting grant. Part of the work was

23

done while Ankit Malik was at MPI-SWS, and while Dominique Unruh was at the Cluster of
Excellence “Multimodal Computing and Interaction”.

A Symbolic model

In Sections A–C we describe the full details of our result. Changes (beyond simple presentation
matters) with respect to the proof from [4] are highlighted in blue.

We first specify the symbolic model M = (C,N,T,D,⊢):
• Constructors and nonces: Let C := {enc/3, ek/1, dk/1, sig/3, vk/1, sk/1, pair/2, string0/1,
string1/1, empty/0, garbageSig/2, garbage/1, garbageEnc/2} and N := NP ∪NE . Here NP

and NE are countably infinite sets representing protocol and adversary nonces, respec-
tively. Intuitively, encryption, decryption, verification, and signing keys are represented
as ek(r), dk (r), vk (r), sk (r) with a nonce r (the randomness used when generating the
keys). enc(ek(r′),m, r) encrypts m using the encryption key ek(r′) and randomness r.
sig(sk(r′),m, r) is a signature of m using the signing key sk(r′) and randomness r. The
constructors string0 , string1 , and empty are used to model arbitrary strings used as payload
in a protocol (e.g., a bitstring 010 would be encoded as string0 (string1 (string0 (empty)))).
garbage, garbageEnc, and garbageSig are constructors necessary to express certain invalid
terms the adversary may send, these constructors are not used by the protocol.
• Message type: We define T as the set of all terms T matching the following grammar:

T ::= enc(ek(N), T,N) | ek(N) | dk (N) |

sig(sk(N), T,N) | vk(N) | sk(N) |

pair (T, T) | S | N |

garbage(N) | garbageEnc(T,N) |

garbageSig(T,N)

S ::= empty | string0(S) | string1(S)

where the nonterminal N stands for nonces.
• Destructors: D := {dec/2, isenc/1, isek/1, isdk/1, ekof /1, ekofdk/1, verify/2, issig/1,
isvk/1, issk/1, vkof /2, vkofsk/1, fst/1, snd/1, unstring0/1, unstring1/1, equals/2}. The de-
structors isek , isdk , isvk , issk , isenc, and issig realize predicates to test whether a term
is an encryption key, decryption key, verification key, signing key, ciphertext, or signature,
respectively. ekof extracts the encryption key from a ciphertext, vkof extracts the verifica-
tion key from a signature. dec(dk (r), c) decrypts the ciphertext c. verify(vk(r), s) verifies
the signature s with respect to the verification key vk(r) and returns the signed message
if successful. ekofdk and vkofsk compute the encryption/verification key corresponding to
a decryption/signing key. The destructors fst and snd are used to destruct pairs, and the
destructors unstring0 and unstring1 allow to parse payload-strings. (Destructors ispair and
isstring are not necessary, they can be emulated using fst , unstringi, and equals(·, empty).)
The behavior of the destructors is given by the rules in Figure 1; an application matching
none of these rules evaluates to ⊥:
• Deduction relation: ⊢ is the smallest relation satisfying the rules in Figure 2.

24

B Computational implementation

The computational implementation. Obtaining a computational soundness result for the
symbolic model M requires its implementation to use an PROG-KDM secure encryption scheme
and a strongly existentially unforgeable signature scheme. More precisely, we require that
(Aek , Adk), Aenc , and Adec form the key generation, encryption and decryption algorithm of
an PROG-KDM-secure scheme; and that (Avk , Ask), Asig , and Averify form the key generation,
signing, and verification algorithm of a strongly existentially unforgeable signature scheme. Let
Aisenc(m) = m iff m is a ciphertext. (Only a syntactic check is performed; it is not necessary
to check whether m was correctly generated.) Aissig , Aisek , and Aisvk are defined analogously.
Aekof extracts the encryption key from a ciphertext, i.e., we assume that ciphertexts are tagged
with their encryption key. Similarly Avkof extracts the verification key from a signature, and
Averify can be used to extract the signed message from a signature, i.e., we assume that signa-
tures are tagged with their verification key and the signed message. Nonces are implemented
as (suitably tagged) random k-bit strings. Apair , Afst , and Asnd construct and destruct pairs.
We require that the implementation of the constructors are length regular, i.e., the length of
the result of applying a constructor depends only on the lengths of the arguments. No re-
strictions are put on Agarbage , AgarbageEnc, and AgarbageSig as these are never actually used
by the protocol. (The implementation of these functions need not even fulfill equations like
Aisenc(AgarbageEnc(x)) = AgarbageEnc(x).)

The exact requirements are as follows:

Implementation conditions. We require that the implementation A of the symbolic model
M has the following properties:

1. A is an implementation of M in the sense of [4] (in particular, all functions Af (f ∈ C∪D)
are polynomial-time computable).

2. There are disjoint and efficiently recognizable sets of bitstrings representing the types
nonces, ciphertexts, encryption keys, decryption keys, signatures, verification keys, sign-
ing keys, pairs, and payload-strings. The set of all bitstrings of type nonce we denote
Noncesk.

13 (Here and in the following, k denotes the security parameter.)
3. The functions Aenc , Aek , Adk , Asig , Avk , Ask , and Apair are length-regular. We call an

n-ary function f length regular if |mi| = |m′
i| for i = 1, . . . , n implies |f(m)| = |f(m′)|. All

m ∈ Noncesk have the same length.
4. AN for N ∈ N returns a uniformly random r ∈ Noncesk.
5. Every image of Aenc is of type ciphertext, every image of Aek and Aekof is of type encryption

key, every image of Adk is of type decryption key, every image of Asig is of type signature,
every image of Avk and Avkof is of type verification key, every image of Aempty , Astring0

,
and Astring1

is of type payload-string.
6. For all m1,m2 ∈ {0, 1}∗ we have Afst (Apair (m1,m2)) = m1 and Asnd (Apair (m1,m2)) =

m2. Every m of type pair is in the range of Apair . If m is not of type pair, Afst (m) =
Asnd (m) = ⊥.

7. For all m of type payload-string we have that Aunstringi (Astringi (m)) = m and
Aunstringi (Astringj (m)) = ⊥ for i, j ∈ {0, 1}, i 6= j. For m = empty or m not of type
payload-string, Aunstring0 (m) = Aunstring1 (m) = ⊥. Every m of type payload-string is of
the form m = Astring0

(m′) or m = Astring1
(m′) or m = empty for some m′ of type payload-

string. For all m of type payload-string, we have |Astring0
(m)|, |Astring1

(m)| > |m|.
8. Aekof (Aenc(p, x, y)) = p for all p of type encryption key, x ∈ {0, 1}∗, y ∈ Noncesk.

Aekof (e) 6= ⊥ for any e of type ciphertext and Aekof (e) = ⊥ for any e that is not of

13This would typically be the set of all k-bit strings with a tag denoting nonces.

25

type ciphertext.
9. Avkof (Asig (Ask (x), y, z)) = Avk(x) for all y ∈ {0, 1}∗, x, z ∈ Noncesk. Avkof (e) 6= ⊥ for

any e of type signature and Avkof (e) = ⊥ for any e that is not of type signature.
10. Aenc(p,m, y) = ⊥ if p is not of type encryption key.
11. Adec(Adk (r),m) = ⊥ if r ∈ Noncesk and Aekof (m) 6= Aek (r). (This implies that the

encryption key is uniquely determined by the decryption key.)
12. Adec(d, c) = ⊥ if Aekof (c) 6= Aekofdk (d) or Aekofdk (d) = ⊥.
13. Adec(d,Aenc(Aekofdk (e),m, r)) = m if r ∈ Noncesk and d := Aekofdk (e) 6= ⊥.
14. Aekofdk (d) = ⊥ if d is not of type decryption key.
15. Aekofdk (Adk (r)) = Aek (r) for all r ∈ Noncesk.
16. Avkofsk (s) = ⊥ if s is not of type signing key.
17. Avkofsk (Ask (r)) = Avk (r) for all r ∈ Noncesk.
18. Adec(Adk (r), Aenc(Aek (r),m, r′)) = m for all r, r′ ∈ Noncesk.
19. Averify (Avk (r), Asig (Ask (r),m, r′)) = m for all r, r′ ∈ Noncesk.
20. For all p, s ∈ {0, 1}∗ we have that Averify (p, s) 6= ⊥ implies Avkof (s) = p.
21. Aisek (x) = x for any x of type encryption key. Aisek (x) = ⊥ for any x not of type encryption

key.
22. Aisvk (x) = x for any x of type verification key. Aisvk (x) = ⊥ for any x not of type

verification key.
23. Aisenc(x) = x for any x of type ciphertext. Aisenc(x) = ⊥ for any x not of type ciphertext.
24. Aissig (x) = x for any x of type signature. Aissig (x) = ⊥ for any x not of type signature.
25. We define an encryption scheme (KeyGen,Enc,Dec) as follows: KeyGen picks a random

r ← Noncesk and returns (Aek (r), Adk (r)). Enc(p,m) picks a random r ← Noncesk and
returns Aenc(p,m, r). Dec(k, c) returns Adec(k, c). We require that then (KeyGen,Enc,Dec)
is PROG-KDM secure.

26. Additionally, we require that (KeyGen,Enc,Dec) is malicious-key extractable.
27. We define a signature scheme (SKeyGen, Sig,Verify) as follows: SKeyGen picks a random

r ← Noncesk and returns (Avk (r), Ask (r)). Sig(p,m) picks a random r ← Noncesk and
returns Asig (p,m, r). Verify(p, s,m) returns 1 iff Averify (p, s) = m. We require that then
(SKeyGen, Sig,Verify) is strongly existentially unforgeable.

28. For all e of type encryption key and all m,m′ ∈ {0, 1}∗, the probability that Aenc(e,m, r) =
Aenc(e,m

′, r′) for uniformly chosen r, r′ ∈ Noncesk is negligible.
29. For all rs ∈ Noncesk and all m ∈ {0, 1}∗, the probability that Asig (Ask (rs),m, r) =

Asig(Ask (rs),m, r′) for uniformly chosen r, r′ ∈ Noncesk is negligible.
30. Aekofdk is injective. (I.e., the encryption key uniquely determines the decryption key.)
31. Avkofsk is injective. (I.e., the verification key uniquely determines the signing key.)

C Computational soundness proof

C.1 Construction of the simulator

For the construction of the simulator, we will consider terms containing variables. We use an
infinite set of variables xc where c ranges over all c of type bitstring. In analogy to the message

26

type T, we define the set Tx to consist of all terms T matching the following grammar:

T ::= xc | enc(ek (N), T,N) | ek(N) | dk (N) |

sig(sk(N), T,N) | vk(N) | sk(N) |

pair (T, T) | S | N |

garbage(N) | garbageEnc(T,N) |

garbageSig(T,N)

S ::= empty | string0(S) | string1(S)

Note that the only difference to the grammar defining T is that in the grammar for Tx, we have
a production rule T ::= xc where xc ranges over all variables. We additionally define the set
TD,x of “destructor terms”, i.e., of all terms built from constructors, destructors, nonces, and
variables.

Additionally, we extend the partial functions that represent the destructors (see Figure 1) to
Tx. A destructor D/n ∈ D is a then a partial function D : Tn

x → Tx described by the rules
from Figure 1, and the following two new rules:

isenc(xc) = xc

ekof (xc) = ek(NAekof (c))

The rules for ekof may seem strange because it means that the behavior of the destructor (part
of the symbolic model) depends on the computational implementation Aekof . We stress that
these non-standard definitions are only a tool used in the construction of the simulator and in
the proof. The reason for this rule is that xc essentially stands for a (still unknown) term of the
form enc(ek (NAekof (c), . . .)) or garbageEnc(ek(NeAekof (c)), . . .).

We extend the definition of evalf (see page 5) to Tx, too: For f/n ∈ D and t1, . . . , tn ∈
Tx, evalf (t1, . . . , tn) := f(t1, . . . , tn) where the partial function f is as defined above. For
f/n ∈ C and t1, . . . , tn ∈ Tx, evalf (t1, . . . , tn) := f(t1, . . . , tn) if f(t1, . . . , tn) ∈ Tx, and
evalf (t1, . . . , tn) = ⊥ otherwise.

Finally, define the function eval as follows: eval(N) = N for N ∈ N, eval(xc) = xc,
eval(f(t1, . . . , tn)) = evalf (eval(t1), . . . , eval(tn)) where evalf is as defined above.

Notice that Tx, restricted to terms without variables, is T. And when restricted to T, the
destructor functions and evalf coincide with their original definitions. Thus we can use the same
symbols for the old and the new definitions without ambiguity.

Construction of the simulator. In the following, we define distinct nonces Nm ∈ NE for
each m ∈ {0, 1}∗. In a hybrid execution, we call a term t honestly generated if it occurs as a
subterm of a term sent by the protocol ΠC to the simulator before it has occurred as a subterm
of a term sent by the simulator to the protocol ΠC .

For an adversary E and a polynomial p, we construct the simulator Sim as follows: In the
first activation, it chooses rN ∈ Noncesk for every N ∈ NP . It maintains an integer len , initially
0. At any point in the execution, N denotes the set of all nonces N ∈ NP that occurred in terms
received from ΠC . R denotes the set of randomness nonces (i.e., the nonces associated with all
randomness nodes of ΠC passed through up to that point).

Sim internally simulates the adversary E. When receiving a destructor term t̃ ∈ TD,x from
ΠC in the i-th step, it passes β(red i(t̃)) to E where the partial function β : Tx → {0, 1}∗ and
the reduction function red i are defined below. When E answers with m ∈ {0, 1}∗, the simulator
sends τ(m) to ΠC where the function τ : {0, 1}∗ → Tx is defined below. The bitstrings sent
from the protocol at control nodes are passed through to E and vice versa. When the simulator

27

receives (info, ν, t), the simulator increases len by ℓ(t)+1 where ℓ : T→ {0, 1}∗ is defined below.
If len > p(k), the simulator terminates, otherwise it answers with (proceed).

