
1

Recursive Linear and Differential Cryptanalysis
of Ultralightweight Authentication Protocols

Zahra Ahmadian, Mahmoud Salmasizadeh, and Mohammad Reza Aref

Abstract—Privacy is faced to serious challenges in the ubiquitous computing world. In order to handle this problem, some researches
in recent years have focused on design and analysis of privacy friendly ultralightweight authentication protocols. In less than a decade,
many ultralightweight authentication protocols are proposed. Though, successful crypanalyses are proposed for almost all of them,
most of these attacks are based on ad-hoc methods that are not extensible to a large class of ultralightweight protocols. So this
research area still suffers from the lack of structured cryptanalysis and evaluation methods.
In this paper, we introduce new frameworks for full disclosure attacks on ultralightweight authentication protocols based on new
concepts of recursive linear and recursive differential cryptanalysis. Both of them exploit triangular functions in ultralightweight protocols
and recover all secret data stored in the tag in a recursive manner. The recursive linear attack is applied to Yeh et al. and SLMAP
authentication protocols. This attack is passive, deterministic (i.e. the attacker can retrieve all the secrets with probability of one), and
requires only a single authentication session. The recursive differential attack is more powerful and can be applied to the protocols
which linear attack may not work on. We show the effectiveness of this attack on LMAP++ and SASI authentication protocols. This
differential attack is probabilistic, active in the sense that the attacker suffices only to block some specific messages, and requires a
few authentication sessions.

Index Terms—RFID technology, Ultralightweight authentication protocols, Triangular functions, system of linear equations.

F

1 INTRODUCTION

RADIO Frequency Identification (RFID) is the technol-
ogy for automatically unique identification or track-

ing of the objects using wireless non contact systems.
The target object is attached a tag which is a transpon-
der with limited capability of computation, storage and
communications. The element that identifies the tag is
called the reader which is a transceiver that comparing
the tag, has much more computational capabilities. The
reader is securely connected to a back end system which
keeps the data associated with the tag, in a database.

RFID technology, as the fundamental technology for
ubiquitous services, has proliferated rapidly in recent
years and its widespread applications can be seen ev-
erywhere, ranging from libraries to supply chains. De-
spite the advantages and promises, this technology has
raised many potential aspects for abuse. Important se-
curity concerns associated with the future ubiquitous-
computing world, are Threats to privacy of consumers.
In recent years, the cryptographic community have made
an extensive effort to recommend mechanisms to re-
spond to or at least limit such misuses. roughly speaking,
the aim of all researches in this area is to design a
privacy friendly mutual authentication protocol to be
consistent with the inherent limitations of lightweight

• Zahra Ahmadian and Mohammad Reza Aref are with the Department
of Electrical Engineering, Sharif University of Technology, Tehran, Iran.
Mahmoud Salmasizadeh is with the Electronic Research Center, Sharif
University of Technology, Tehran, Iran.
E-mail: ahmadian@ee.sharif.edu, salmasi@sharif.edu, aref@sharif.edu

environments.
Therefore, the primal requirements for a mutual au-

thentication protocol are resistance against traceability
attacks, desynchronization attacks, and full disclosure
attacks. The full disclosure attack i.e. the recovery of
all the static and dynamic secrets stored on tag, is
the strongest one which if is successfully applied to a
protocol, implies all the other types of the attacks.

Although all RFID protocols are categorized as
lightweight protocols in the general expression, Chien
[2] introduced a more accurate classification for such
protocols based on the computational cost and the op-
erations supported on tag side. The RFID protocols are
categorized in four classes full-fledged, simple, lightweight,
and ultralightweight, in descending order.

The most lightweight category (ultralightweight pro-
tocols) which we focus on in this paper, refers to the
protocols that only involve simple bitwise operations
(like XOR, AND, OR, modular addition, etc.) on tags.
Ultralighweight authentication protocols first introduced
by Peris-Lopez et al. as UMAP family [5],[6], and [7],
though they were named later by Chien [2] as Ultraligh-
weight. Since that, lots of protocols in this category are
proposed. Due to the not-so-long life of these protocols
and considering many constrains that the designers of
such protocols are faced to, almost all of them have
been cryptanalysed successfully. Except a few cases [1]
and [19], most of these attacks are based on ad-hoc
methods that are not extensible to a large class of ultra-
lightweight protocols. The approach of [1] is based on
building progressive knowledge on the tag’s ID given
a series of observations and is applied successfully to

2

SASI [2] and Yeh et al. protocol [14]. [19] introduces
a method for full disclosure attack of all secrets of the
protocol using Grobner basis where successful attacks on
a number of ultralightweight protocols, including UMAP
family [5], [6], [7], and SASI [2] is presented.

1.1 Our contributions
In this paper, we introduce new frameworks for evalu-
ating ultralightweight authentication protocols. We call
them recursive linear and recursive differential cryptanal-
ysis which are very efficient and powerful techniques
for full disclosure of all secrets of a large class of
ultralightweight authentication protocols. Both of them
exploit triangular functions in ultralightweight protocols
and recover all secret data stored in the tag in a recursive
manner.

We first introduce the outline of recursive linear crypt-
analysis. Yeh et al. and SLMAP authentication protocols
are two examples of ultralightweight protocols which are
successfully cryptanalysed by this technique. This attack
is passive, deterministic (i.e. the attacker can retrieve all
the secrets with probability of one), and requires only a
single authentication session.

In the following we introduce the recursive differential
cryptanalysis. This attack is more powerful and can be
applied to the protocols which linear attack may not
work on. We show the effectiveness of this attack on
LMAP++ and SASI authentication protocols. The recur-
sive differential attack is probabilistic, active in the sense
that the attacker suffices only to block some specific
messages, and requires a few authentication sessions.

1.2 Outline
The rest of the paper is organized as follows: In section
2 we briefly describe the most important features of
ultralightweight authentication protocols. In section 3 we
present the recursive linear cryptanalysis and apply it to
two well known protocols: SLMAP and Yeh et al. proto-
col. In section 4 we describe the framework of recursive
differential attack and apply it to two other important
ultralightweight protocols: LMAP++ and SASI. Finally
we conclude our work in section 5.

