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Abstract. The Linux [1] random number generator (LRNG) aims to
produce random numbers with all the limitations due to a deterministic
machine. Two recent analysis exist for this generator [2,5]. These analysis
provide strong cryptographic details about LRNG. However both fail to
give a mathematical explanation of the entropy estimator embedded.
In this paper we propose an interpretation using Newton polynomial
interpolation.
Keywords: PRNG, entropy estimator.

1 Introduction

Many cryptographic primitives need random data, e.g. asymmetric cryptosys-
tems for padding data and authentication protocols for generating challenge.
A solution is to consider PRNG with entropy inputs [6]. This kind of PRNG
outputs bits using its internal state which is frequently updated using various
entropy sources. The entropy of the inputs must be estimated by these generator
for ensuring security.

In this paper, we focus on the Linux [1] Random Number Generator which is
a PRNG with entropy inputs. This generator has been studied in [2,5]. More pre-
cisely we focus on the entropy estimator integrated in the LRNG. This estimator
is efficient in memory and computation, but has no mathematical justification.
As far as we know descriptions exist for this estimator, but no interpretation. We
propose here an explanation of this estimator using polynomial interpolation.

2 Entropy

2.1 Theory side

The entropy aims to compute the amount of information of an object. The main
two theories are from Shannon [7] and Kolmogorov [4,3].

The Shannon theory is called information theory and is based upon the prob-
ability theory. More precisely the object concerned by this theory is called source,
i.e. an object outputting messages according to a probabilistic distribution, and
may be mathematically represented by random variable. The entropy of a source
is defined according to its distribution.



In the other hand the Kolmogorov theory is called algorithmic information
theory and is based upon the theory of computation. The object of the theory
are messages themselves. The complexity of a message relies to the minimum
length of a program producing this message. The main drawback of this theory
is that the complexity of a message is not computable in practice.

Both theories have drawbacks:

– The Shannon theory needs to know the probability distribution of a source a

priori. In other words the source may be well-known before the computation
of its entropy. For example to achieve the compression of a message with the
Shannon theory, the first step is to read entirely the message to compute
statistical distribution of each character.

– The Kolmogorov complexity of a message is not computable. In practice
approximations are computed and may have significant interest.

2.2 Practice side

Various entropy sources exist. They can be divided in two types: hardware source
and software source.

Hardware sources are based upon a physical process such as electronic noise,
cosmic ray and quantum phenomena. These sources are well studied and each
agrees with a well defined probability distribution.

Software sources are based upon “unpredictable” data generated by the ex-
ecution of software. These sources acts according to the actions of the user, the
operating system, etc. As a consequence these sources can not be modeled using
probability distribution a priori, i.e. these entropy sources have to be analyzed
while they are used.

3 The Linux entropy estimator

3.1 The code

The LRNG is implemented in the file drivers/char/random.c in the Linux
kernel[1]. The following code is part of the function add_timer_randomness and
implements the entropy estimator.

CODE
1 delta = sample.jiffies - state->last_time;

2 state->last_time = sample.jiffies;

3

4 delta2 = delta - state->last_delta;

5 state->last_delta = delta;

6

7 delta3 = delta2 - state->last_delta2;

8 state->last_delta2 = delta2;

9

10 if (delta < 0)



11 delta = -delta;

12 if (delta2 < 0)

13 delta2 = -delta2;

14 if (delta3 < 0)

15 delta3 = -delta3;

16 if (delta > delta2)

17 delta = delta2;

18 if (delta > delta3)

19 delta = delta3;

20

21 /*

22 * delta is now minimum absolute delta.

23 * Round down by 1 bit on general principles,

24 * and limit entropy estimate to 12 bits.

25 */

26 credit_entropy_bits(&input_pool,

27 min_t(int, fls(delta>>1), 11));

We explain variables and functions :

– sample.jiffies is the timing of the event being proceeded.

– state is a structure containing the previous value of sample.jiffies, delta
and delta2.

– min_t (defined in include/linux/kernel.h) first cast its second and third
arguments to the type presents in first argument, and then computes the
minimum of these two values.

– fls (defined in include/asm_generic/bitops/fls.h) means ”Find Last
(most-significant) bit Set”. The less-significant bit is numbered 1. In other
word

fls(x) =

{
0 if x = 0

⌊log2(x)⌋ + 1 otherwise

This estimator is efficient as it requires only subtractions and to stock three
variables.