Normalizing destructor terms. We define the partial function red i : TD,x → Tx recursively
as follows:
• For a nonce N : red i(N) := N .
• For a constructor or destructor f : red i(f(t1, . . . , tn)) := evalf (red i(t1), . . . , red i(tn)).
• For any c such that dk(Ne) with e := Aekof (c) occurred until step i of the execu-

tion: red i(x
c) := enc(τ(e), red i(τ(Adec(A

−1
ekofdk (e), c))), N

c) if Adec(A
−1
ekofdk (e), c) 6= ⊥ and

red i(x
c) := garbageEnc(τ(e), N c) if Adec(A

−1
ekofdk (e), c) = ⊥.

• For any c such that dk (Ne) with e := Aekof (c) did not occur until step i of the execution:
red i(x

c) := xc.

Translation functions. The partial function β : T → {0, 1}∗ is defined as follows (where the
first matching rule is taken):
• β(N) := rN if N ∈ N .
• β(Nm) := m.
• β(enc(ek (t1), t2,M)) := Aenc(β(ek (t1)), β(t2), rM) if M ∈ R.
• β(enc(ek (t1), t, N

m)) := m.
• β(xc) := c.
• β(ek (N)) := Aek (rN) if N ∈ R.
• β(ek (Nm)) := m.
• β(dk (N)) := Adk (rN) if N ∈ R. Before returning the value β(dk (N)) invokes β(ek (N))

and discards it return value. (This is to guarantee that Aek (N) can only be guessed when
β(ek (N)) was invoked.)
• β(dk (Nm)) := A−1

ekofdk (m). (Note that due to implementation condition 30, there is at most

one value A−1
ekofdk (m). And see below for a discussion of the polynomial-time computability

of A−1
ekofdk (m).)

• β(sig(sk (N), t,M)) := Asig(Ask (rN), β(t), rM) if N,M ∈ R.
• β(sig(sk (Nv), t,M)) := Asig (A

−1
vkofsk (v), β(t), rM) if M ∈ R. (Note that due to implemen-

tation condition 31, there is at most one value A−1
vkofsk (m). And see below for a discussion

of the polynomial-time computability of A−1
vkofsk (m).)

• β(sig(sk (t1), t, N
s)) := s.

• β(vk (N)) := Avk (rN) if N ∈ R.
• β(vk (Nm)) := m.
• β(sk(N)) := Ask (rN) if N ∈ R. Before returning the value β(sk (N)) invokes β(vk (N))

and discards it return value. (This is to guarantee that Avk (N) can only be guess when
β(vk (N)) was invoked.)
• β(sk(Nm)) := A−1

vkofsk (m). (Note that due to implementation condition 31, there is at most

one value A−1
vkofsk (m).)

• β(pair (t1, t2)) := Apair (β(t1), β(t2)).
• β(string0(t)) := Astring0

(β(t)).
• β(string1(t)) := Astring1

(β(t)).
• β(empty) := Aempty().
• β(garbage(N c)) := c.
• β(garbageEnc(t, N c)) := c.
• β(garbageSig(t1, t2, N

s)) := s.
• β(t) := ⊥ in all other cases.

The total function τ : {0, 1}∗ → Tx is defined as follows (where the first matching rule is taken):

28

• τ(r) := N if r = rN for some N ∈ N \R.
• τ(r) := N r if r is of type nonce.
• τ(c) := enc(ek (M), t, N) if c has earlier been output by β(enc(ek(M), t, N)) for some
M ∈ N, N ∈ R.
• τ(c) := enc(ek(N), τ(m), N c) if c is of type ciphertext and τ(Aekof (c)) = ek(N) for some
N ∈ R and m := Adec(Adk (rN), c) 6= ⊥.
• τ(c) := garbageEnc(ek(N), N c) if c is of type ciphertext and τ(Aekof (c)) = ek(N) for some
N ∈ R but Adec(Adk (rN), c) = ⊥.
• τ(c) := xc if c is of type ciphertext but τ(Aekof (c)) 6= ek(N) for all N ∈ R.
• τ(e) := ek (N) if e has earlier been output by β(ek (N)) for some N ∈ R.
• τ(e) := ek (Ne) if e is of type encryption key.
• τ(k) := dk(N) if k has earlier been output by β(dk (N)) for some N ∈ R.
• τ(k) := dk(Ne) if k is of type decryption key and e := Aekofdk (k) 6= ⊥.
• τ(s) := sig(sk(M), t, N) if s has earlier been output by β(sig(sk(M), t, N)) for some M ∈ N

and N ∈ R.
• τ(s) := sig(sk (M), τ(m), Ns) if s is of type signature and τ(Avkof (s)) = vk(M) for some
M ∈ N and m := Averify (Avkof (s), s) 6= ⊥.
• τ(e) := vk (N) if e has earlier been output by β(vk (N)) for some N ∈ R.
• τ(e) := vk (Ne) if e is of type verification key.
• τ(k) := sk(N) if k has earlier been output by β(sk(N)) for some N ∈ R.
• τ(k) := sk(Nv) if k is of type decryption key and v := Avkofsk (k) 6= ⊥.
• τ(m) := pair (τ(Afst (m)), τ(Asnd (m))) if m of type pair.
• τ(m) := string0(m

′) if m is of type payload-string and m′ := Aunstring0 (m) 6= ⊥.
• τ(m) := string1(m

′) if m is of type payload-string and m′ := Aunstring1 (m) 6= ⊥.
• τ(m) := empty if m is of type payload-string and m = Aempty().
• τ(s) := garbageSig(τ(Avkof (s)), N

s) if s is of type signature.
• τ(m) := garbage(Nm) otherwise.
Note that the recursive definition of τ is well-defined (i.e., terminates): τ(c) for a ciphertext

c recurses into τ(m) where m = Adec(. . . , c), and τ(s) for a signature s recurses into τ(m) where
m = Averify (. . . , s), and τ(m) recurses into τ(m1), τ(m2) when m = Apair (m1,m2). In all cases,
m/mi will be shorter than c/s/m. (Because c and s additionally carry the information about
the public key, and encryption/signing is length regular.) Thus the recursion terminates.

The function ℓ : T → {0, 1}∗ is defined as ℓ(t) := |β(t)|. Note that ℓ(t) does not depend on
the actual values of rN because of the length-regularity of Aenc , Aek , Adk , Asig , Avk , Ask , Apair ,
Astring0 , and Astring1 . Hence ℓ(t) can be computed without accessing rN .

The final substitution. To define the final substitution, let n be the last step of the execution
of the simulator. Let red := redn, and let X be the set of all variables xc that occurred in the
output of τ during the execution. Let σ be the substitution that maps any xc with c of type
ciphertext to the term garbageEnc(ek (Ne), N c). We define the final substitution ϕ : X → T by
ϕ(xc) := redn(x

c)σ.

Answering questions. Given a question Q ∈ TD,x in step i, the simulator computes red i(Q).
If red i(Q) = ⊥, the simulator answers no, otherwise he answers yes.

Polynomial-time implementation of the simulator. Notice that in the decryption of the
simulator, we apply the functions A−1

ekofdk and A−1
vkofsk . These functions are not efficiently com-

putable. Nevertheless, the simulator can be implemented in polynomial-time. Notice that a
term dk(Ne) is only produced by τ(d) with e = Aekofdk (d). Thus, whenever dk(Ne) occurs, the
simulator has seen the value d = A−1

ekofdk (e). Thus, by keeping a record of all these values d, the

29

simulator can efficiently compute A−1
ekofdk (e) whenever needed. Analogously for A−1

vkofsk .

C.2 The faking simulators

We define a sequence of simulators Sim1, . . . , Sim7. Each will be indistinguishable of the pre-
ceding one (this is shown in Lemma 2 below).

Using fresh randomness for encryption. The first simulator Sim1 is defined like Sim, ex-
cept that we change the definition of β as follows: When invoking β(ek (N)) or β(dk (N)), a
fresh key pair (ekN , dkN) is chosen as (ekN , dkN)← KeyGen() (KeyGen is defined in implemen-
tation condition 25), unless this key pair has been chosen before, and ekN or dkN is returned,
respectively. Similarly, in τ(c), instead of invoking Adec(Adk (rN), c), we invoke Adec(dkN , c).
(That is, instead of using the randomness rN , we use fresh randomness for the key genera-
tion.) When invoking β(enc(ek (t1), t2,M)), instead of computing Aenc(β(ek (t1)), β(t2), rM), we
compute Enc(β(ek (t1)), β(t2)) (Enc is defined in implementation condition 25).

Using the real challenger. The simulator Sim2 is defined like Sim1, except for the following
changes:

• Sim2 maintains an instance of the real challenger (Definition 2) for the encryption scheme
(KeyGen,Enc,Dec) (defined in implementation condition 25).

• Instead of invoking Adec(dkN , c) in a call to τ(c), we query the real challenger with
decch(N, c). The bitstring returned by decch(N, c) is used instead of Adec(dkN , c).

• When the adversary E queries the random oracle on input x, Sim2 queries oraclech(x)
from the real challenger instead.

• Instead of computing β(t) to produce a bitstring to be sent to the adversary, the simulator
runs R := β∗(t) (see below), queries revealch(R) from the real challenger, and uses the
output of the revealch(R) query instead of β(t). The procedure β∗(t) is defined as follows:

– If there already was a call β∗(t) with the same t, the register R returned by that call
β∗(t) is returned. (In particular, we do not repeat the queries performed by the first
β∗(t)-call.)

– β∗(ek(N)) picks a fresh register name R, queries R := getekch(N) from the real
challenger, and returns R.

– β∗(dk (N)) invokes β∗(ek(N)) (discarding the output), picks a fresh register name R,
queries R := getekch(N) from the real challenger, and returns R.

– β∗(enc(ek(N), t2,M)) with N,M ∈ R runs R := β∗(t2), picks a fresh register name
R′, queries R′ := encch(N,R), and returns R′.

– β∗(enc(ek(N), t2,M)) with N ∈ NE , M ∈ R picks some randomness r, computes
the Boolean circuit C that on input e,m with lengths ℓ(ek(M)) and ℓ(t2) computes
Enc(e,m) with randomness r (Enc is defined in implementation condition 25). Then
β∗ queries R1 := β∗(ek (N)), R2 := β∗(t2), picks a fresh register name R, queries
R := evalch(C,R1, R2), and returns R.

– For all other terms, β∗ behaves analogously to β, except that it computes the value
that β would compute within a register. More precisely: If β(t) performs calls m1 :=
β(t1), . . . , mn := β(tn) and then returns f(m1, . . . ,mn) for some function f , then
β∗(t) invokes R1 := β∗(t1), . . . , Rn := β∗(tn), computes the circuit Cf that evaluates

30

f (for input lengths ℓ(t1), . . . , ℓ(tn)), picks a fresh register name R, queries R :=
evalch(C,R1, . . . , Rn), and returns R.

For example: β∗(sig(t1, t2, N)) with N ∈ R runs R1 := β∗(t1), R2 := β∗(t2), computes
the circuit Csig that on inputs s,m of lengths ℓ(t1), ℓ(t2) returns Asig(s,m, rN), picks
a fresh register name R, queries R := evalch(Csig , R1, R2), and returns R.

• Before τ(m) is invoked (when translating a bitstring m from the adversary to the protocol),
for any invocation of R := β∗(t) that has occurred so far, Sim1 invokes revealch(R) if
X, red i(S) ⊢ red i(t) where S is the set of terms received from the protocol so far and X is
the set of all variables xc. (This is to ensure that rules like “τ(e) := ek (N) iff e was output
by β(ek (N))” work correctly.)

Using the malicious-key extractor. The simulator Sim3 is defined like Sim2, except for the
following change: Let MKE be the malicious-key extractor for (KeyGen,Enc,Dec); MKE exists
by implementation condition 26. After invoking t = τ(m) and before sending the term t to
the protocol, Sim3 runs, for each variable xc that has been produced by τ so far, the extractor
MKE on the list of all oraclech(x)-queries and on the ciphertext c. For each message m̃ output
by MKE , Sim3 computes τ(m) and discards the result (but performs, if necessary, additional
invocations of MKE if τ produces new variables xc).

Furthermore, Sim3 aborts if the following happens during some point of the execution. There
is a decch(N, c)-query that returns a message m̃ such that m̃ was not contained in the output
of MKE in the step in which the variable xc first occurred. (We call such an abort a malicious-
key-extraction-failure.)

Using the fake challenger. The simulator Sim4 is defined like Sim3, except that it uses the
fake challenger Definition 4 instead of the real challenger.

Using the ciphertext simulator directly. The simulator Sim5 is defined like Sim1 except
for the following changes:

• For each N ∈ NP , Sim5 maintains an instance CSN of the ciphertext simulator (Defini-
tions 3 and 8) for the encryption scheme (KeyGen,Enc,Dec) from implementation condi-
tion 25. (No real/fake challenger is not used, we access the ciphertext simulators directly.)
Sim5 also maintains an instance of the random oracle O and allows the ciphertext simu-
lators to access/program O and to get the list of queries (see Definition 3). Furthermore,
Sim5 maintains sets cipherN and lists plainN for all N ∈ NP , all initially empty.

• Instead of invoking Adec(dkN , c) in a call to τ(c), we query CSN with deccs(c) if c /∈ cipherN
and we use the value ⊥ if c ∈ cipherN .

• When the adversary E queries the random oracle on input x, Sim5 replies with O(x).

• Instead of computing β(t) to produce a bitstring to be sent to the adversary, the simulator
first call R := β′(t) (see below), then uses β†(t) (see below) instead of β(t). (The return
value of β′(t) is ignored here. However, the description of β† refers to the outputs made
by β′. The only purpose of β′ is to keep track of what β∗-calls would have occurred in the
execution of Sim4.)

The procedure β′ is defined like β∗ from Sim2, except that β′ does not send any oracle
queries to the real challenger. (Note that β∗ only performs queries that do not return
answers, so these queries are not needed for computing the answer of β∗.)