2 ULTRALIGHTWEIGHT AUTHENTICATION
PROTOCOLS.
Since the introduction of ultralighweight authentication
protocols by Peris-Lopez et al. [5],[6], and [7], lots
proposals have been presented in this field. Avoine et
al. have made a comprehensive survey on the most
important proposed ultralightweight protocols [1]:

Use of index pseudonym. In all ultralightweight au-
thentication protocols, the tag uses a preshared tempo-
rary index pseudonym, namely IDS, to identify itself
to the reader. Though, two parties have shared a static
identifier, ID, but it is never sent in clear on the channel.
Since its clear transmission results in compromising the

tag’s owner privacy. IDS is updated in both sides at the
end of each session.

Messages pattern. All the ultralightweight protocols
share the same pattern of exchanged messages. The static
ID has been preshared between two parties. In addition,
The tag shares with the reader a dynamic session key K
as well as the dynamic index pseudonym IDS allocated
to each session. The pair (K, IDS) is called the state of
the tag. The reader first sends a Hello message to the
reader to which the tag answers with its current index
pseudonym IDS. The reader searches its database in-
dexed by its IDS to find the secrets associated with it in
the database. Then, the reader generates a nonce, namely
n. It then sends a message MR = f(IDS, ID, k, n) to
the tag. MR contains two parts, the first one wraps
n with a key dependent quantity, an the second part
is a parameter by which the tag can authenticate the
reader. Upon authenticating the reader, the tag sends the
message MT = g(IDS, ID, k, n) to the reader, which is
used by reader to authenticate the tag. Both parties then
update their state with (k, IDS)← h(IDS, ID, k, n).

Desynchronization attack prevention. The state up-
date procedure is performed at the end of each session.
i.e. when the last message is transmitted. The party that
sends the last message, update its state immediately after
sending the message without being assured that this
message is received correctly by the other party or not.
the party that receives the last message update its state
upon correct receipt of this message. Therefore if the
second party could not get the last message correctly, it
does not update its state while the other one has done;
resulting a desynchronization between two parties. In
order to avoid this potential problem, the party that first
updates its state (i.e. the transmitter of the last message),
must keeps a backup of its previous state.

In the case that the tag keeps the backup data, the tage
first identifies itself by its fresh IDS at the beginning of
next session. If the reader finds an entry indexed by IDS
in its database, the protocol proceeds with this index
pseudonym and associated dynamic secrets otherwise
the reader sends to the tag another Hello message, to
which the tag will reply with IDSold.This old indexed-
pseudonym will be definitely accepted by the reader. In
the case that the reader keeps the backup data, the tag
identifies itself by the only IDS that it has. The reader
keeps both old and new IDS’s in its database and can
extract associated dynamic secrets whether it is fresh or
not. Then the protocol proceeds with the tag’s IDS and
relevant secrets.

Though this trick is very consistent with ultra-
lightweight environments’ constraints, But it gives the
attacker the opportunity to force two parties to work in
their old state. This property is exploited in recursive
differential cryptanalysis, as will be described in section
4.

The other drawback of almost all of the ultra-
lightweight protocols is extensive use of triangular func-
tions (T-functions). T-functions, first introduced in [22],

3

are bijective functions with the property of (f(x))i =
fi(xi, xi−1, . . . , x0) i.e. the ith bit of output depends on
i = 0, . . . , i bits of input word and it does not depend
on the more significant input bits. This feature is widely
exploited in both recursive linear and differential attacks.
As we will see in next two sections, this property gives
the attacker the possibility to recover secret variables one
by one, starting from the LSB.

2.1 Notations and Definitions

In the rest of the paper, the logical operations OR, AND,
XOR and left rotation are denoted by ∨, ·,⊕ and ≪
respectively. The addition and subtraction in modulo 2n

is denoted by + and − respectively, where n = 96 is
length of all variables. The ith bit of n bit word X is
shown as Xi where 0 ≤ i ≤ n − 1. In this notation,
the least significant bit (LSB) of X is X0 and the most
significant bit (MSB) is Xn−1. The index i is always
taken modulo n but the term ”mod n” is eliminated for
convenience.

The binary majority function, Maj(a, b, c) is defined
as follows:

Maj(a, b, c) = a · b⊕ a · c⊕ b · c

For modular addition we adopted the following nota-
tions:

Z = X + Y (mod 2n)

Zi = Xi ⊕ Yi ⊕ cari

for i = 0, . . . , n − 1. where cari is the carry that results
from the (i− 1)th bits and sums up in the ith position.

car0 = 0,

cari = Maj(Xi−1, Yi−1, cari−1)

Similar notation is used for modular subtraction:

Z = X − Y (mod 2n)

Zi = Xi ⊕ Yi ⊕ bari

for i = 0, . . . , n− 1. where bari is the barrow that results
from the (i−1)th bits and subtracts from the ith position.

bar0 = 0,

bari = Yi−1 ⊕ bari−1 ⊕Maj(Xi−1, Yi−1, bari−1)

Table 1 shows the list of notations and definitions.

3 RECURSIVE LINEAR CRYPTANALYSIS

Recursive linear cryptanalysis directly exploits T-
functions in ultralightweight protocols. In this attack, the
attacker creates a system of independent linear equations
for each bit of secret variables. Then she starts solving
this system of equations from LSB and retrieves all secret
data bits recursively. The steps of the attack is described
in more detail below.

TABLE 1: list of notations and definitions

Symbol Definition

∨ bitwise OR
· bitwise AND
⊕ bitwise XOR
≪ left rotation
n Length of all vriables, n = 96

+ addition in modulo 2n

− subtraction in modulo 2n

Xi the ith bit of the variable X , 0 < i < n− 1

Maj Majority function,
Maj(a, b, c) = a · b⊕ a · c⊕ b · c

car carry for modular addition,
Z = X + Y (mod 2n) ⇒ Zi = Xi ⊕ Yi ⊕ cari

bar barrow for modular subtraction,
Z = X − Y (mod 2n) ⇒ Zi = Xi ⊕ Yi ⊕ bari

1) Determine all the unknown variables (static and
dynamic secrets and nonces) for a single session of
the protocol.