3.2 Description

We describe the estimator as in [2] including the last modification as presented
in [5]. The LRNG estimates the amount of entropy of an event as a function of
its timing only. Let tn denote the timing of event n. Define







δ1
n = tn − tn−1

δ2
n = δ1

n − δ1
n−1

δ3
n = δ2

n − δ2
n−1



Also define MINn = min(|δ1
n|, |δ

2
n|, |δ

3
n|). The entropy of event n, denoted entn,

is estimated by

entn =







0 if MINn ≤ 1
⌊

log2

(
MINn

)⌋

if 2 ≤ MINn ≤ 212

11 otherwise

In other words entn is the logarithm in base 2 of MINn bounded by 0 and 11.

4 Polynomial interpolation

We recall some background on polynomial interpolation. We don’t give references
on this topic as this theory is well-known and is presented in many mathematical
books for student.

4.1 Problematic

Interpolation is part of numerical analysis. It aims to construct new data points
from a discrete set of known data points. Polynomial interpolation is a specific
method based upon polynomial to construct the new data points.

Definition 1. Consider a < b two integers and (xa, ya), (xa+1, ya+1), . . . , (xb, yb)
b − a + 1 points where xi and yi are real numbers for i = a . . . , b. A polynomial

P interpolates the points (xa, ya), . . . , (xb, yb) if P (xi) = yi for i = a, . . . , b.

P may be constructed using linear algebra. In particular the following theo-
rem is fundamental :

Theorem 1. With the previous notations, there exists an unique polynomial P
with degree at most b−a which interpolates the points (xa, ya), . . . , (xb, yb). This

polynomial is called the interpolating polynomial of these points.

4.2 Newton polynomial interpolation

Polynomial interpolation may be solved using various methods. We recall briefly
the Newton’s method. Usually this method is exposed considering the first point
(xa, ya) as a privileged point. For simplicity in the document we choose to privi-
lege the last point (xb, yb). This alternative is sometimes called backward Newton
polynomial interpolation.

First we define the divided differences:

Definition 2. With the previous notations, the backward divided differences are

defined as







[yi] := yi for i = a, . . . , b

[yi+j , . . . , yi] :=
[yi+j , . . . , yi+1] − [yi+j−1, . . . , yi]

xi+j − xi

for j = 1, . . . , b − a, i = a, . . . , b − j



Then the interpolating polynomial may be expressed using divided differ-
ences:

Proposition 1. With the previous notations, the interpolating polynomial of the

points (xa, ya), . . . , (xb, yb) is

N b
a(x) :=

b−a∑

i=0

[yb, . . . , yb−i]

i−1∏

j=0

(x − xb−j)

4.3 Example

Consider the points P0 = (1, 5), P1 = (4, 7), P2 = (6, 4), P3 = (9, 2). The divided
differences are:

x0 = 1 [y0] = 5

[y1, y0] =
2

3

x1 = 4 [y1] = 7 [y2, y1, y0] = −
13

30

[y2, y1] = −
3

2
[y3, y2, y1, y0] =

3

40

x2 = 6 [y2] = 4 [y3, y2, y1] =
1

6

[y3, y2] = −
2

3
x3 = 9 [y3] = 2

The corresponding interpolating polynomial are:

– when considering points P2 and P3:

N3
2 (x) = 2 − 2/3(x − 9)

– when considering points P1, P2 and P3:

N3
1 (x) = 2 − 2/3(x − 9) + 1/6(x − 9)(x − 6)

– when considering points P0, P1, P2 and P3:

N3
0 (x) = 2 − 2/3(x − 9) + 1/6(x − 9)(x − 6) + 3/40(x − 9)(x − 6)(x − 4)

These polynomial are presented in Figure 1.

4.4 When data points are equidistributed

We consider equidistributed points. More precisely, there exists h > 0 such that
xi − xi−1 = h for i = a + 1, . . . , b. In this case the interpolating polynomial has
a simpler expression.

First we introduce the notation ∆:
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Fig. 1. Interpolating polynomials N3
2 (dotted), N3

1 (dashed) and N3
0 (solid) for the

points P0 = (1, 5), P1 = (4, 7), P2 = (6, 4), P3 = (9, 2)

Definition 3. Let (un)n∈N be a numerical sequence. The following notations

are defined recursively:

– ∆0(un) := un for n ∈ N.

– ∆i(un) := ∆i−1(un) − ∆i−1(un−1) for i ∈ N
∗, n ≥ i.

Remark that in the literature the notation ∇ is sometimes used for these differ-
ences as they are defined backward.

Using these differences the following lemma allows to simplify the divided
differences:

Lemma 1. With the previous notations and considering the data points equidis-

tributed, for k = a, . . . , b and i = 0, . . . , k − a:

[yk, . . . , yk−i] =
∆i(yk)

hii!