The function β† is defined as follows:

31

– If there already was a call β†(t) with the same t, the bitstring returned by that call
β†(t) is returned.

– β†(ek(N)): Query CSN with getekcs(). Return the answer.

– β†(enc(ek (N), t2,M)) with N,M ∈ R and there was no getdkcs() query to CSN yet:
We abbreviate t := enc(ek (N), t2,M). Let R be the output that was returned when
β′(t) was invoked, and R1 that of β′(t2). Query CSN with fakeenccs(R, ℓ(t)). Denote
the answer with c. Append c to cipherN and append (R 7→ R1) to plainN . Return c.

– β†(enc(ek (N), t2,M)) with N,M ∈ R and there was a getdkcs() query to CSN : We
abbreviate t := enc(ek (N), t2,M). Compute m := β†(t2). Let R denote the output of
β′(t), and R1 that of β′(t2). Query CSN with enccs(R,m). Denote the answer with
c. Append c to cipherN and append (R 7→ R1) to plainN . Return c.

– β†(dk (N)): Invoke β†(ek(N)) (and discard the return value). Query CSN with
getdkcs(). Denote the answer with d. Do the following for each (R 7→ R′) ∈ plainN :
Find the t such that an invocation of β′(t) returned R′. Call m := β†(t). Send the
query programcs(R,m) to CSN . Finally, return d.

– For all other terms, β† behaves like β.

• Before τ(m) is invoked (when translating a bitstring m from the adversary to the protocol),
for any invocation of β′(t) that has occurred so far, Sim1 invokes β†(t) if X, red i(S) ⊢ red i(t)
where S is the set of terms received from the protocol so far and X is the set of all
variables xc.

Using fresh randomness for signatures. The simulator Sim6 is defined like Sim5, except
that we change the definition of β† as follows: When invoking β(vk (N)) or β(sk (N)) with
N ∈ NP , a fresh key pair (vkN , skN) is chosen using the key generation algorithm SKeyGen from
implementation condition 27, unless this key pair has been chosen before, and vkN or dkN is
returned, respectively. When invoking β(sig(sk(N), t,M)) with N,M ∈ NP , instead of com-
puting Asig (Ask (rN), β(t), rM) we compute Sig(Ask (rN), β(t2)) (Sig is defined in implementation
condition 27).

Using a signing oracle. The simulator Sim7 is defined like Sim6, except that it maintains
instances Osig

N of a signing oracle for the signature scheme (SKeyGen, Sig,Verify) from implemen-
tation condition 27 (with queries for signing, for getting the verification key, and for getting
the signing key). There is an instance for any N ∈ NP , each instance is initialized when
used the first time. When invoking β(vk (N)), instead of generating a key pair (vkN , skN),

Sim7 queries the verification key vkN from Osig
N . When invoking β(sk (N)), instead of generat-

ing a key pair (vkN , skN), Sim7 queries the signing key skN from Osig
N . Instead of computing

Sig(β(sk (N)), β(t2)), Sim7 sends a signing query with message β(t2) to Osig
N .

C.3 The actual proof

Lemma 1 For any (direct or recursive) invocation of β†(t) performed by Sim5 or Sim7, we have
that for any i, X, red i(S) ⊢ red i(t) and Sϕ = tϕ where S is the set of all terms sent by Πc to
Sim5 (or Sim7) up to that point and X is the set of all variables xc. (Note: i does not have to
be the number of the step in which β†(t) is invoked.)

Proof. We show the lemma for X, red i(S) ⊢ red i(t). Sϕ = tϕ is analogous.

32

In the definition of Sim5 (or Sim7), there are three places in which β† is invoked: (a) When
a term t is sent by the protocol ΠC , the simulator invoked β†(t). (b) Before invoking τ(m), the
simulator calls β†(t) for terms t with X, red i(S) ⊢ red i(t). (c) β†(t) is recursively invoked by β†.

In case (a), t ∈ S by definition of S, hence S ⊢ t. In case (b), we have X, red i(S) ⊢ red i(t)
by assumption. Thus, to prove the lemma we only need to show that if β†(t) is recursively
invoked by β†(t′), and if X, red i(S) ⊢ red i(t

′′) for all earlier invocations β†(t′′) (including the
case t′′ = t′), then we have X, red i(S) ⊢ red i(t)

We distinguish the different cases for t′:

Case 1: “t′ = ek(N)”.
In this case, β†(t′) does not perform any recursive calls.

Case 2: “t′ = enc(ek (N), t2,M) with N,M ∈ R and there was no getdkcs() query to CSN yet”.
In this case, β†(t′) invokes β†(ek(N)). Hence t = ek(N). Since red i(t

′) = enc(ek (N), . . .) ⊢
ek(N) = red i(t), we have X, red i(S) ⊢ red i(t).

Case 3: “t′ = enc(ek (N), t2,M) with N,M ∈ R and there was a getdkcs() query to CSN ”.
A getdkcs()-query to CSN query is only performed by β†(dk (N)). Thus X, red i(S) ⊢
red i(dk (N)) = dk (N). With X, red i(S) ⊢ red i(t

′) = enc(ek (N), red i(t2),M), this implies
X, red i(S) ⊢ red i(t2) and X, red i(S) ⊢ ek (N) = red i(ek (N)). β†(t2) and β†(ek (N)) are
the only recursive calls.

Case 4: “t′ = dk(N)”.
Then X, red i(S) ⊢ red i(t

′) = dk (N). An invocation of β†(dk (N)) invokes β†(ek(N)) and
additionally invokes β†(t) only if (R 7→ R′) ∈ plainN where R′ was returned by β′(t). The
case t = ek(N) is handled as in Case 2. Thus we can assume that (R 7→ R′) ∈ plainN where
R′ was returned by β′(t). Such an (R 7→ R′) is only appended to plainN by an invocation
β†(enc(ek(N), t2,M)) with R = β′(t2). Thus X, red i(S) ⊢ red i(enc(ek (N), t2,M)) =
enc(ek (N), red i(t2),M) and t = t2. Together with X, red i(S) ⊢ red i(t

′) = dk (N) we get
X, red i(S) ⊢ red i(t2) = red i(t).

Case 5: “t′ = sig(sk(N), t2,M) or sk(N) with M ∈ NP ”.
In this case, β†(t′) invokes only β†(vk (N)). This handled analogously to Case 2.

Case 6: “t′ ∈ {pair (t1, t2), string0(t1), string1(t2)} with M ∈ NP ”.
Since X, red i(S) ⊢ red i(t

′), we have X, red i(S) ⊢ red i(t) or X, red i(S) ⊢ red i(t1), red i(t2).
And β†(t′) invokes only β†(t) or β†(t1), β

†(t2), respectively (see the definition of β, since
β† by definition behaves like β in these cases).

Case 7: “All other cases.”.
In these cases, β† does not perform recursive invocations to β† (see the definition of β,
since β† by definition behaves like β in these cases). �

Lemma 2 The full traces H -Trace
M,Πp,Sim and H -Trace

M,Πp,Sim7
are computationally indis-

tinguishable.

Proof. We prove the lemma by showing the indistinguishability of the full traces of any two
consecutive simulators. First, we have:

Claim 1 H -Trace
M,Πp,Sim and H -Trace

M,Πp,Sim have the same distribution.

33

To show that claim, note that the only difference between Sim and Sim1 is that the ran-
domness for the key generation, the encryption, and the signing is chosen by the algorithms
KeyGen, SKeyGen, Enc, and Sig in Sim1, while Sim uses nonces rN instead. However, from
protocol conditions 1, 2, 3, 4, it follows that Sim never uses a given randomness rN twice (note
that, since N ∈ R, τ does not access rN either). Hence the full traces H -Trace

M,Πp,Sim and
H -Trace

M,Πp,Sim1
are indistinguishable. This shows Claim 1.

In order to state the next indistinguishability, we first need to define two events:
By DecryptOwn we denote the event that an decch(N, c)-query to the real/fake challenger

returns forbidden (due to the fact that c ∈ cipherN). (Note: the event DecryptOwn is only well
defined for the simulators Sim2 and Sim4 who use the real/fake challenger.)

By BetaOutputLost, we denote the event that there exist R, t such that τ(regR) is invoked,
regR was not yet revealed at that point (using a revealch(R)-query), R was returned by β∗(t),
and t ∈ {ek(N), dk (N), vk(N), sk(N), enc(. . . , N), sig(. . . , N) : N ∈ NP }. (Note: the event
BetaOutputLost is only meaningful for the simulator Sim2. In a hybrid execution of Sim4, the
fake challenger is used, so non-revealed registers will not contain bitstrings.)

Claim 2 If BetaOutputLost and DecryptOwn have negligible probability in the hybrid execution
of Sim2, then H -Trace

M,Πp,Sim1
and H -Trace

M,Πp,Sim2
are statistically indistinguishable.

To prove this claim, first notice the effect of R := β∗(t) is to make the real challenger compute
β(t) and to put the result of this computation into the register regR. A call β(t) is replaced by
R := β∗(t), revealch(R); the result of this query is the same as β(t) would have returned.

However, in Sim1, τ refers in several places to the outputs of the calls to β. E.g., “τ(dk (N))
if k has earlier been output by β(ek (N))”. This rule now (in Sim2) reads “τ(dk (N)) if k has
earlier been output by β∗(ek (N))” However, there β∗(t) is not computed for every term for
which β(t) would have been computed in Sim1. Some of the β(t)-results of Sim1 are now
just contained in the registers of the real challenger but not revealed to Sim2. I.e., τ(m) will
behave differently if m is contained in the register regR where R was returned by β∗(t) for some
t ∈ {ek(N), dk (N), vk (N), sk(N), enc(. . . , N), sig(. . . , N) : N ∈ NP }, and that register was
not yet revealed (using a revealch(R)-query). I.e., τ(m) only behaves differently if the event
BetaOutputLost occurs.

Finally, we have changed the way messages are decrypted by τ : Sim2 uses a decch(N, c)-query
for that. This query fails if c ∈ cipherN . But unless the event DecryptOwn occurs, decch(N, c)-
queries decrypt correctly.

Thus the statistical distance between H -Trace
M,Πp,Sim1

and H -Trace
M,Πp,Sim2

is bounded
by the probability that BetaOutputLost or DecryptOwn occurs in the execution of Sim2. This
shows Claim 2.

Claim 3 The full traces H -Trace
M,Πp,Sim2

and H -Trace
M,Πp,Sim3

are statistically indistinguish-
able.

The executions of Sim2 and Sim3 differ only in case of a malicious-key-extraction-failure. But
malicious-key-extraction-failures happen only with negligible probability due to the malicious-key
extractability of (KeyGen,Enc,Dec) (implementation condition 26).

Claim 4 The full traces H -Trace
M,Πp,Sim3

and H -Trace
M,Πp,Sim4

are computationally indistin-
guishable.

This claim follows directly from the PROG-KDM security of (KeyGen,Enc,Dec) from imple-
mentation condition 25.

34

Claim 5 The full traces H -Trace
M,Πp,Sim4

and H -Trace
M,Πp,Sim5

have the same distribution.

To show this claim, we observe the following: In Sim5, the function β′ behaves like the
function β∗ from Sim4, except that it does not query the fake challenger. Furthermore, in Sim4,
we have queries revealch(R) with R := β′(t), these are replaced by the computation β†(t). By
induction over the recursive definition of β† and by comparing it to the definition of FCRetrieve,
we see that β†(t) always returns what FCRetrieve(R) would return for R := β′(t). Since
revealch(R) returns FCRetrieve(R), it follows that β†(t) gives the same result as revealch(R)
with R := β′(t). This shows Claim 5.

Claim 6 The full traces H -Trace
M,Πp,Sim5

and H -Trace
M,Πp,Sim6

have the same distribution.

This claim is shown analogously to Claim 1.

Claim 7 The full traces H -Trace
M,Πp,Sim6

and H -Trace
M,Πp,Sim7

have the same distribution.

This claim follows from the fact that in Sim7 all verification/signing key generation and all
signing operations are outsourced to a signing oracle which performs them in the same way as
they were performed by Sim6.

Claim 8 In a hybrid execution with Sim2, the probability of BetaOutputLost is negligible.

To prove this claim, we first consider a modification of the simulators Sim2, . . . , Sim7. We
define the simulator Sim∗

2 to behave like Sim2, except that we add a post-processing phase
after the execution: In this phase, for any R := β∗(t) that was computed during the execution
(including recursive calls to β∗), the simulator queries revealch(R) from the real challenger.

Analogously we define Sim∗
4.

Sim∗
5 has a different post-processing phase: For any invocation β′(t) during the execution,

Sim5 queries β†(t) in the post-processing phase.
Sim∗

6 and Sim∗
7 are defined analogously.

Since BetaOutputLost is only meaningful for Sim2 (and of course Sim∗
2), we need to define

analogous events for the other simulators.
For Sim∗

2 and Sim∗
4, we define the following variant: Let BetaOutputLostA denote the

event that there exist a bitstring m, a register R, and a term t such that the revealch(R)
query in the post-processing phase returns m, and there is an invocation τ(m) that oc-
curred before any revealch(R) query, and an invocation β∗(t) returned R, and t ∈
{ek(N), dk (N), vk(N), sk (N), enc(. . . , N), sig(. . . , N) : N ∈ NP }.

For Sim∗
5, Sim

∗
6, and Sim∗

7, we define the following variant: Let BetaOutputLostB denote the
event that there exist a bitstring m and a term t such that the invocation β†(t) in the post-
processing phase returns m, and there is an invocation τ(m) that occurred before any invocation
β†(t), and t ∈ {ek(N), dk (N), vk(N), sk (N), enc(. . . , N), sig(. . . , N) : N ∈ NP }.