2) Write a linear representation for the ith bit of each
message, involving the ith bit of known and un-
known variables. You may need to define interme-
diate variables such as carries for modular additions
or barrows for modular subtractions. Try to find
enough independent linear equations for the ith

bit involving all unknown variables or a subset
of them. In other words, for each bit you have
created a system of linear equations in unknown
variables with nonsingular coefficient matrix. (the
linear property of the attack)

3) Solve these systems of equations, Starting from the
LSB. The LSB of carries and borrows are zero so
the unique solution of the system directly yields
the LSB of unknown variables. Now you can com-
pute the next bits of intermediate variables which
should be known when you solve the system of
equations of next bit. In general, when solving the
ith system of equations, the value of ith bit of
intermediate variables are needed which have been
calculated in the previous step i− 1. (the recursive
property of the attack)

Therefore, the linear cryptanalysis recovers all secret data
bits one by one with probability of one, provided the
existence of enough independent linear equations.

It should be noted that the recursive linear cryptanal-
ysis is a deterministic method i.e. it recovers the secret
data with success probability of one. This terminology
is adopted due to the linear essence of the attack as
well as its recursive nature in recovering the secret data
bits. However, the term ”linear attack” [20] in symmetric
cryptography refers to a well known technique in crypt-
analysis of symmetric primitives. This technique is based
on finding linear approximations for nonlinear relations
of the cipher with maximum possible bias. This method
is probabilistic in the sense that the attacker success

4

ratio depends on the amounts of available data. Anyway,
the recursive linear cryptanalysis of Ultralightweight
protocols presented in this paper should not be mixed
up with the linear cryptanalysis of symmetric primitives.

In next subsessions the performance of recursive lin-
ear cryptanalysis for the full disclosure attacks on two
ultralightweight protocols is shown.

3.1 Recursive linear cryptanalysis of SLMAP

3.1.1 History

In 2007, Li and Wang proposed the ultralightweight mu-
tual authentication protocol SLMAP intended for very
low-cost RFID tags [12]. This protocol is analysed by
Hernandez-Castro et al. in [13] by a traceability attack.

3.1.2 Protocol specifications

Each tag shares a unique static identifier ID, a public
index-pseudonym IDS and two session keys K1 and
K2 with the reader. The length of each of ID, IDS,K1
and K2 is n = 96 bits. The protocol works as follows:

1. Reader → Tag : Hello

2. Tag → Reader : IDS

The reader uses the received IDS as a search index
to extract the secret information linked to the tag i.e.
(ID,K1,K2).

3. Reader → Tag : A,B

The reader generates a n-bit nonces, r, and computes
two messages A and B as follows.

A = (IDS ⊕K1) + r

B = IDS + (K2⊕ r)

4. Reader → Tag : C

Upon receiving the messages A and B, the tag first
extracts r from A then checks the correctness of B. If the
reader is authenticated, the tag computes the response
value C as follows.

C = (IDS + (ID ⊕ r))⊕ (K1 + r)⊕ (K2 + r)

After sending C, the tag updates its pseudonym and
secret keys.

Upon receiving C, the reader uses its local values to
verify it. If the tag is authenticated the reader updates its
pseudonym and secret keys. The pseudonym and keys
updating are proceed as follows in both parties.

IDSn = ((IDS + (K1⊕ r) + ID +K2)⊕ r

K1n = (K1⊕ r) + (IDSn+K2 + ID)

K2n = (K2⊕ r) + (IDSn+K1 + ID)

(IDS,K1,K2) = (IDSn,K1n,K2n)

3.1.3 Cryptanalysis
Here we apply the three stages of our linear cryptanal-
ysis on the SLMAP protocol.

1) For a single session all the secret data include
K1,K2, ID and r.

2) Each message in SLMAP protocol, i.e.
A,B,C, IDSn and D, provides a linear equation.
Among them, equations given by A,B,C, and
IDSn are enough for constructing a system of
independent linear equations in secret data bits.

A = (IDS ⊕K1) + r

B = IDS + (K2⊕ r)

C = (IDS + (ID ⊕ r))⊕ (K1 + r)

⊕(K2 + r)

IDSn = ((IDS + (K1⊕ r) + ID +K2)⊕ r

Resulting in the following linear equation for bit
i = 0, . . . , n − 1: (For more clarity, unknown vari-
ables are in bold)

Ai = IDSi ⊕K1i ⊕ ri ⊕ car1i

Bi = IDSi ⊕K2i ⊕ ri ⊕ car2i

Ci = IDSi ⊕ IDi ⊕ ri ⊕K1i ⊕K2i ⊕ car3i

⊕car4i ⊕ car5i

IDSni = IDSi ⊕K1i ⊕K2i ⊕ IDi ⊕ car6i

⊕car7i ⊕ car8i (1)

Where car10 = car20 = . . . = car80 = 0, and for
i = 1, . . . , n− 1:

car1i = Maj(IDSi−1 ⊕K1i−1, ri−1, car1i−1)

car2i = Maj(IDSi−1,K2i−1 ⊕ ri−1, car2i−1)

car3i = Maj(IDSi−1, IDi−1 ⊕ ri−1, car3i−1)

car4i = Maj(K1i−1, ri−1, car4i−1)

car5i = Maj(K2i−1, ri−1, car5i−1)

car6i = Maj(IDSi−1,K1i−1 ⊕ ri−1, car6i−1)

car7i = Maj(IDSi−1 ⊕K1i−1 ⊕ ri−1 ⊕ car6i−1,

IDi−1, car7i−1)

car8i = Maj(IDSi−1 ⊕K1i−1 ⊕ ri−1 ⊕ car6i−1

⊕IDi−1 ⊕ car7i−1,K2i−1, car8i−1)

3) Equations given by (1) create a system of linear
equations with the following matrix representation:

M ·

K1i

K2i

ri

IDi

 = V (2)

Where

M =

1 0 1 0

0 1 1 0

1 1 1 1

1 1 0 1

5

V =

Ai ⊕ IDSi ⊕ car1i

Bi ⊕ IDSi ⊕ car2i

Ci ⊕ IDSi ⊕ car3i ⊕ car4i ⊕ car5i

IDSni ⊕ IDSi ⊕ car6i ⊕ car7i ⊕ car8i

The coefficient matrix in (2), M, is nonsingular and
therefore invertible in GF (2).

M−1 =

1 0 1 1

0 1 1 1

0 0 1 1

1 1 0 1

In each step i one can obtain the missing bits,
recalling that the intermediate variables (carries) in
the right side of equation have been calculated in
the previous step i− 1.

Attack summery. The attack is passive, retrieves all secret
data of the tag, and eavesdrops only one genuine au-
thentication session. We have simulated this attack and
verified its soundness.