Proof : Let a ≤ k ≤ b. The relation is proven recursively on i.
– The case i = 0 is easy by definition of the divided differences and the

notation ∆ and using the convention h0 = 1 and 0! = 1.



– Suppose the relation verified for i < k − a. Then:

[yk, . . . , yk−(i+1)] =
[yk, . . . , yk−i] − [yk−1, . . . , yk−(i+1)]

xk − xk−(i+1)

rec.
=

∆i(yk)

hii!
−

∆i(yk−1)

hii!
h(i + 1)

=
∆i(yk) − ∆i(yk−1)

hi+1(i + 1)!

def. ∆
=

∆i+1(yk)

hi+1(i + 1)!

As a consequence the interpolating polynomial has a simpler expression:

Proposition 2 (Newton Backward Divided Difference Formula). Using

the previous notations and considering the data points equidistributed, the inter-

polating polynomial N b
a evaluated at the point xb + sh with s ∈ R is:

N b
a(xb + sh) =

b−a∑

i=0

s(s + 1) . . . (s + i − 1)

i!
∆i(yb)

Finally the following corollary stands:

Corollary 1. With the previous notations and considering the data points equidis-

tributed, the interpolating polynomial N b
a evaluated at the point xb + h is:

N b
a(xb + h) =

b−a∑

i=0

∆i(yb)

4.5 Interpolation error

Interpolation theory leads to consider the following question: if the known data
points are constructed using a given function f , i.e. yi = f(xi) for i = a, . . . , b,
how good is approximated f by the interpolating polynomial? Interpolation error
is introduced to answer:

Definition 4. With the previous notations and assuming the existence of a func-

tion f such that f(xi) = yi for i = a, . . . , b, the interpolation error is defined as

the distance between the evaluation of the function f and the evaluation of the

interpolating polynomial. More precisely for x in the domain of f :

eb
a(x) :=

∣
∣f(x) − N b

a(x)
∣
∣

5 Link between the Linux entropy estimator and

interpolation polynomial

5.1 Discussion on entropy

As presented in Section 2 the Linux entropy estimator has to evaluate the entropy
of the source on-the-fly. According to this constraint the Kolmogorov complexity
seems the best approach.



Informally the entropy can be interpreted as the unpredictability (random-
ness) of a sequence. Even if this don’t rely to the formal definition of entropy,
this idea may be an acceptable simplification.

The unpredictability of a sequence can be evaluated by answering the follow-
ing question: given a finite set of data, is it possible to guess the next value? This
question leads to consider interpolation as a solution. This idea is implemented
in the Linux entropy estimator.

5.2 The link

As presented in Section 3.2 the Linux entropy estimator computes the amount
of entropy of an event as a function of its timing. We consider each event and its
timing as a couple (n, tn). Then an estimation of entropy can be computed con-
sidering the interpolation error: when a new event (n, tn) occurs, does it agree
with the pattern of previous values? In other words, how large is en−1

n−1−i(n) for
various value of i? Let evaluate these values. As the data points are equidis-
tributed, we have using Corollary 1:

en−1
n−1−i(xn) = |yn − Nn−1

n−1−i(xn−1 + h)|

=
∣
∣
∣ yn

︸︷︷︸

∆0(yn)

−∆0(yn−1)

︸ ︷︷ ︸

∆1(yn)

−∆1(yn−1)

︸ ︷︷ ︸

∆2(yn)

− . . .

︸ ︷︷ ︸

. . .

−∆i(yn−1)
∣
∣
∣

= |∆i+1(yn)|

Using this relation the variable MINn = min(|δ1
n|, |δ

2
n|, |δ

3
n|) defined in Sec-

tion 3.2 can be interpreted as

MINn = min
(
|∆1(tn)|, |∆2(tn)|, |∆3(tn)|

)

= min
(
en−1
n−1(n), en−1

n−2(n), en−1
n−2(n)

)

In other words the Linux entropy estimator evaluates the entropy of an event
by this process:

– Consider the three interpolating polynomials based upon the last three events.
– Compute the three interpolation errors according to the new event.
– Take the minimum of these errors.
– Compute the logarithm in base 2 of this minimum (bounded by 0 and 11).

6 Conclusion

This short paper presents the first (as far as we know) interpretation of the Linux
entropy estimator. Polynomial interpolation allows to understand the estimator.



Moreover the underlying idea seems to be based upon Kolmogorov complexity
rather Shannon entropy. This choice was driven by the constraint that the es-
timator as to perform on-the-fly, and then it can not use statistical analysis of
the source. Furtherwork may be done on the optimal number of points for the
best interpolation (avoiding Runge’s phenomenon).
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