And finally, for Sim∗
5, we define the following variant: Let BetaOutputLostB denote the event

that there exist a bitstring m and a term t such that the top-level invocation β†(t) in the post-
processing phase returns m, and there is an invocation τ(m) that occurred before any top-level
invocation β†(t), and t ∈ {ek(N), dk (N), vk(N), sk (N), enc(. . . , N), sig(. . . , N) : N ∈ NP }. By
a “top-level invocation” of β† we mean an invocation that was not recursively invoked by β†. (I.e.,
the top-level invocations of β† correspond directly to the revealch-queries in Sim∗

4.) The only
difference between BetaOutputLostB and BetaOutputLostC is that in the latter we only consider
top-level invocations.

Let Pr[X : Sim i] denote the probability that the event X occurs in the hybrid ex-
ecution with Sim i. Then Pr[BetaOutputLost : Sim2] = Pr[BetaOutputLost : Sim∗

2] =

35

Pr[BetaOutputLostA : Sim∗
2]. Furthermore Pr[BetaOutputLostA : Sim∗

2] ≈ Pr[BetaOutputLostA :
Sim∗

4] = Pr[BetaOutputLostC : Sim∗
5] and Pr[BetaOutputLostB : Sim∗

5] = Pr[BetaOutputLostB :
Sim∗

6] = Pr[BetaOutputLostB : Sim∗
7] where ≈ denotes a negligible difference.

These equalities follow analogously to Claims 4–7. Thus Pr[BetaOutputLost : Sim2] ≈
Pr[BetaOutputLostB : Sim∗

7].
Furthermore, we claim that Pr[BetaOutputLostC : Sim∗

5] = Pr[BetaOutputLostB : Sim∗
5]. To

show this, it is suffient to show that if β†(t) is invoked (possibly recursively), then there is also a
top-level invocation of β†(t) in the same step. For this, fix a term t such that β†(t) was invoked
in the i-th step. By Lemma 1, we have that X, red i(S) ⊢ red i(t). If β†(t) was invoked recursively,
there must have been a β′(t)-call in the same invocation. Furthermore, by construction of Sim∗

5

(see the description of Sim5), we have that for any β′(t)-call with X, red i(S) ⊢ red i(t), β
†(t) is

invoked before the invocation of τ(m) (i.e., still in the same step). Thus a top-level invocation
of β†(t) occurs. Thus Pr[BetaOutputLostC : Sim∗

5] = Pr[BetaOutputLostB : Sim∗
5].

Thus Pr[BetaOutputLost : Sim2] ≈ Pr[BetaOutputLost : Sim∗
7].

Assume that Pr[BetaOutputLostB : Sim∗
7] is not negligible. Then one of the following occurs

with not-negligible probability:

• BetaOutputLostB occurs with t = ek(N): By construction, β†(t) = β†(ek (N)) returns
the result of querying CSN with getekcs(). I.e., m = ekN where ekN is the encryption
key maintained by the ciphertext simulator CSN . Before the invocation of τ(m), there
was no call to β†(t) = β†(ek(N)). Since β†(dk (N)) and β(enc(. . . , N)) recursively invoke
β†(ek(N)), it follows that there was no call to β†(ek(N)) either. Since getekcs-, getdkcs-,
and fakeenccs-, and enccs-queries to CSN are only performed by β†(ek (N)), β†(dk (N)),
β†(enc(. . . , N)), it follows that before the invocation of τ(m) none of these queries was
sent to CSN . So before τ(m), only deccs-queries may have been sent to CSN . It is easy to
see that in a PROG-KDM secure encryption scheme, the encryption key cannot be guessed
with not-negligible probability without making any encryption or decryption queries (that
would imply that two independently chosen keys are equal with not-negligible probability,
allowing to break the scheme with not-negligible probability). Due to implementation
condition 8 (which requires that a ciphertext is tagged with its encryption key), decryption
queries also do not help in guessing an encryption key. Thus the probability that a τ(m)
query with m = ekN is performed before any getekcs-, getdkcs-, and fakeenccs-, and
enccs-queries to CSN is negligible. Thus BetaOutputLostB with t = ek(N) cannot occur
with not-negligible probability.

• BetaOutputLostB occurs with t = dk (N): By construction, β†(t) = β†(dk(N)) returns the
result of querying CSN with getdkcs(). I.e., m = dkN where dkN is the decryption key
maintained by the ciphertext simulator CSN . Before the invocation of τ(m), there was no
call to β†(t) = β†(dk (N)). Since getdkcs-queries to CSN are only performed by β†(dk (N)),
it follows that before the invocation of τ(m) no getdkcs-query was sent to CSN . Being able
to guess m = dkN (with not-negligible probability) without performing getdkcs-queries
would contradict PROG-KDM security. Thus BetaOutputLostB with t = dk(N) cannot
occur with not-negligible probability.

• BetaOutputLostB occurs with t = vk(N): Analogous to t = ek(N). (Except that we
consider the signing oracle instead of the ciphertext simulator, and signing instead of en-
crypting, and do not have to deal with the decryption-case.)

• BetaOutputLostB occurs with t = sk(N): Analogous to t = dk (N).

36

• BetaOutputLostB occurs with t = enc(ek(M), t′, N): By construction, m = β†(t) =
β†(enc(ek(M), t′, N)) returns either the result of querying CSN via an enccs- or fakeenccs-
query, or the result of invoking Enc(Aek (rM), β†(t)). (Depending on whether M ∈ NP or
M ∈ NE .) Since τ(m) is invoked before the first β†(t)-invocation, τ(m) is invoked before
the enccs- or fakeenccs-query or computation of Enc(Aek (rM), β†(t)) is performed. This
violated the unpredictability of (KeyGen,Enc,Dec) (implementation condition implemen-
tation condition 28).14 Thus BetaOutputLostB with t = enc(. . . , N) cannot occur with
not-negligible probability.

• BetaOutputLostB occurs with t = sig(. . . , N). Analogous to t = enc(. . . , N), except that
we use the unpredictability of the signature scheme (implementation condition 29).

Thus Pr[BetaOutputLostB : Sim∗
7] is negligible, and – since Pr[BetaOutputLost : Sim2] ≈

Pr[BetaOutputLost : Sim∗
7] – Claim 8 is shown.

Claim 9 In a hybrid execution with Sim2, the probability of DecryptOwn is negligible.

To show this claim, we first show that DecryptOwn implies BetaOutputLost. Assume that
DecryptOwn occurs. Then a decch(N, c)-query to the real challenger has been performed with
c ∈ cipherN . By construction of Sim2, such a query is only performed by τ(c), and only if c is of
type ciphertext and c was not output earlier by any revealch(R)-query (for any R). Furthermore,
by definition of the real challenger, c ∈ cipherN implies that there was an R := encch(N, p)-query
for some R, p and that regR = c. An R := encch(N, p)-query is only performed by an invocation
β∗(enc(ek(N), t′,M)) for some t ∈ Tx,M ∈ NP .

Thus, there exist m := c and R such that τ(m) is invoked, regR was not yet revealed at that
point, R was returned by β∗(enc(ek (N), t′,M)) for some t ∈ Tx,M ∈ NP . By definition of
BetaOutputLost, this means BetaOutputLost occurred. So DecryptOwn implies BetaOutputLost.
By Claim 8, BetaOutputLost occurs with negligible probability, this DecryptOwn occurs with
negligible probability. This shows Claim 9.

We can now finish the proof of Lemma 2. By Claims 1–7, we have that H -Trace
M,Πp,Sim

and H -Trace
M,Πp,Sim7

are computationally indistinguishable if BetaOutputLost and DecryptOwn

have negligible probability in the hybrid execution of Sim2. The latter is the case by Claims 8
and 9. Thus Lemma 2 follows. �

Lemma 3 In the hybrid execution of Sim, we have for any i, j, and any term t, we have
red i(t)ϕ = red j(t)ϕ where ϕ is the final substitution.

Proof. Let n be the last step of the execution, and σ(xc) := garbageEnc(NAekof (c), N c) (as in
the definition of ϕ). It is sufficient to show red i(t)ϕ = redn(t)ϕ for i < n since then red i(t)ϕ =
redn(t)ϕ = redj(t)ϕ.

We have that redn and red i behave differently only on inputs xc such that dk(NAekof (c)) did
not occur up to step i of the execution but occurred up to step n.

Then red i(x
c)ϕ = ϕ(xc)

(∗)
= redn(x

c)σ. Since redn(x
c) only contains variables for which

redn(x
c) = xc and thus ϕ(xc) = σ(xc), we have that redn(x

c)ϕ = redn(x
c)σ. Hence red i(x

c)ϕ =
redn(x

c)ϕ. �

14In the case of an enccs- or fakeenccs-query, this is not fully immediate because the ciphertext simulator is
not required to compute the answer to these queries using Enc. However, if it was possible to predict the value
of a ciphertext returned by the ciphertext simulator, this would imply that it is also possible to predict the value
of a ciphertext returned by the real challenger (due to PROG-KDM security). The latter actually uses Enc, so
predicting its ciphertexts would violate the unpredictability of (KeyGen,Enc,Dec).

37

Lemma 4 Sim is consistent for M, Π, A, and for every polynomial p.

Proof. By definition, to prove the consistency of Sim , we need to show that whenever Sim is
asked a question Q, then the answer to Q is yes iff eval(Qϕ) 6= ⊥ where ϕ is the final substitution
output by Sim in the end. By definition of Sim, Sim answers yes iff red i(Q) 6= ⊥ where i refers
to the current step of the execution (the number of the node in question along the path takes in
the protocol tree). Thus we have to show that red i(Q) 6= ⊥ iff eval(Qϕ) 6= ⊥. To show that, we
first need the following auxiliary claim:

Claim 1 For any subterm f(Q1, . . . , Qn) of Q with f/n ∈ C ∪D, we have that
evalf (red i(Q1), . . . , red i(Qn))ϕ ≡ evalf (red i(Q1)ϕ, . . . , red i(Qn)ϕ). Here ≡ denotes that the lhs
is defined iff the rhs is and that both are equal in that case.

To show this claim, first remember that ϕ(xc) is always of the form enc(ek (NAekof (c)), ·, N c).
Furthermore, if xc occurs in Q, then ϕ(xc) does not occur in Q. (This stems from the fact that
if τ(c) translates c to xc, then it always does so. Hence no term of the form enc(. . . , N c) will be
produced by τ .) And red i(Qn) ∈ Tx if defined.

These observations are sufficient to check that the claim holds for each f 6= dec. (For
the case f = isenc, remember that we introduced (on page 27) the rules isenc(xc) = xc and
ekof (xc) = ek(NAekof (c)) in addition to the destructor rules in given in Figure 1.

Now consider the case f = dec. We abbreviate Q̃j := red i(Qj) for j = 1, 2. We need to show

evaldec(Q̃1, Q̃2)ϕ ≡ evaldec(Q̃1ϕ, Q̃2ϕ). (1)

If Q1 6= dk(·), then also Q̃1ϕ 6= dk(·), and (1) follows. Thus we can assume Q1 = dk(N)
for some N ∈ N. If Q̃2 is neither of the form Q̃2 = enc(ek(N), . . .) or Q̃2 = xc, then
evaldec(Q̃1, Q̃2) = ⊥ and evaldec(Q̃1ϕ, Q̃2ϕ) = ⊥ and (1) follows. Thus we can assume
that Q̃2 = enc(ek(N), t,M) with N,M ∈ N or Q̃2 = xc. In the first case, we have
evaldec(Q̃1, Q̃2)ϕ ≡ tϕ ≡ evaldec(dk (N), enc(ek(N), tϕ,M)) ≡ evaldec(Q̃1ϕ, Q̃2ϕ), so (1) holds
in this case.

Thus we can assume Q̃2 = xc for some c. By definition of red i, we have red i(x
c) = enc(. . .)

or red i(x
c) = garbageEnc(. . .) if the term dk (Ne) with e := Aekof (c) occurred at some node

prior to the current one. Thus Q̃2 = xc implies that dk (Ne) did not occur at any prior node.
Since Q1 is the term at one of the predecessors of the current node, Q1 6= dk (Ne) and hence
Q̃1ϕ 6= dk (Ne). Furthermore, by construction of ϕ, we have ϕ(xc) = enc(ek (Ne), . . .) or ϕ(xc) =
enc(ek(Ne), N c). Thus dec(Q̃1ϕ, Q̃2ϕ) = ⊥. Hence evaldec(Q̃1, Q̃2)ϕ ≡ evaldec(Q̃1, x

e)ϕ ≡ ⊥ ≡
evaldec(Q̃1ϕ, Q̃2ϕ). Thus (1) holds also in this last case. This shows Claim 1.

We can now prove the following claim which is already almost the result we need:

Claim 2 For any subterm Q′ of Q, we have that red i(Q
′)ϕ ≡ eval(Q′ϕ).

We show this claim by structural induction over Q′. For Q′ = N ∈ N, the claim follows from
red i(Q

′)ϕ ≡ N ≡ eval(Q′ϕ).
For Q′ = f(Q1, . . . , Qn) with f ∈ C ∪D, we have

red i(Q
′)ϕ ≡ evalf (red i(Q1), . . . , red i(Qn))ϕ

(∗)

≡ evalf (red i(Q1)ϕ, . . . , red i(Qn)ϕ)
IH

≡ evalf (eval(Q1ϕ), . . . , eval(Qnϕ))

≡ eval(Q′ϕ)

38

where (∗) uses Claim 1 and IH stands for the induction hypothesis.
Finally, if Q′ = xc, we have to show red i(x

c)ϕ ≡ eval(ϕ(xc)). Since ϕ(xc) ∈ Tx, we have
eval(ϕ(xc)) ≡ ϕ(xc). Thus it suffices to show red i(x

c)ϕ = ϕ(xc) (notice that we use = here,
because neither red i nor ϕ fail). Let e := Aekof (c) and d := A−1

ekofdk (e). (e is defined by
implementation condition 8. d is defined if dk (Ne) did not occur at any prior node to the
current one because dk (Ne) must then have been produced by τ(d) with e = Aekofdk (d).)