Exclusive use of T-functions in this protocol, makes
it vulnerable against recursive linear cryptanalysis. One
way to avoid the exclusive use of T-functions in ul-
tralightweight environments, first introduced by Chien
[2], is use of rotations which are non triangular ultra-
lightweight operations. We show in next subsecion that
use of this operation does not necessarily frustrate the
effectiveness of recursive linear attack.

3.2 Recursive linear cryptanalysis of Yeh et al. Pro-
tocol
3.2.1 History
Yeh et al. proposed a process-oriented ultralightweight
protocol in RFIDSec Asia 2010 [14]. The first attacks
presented by Peris-Lopez et al. [15] in 2010, were trace-
ability and passive full disclosure of ID, which requires
eavesdropping of an average of 250 sessions. In 2012,
Avoine et al. presented a passive full disclosure of ID
on this protocol which requires eavesdropping of an
average of 25 sessions [1].

3.2.2 Protocol specifications
Each tag shares a unique static identifier ID, a public
index-pseudonym IDS and a session key K with the
reader. The length of each of ID, IDS and K is n = 96
bits. To overcome de-synchronization attack, the reader
keeps IDSold too, which is the pseudonym of the last
successful session. The protocol considers a status bit
flag indicating the success or fail of completion of the
previous protocol session (respectively flag = 0 and
flag = 1). The protocol works as follows:

1. Reader → Tag : Hello

2. Tag → Reader : IDS

3. Reader → Tag : A,B,C, flag

The reader uses the received IDS as a search index
to find out if the received IDS is new or it is an old
pseudonym. The session key depends on the freshness
of IDS. In other words:

K = Kt and flag = 0 if IDS is a new psudonym.
K = ID and flag = 1 if IDS is an old psudonym.

Then the reader generates two n-bit nonces, n1 and n2,
and computes three messages A,B and C as follows.

A = IDS ⊕K ⊕ n1

B = (IDS ∨K)⊕ n2

K = (K ⊕ n2) ≪ (n1 mod n)

C = (K ⊕ n1) + n2

4. Reader → Tag : D

Upon receiving the messages A,B,C, the tag first ex-
tracts n1 from A, extracts n2 from B, computes K and
then verifies the value of C. If the verification succeeds,
the reader is authenticated and the tag computes the
response value D as follows.

K ′ = (K ⊕ n1) ≪ (n2 mod n)

D = (K ′ ⊕ n2) + n1

Upon receiving D, the reader uses its local values to
verify its correctness. If the tag is authenticated, the
reader updates its pseudonym and secret key. The tag
and the reader compute the next IDS, namely IDSn.
The Pseudonym and key updating are proceed as fol-
lows:

IDSn = (IDS + (ID ⊕K ′)⊕ n1⊕ n2

Then, the reader updates old and next versions of
(IDS,K) as follows:

(IDS,K) =
(
IDSn,K

)
(3)

IDSold = IDS

After updating, the reader sends an update command to
the tag.

5. Reader → Tag : update command

Upon receiving it, the tag updates (IDS,K) in the same
vein as (3) for the next session.

3.2.3 Cryptanalysis

This attack works for f = 1 where due to the equation
K = ID, number of unknown variables is one less.

1) For a single session all the secret data include
n1, n2,K,K,K ′ and ID. In next step, We create
a system of equations involving three unknown
variables n1, n2, ID only.

6

2) The attacker waits for a session where f = 1 and
saves the associated messages A,B,D and IDSn.
Given K = ID,

A = IDS ⊕ ID ⊕ n1 (4)
B = (IDS ∨ ID)⊕ n2 (5)
D = (K ′ ⊕ n2) + n1 (6)

IDSn = (IDS + (ID ⊕K ′)⊕ n1⊕ n2 (7)

Eq. (6) and (7) hold:

IDSn = (IDS + (ID ⊕ n2⊕ (D − n1))

⊕n1⊕ n2 (8)

The following linear representations for the ith bit
of (4), (5), and (8) are sufficient for constructing a
system of linear equations with nonsingular coeffi-
cient matrix:

Ai = IDSi ⊕ IDi ⊕ n1i

Bi = (IDSi ∨ IDi)⊕ n2i

= (IDSi ⊕ 1) · IDi ⊕ IDSi ⊕ n2i

IDSni = IDSi ⊕ IDi ⊕Di ⊕ cari ⊕ bari (9)

Where

car0 = 0

bar0 = 0

bari = n1i−1 ⊕ bari−1

⊕Maj(Di−1, n1i−1, bari−1)

cari = Maj(IDSi−1, IDi−1 ⊕ n2i−1 ⊕Di−1

⊕n1i−1 ⊕ bari−1, cari−1)

3) Equations given by (9) hold a system of linear
equations with the following matrix representation:

M ·

 IDi

n1i

n2i

 = V (10)

Where

M =

 1 0 0

1 1 0

IDSi ⊕ 1 0 1

V =

 IDSni ⊕ IDSi ⊕Di ⊕ cari ⊕ bari

Ai ⊕ IDSi

Bi ⊕ IDSi

The coefficient matrix M is nonsingular, whether
IDSi = 0 or IDSi = 1. Therefore it is invertible in
GF (2) in any case.

M−1 =

 1 0 0

1 1 0

1 0 1

 when IDSi = 0.

M−1 =

 1 0 0

1 1 0

0 0 1

 when IDSi = 1.

In step i the solution of the associated system gives
directly the ith bit of unknown variables ID, n1, n2.
once again, note that the values of cari and bari in
the right side of (9) have been calculated in the
previous step i− 1.

After recovering all bits of ID, n1, n2, the remaining
unknown variables, K,K ′ can be computed straightfor-
wardly.

Attack summery. This attack is passive, retrieves all
secret data of the tag, and eavesdrops only one genuine
authentication session with flag = 1. The correctness of
this attack have been also verified by simulation.

4 RECURSIVE DIFFERENTIAL CRYPTANALY-
SIS
As described in section 3 recursive linear cryptanalysis is
a straightforward an efficient manner for full disclosure
attack on some ultralightweight protocols. This attack is
deterministic and its success essentially depends on the
existence of enough number of independent equations
in unknown variables or a subset of them.

However, in some protocols, the attacker may not be
so lucky to easily find such system of equations. Often
in these cases, the number of equations of a sesseion
is less than the number of unknown variables. Use of
messages of one or more new sessions is neither an
effective solution since new sessions bring new unknown
variables as many as or even more than new equations.
In such scenarios, a more poweful attack that can gen-
erate enough independent equations is required.

Recursive differential cryptanalysis, presented in this
section is a more effective technique for cryptanalysis
of such protocols. Roughly speaking, in this attack, the
attacker forces two parties to run new sessions in their
previous state. This trick limits the introduction of new
variables, while giving new equations. more precisely,
when the protocol runs in the same state, all the dynamic
secret variables stay the same and only new nonces
are generated in each protocol run. Moreover, new
nonces have a clear differential relation (XOR difference
or modular addition difference) with the old ones that
can be efficiently used for creating new independent
equations. This differential relation often can be find
because the wrapped nonces generated by reader are
usually delivered to the tag in the initial messages of
the protocols in such way that it could be extractable
for the tag. Therefore it is often xored or added with
a secret dependent quantity. Though the attacker does
not know this quantity, but she can obtain differences of
two nonces provided that they both wrapped with the
same secrets. The name of the attack is derived from the
important role of differences.

Of course, enforcement of two parties to work in their
previous state demands a kind of active attacker. To see

7

how this process is possible, we recall from section 2 that
in order to avoid possible desynchronization, the party
that first updates its state (i.e. the transmitter of the last
message), must keep a backup of its previous state. In
the case that the tag keeps the backup data, the tag first
identifies itself by its fresh IDS at the beginning of each
session. If the reader finds an entry indexed by IDS in
its database, the protocol proceeds with this indexed-
pseudonym and associated dynamic secrets otherwise
the reader sends to the tag another Hello message, to
which the tag will reply with IDSold.This old indexed-
pseudonym will be definitely accepted by the reader. In
the case that the reader keeps the backup data, the tag
identifies itself by the only IDS that it has. The reader
keeps both old and new IDS’s in its database and can
extract associated dynamic secrets whether it is fresh or
not. Then the protocol proceeds with the tag’s IDS and
relevant secrets.

Therefore, to force the protocol to stay in the same
state, the attacker can easily block the last message of the
protocol. (In the case that the tag keeps the backup data,
the attacker can do this by blocking the IDS message
sent by the tag at the beginning of the protocol, too.
Thereupon, the reader asks the tag to use its old IDS
and new session will be run with IDSold and kold.)
furthermore, the attacker can repeat this scenario as
many times as required to force the parties to work on
the same state for any arbitrary number of sessions.

Thus, from this perspective, this attack is a kind of
active attack. However, the attacker is a weak active
attacker in the sense that she only blocks some specific
messages rather than modifying or generating new mes-
sages (this weak attacker should not be confused with
weak adversary defined in privacy models [17] i.e. the
adversary who is not allowed to corrupt tags).

Recursive differential cryptanalysis is outlined as fol-
lows:

Phase 1. Data gathering
Allow two parties to run s + 1 genuine consecutive

sessions S(j), j = 0, . . . , s, and block the last message of
each of them to enforce parties to run all sessions in the
same state as S(0). Save all message corresponding to
these sessions.

Phase 2. Secret Recovery
1) Determine all the unknown variables (static and

dynamic secrets and nonces) for the first ses-
sion S(0). Determine also new unknown variables
(nonces only) for the next sessions S(j), j = 1, . . . , s.
Express clearly the (XOR or modular addition)
differential relation of the nonces of S(0) and their
counterparts in S(j).

2) Write the linear expansion of a proper message of
S(0) for bit i possibly containing some intermediate
variables (carries for modular additions or barrows
for modular subtractions). Write the linear expan-
sion for the corresponding message of S(j), too.
The first one contains a subset of unknown vari-
ables, while the latter contains the same unknown

variables as well as differences of the nonces. The
differences of these two linear equation results in
a linear equation in the (i− 1)th bit of secrets with
random coefficients. (the differential property of the
attack)

3) Each differential pair corresponding to sessions
(S(0),S(j)), j = 1, . . . , s provides such a linear
equation in bit i − 1. Therefore there are s linear
equations for each bit i = 0, . . . , n − 2. With a
sufficient number of equations, and due to the
randomness of coefficients, there will be an over
defined system of linear equations for each bit
that yields unknown variables uniquely. Solve the
systems of equations starting from the LSB where
intermediate variables (carries and borrows) are all
zero. Then, compute the intermediate variables for
next bit position. In general, in order to obtain the
ith bit of secret data, the ith bit of intermediate
variables need to be known, which have already
computed in previous step. (the recursive property
of the attack)

Therefore, the linear cryptanalysis recovers all secret data
bits one by one with probability close to one, provided
that there are sufficient number of successive sessions
whose last messages is blocked.

It should be mentioned that this terminology is
adopted due to the differential essence of the attack as
well as its recursive nature in recovering the secret data
bits. However, the term ”differential attack” [21] in sym-
metric cryptography refers to a well known technique
in cryptanalysis of symmetric primitives. This technique
is based on finding differential characteristics with max-
imum possible probability and then combining them
in an appropriate manner. This method is probabilistic
in the sense that the attacker success ratio depends on
the amounts of available data. Anyway, the recursive
differential cryptanalysis of Ultralightweight protocols
presented in this paper should not be mixed up with
the differential cryptanalysis of symmetric primitives.

4.1 Recursive differential cryptanalysis of LMAP++

Protocol

4.1.1 History

In 2008, Li proposed a new ultralightweight authentica-
tion protocol and called it LMAP++ as an improved
of previous proposals [10]. In 2011, it received two
cryptanalysis: the first one proposed by Safkhani et al.
[9] that described a traceability an a desynchronization
attack on LMAP++, and the second one was a pas-
sive full disclosure of all secrets presented by Wang
and Zhang [11] that requires eavesdropping about 480
genuine sessions.

4.1.2 Specification

Each tag shares a unique static identifier ID, a public
index-pseudonym PID and two session keys K1 and

8

K2 with the reader. The length of each of ID, IDS,K1
and K2 is n = 96 bits. The protocol works as follows:

1. Reader → Tag : Hello

2. Tag → Reader : PID

The reader uses the received PID as a search index
to extract the secret information linked to the tag i.e.
(ID,K1,K2).

3. Reader → Tag : A,B

The reader generates a n-bit nonces, r, and computes
two messages A and B as follows.