We distinguish three cases when showing red i(x
c)ϕ = ϕ(xc):

Case 1: “dk (Ne) did not occur at any prior node to the current one”.
Then by definition of red i, we have red i(x

c) = xc and thus red i(x
c)ϕ = ϕ(xc).

Case 2: “dk (Ne) did occur at a prior node, and Adec(d, c) = ⊥”.
Then by definition of red i, we have red i(x

c) = garbageEnc(ek(Ne), N c). Hence red i(x
c)ϕ =

garbageEnc(ek (Ne), N c). Furthermore, ϕ(xc) = redn(x
c)σ where n is the last step of

the execution, and σ a substitution (σ and n were defined in the definition of the fi-
nal substitution ϕ.) We have redn(x

c) = garbageEnc(ek (Ne), N c). Thus ϕ(xc) =
garbageEnc(ek (Ne), N c) = red i(x

c)ϕ.

Case 3: “dk (Ne) did occur at a prior node, and Adec(d, c) 6= ⊥”.
In this case, red i(x

c)ϕ = enc(ek(Ne), red i(τ(Adec(d, c))), N
c)ϕ =

enc(ek (Ne), red i(τ(Adec(d, c)))ϕ,N
c). And ϕ(xc) = redn(x

c)σ where n is the last
step of the execution, and σ a substitution (σ and n were defined in the definition of the
final substitution ϕ) and redn(x

c) = enc(ek (Ne), redn(τ(Adec(d, c)))σ,N
c). Thus, to show

that red i(x
c)ϕ = ϕ(xc), it suffices to show that red i(τ(Adec(d, c)))ϕ = redn(τ(Adec(d, c)))σ.

We have red i(τ(Adec(d, c)))ϕ = redn(τ(Adec(d, c)))ϕ by Lemma 3. And by definition of
redn, redn(τ(Adec(d, c))) only contains variables xc′ with redn(x

c′) = c′ and hence with
ϕ(xc′) = redn(x

c′) = σc′ . Thus we have redn(τ(Adec(d, c)))ϕ = redn(τ(Adec(d, c)))σ and
red i(τ(Adec(d, c)))ϕ = redn(τ(Adec(d, c)))σ follows.

Thus, if Q′ = xc, we have red i(Q
′)ϕ ≡ eval(Q′ϕ).

This shows Claim 2.

The lemma now follows: Since red i(Q) 6= ⊥ iff red i(Q)ϕ 6= ⊥, we have red i(Q) 6= ⊥ iff
eval(Qϕ) 6= ⊥ by Claim 2. As explained before Claim 1, this implies that Q is answered with
yes iff eval(Qϕ) 6= ⊥, thus Sim is consistent. �

Lemma 5 Sim is indistinguishable for M, Π, A, and for every polynomial p.

Proof. We will first show that when fixing the randomness of the adversary and the protocol, the
node trace Nodes

p
M,A,Πp,E

in the computational execution and the node trace H -Nodes
M,Πp,Sim

in the hybrid execution are equal. Hence, fix the variables rN for all N ∈ NP , fix a random tape
for the adversary, and for each non-deterministic node ν fix a choice eν of an outgoing edge.

We assume that the randomness is chosen such that all bitstrings rN , Aek (rN), Adk (rN),
Avk (rN), Ask (rN), Aenc(e,m, rN), and Asig (s,m, rN) computed during the execution are all
pairwise distinct. It is easy to see from the implementation conditions that this holds with
overwhelming probability.

In the following, we designate the values fi and νi in the computational execution by f ′
i and

ν′i, and in the hybrid execution by fC
i and νCi . Let s′i denote the state of the adversary E in the

computational model, and sCi the state of the simulated adversary in the hybrid model.
Claim 1: In the hybrid execution, for any b ∈ {0, 1}∗, β(τ(b)) = b.

This claim follows by induction over the recursive evaluation of τ .

39

Claim 2: In the hybrid execution, for any term t stored at node νi, β(red i(t)) 6= ⊥.
By induction on the structure of t and by checking that all terms that would lead to β(. . .) = ⊥

are never produced by τ or the protocol. And using the fact that red i(t) 6= t since otherwise the
simulator would have answered no for the question Q := t so that t would not have been stored
at the node in the first place.
Claim 3: For all terms t 6∈ R that occur in the hybrid execution, τ(β(t)) = t.

By induction on the structure of t and using the assumption that rN , Aek (rN), Adk (rN),
Avk (rN), Ask (rN), as well as all occuring encryptions and signatures are pairwise distinct for
all N ∈ N . For terms t that contain randomness nonces, note that by protocol conditions 1–4,
randomness nonces never occur outside the last argument of E-, sig-, ek -, dk -, vk -, or sk -terms.
Claim 4: In the hybrid execution, at any computation node ν = νi with constructor or destruc-
tor F and arguments ν̄1, . . . , ν̄n the following holds: Let t∗j be the term stored at node ν̄j (i.e.,
t∗j = f ′

i(ν̄j)). Then β(evalF (t1, . . . , tn)) = AF (β(t1), . . . , β(tn)) with tj := red i(t
∗
j). Here the left

hand side is defined iff the right hand side is.
We show Claim 4. We distinguish the following cases:

Case 1: “F = ek ”.
Note that by protocol condition 1, we have t1 ∈ NP . Then β(ek (t1)) = Aek (rt1) =
Aek (β(t1)).

Case 2: “F ∈ {dk , vk , sk}”.
Analogous to the case F = ek .

Case 3: “F ∈ {pair , fst , snd , string0, string1, unstring0, unstring1, empty}”.
Claim 4 follows directly from the definition of β.

Case 4: “F = isek ”.
If t1 = ek (t′1), we have that t′1 = N ∈ R or t′1 = Nm where m is of type ciphertext (as other
subterms of the form ek (·) are neither produced by the protocol nor by τ). In both cases,
β(ek (t′1)) is of type encryption key. Hence β(isek (t1)) = β(ek (t′1)) = Aisek (β(ek (t

′
1))) =

Aisek (β(t1)). If t1 is not of the form ek(·), then β(t1) is not of type public key (this
uses that τ only uses Nm with m of type public key inside a term ek(Nm)). Hence
β(isek (t1)) = ⊥ = Aisek (β(t1)).

Case 5: “F ∈ {isvk , isdk , issk , issig}”.
Similar to the case F = isek .

Case 6: “F = ekofdk ”.

If t1 = dk(N) for N ∈ R, then Aekofdk (β(dk (N)) = Aekofdk (Adk (rN))
(∗)
= Aek (rN) =

β(ek (N)) = β(ekofdk (t1)). Here (∗) uses implementation condition 15. If t1 = dk(Ne),
then Aekofdk (β(sk (N

e))) = Aekofdk (A
−1
ekofdk (e)) = e = β(ek (Ne)) = β(ekofdk (t1)). If t1 is

not of the form dk (·), then β(t1) is not of type decryption key, and thus Aekofdk (β(t1)) =
⊥ by implementation condition 14. Also ekofdk (t1) = ⊥. Thus Aekofdk (β(t1)) = ⊥ =
β(ekofdk (t1)).

Case 7: “F = vkofsk ”.
Similar for the case F = ekofdk .

Case 8: “F = isenc”.
If t1 is of the form enc(. . .), garbageEnc(. . .), or xc, then β(t1) is of type ciphertext.

Remember also that ekofdk (xc) = xc (page 27). Thus Aisenc(β(t1))
(∗)
= β(t1) = β(isenc(t1)).

Here (∗) uses implementation condition 23. If t1 is not of one of these forms, then β(t1) is

40

not of type ciphertext, and thus Aisenc(β(t1)) = ⊥ = β(⊥) = β(isenc(t1)). Here (∗) uses
implementation condition 23.

Case 9: “F = ekof ”.
If t1 = enc(ek(u1), u2,M) with M ∈ R, we have that β(t1) = Aenc(β(ek (u1)), β(u2), rM).
By implementation condition 8, Aekof (β(t1)) = β(ek(u1)). Furthermore, ekof (t1) =
ek(u1), hence Aekof (β(t1)) = β(ekof (t1)). If t1 = enc(ek (u1), u2, N

m), by protocol condi-
tion 5, t1 was not honestly generated. Hence, by definition of τ , m is of type ciphertext,
and ek(u1) = τ(Aekof (m)). Thus with Claim 1, β(ek (u1)) = Aekof (m). Furthermore,
we have β(t1) = m by definition of β and thus Aekof (β(t1)) = β(ek (u1)) = β(ekof (t1)).
If t1 = garbageEnc(u1, u2), the proof is analogous. If t1 = xc, we have that ekof (t1) =
ek(NAekof (c)), and thus β(ekof (t1)) = Aekof (c) = Aekof (β(c)). In all other cases for t1,
β(t1) is not of type ciphertext, hence Aekof (β(t1)) = ⊥ by implementation condition 8.
Furthermore ekof (t1) = ⊥. Thus β(ekof (t1)) = ⊥ = Aekof (β(t1)).

Case 10: “F = vkof ”.
If t1 = sig(sk (N), u1,M) with N,M ∈ N , we have that β(t1) = Asig (Ask (rN), β(u2), rM).
By implementation condition 9, Aekof (β(t1)) = Avk (rN). Furthermore, vkof (t1) = vk(N),
hence Avkof (β(t1)) = Avk (rN) = β(vk (N)) = β(vkof (t1)). If t1 = xc, then β(vkof (xc)) =
⊥ = Avkof (β(x

c)). All other cases for t1 are handled like in the case of F = ekof .

Case 11: “F = enc”.
By protocol condition 1, t3 =: N ∈ N . If t1 = ek(u1) we have β(evalenc(t1, t2, t3)) =
Aenc(β(t1), β(t2), rN) by definition of β. Since β(N) = rN , we have β(evalenc(t1, t2, t3)) =
Aenc(β(t1), β(t2), β(t3)). If t1 is not of the form ek(u1), then evalenc(t1, t2, t3) = ⊥ and
by definition of β, β(t1) is not of type encryption key and hence by implementation condi-
tion 10, Aenc(β(t1), . . .) = ⊥ = β(enc(t1, t2, t3)).

Case 12: “F = dec”.
We distinguish the following cases for t1, t2:

Case 12.1: “t1 = dk (N) and t2 = enc(ek(N), u2,M) with N,M ∈ R”.
Then Adec(β(t1), β(t2)) = Adec(Adk (rN), Aenc(Aek (N), β(u2), rM)) = β(u2) by im-
plementation condition 18. Furthermore β(dec(t1, t2)) = β(u2) by definition of D.

Case 12.2: “t1 = dk (N) and t2 = enc(ek(N), u2, N
c) with N ∈ R”.

Then t2 was produced by τ and hence c is of type ciphertext and τ(Adec(Adk (rN), c)) =
u2. Then by Claim 1, Adec(Adk (rN), c) = β(u2) and hence Adec(β(t1), β(t2)) =
Adec(Adk (rN), c) = β(u2) = β(dec(t1, t2)).

Case 12.3: “t1 = dk (N) and t2 = enc(u1, u2, u3) with N ∈ R and u1 6= ek (N)”.
As shown above (case F = ekof), Aekof (β(enc(u1, u2, u3)) =
β(ekof (enc(u1, u2, u3)) = β(u1). Moreover, from Claim 3, Aekof (β(enc(u1, u2, u3)) =
β(u1) 6= β(ek(N)) = Aek (rN). Thus by implementation condition 11,
Adec(β(t1), β(t2)) = Adec(Adk (rN), β(enc(u1, u2, u3))) = ⊥. Furthermore,
dec(t1, t2) = ⊥ and thus β(dec(t1, t2)) = ⊥.

Case 12.4: “t1 = dk (N) and t2 = garbageEnc(u1, N
c) with N ∈ R”.

Assume that m := Adec(β(t1), β(t2)) = Adec(Ask (rN), c) 6= ⊥. By implementation
condition 11 this implies Aekof (c) = Aek (rN) and thus τ(Aekof (c)) = τ(Aek (rN)) =
ek (N). By protocol condition 5 and construction of τ , t2 has been not been pro-
duced by the protocol. Thus is was produced by τ or red i. Hence (by con-
struction of τ and red i) c is of type ciphertext. Then, however, we would have

41

τ(c) = enc(ek(N), τ(m), N c) 6= t2. This is a contradiction to t2 = τ(c), so the as-
sumption that Adec(β(t1), β(t2)) 6= ⊥ was false. So Adec(β(t1), β(t2)) = ⊥ = β(⊥) =
β(dec(t1, garbageEnc(u1, N

c))).

Case 12.5: “t1 = dk (Ne) and t2 = garbageEnc(u1, N
c)”.

By protocol condition 5 and construction of τ , t2 has been not been produced by the
protocol or τ . Thus is was produced by red i i.e., t2 = red i(x

c).

We consider two cases: First, assume e = Aekof (c). Then by definition of red i,
red i(x

c) only outputs garbageEnc(u1, N
c) if Adec(A

−1
ekofdk (Aekof (c)), c) = ⊥. Hence

Adec(β(t1), β(t2)) = Adec(A
−1
ekofdk (e), c) = Adec(A

−1
ekofdk (Aekof (c)), c) = ⊥ = β(⊥) =

β(dec(t1, t2)).

Second, assume e 6= Aekof (c). Let d := A−1
ekofdk (e). Then Aekofdk (d) 6= Aekof (c),

and by implementation condition 12, Adec(d, c) = ⊥. Thus Adec(β(t1), β(t2)) =
Adec(A

−1
ekofdk (e), c) = Adec(d, c) = ⊥ = β(⊥) = β(dec(t1, t2)).

Case 12.6: “t1 = dk (N) with N ∈ N and t2 = xc and Aekof (c) 6= Aekofdk (β(t1))”.
Since Aekof (c) 6= Aekofdk (β(t1)), we have Adec(β(t1), c) = ⊥ by implementation
condition implementation condition 12. Furthermore, dec(t1, t2) = ⊥. Hence
Adec(β(t1), β(t2)) = Adec(β(t1), c) = ⊥ = β(dec(t1, t2)).

Case 12.7: “t1 = dk (N) with N ∈ N and t2 = xc with Aekof (c) = Aekofdk (β(t1))”.
This case does not occur. If N ∈ R, then τ would not output xc but instead a
term enc(. . .) or garbageEnc(. . .). If N = Ne and Aekof (c) = Aekofdk (β(t1)), then
Aekof (c) = Aekofdk (β(t1)) = Aekofdk (A

−1
ekofdk (e)) = e, and then red i(x

c) will return
enc(. . .) or garbageEnc(. . .). Thus t2 cannot be xc.

Case 12.8: “t1 = dk (Ne) and t2 = enc(ek (Ne), u2, N
c)”.

Terms of the form enc(ek (Ne), u2, N
c) are neither produced by τ (τ only pro-

duces enc-terms with encryption keys ek(N), N ∈ NP), nor by the protocol
(by protocol condition protocol condition 1, the randomness of the enc-term is
in NP). Thus t2 was produced by red i, i.e., t2 = red i(x

c). But red i(x
c) only

outputs a term enc(ek (Ne), u2, N
c) if τ(Adec(β(dk (N

e)), β(xc))) = u2. Hence

β(dec(t1, t2)) = β(u2) = β(τ(Adec(β(dk (N
e)), β(xc))))

(∗)
= Adec(β(dk (N

e)), β(xc)) =
Adec(β(dk (N

e)), c) = Adec(β(t1), β(t2)). Here (∗) uses Claim 1.

Case 12.9: “t1 = dk (Ne) and t2 = enc(ek (Ne), u2, N) with N ∈ R”.
We have β(t1) = A−1

ekofdk (e) =: d and hence β(ek (Ne)) = e = Aekofdk (d). Then

Adec(β(t1), β(t2)) = Adec(d,Aenc(Aekofdk (d), β(u2), rN))
(∗)
= β(u2) = β(dec(t1, t2)).

Here (∗) uses implementation condition 13.

Case 12.10: “t1 = dk(Ne) and t2 = enc(u1, u2, N) with u1 6= ek(Ne) and N ∈ R”.
Since dec(t1, t2) = ⊥, we have to show that Adec(β(t1), β(t2)) = ⊥. We have
β(t1) = A−1

ekofdk (e) =: d. Furthermore, β(u1) 6= e since otherwise we would
have u1 = ek (Ne). Thus Aekofdk (d) 6= β(u1). Then Adec(β(t1), β(t2)) =

Adec(d,Aenc(β(u1), β(u2), rN))
(∗)
= ⊥ where (∗) uses implementation conditions 12

and 8 and Aekofdk (d) 6= β(u1).

Case 12.11: “t1 = dk(Ne) and t2 = enc(u1, u2, N
c) with u1 6= ek(Ne)”.

Since dec(t1, t2) = ⊥, we have to show that Adec(β(t1), β(t2)) = ⊥. We have β(t1) =
A−1

ekofdk (e) =: d. Furthermore, since the protocol does not produce terms enc(. . . , N c),
t2 was produced by τ or red . Thus by definition of τ and red , u1 = τ(Aekof (c)).
Since τ(e) = ek(Ne) 6= u1, it follows that Aekof (c) 6= e = Aekofdk (d). Thus by
implementation condition 12 we have Adec(β(t1), β(t2)) = Adec(d, c) = ⊥.

42

Case 12.12: “t1 is not of the form dk (. . .)”.
Then β(t1) is not of type decryption key. Thus by implementation conditions 12
and 14, Adec(β(t1), β(t2)) = ⊥. Also, β(dec(t1, t2)) = dec(t1, t2) = ⊥.

Case 12.13: “t2 is not of the form enc(. . .), garbageEnc(. . .), nor xc”.
Then β(t2) is not of type ciphertext. By implementation condition 8, Aekof (β(t2)) =
⊥. Hence Aekof (β(t2)) 6= Aek (rN) and by implementation condition 11,
Adec(β(t1), β(t2)) = Adec(Adk (rN), β(t2)) = ⊥ = β(dec(t1, t2)).

Case 13: “F = sig”.
By protocol condition 1 we have t3 = M ∈ R. If t1 is of the form ek(·), then
β(sig(t1, t2, t3)) = Asig(β(t1), β(t2), rM) = Asig (β(t1), β(t2), β(t3)). If t1 6= ek(·) then
β(sig(t1, t2, t3)) = ⊥ = Asig(β(t1), β(t2), β(t3)).

Case 14: “F = verify”.
We distinguish the following subcases:

Case 14.1: “t1 = vk (N) and t2 = sig(sk(N), u2,M) with N,M ∈ N ”.

Then Averify (β(t1), β(t2)) = Averify (Avk (rN), Asig (Ask (rN), β(u2), rM))
(∗)
= β(u2) =

β(verify (t)) where (∗) uses implementation condition 19.

Case 14.2: “t2 = sig(sk(N), u2,M) and t1 6= vk(N) with N,M ∈ N ”.
By Claim 3, β(t1) 6= β(vk (N)) Furthermore Averify (β(vk (N)), β(t2)) =

Averify (β(t1), Asig (Ask (rN), β(u2), rM))
(∗)
= β(u2) 6= ⊥. Hence with implementation

condition 20, Averify (β(t1), β(t2)) = ⊥ = β(⊥) = verify(t1, t2).

Case 14.3: “t1 = vk (N) and t2 = sig(sk(N), u2,M
s)”.

Then t2 was produced by τ and hence s is of type signature with τ(Avkof (s)) = vk(N)
and m := Averify (Avkof (s), s) 6= ⊥ and u2 = τ(m). Hence with Claim 1 we have
m = β(τ(m)) = β(u2) and β(t1) = β(vk (N)) = β(τ(Avkof (s))) = Avkof (s). Thus
Averify (β(t1), β(t2)) = Averify (Avkof (s), s) = m = β(u2). And β(verify (t1, t2)) =
β(verify (vk(N), sig(sk(N), u2,M

s))) = β(u2).

Case 14.4: “t2 = sig(sk(N), u2,M
s) and t1 6= vk(N)”.

As in the previous case, Averify (Avkof (s), s) 6= ⊥ and β(vk (N)) = Avkof (s). Since t1 6=
vk (N), by Claim 3, β(t1) 6= β(vk (N)) = Avkof (s). From implementation condition 20
and Averify (Avkof (s), s) 6= ⊥, we have Averify(β(t1), β(t2)) = Averify (β(t1), s) = ⊥ =
β(⊥) = β(verify (t1, t2)).

Case 14.5: “t2 = garbageSig(u1, N
s)”.

Then t2 was produced by τ and hence s is of type signature and either
Averify (Avkof (s), s) = ⊥ or τ(Avkof (s)) is not of the form vk(. . .). The latter case
only occurs if Avkof (s) = ⊥ as otherwise Avkof (s) is of type verification key and hence
τ(Avkof (s)) = vk (. . .). Hence in both cases Averify (Avkof (s), s) = ⊥. If β(t1) =
Avkof (s) then Averify (β(t1), β(t2)) = Averify (Avkof (s), s) = ⊥ = β(verify(t1, t2)).
If β(t1) 6= Avkof (s) then by implementation condition 20, Averify (β(t1), β(t2)) =
Averify (β(t1), s) = ⊥. Thus in both cases, with verify(t1, t2) = ⊥ we have
Averify (β(t1), β(t2)) = ⊥ = β(verify (t1, t2)).

Case 14.6: “All other cases”.
Then β(t2) is not of type signature, hence by implementation condition 9,
Avkof (β(t2)) = ⊥, hence β(t1) 6= Avkof (β(t2)), and by implementation condition 20
we have Averify (β(t1), β(t2)) = ⊥ = β(verify (t1, t2)).

43

Case 15: “F = equals”.
If t1 = t2 we have β(equals(t1, t2)) = β(t1) = Aequals(β(t1), β(t1)) = Aequals(β(t1), β(t2)).
If t1 6= t2, then t1, t2 6∈ R. To see this, let N1 be the node associated with t1. If N1 is
a nonce computation node, then t1 6∈ R follows from protocol conditions 2, 3, and 4. In
case N1 is an input node, t1 6∈ R follows by definition of τ . Finally, if N1 is a destructor
computation node, t1 6∈ R follows inductively. (Similarly for t2.) By Claim 3, t1, t2 6∈ R
implies β(t1) 6= β(t2) and hence β(equals(t1, t2)) = ⊥ = Aequals(β(t1), β(t2)) as desired.

Case 16: “F ∈ {garbage, garbageEnc, garbageSig}”.
By protocol condition 5, the constructors garbage , garbageEnc, and garbageSig do not occur
in the protocol.

Thus Claim 4 holds.
We will now show that for the random choices fixed above, Nodes

p
M,A,Πp,E

=
H -Nodes

M,Πp,Sim .

To prove this, we show the following invariant: f ′
i = β ◦ red i ◦ fC

i and ν′i = νCi and si = s′i
for all i ≥ 0. We show this by induction on i.

We have f ′
0 = fC

0 = ∅ and ν′0 = νC0 is the root node, so the invariant is satisfied for i = 0.
Assume that the invariant holds for some i. If ν′i is a nondeterministic node, ν′i+1 = νCi+1 is
determined by eν′

i
= eνC

i
. Since a nondeterministic node does not modify f and the adversary

is not activated and red i = red i+1, we have f ′
i+1 = f ′

i = β ◦ red i ◦ fC
i = β ◦ red i+1 ◦ fC

i+1 and
si = s′i. Hence the invariant holds for i+ 1 if ν′i is a nondeterministic node.

If ν′i is a computation node with constructor or destructor F , let ν̄1, . . . , ν̄n be the arguments
of node ν′i. Let ij be the index such that ν̄j = νij (i.e., ij is the index of the iteration at which node
ν̄j was processed). By induction hypothesis we have that f ′

i+1(ν
′
i) = AF (f

′
i(ν̄1), . . . , f

′
i(ν̄n)) =

AF (β(red i1(f
C
i (ν̄1))), . . . , β(red in(f

C
i (ν̄n)))). Since β returns the same bitstring for xc and

enc(. . . , N c) and garbageEnc(. . . , N c), we have that β(red ij (f
C
i (ν̄j)) = β(red i+1(f

C
i (ν̄j)) for

j = 1, . . . , n. Hence f ′
i+1(ν

′
i) = AF (β(red i+1(f

C
i (ν̄1))), . . . , β(red i+1(f

C
i (ν̄n)))). And fC

i+1(ν
′
i) =

fC
i+1(ν

C
i) = F (fC

i (ν̄1), . . . , f
C
i (ν̄n)). From Claim 4 it follows that β(red i+1(f

C
i+1(ν

′
i))) =

β(evalF (red i+1(f
C
i (ν̄1)), . . . , red i+1(f

C
i (ν̄n)))) = f ′

i+1(ν
′
i) where the lhs is defined iff the rhs is.

Hence β ◦ red i+1 ◦ f
C
i+1 = f ′

i+1.
In the hybrid execution, the yes-successor is taken iff the simulator answers yes to the ques-

tion Q := F (fC
i (ν̄1), . . . , f

C
i (ν̄n)) = fC

i+1(νi). The simulator answers yes iff red i+1(f
C
i+1(νi)) =

red i+1(Q) 6= ⊥. By Claim 2, red i+1(f
C
i+1(νi)) 6= ⊥ iff β(red i+1(f

C
i+1(νi))) 6= ⊥. And as shown

above, this holds iff f ′
i+1(νi). And in the computational execution, the yes-success is taken iff

AF (f
′
i(ν̄1), . . . , f

′
i(ν̄n)) = f ′

i+1(νi) 6= ⊥. Thus the yes-successor is taken in the hybrid execution
iff it is taken in the computational execution. Thus νCi+1 = ν′i+1.

The adversary E is not invoked, hence s′i+1 = sCi+1. So the invariant holds for i+ 1 if ν′i is a
computation node with a constructor or destructor.

If ν′i is a computation node with nonce N ∈ NP , we have that f ′
i+1(ν

′
i) = rN = β(N) =

β(red i+1(f
C
i+1(ν

′
i))). Hence β ◦ red i ◦ fC

i+1 = f ′
i+1. Since AN () 6= ⊥, ν′i+1 is the yes-successor

of ν′i. Since red i(N) = N 6= ⊥ the simulator answers yes to the question Q := N , and thus
νCi+1 is the yes-successor of νCi = ν′i. Thus ν′i+1 = νCi+1. The adversary E is not invoked, hence
s′i+1 = sCi+1. So the invariant holds for i+ 1 if ν′i is a computation node with a nonce.

In the case of a control node, the adversary E in the computational execution and the
simulator in the hybrid execution get the out-metadata l of the node ν′i or νCi , respectively.
The simulator passes l on to the simulated adversary. Thus, since s′i = sCi , we have that
s′i+1 = sCi+1, and in the computational and the hybrid execution, E answer with the same in-
metadata l′. Thus ν′i+1 = νCi+1. Since a control node does not modify f and red i = red i+1 we

44

have f ′
i+1 = f ′

i = β ◦ red i ◦ fC
i = β ◦ red i+1 ◦ fC

i+1. Hence the invariant holds for i + 1 if ν′i is a
control node.

In the case of an input node, the adversary E in the computational execution and the sim-
ulator in the hybrid execution is asked for a bitstring m′ or term tC , respectively. The simu-
lator produces this string by asking the simulated adversary E for a bitstring mC and setting
tC := τ(mC). Since s′i = sCi , m′ = mC . Then by definition of the computational and hybrid

executions, f ′
i+1(ν

′
i) = m′ and fC

i+1(ν
′
i) = tC = τ(m′). Thus f ′

i+1(ν
′
i) = m′ (∗)

= β(τ(m′)) =
β(red i+1(τ(m))) = β(red i+1(f

C
i+1(ν

′
i))) where (∗) follows from Claim 1. Since f ′

i+1 = f ′
i and

fC
i+1 = fC everywhere else, we have f ′

i+1 = β ◦ red i+1 ◦ fC
i+1. Furthermore, since input nodes

have only one successor, ν′i+1 = νCi+1. Thus the invariant holds for i + 1 in the case of an input
node.