A = (PID ⊕K1) + r

B = PID + (K2⊕ r) (11)

4. Tag → Reader : C

Upon receiving the messages A and B, the tag first
extracts r from A then checks the correctness of B. If the
reader is authenticated, the tag computes the response
value C as follows.

C = (PID + (ID ⊕ r))⊕ (K1 +K2 + r) (12)

Upon receiving C, the reader uses its local values to
verify it. If the tag is authenticated, the reader updates
its pseudonym and secret keys as follows:

PIDn = ((IDS +K1)⊕ r) + ((ID +K2)⊕ r)

K1n = (K1⊕ r) + (PIDn+K2 + ID)

K2n = (K2⊕ r) + (PIDn+K1 + ID)

(PID,K1,K2) = (PIDn,K1n,K2n) (13)

and to avoid desynchronysation, it keeps the previous
state, too.(

PIDold,K1old,K2old
)
= (PID,K1,K2)

Then the reader sends a Completion message to the tag.

5. Reader → Tag : Completion message (14)

Upon receiving Completion message, the tag updates its
pseudonym and secret keys in the same vein as (13).

4.1.3 Cryptanalysis
In this section we show the effectiveness of our recursive
differential cryptanalysis on LMAP++ protocol.

Phase 1. Data gathering
Allow two parties to run s + 1 genuine consecutive

sessions S(j), j = 0, . . . , s, and block the fifth message
(14) of each of them. Save all message corresponding to
these sessions.

Phase 2. Secret recovery
1) For a clear description of this attack, we first con-

sider the first two consecutive sessions, S(0) and
S(1). The variables associated with S(1) is denoted
by X ′ where X is its counterpart in S(0). For session
S(0) all the unknown data include r,K1,K2 and

ID. In session S(1), the variables K1,K2 and ID
stay the same (i.e. K1′ = K1,K2′ = K2, ID′ = ID)
but r′ is new generated. At first, we describe the
attack basis for a single differential pair corre-
sponding to sessions (S(0),S(1)), then extend it to
more differential pairs of (S(0),S(j)), j = 1, . . . ,m
to complete the description of the attack scenario.
The modular addition difference of two nonces r
and r′ is obtained from equations given by A and
A′.

A = (PID ⊕K1) + r

A′ = (PID ⊕K1) + r′

Hence the following difference:

r′ = (A′ − (PID ⊕K1))

= A′ − (A− r)

= r + α (15)

Where α = A′ − A is a known variable. Bit rep-
resentation of (15) is as follows. (For more clarity,
unknown variables are in bold):

r′i = ri ⊕ αi ⊕ cari (16)

Where car0 = 0 and cari = Maj(ri−1, αi−1, cari−1)
for i = 1, . . . , n− 1.

2) We use messages B and B′ to construct the linear
equation.

B = PID + (K2⊕ r)

B′ = PID + (K2⊕ r′)

With the following bit representations:

Xi = K2i ⊕ ri (17)
X ′

i = K2i ⊕ r′i

= K2i ⊕ ri ⊕ αi ⊕ cari (18)

Where X = B − PID and X ′ = B′ − PID
are known. The XOR difference of (17) and (18)
eliminates the unknown variables K2i and ri and
yields the following one variable linear equation in
ri−1:

∆Xi = cari ⊕ αi

where

cari = ri−1 · (αi−1 ⊕ cari−1)⊕ αi−1 · cari−1

Hence:

pi · ri = αi · cari ⊕∆Xi+1 ⊕ αi+1 (19)

for i = 0, . . . , n− 2. Where the coefficient pi = αi ⊕
cari is known in step i. This linear equation yields
the unkonwn variable ri if pi = 1.
The coefficient pi is a uniform binary random
variable since αi is uniform. Therefore, for a single
differential pair of sessions (S(0),S(1)), the proba-
bility of Pr{pi = 1} = 1

2 . In order to have a reliable

9

full disclosure attack, we need a sufficient number
of such differential pair of sessions (S(0),S(j)),
j = 1, . . . , s, each one gives a new independent
equation as follows.

p
(j)
i · ri = α

(j)
i · car

(j)
i ⊕∆X

(j)
i+1 ⊕ α

(j)
i+1 (20)

where the superscript (j) denotes the index of
differential pair. p

(j)
i , α

(j)
i , car

(j)
i , and ∆X

(j)
i+1 are

the variables corresponding to differential pair of
sessions (S(0),S(j)) which are defined in a similar
way of sessions (S(0),S(1)).

3) With a sufficient number of equations (20), there
will be at least one equation that with a probability
close to one p

(j)
i = 1, for all i = 1, . . . , n. So,

except for the MSB, all bits of r can be retrieved
recursively starting from the LSB. Again note that
in each step i the carry bit cari, has been already
calculated in the previous step i−1. Having recov-
ered n − 1 bits of r, there will be two answer for
r which differ only in the MSB. For each one, the
other unknown variables K1,K2, and ID can be
calculated from (11) and (12) respectively. Finally,
another additional equation, e.g. PIDn transmitted
on the channel after the final session, can be used
to verify the correct answer.

probability analysis. Here, we discuss that for a reliable
full disclosure attack, how many differential pair of
sessions (S(0), S(j)), j = 1, . . . , s, is required.

The coefficients pi’s are independent uniform binary
random variables. Hence the probability of failure for
retrieving a single bit, given s differential pairs is Pf =
(12)

s. Therefore, the probability of success for all n − 2
bits is.

Psucc = (1− (Pf)
s)

n−2

=

(
1− (

1

2
)s
)n−2

Which implies that for a success probability of more
than 0.95, about s = 11 differential pairs (S(0),S(j))
is required. Totally, including S(0), This attack requires
twelve sessions. The theoretical success probability of the
attack as well as experimental results is depicted in Fig.1
for n = 96. The experimental results are based on about
300 times running the simulated LMAP++ protocol.

Attack summery. This attack is active (though the
attacker only blocks some messages), retrieves all secret
data of the tag, and requires only twelve consecutive gen-
uine authentication sessions for probability of success
more than 0.95.

4.2 Recursive differential cryptanalysis of SASI pro-
tocol
4.2.1 History
In 2007, Chien proposed one of the most important ultra-
lightweight protocols called SASI (Strong Authentication
and Strong Integrity) as an improvement of the UMAP

Fig. 1: Recursive differential cryptanalysis of LMAP++.
comparison of theoretical and experimental probabilities
of success

protocols [2] to provide authenticity and integrity and
withstand all the possible attacks to which the UMAP
protocols are subject. The main contributions of this
proposal were introduction of rotations as non triangular
operations and desynchronization prevention by storing
the previous state in the tag.