In the case of an output node, the adversary E in the computational execution gets m′ :=
f ′
i(ν̄1) where the node ν̄1 depends on the label of ν′i. In the hybrid execution, the simulator

gets tC := fC
i (ν̄1) and sends mC := β(red i(t

C)) = β(red i+1(t
C)) to the simulated adversary

E. By induction hypothesis we then have m′ = mC , so the adversary gets the same input in
both executions. Thus s′i+1 = sCi+1. Furthermore, since output nodes have only one successor,
ν′i+1 = νCi+1. And f ′

i+1 = f ′
i and fC

i+1 = fC , so f ′
i+1 = β ◦ red i+1 ◦ fC

i+1. Thus the invariant holds
for i+ 1 in the case of an output node.

From the invariant it follows that the node trace is the same in both executions.
Since random choices with all nonces, keys, encryptions, and signatures being pairwise distinct

occur with overwhelming probability (as mentioned at the beginning of this proof), the node
traces of the real and the hybrid execution are indistinguishable. �

Lemma 6 In a given step of the hybrid execution with Sim7, let S be the set of messages sent
from Πc to Sim7 up to that step. Let u′ ∈ Tx be the message sent from Sim7 to Πc in that step.
Let ϕ denote the final substitution output by Sim7. Let C be a context and u ∈ Tx such that
u′ϕ = C[u] and Sϕ 0 u and C does not contain a subterm of the form sig(�, ·, ·). (� denotes the
hole of the context C.)

Then there exists a term tbad and a context D such that D obeys the following grammar

D ::= � | pair (t,D) | pair (D, t) | enc(ek (N),D,M) | enc(ek (M),D,M)

| enc(D, t,M) | sig(sk (M),D,M) | sig(sk(N),D,M)

| garbageEnc(D,M) | garbageSig(D,M)

with N ∈ NP ,M ∈ NE , t ∈ T

and such that u = D[tbad] and such that Sϕ 0 tbad and such that one of the following holds:
• tbad ∈ NP , or
• tbad = enc(p,m,N) with N ∈ NP , or
• tbad = sig(k,m,N) with N ∈ NP , or
• tbad = sig(sk (N),m,M) with N ∈ NP , M ∈ NE and Sϕ 0 sk(N) or
• tbad = ek (N) with N ∈ NP , or
• tbad = vk (N) with N ∈ NP , or
• tbad = dk (N) with N ∈ NP , or
• tbad = sk(N) with N ∈ NP .

Proof. We prove the lemma by structural induction on u. We distinguish the following cases:

Case 1: “u = garbage(u1)”.
By protocol condition 5 the protocol does not contain garbage-computation nodes. Thus u

45

is not an honestly generated term. Hence it was produced by an invocation τ(m) for some
m ∈ {0, 1}∗, and hence u = garbage(Nm). Hence Sϕ ⊢ u in contradiction to the premise
of the lemma.

Case 2: “u = garbageEnc(u1, u2)”.
By protocol condition 5 the protocol does not contain garbageEnc-computation nodes.
Thus u is not an honestly generated term. Hence u was produced by τ(c) or red i(x

c) for
some c, and hence u = garbageEnc(u1, N

c). Since Sϕ ⊢ N c and Sϕ 0 u, we have Sϕ 0 u1.
Hence by the induction hypothesis, there exists a subterm tbad of u1 and a context D
satisfying the conclusion of the lemma for u1. Then tbad and D′ := garbageEnc(D, N c)
satisfy the conclusion of the lemma for u.

Case 3: “u = garbageSig(u1, u2)”.
By protocol condition 5 the protocol does not contain garbageSig -computation nodes. Thus
u is not an honestly generated term. Hence it was produced by an invocation τ(c) for some
c ∈ {0, 1}∗, and hence u = garbageSig(u1, N

m). Since Sϕ ⊢ Nm and Sϕ 0 u, we have
Sϕ 0 u1. Hence by the induction hypothesis, there exists a subterm tbad of u1 and a context
D satisfying the conclusion of the lemma for u1. Then tbad and D′ := garbageSig(D, Nm)
satisfy the conclusion of the lemma for u.

Case 4: “u ∈ {ek(u1), vk(u1), dk (u1), sk(u1)} with u1 /∈ NP ”.
By protocol condition 1, the argument of an ek -, vk (u1), dk (u1)-, or sk(u1)-computation
node is an N -computation node with N ∈ NP . Hence u is not honestly generated. Hence
it was produced by an invocation of τ , and hence u ∈ {ek(Ne), vk (Ne), dk (Ne), sk(Ne)}
for some e. Hence Sϕ ⊢ u in contradiction to the premise of the lemma.

Case 5: “u ∈ {ek(N), vk(N), dk (N), sk(N)} with N ∈ NP ”.
The conclusion of the lemma is fulfilled with D := � and tbad := u.

Case 6: “u = pair (u1, u2)”.
Since Sϕ 0 u, we have Sϕ 0 ui for some i ∈ {1, 2}. Hence by induction hypothesis, there
exists a subterm tbad of ui and a context D satisfying the conclusion of the lemma for ui.
Then tbad and D′ = pair (D, u2) or D′ = pair (u1,D) satisfy the conclusion of the lemma
for u.

Case 7: “u = stringi(u1) with i ∈ {0, 1} or u = empty”.
Then, since u ∈ T, u contains only the constructors string0, string1, empty . Hence Sϕ ⊢ u
in contradiction to the premise of the lemma.

Case 8: “u ∈ NP ”.
The conclusion of the lemma is fulfilled with D := � and tbad := u.

Case 9: “u ∈ NE”.
Then Sϕ ⊢ u in contradiction to the premise of the lemma.

Case 10: “u = enc(u1, u2, N) with N ∈ NP ”.
The conclusion of the lemma is fulfilled with D := � and tbad := u.

Case 11: “u = enc(u1, u2, u3) with Sϕ 0 u1 and u3 /∈ NP ”.
Since u1 /∈ NP , u = enc(u1, u2, N

c) for some c. Since Sϕ 0 u1, by induction hypothesis,
there exists a subterm tbad of u1 and a context D satisfying the conclusion of the lemma
for u1. Then tbad and D′ = enc(D, u2, N

c) satisfy the conclusion of the lemma for u.

46

Case 12: “u = enc(u1, u2, u3) with Sϕ ⊢ u1 and u3 /∈ NP ”.
Since u1 /∈ NP , u = enc(ek (N), u2, N

c) for some c,N with N ∈ NP or N ∈ NE . From
Sϕ ⊢ u1, Sϕ ⊢ N c, and Sϕ 0 u we have Sϕ 0 u2. Hence by induction hyposthesis, there
exists a subterm tbad of u2 and a context D satisfying the conclusion of the lemma for u2.
Then tbad and D′ = enc(ek (N),D, N c) satisfy the conclusion of the lemma for u.

Case 13: “u = sig(u1, u2, N) with N ∈ NP ”.
The conclusion of the lemma is fulfilled with D := � and tbad := u.

Case 14: “u = sig(sk(N), u2, u3) with u3 /∈ NP and N ∈ NP and Sϕ 0 sk(N)”.
Since u ∈ T we have u3 ∈ N, hence u3 ∈ NE. The conclusion of the lemma is fulfilled with
D := � and tbad := u.

Case 15: “u = sig(sk(N), u2, u3) with with u3 /∈ NP and N ∈ NP and Sϕ ⊢ sk(N)”.
Since u ∈ T we have u3 ∈ N, hence u3 ∈ NE and thus Sϕ ⊢ u3. Since Sϕ 0 u but
Sϕ ⊢ sk(N) and Sϕ ⊢ u3, we have Sϕ 0 u2. Hence by induction hyposthesis, there exists
a subterm tbad of u2 and a context D satisfying the conclusion of the lemma for u2. Then
tbad and D′ = sig(sk(N),D, u3) satisfy the conclusion of the lemma for u.

Case 16: “u = sig(u1, u2, u3) with Sϕ ⊢ u1 and u3 /∈ NP and u1 is not of the form sk(N) with
N ∈ NP ”.
By protocol condition 1, the third argument of an E-computation node is an N -computation
node with N ∈ NP . Hence u is not honestly generated. Hence it was produced by an
invocation τ(s) for some s ∈ {0, 1}∗, and hence u = sig(sk(M), u2, N

s) for some M ∈ N.
Since u1 is not of the form sk(N) with N ∈ NP , we have M ∈ NE . From Sϕ ⊢ u1,
Sϕ ⊢ N c, and Sϕ 0 u we have Sϕ 0 u2. Hence by induction hyposthesis, there exists a
subterm tbad of u2 and a context D satisfying the conclusion of the lemma for u2. Then
tbad and D′ = sig(sk(M),D, Ns) satisfy the conclusion of the lemma for u.

Case 17: “u = sig(u1, u2, u3) with Sϕ 0 u1 and u3 /∈ NP ”.
As in the previous case, u = sig(sk (N), u2, N

s) for some N ∈ N. Since Sϕ 0 u1, N /∈ NE.
Hence N ∈ NP . Thus conclusion of the lemma is fulfilled with D := � and tbad := u.

Case 18: “u = xc”.
We have u′ϕ = C[u]. Furthermore, since ϕ maps all xc to terms in T (i.e., without
variables), it follows that u cannot contain xc. So this case does not occur.

�

Lemma 7 Sim7 is DY for M and Π.

Proof. If Sim7 is not DY, then with not-negligible probability in the hybrid execution of Sim7,
we have an invocation u′ = τ(m′) such that Sϕ 0 u′ϕ where S is the set of messages sent by the
protocol to Sim7 up to that invocation.

We introduce the following notation: t1 ≤
D t2 means that t2 = D[t1] for some context D

matching the grammar from Lemma 6. We write t1 ≤D
ϕ t2 if there is a a t∗1 with t∗1ϕ = t1 and

t∗1 ≤
D t2. We say tbad is a unpredicability-atom, if it falls in one of the eight cases listed in

Lemma 6.
By Lemma 6 (with u := u′ϕ and C := �), there exists a unpredicability-atom tbad ≤D u′ϕ

with Sϕ 0 tbad . Without loss of generality, let u′ be the first output of τ that contains such a
tbad .

47

Since tbad ≤D u′ϕ, we distinguish two cases. First, tbad corresponds to some subterm of u′,
i.e., tbad ≤

D
ϕ u′. Second, tbad ≤

D ϕ(xc) for some xc occurring in u′.
Consider the second case first: Since by construction, ϕ(xc) is of the form enc(Ne, t′, N c)

or garbageEnc(ek (Ne), N c), we have that ϕ(xc) is not a random-atom, hence tbad is a proper
subterm of ϕ(xc). Furthermore, since 0 garbageEnc(ek (Ne), N c), ϕ(xc) must be of the form
enc(Ne, t′, N c) and tbad ≤D t′ and Sϕ 0 t′. In this case, by construction of ϕ, t′ = τ(Adec(d, c))ϕ
where d := A−1

ekofdk (e). Remember that Sim7 aborts with a malicious-key-extraction-failure if
Adec(d, c) returns a value m̃ that was not output by the malicious-key-extractor MKE when xc

first occurred. Thus tbad ≤D τ(m̃)ϕ. But τ(m̃) was invoked before τ(m′), this contradicts the
assumption that u′ be the first output of τ that contains a term tbad .

Thus the second case cannot occur, and we have tbad ≤D
ϕ u′. Thus there is a term t∗bad such

that t∗badϕ = tbad and u = D[t∗bad] for some D matching the grammar from Lemma 6. And t∗bad
is also a unpredicability-atom (if it was not, then tbad = t∗bad cannot be a unpredicability-atom
either, since the images ϕ(xc) are no unpredicability-atoms).

Since Sϕ 0 tbad = t′badϕ, we have by Lemma 1 that β†(t′bad) is not invoked the invocation
in which u′ = τ(m′) was invoked.

By definition of τ and by the syntax of D, during the computation of τ(m′) = u′, we have
τ(m) = t′bad for some recursive invocation τ(m) of τ . Hence the simulator has computed a
bitstring mbad with τ(mbad) = t′bad .

We are left to show that such a bitstring mbad can be found only with negligible probability.
We distinguish the possible values for the unpredicability-atom t′bad (as listed in Lemma 6):

Case 1: “t′bad = N ∈ NP \ R”.
By construction, Sim7 accesses rN only when computing β†(N) and in τ . Since S 0 t′bad =
N we have that β†(N) is never invoked, thus rN is never accessed through β†. In τ , rN
is only used in comparisons. More precisely, τ(r) checks for all N ∈ N whether r = rN .
Such checks do not help in guessing rN since when such a check succeeds, rN has already
been guessed. Thus the probability that mbad = rN occurs as input of τ is negligible.

Case 2: “t′bad = N ∈ R”.
This case does not occur since τ only outputs nonces in N \ R.

Case 3: “t′bad = enc(p,m,N) with N ∈ NP ”.
Then τ(mbad) returns t′bad only if mbad was the output of an invocation of
β†(enc(p,m,N)) = β†(t′bad). But β†(t′bad) is never invoked, so this case does not occur.

Case 4: “t′bad = sig(k,m,N) with N ∈ NP ”.
Then τ(mbad) returns t′bad only if mbad was the output of an invocation of
β†(sig(k,m,N)) = β†(t′bad). But by Lemma 1, β†(t′bad) is never invoked, so this case
does not occur.

Case 5: “t′bad = sig(sk (N),m,M) with N ∈ NP , M ∈ NE and Sϕ 0 sk(N)”.
Then τ(mbad) returns t′bad only if mbad was not the output of an invocation of β†. In
particular, mbad was not produced by the signing oracle. Furthermore, τ(mbad) returns
t′bad only if mbad is a valid signature with respect to the verification key vkN . Hence
mbad is a valid signature that was not produced by the signing oracle. Furthermore, since
Sϕ 0 sk(N), by Lemma 1, β†(t′bad) was never invoked. Thus the secret key skN was never
queried from the signing oracle. Hence such a bitstring mbad can only be produced with
negligible probability by the adversary E because of the strong existential unforgeability
of (SKeyGen, Sig,Verify) (implementation condition 27).

48

Case 6: “t′bad = ek (N) with N ∈ NP ”.
Then β†(ek(N)) is never computed and hence ekN never requested from the ciphertext
simulator. Since S 0 ek(N), we have S 0 dk (N). Hence by Lemma 1, β†(dk(N)) is never
computed and dkN is never requested from the ciphertext simulator. Furthermore, since
S 0 ek(N), for all terms of the form t = enc(ek (N), . . . , . . .), we have that S 0 t. Thus
β†(t) is never computed and hence no encryption using ekN is ever requested from the
ciphertext simulator. However, decryption queries with respect to dkN may still be sent to
the ciphertext simulator. Yet, by implementation condition 11, these will always fail unless
the ciphertext to be decrypted already satisfies Aekof (m) = ekN , i.e., if ekN has already
been guessed. Hence the probability that ekN = mbad occurs as input of τ is negligible.

Case 7: “t′bad = vk (N) with N ∈ NP ”.
Then β†(vk(N)) is never computed and hence vkN is never requested from the sign-
ing oracle. Furthermore, since S 0 vk (N), we also have S 0 sk(N) and S 0 t for
t = sig(sk(N), . . . , . . .). Thus β†(sk(N)) and β†(t) never computed and hence neither
skN nor a signature with respect to skN is requested from the signing oracle, i.e., the sign-
ing oracle is never queried at all. Hence the probability that vkN = mbad occurs as output
of τ is negligible.

Case 8: “t′bad = dk (N) with N ∈ NP ”.
Then β† ∗(dk(N)) is never invoked. Thus dkN is not queried from the ciphertext simulator.
Being able to guess dkN without quering in from the ciphertext simulator would contradict
PROG-KDM security.

Case 9: “t′bad = sk(N) with N ∈ NP ”.
Then β†(sk(N)) is never invoked. Thus skN is never queried from the signing oracle. From
the strong existential unforgeability of (SKeyGen, Sig,Verify) (implementation condition 27)
it follows that the probability of guessing mbad = skN without querying skN from the
signing oracle is negligible.

Summarizing, we have shown that if the simulator Sim7 is not DY, then with not-negligible
probability Sim7 performs the computation τ(mbad), but mbad can only occur with negligible
probability as an argument of τ . Hence we have a contradiction to the assumption that Sim7 is
not DY. �

We are now ready to prove the main theorem, Theorem 1.

Proof of Theorem 1. We use Theorem 1 from [5]. According to that theorem, we need to show
that Sim satisfies the following four conditions (for formal definitions see [5]):
• Indistinguishability: The hybrid and the computational execution are indistinguishable (in

terms of the nodes passed through in execution).
• DY-ness: Let ϕ be the final substitution (output by the simulator at the end of the execu-

tion). Then in any step of the execution it holds that Sϕ ⊢ tϕ where t is the term sent by
the simulator to the protocol, and S is the set of the terms received by the protocol (note
that although S, t may be destructor terms, Sϕ and tϕ do not contain variables any more
and thus reduce to regular terms without destructors).
• Consistency: For any question Q that was asked from the simulator, we have that the

simulator answered yes iff evaluating Qϕ (which contains destructors but no variables)
does not return ⊥.
• Abort-freeness: The simulator does not abort.
By Lemma 7, Sim7 is DY for randomness-safe protocols. Since the full traces of the hybrid

execution of Sim7 and Sim are computationally indistinguishable (Lemma 2), it follows that Sim
is DY for randomness-safe protocols.

49

By Lemma 5, Sim is indistinguishable.
By Lemma 4, Sim is consistent.
Finally, Sim is abort-free by construction (we have no abort-instruction in the definition of

Sim).
Thus Theorem 1 from [5] applies, and it follows that the implementation A is computationally

sound. �

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. In
Proc. 4th ACM Conference on Computer and Communications Security, pages 36–47, 1997.

[2] M. Abadi and P. Rogaway. Reconciling two views of cryptography: The computational
soundness of formal encryption. In Proc. 1st IFIP International Conference on Theoretical
Computer Science, volume 1872 of LNCS, pages 3–22. Springer, 2000.

[3] P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness and completeness of formal
encryption: The cases of key cycles and partial information leakage. Journal of Computer
Security, 17(5):737–797, 2009.

[4] M. Backes, D. Hofheinz, and D. Unruh. CoSP: A general framework for computational
soundness proofs. In ACM CCS 2009, pages 66–78, November 2009.

[5] M. Backes, D. Hofheinz, and D. Unruh. CoSP: A general framework for computational
soundness proofs. IACR Cryptology ePrint Archive 2009/080, 2009. Version from 2009-02-
18.

[6] M. Backes, M. Maffei, and D. Unruh. Computationally sound verification of source code.
In ACM CCS 2010, pages 387–398. ACM Press, October 2010. Preprint on IACR ePrint
2010/416.

[7] M. Backes, A. Malik, and D. Unruh. Computational soundness without restricting the
protocol. In ACM CCS 2012. ACM Press, October 2012. To appear.

[8] M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryp-
tographic library. In Proc. 17th IEEE Computer Security Foundations Workshop (CSFW),
pages 204–218, 2004.

[9] M. Backes, B. Pfitzmann, and A. Scedrov. Key-dependent message security under active
attacks - brsim/uc-soundness of dolev-yao-style encryption with key cycles. Journal of
Computer Security, 16(5):497–530, 2008.

[10] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations (extended abstract). In Proc. 10th ACM Conference on Computer and Commu-
nications Security, pages 220–230, 2003. Full version in IACR Cryptology ePrint Archive
2003/015, Jan. 2003, http://eprint.iacr.org/2003/015.

[11] M. Backes and D. Unruh. Computational soundness of symbolic zero-knowledge proofs.
Journal of Computer Security, 18(6):1077–1155, 2010. Preprint on IACR ePrint 2008/152.

[12] G. Bana and H. Comon-Lundh. Towards unconditional soundness: Computationally com-
plete symbolic attacker. In P. Degano and J. Guttman, editors, Principles of Security and
Trust, volume 7215 of Lecture Notes in Computer Science, pages 189–208. Springer Berlin
/ Heidelberg, 2012.

50

http://eprint.iacr.org/2003/015

[13] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model checker for security
protocols. International Journal of Information Security, 2004.

[14] M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption
and commitment secure under selective opening. In EUROCRYPT 2009, pages 1–35, 2009.

[15] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM Conference on Computer and Communications Security, pages 62–73,
1993.

[16] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in Cryptology:
EUROCRYPT ’94, volume 950 of LNCS, pages 92–111. Springer, 1994.

[17] F. Böhl, D. Hofheinz, and D. Kraschewski. On definitions of selective opening security.
In M. Fischlin, J. Buchmann, and M. Manulis, editors, PKC 2012, volume 7293 of LNCS,
pages 522–539. Springer, 2012.

[18] J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against
key dependent chosen plaintext and adaptive chosen ciphertext attacks. In A. Joux, editor,
Eurocrypt 2009, volume 5479 of LNCS, pages 351–368. Springer, 2009.

[19] R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authentica-
tion and key exchange protocols. In Proc. 3rd Theory of Cryptography Conference (TCC),
volume 3876 of LNCS, pages 380–403. Springer, 2006.

[20] H. Comon-Lundh, V. Cortier, and G. Scerri. Security proof with dishonest keys. In POST,
pages 149–168, 2012.

[21] V. Cortier, S. Kremer, and B. Warinschi. A survey of symbolic methods in computational
analysis of cryptographic systems. J. Autom. Reasoning, 46(3-4):225–259, 2011.

51

[22] V. Cortier and B. Warinschi. Computationally sound, automated proofs for security proto-
cols. In Proc. 14th European Symposium on Programming (ESOP), pages 157–171, 2005.

[23] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

[24] S. Even and O. Goldreich. On the security of multi-party ping-pong protocols. In Proc.
24th IEEE Symposium on Foundations of Computer Science (FOCS), pages 34–39, 1983.

[25] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol analysis.
Journal of Cryptology, 7(2):79–130, 1994.

[26] P. Laud. Semantics and program analysis of computationally secure information flow. In
Proc. 10th European Symposium on Programming (ESOP), pages 77–91, 2001.

[27] P. Laud. Symmetric encryption in automatic analyses for confidentiality against active
adversaries. In Proc. 25th IEEE Symposium on Security & Privacy, pages 71–85, 2004.

[28] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR.
In Proc. 2nd International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 1055 of LNCS, pages 147–166. Springer, 1996.

[29] L. Mazaré and B. Warinschi. Separating trace mapping and reactive simulatability sound-
ness: The case of adaptive corruption. In P. Degano and L. Viganò, editors, ARSPA-WITS
2009, volume 5511 of LNCS, pages 193–210. Springer, 2009.

[30] M. Merritt. Cryptographic Protocols. PhD thesis, Georgia Institute of Technology, 1983.

[31] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In Proc. 1st Theory of Cryptography Conference (TCC), volume 2951 of LNCS,
pages 133–151. Springer, 2004.

[32] J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-
committing encryption case. In M. Yung, editor, Advances in Cryptology, Proceedings of
CRYPTO ’02, volume 2442 of Lecture Notes in Computer Science, pages 111–126. Springer-
Verlag, 2002.

[33] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Cryp-
tology, 6(1):85–128, 1998.

[34] S. Schneider. Security properties and CSP. In Proc. 17th IEEE Symposium on Security &
Privacy, pages 174–187, 1996.

[35] D. Unruh. Programmable encryption and key-dependent messages. IACR ePrint archive
2012/423, 2012.

Symbol index

η Security parameter
ek Encryption key
dk Decryption key
x← A Pick x according to algorithm/distribution A

52

x
$
← S Pick x uniformly from set S

regR Register R (in real/fake challenger)
O Denotes some oracle (usually the random oracle) 4
|x| Absolute value of x
A Usually denotes the adversary
N Set of natural numbers 1, 2, . . . 4
evalf Application of constructor or destructor f
RC Real challenger 11
cipherN Set of ciphertexts produced in real/fake challenger in ses-

sion N
11

R := getekch(N) Real/fake challenger query: Load encryption key (session
N)

11

R := getdkch(N) Real/fake challenger query: Load decryption key (session
N)

11

R := evalch(C,R1, . . . , Rn) Real/fake challenger query: Evaluate circuit C 11
R := encch(N,R1) Real/fake challenger query: Encrypt regR1

(session N) 11
oraclech(x) Real/fake challenger query: Oracle query 11
decch(N, c) Real/fake challenger query: Decrypt c (session N) 11
forbidden Output denoting attempted decryption of challenge cipher-

text
11

revealch(R1) Query type of the real/fake challenger 11
fakeenccs(R, l) Ciphertext simulator query: Produce fake encrytion 12
deccs(c) Ciphertext simulator query: Decrypt 12
enccs(R,m) Ciphertext simulator query: Encryption (non-fake) 12
getekcs() Ciphertext simulator query: Get encryption key 12
getdkcs() Ciphertext simulator query: Get decryption key 12
programcs(R,m) Ciphertext simulator query: Program the oracle 12
CS Ciphertext simulator 12
FC Fake challenger 12
FCRetrieve Retrieve function of FC 13
plainN Plaintexts of fake encryptions from CSN (part of state of

FCRetrieve)
13

ℓek(η) Length of an encryption key 13
ℓdk (η) Length of a decryption key 13
ℓc(η, l) Length of the encryption of a ciphertext of length l 13
FCLen Length function of FC 13
MKE Malicious key extractor 18
KeyGen Key generation algorithm corresponding to Aek , Adk 26
Enc Encryption algorithm corresponding to Aenc 26
Dec Decryption algorithm corresponding to Adec 26
Sig Signing algorithm corresponding to Asig 26
Verify Signature verification algorithm corresponding to Averify 26
SKeyGen Key generation algorithm corresponding to Avk , Ask 26
Tx Well-formed terms containing variables 27
TD,x Destructor terms (containing also variables) 27
eval Recursive evaluation of destructor term 27
Sim Simulator (unmodified) 27
Sim1 Simulator (using fresh randomness for encryption) 30
Sim2 Simulator (using the real challenger) 30

53

Sim3 Simulator (using the malicious-key extractor) 31
Sim4 Simulator (using the fake challenger) 31
Sim5 Simulator (using the ciphertext simulator) 31
Sim6 Simulator (using fresh randomness for signing) 32
Sim7 Simulator (using a signing oracle) 32

Osig
N Signing oracle for nonce N 32

54

Index

challenger
fake, 12
real, 11

ciphertext simulator, 12

encryption scheme
length-regular, 13

extractable
malicious-key, 18

extractor
malicious-key-extractor, 18

fake challenger, 12
function

length, 13
retrieve, 13

generated
honestly, 27

honestly generated, 27

length function, 13
length-regular

encryption scheme, 13

malicious-key extractable, 18
malicious-key-extraction-failure, 31
malicious-key-extractor, 18

node
randomness, 19

nonce
randomness, 27

plaintext-awareness, 18

randomness node, 19
randomness nonce, 27
randomness-safe, 19
real challenger, 11
retrieve function, 13

safe
randomness-, 19

simulator
ciphertext, 12

55

	Introduction
	The symbolic model
	Definitions of computational soundness
	Computational soundness proofs in CoSP
	Restrictions in the proof and how to solve them
	Sending secret keys
	Receiving decryption keys

	The main result
	Proof sketch
	Symbolic model
	Computational implementation
	Computational soundness proof
	Construction of the simulator
	The faking simulators
	The actual proof

	References
	Symbol index
	Index