SASI received some successful cryptanalysis since its
introduction. In 2008, Two traceability attacks proposed
on SASI by Cao et al. [3] and Phan [4], separately.
One year later, Hernandez Castro et al. [18] presented a
passive full disclosure of ID that recovered the O(log n)
least significant bits of ID by eavesdropping n genuine
successive sessions that was impractical due to its ex-
ponential data complexity. In 2009, Sun et al. presented
two desynchronization attacks, one of which is similar to
D’ Acro and De Santis desynchronization attack in [16]
in which the authors proposed an active full disclosure
of ID and active full disclosure of all secrets, too. This
attack requires an average of 309 communications with
the tag. The only successful passive full disclosure of ID
is given by Avoine et al. in 2011 [1], which recovered the
ID by eavesdropping an average of 217 genuine sessions.

4.2.2 Specifications

Each tag shares a unique static identifier (ID), a
public index-pseudonym (IDS) and two session keys
K1 and K2 with the reader. The length of each
of ID, IDS,K1 and K2 is n = 96 bits. To resist
the possible de-synchronization attack, each tag keeps
(IDSold,K1old,K2old) also which are the parameters
associated with the last successful session. The protocol
works as follows:

1. Reader → Tag : Hello

2. Tag → Reader : IDS

The reader uses the received IDS as a search index to
to extract the secret information linked to the tag. If the
reader could find a matched entry in the database, it
proceeds the next step. Otherwise, it probes again and
the tag responds with its old IDS.

3. Reader → Tag : A,B,C

10

The reader generates two n-bit nonces, n1 and n2, and
computes three messages A,B and C as follows.

A = IDS ⊕K1⊕ n1 (21)
B = (IDS ∨K2) + n2 (22)

K1 = (K1⊕ n2) ≪ k1

K2 = (K2⊕ n1) ≪ k2

C = (K1⊕K2) + (K1⊕K2) (23)

where k1 = H(K1) and k2 = H(K2) and H denotes the
hamming weight function.

4. Tag → Reader : D

Upon receiving the messages A,B,C, the tag first ex-
tracts n1 from A, extracts n2 from B, computes K1 and
K2 and then verifies the value of C. If the verification
succeeds, the reader is authenticated and the tag com-
putes the response value D as follows.

D = (K2 + ID)⊕ ((K1⊕K2) ∨K1) (24)

After sending D, the tage updates its pseudonym and
secret keys.

Upon receiving D, the reader uses its local values to
verify D. If the tag is authenticated the reader updates
its pseudonym and secret keys. Pseudonym and keys
updating are proceed as follows in both parties. The tag
and the reader compute the next IDS, namely IDSn.

IDSn = (IDS + ID)⊕ (n2⊕K1)

Then, the tag updates the old and next versions of
(IDS,K1,K2) as follows:

(IDS,K1,K2) =
(
IDSn,K1,K2

)(
IDSold,K1old,K2old

)
= (IDS,K1,K2)

While the reader updates only (IDS,K1,K2) for the
next session.

4.2.3 Cryptanalysis
Though recursive linear and differential attacks relies on
use of T-functions in Ultralightweight protocols, recur-
sive linear cryptanalysis of Yeh et al. protocol shows
that use of rotations as non triangular operations does
not necessarily cancel out the effectiveness of recursive
linear attack. And now, cryptanalysis of SASI is an
example of successful applying of recursive differential
cryptanalysis to a protocol that uses rotations as non
triangular operations.

Phase 1. Data gathering
Allow two parties to run s + 1 genuine consecutive

sessions S(j), j = 0, . . . , s, and block the forth message
D transmitted from the reader for each session. Save all
message corresponding to these sessions.

Phase 2. Secret recovery
1) We first consider the first two consecutive sessions,
S(0) and S(1). The variables associated with S(1)
is denoted as X ′ where X is its counterpart in

S(0). For session S(0) all the unknown data include
K1,K2, n1, n2 and ID. In session S(1), the vari-
ables K1,K2 and ID stay the same (i.e. K1′ =
K1,K2′ = K2, ID′ = ID) but n1′ and n2′ are new
generated. At first, we describe the attack basis for
a single differential pair corresponding to sessions
(S(0),S(1)), then extend it to more differential pairs
of (S(0),S(j)), j = 1, . . . ,m.
We get the XOR-differential of n1 and n1′ from (21)
and modular-differential of n2 and n2′ from (22):

n1′ = A′ ⊕ IDS ⊕K1

= A′ ⊕A⊕ n1

= n1⊕ α̃ (25)
n2′ = B − (IDS ∨K2)

= B − (B′ − n2)

= n2 + β (26)

Where α̃ = A⊕A′ and β = B′ −B are known.
2) Utilizing (23) for two sessions, linear equations of

some secrets can be obtained. By expanding (23):

C = (K1 ≪ k1⊕K2⊕ n2 ≪ k1)+

(K2 ≪ k2⊕K1⊕ n1 ≪ k2)

C ′ = (K1 ≪ k1⊕K2⊕ n2′ ≪ k1)+

(K2 ≪ k2⊕K1⊕ n1′ ≪ k2)

Let us define new variables X , Y and α as fol-
lowes:

X = K1 ≪ k1⊕K2

Y = K2 ≪ k2⊕K1⊕ n1 ≪ k2

α = α̃ ≪ k2 (27)

Thus,

C = (X ⊕ n2 ≪ k1) + Y

C ′ = (X ⊕ ((n2 + β) ≪ k1) + (Y ⊕ α) (28)

We first try to find enough equations to recover
unknown variables X , Y and n2. First, assume that
the correct values of k1 and k2 are known. Bit
representations of equation 28 are as follows:

Ci = Xi ⊕ n2i−k1 ⊕Yi ⊕ cari (29)
C ′

i = Xi ⊕ n2i−k1 ⊕ βi−k1 ⊕ car′′i−k1

⊕Yi ⊕ αi ⊕ car′i (30)

Where car0 = car′0 = car′′0 = 0, and

cari = Maj(Xi−1 ⊕ n2i−k1−1, Yi−1, cari−1)

car′′i = Maj(n2i−1, βi−1, car
′′
i−1)

car′i = Maj(Xi−1 ⊕ n2i−k1−1 ⊕ βi−k1−1 ⊕ car′′i−k1−1,

Yi−1 ⊕ αi−1, car
′
i−1)

for i = 1, . . . , n − 1. Eq. (29) yields one of the
linear equations in three variables Xi, Yi and n2i−k1

which we are looking for. To generate more such
equations we make use of differential equations.

11

From (29) and (30) bit representation of differential
∆Ci = Ci ⊕ C ′

i is:

∆Ci = ∆cari ⊕ car′′i−k1 ⊕ βi−k1 ⊕ αi (31)

Where ∆car0 = 0. So, for i = 0, (31) immediately
results in:

car′′n−k1 = ∆C0 ⊕ βn−k1 ⊕ α0 (32)

That gives the value of car′′n−k1 explicitly which is
required in next stage for retrieving unknown LSB
bits. For i = 1, . . . , n− 1:

∆cari = cari ⊕ car′i

= Xi−1 · (∆cari−1 ⊕ αi−1)⊕
Yi−1 · (∆cari−1 ⊕ car′′i−k1−1 ⊕ βi−k1−1)⊕
n2i−k1−1 · (∆cari−1 ⊕ αi−1)⊕
Maj(βi−k1−1 ⊕ car′′i−k1−1, αi−1, car

′
i−1)

(33)

Substitution (33) in (31), then some simplifications
yields:

∆Ci = Xi−1 · (∆cari−1 ⊕ αi−1)⊕
Yi−1 · (∆cari−1 ⊕ car′′i−k1−1 ⊕ βi−k1−1)⊕
n2i−k1−1 · (∆cari−1 ⊕ αi−1 ⊕ car′′i−k1−1 ⊕ βi−k1−1)

⊕Maj(βi−k1−1 ⊕ car′′i−k1−1, αi−1, car
′
i−1)

⊕βi−k1 ⊕ αi ⊕ car′′i−k1−1 · βi−k1−1

For i = 1, . . . , n− 1, i ̸= k1.
For i = k1, car′′i−k1 = 0 in (31). So the expansion of
(31) is slightly different:

∆Ck1 = Xk1−1 · (∆cark1−1 ⊕ αk1−1)⊕
Yk1−1 · (∆cark1−1 ⊕ car′′n−1 ⊕ βn−1)⊕
n2n−1 · (∆cark1−1 ⊕ αk1−1)⊕
Maj(βn−1 ⊕ car′′n−1, αk1−1, car

′
k1−1)

⊕β0 ⊕ αk1

Summarizing these both cases in a single equation
gives the following linear equation in three vari-
ables Xi, Yi and n2i−k1:

Pi ·Xi ⊕Qi ·Yi ⊕Ri−k1 · n2i−k1 = Mi (34)

Where for i = 0, . . . , n− 2, i ̸= k1− 1:

Pi = ∆cari ⊕ αi

Qi = ∆cari ⊕ car′′i−k1 ⊕ βi−k1

Ri−k1 = ∆cari ⊕ αi ⊕ car′′i−k1 ⊕ βi−k1

Mi = Maj(βi−k1 ⊕ car′′i−k1, αi, car
′
i)⊕ βi−k1+1

⊕αi+1 ⊕ car′′i−k1 · βi−k1 ⊕∆Ci+1

and for i = k1− 1:

Pk1−1 = ∆cark1−1 ⊕ αk1−1

Qk1−1 = ∆cark1−1 ⊕ car′′n−1 ⊕ βn−1

Rn−1 = ∆cark1−1 ⊕ αk1−1

Mk1−1 = Maj(βn−1 ⊕ car′′n−1, αk1−1, car
′
k1−1)⊕

β0 ⊕ αk1 ⊕∆Ck. (35)

each differential pair of sessions (S(0),S(j)), results
in a new linear equaion with random coefficients
P

(j)
i , Q(j)

i and R
(j)
i−k1:

P
(j)
i ·Xi ⊕Q

(j)
i ·Yi ⊕R

(j)
i−k1 · n2i−k1 = M

(j)
i .(36)

3) In order to recursively recover all bits of X,Y
and n2, we require enough number of independent
linear equations in Xi, Yi, n2i−k1. One of them is
(29). The two other required equations are given
from (36) for two distinct values of j. So we can
construct such a system of linear equations:

M ·

 Xi

Yi

n2i−k1

 = V (37)

Where

M =

P

(j1)
i Q

(j1)
i R

(j1)
i−k1

P
(j2)
i Q

(j2)
i R

(j2)
i−k1

1 1 1

 (38)

V =

M

(j1)
i

M
(j2)
i

Ci ⊕ cari

 (39)

Where j1 ̸= j2, 1 ≤ j1, j2 ≤ s.
For s differential pair of sessions, we can build
s(s−1)

2 distinct system of linear equations. For a
full recovery of the unknown bits Xi, Yi and n2i−k1

there must be at least one system of equations with
nonsingular matrix of coefficients. Let’s examine
the two cases of i ̸= k1−1 and i = k1−1 separately.
For the case i = 0, . . . , n − 2, i ̸= k1 − 1, all
matrix entries in the first two rows are independent
uniform random variables so having enough such
system of equations, one can hope that at least
coefficients matrix of one of them is nonsingular.
For the case i = k1 − 1, according to (35), the
first and third columns of M are the same for all
differential pairs. In other words, for i = k1 − 1,
M is always nonsingular and Xk1−1, Yk1−1 and
n2n−1 could never be retrieved uniquely from (37).
However we can still construct the following linear
equations:

P
(j)
k1−1 · (Xk1−1 ⊕ n2n−1)⊕Q

(j)
k1−1 ·Yk1−1 = M

(j)
k1−1

(40)

Thus, the linear system of equation corresponding
to i = k1− 1 reduces to:

M ·

(
Xk1−1 ⊕ n2n−1

Yk1−1

)
= V (41)

Where

M =

(
P

(j)
k1−1 Q

(j)
k1−1

1 1

)

12

V =

(
M

(j)
k1−1

Ck1−1 ⊕ cark1−1

)

Each differential pair of sessions yields a new
system of linear equations thus there are s such
matrices. The two entries in the first row of M are
independent and uniformly distributed, So hav-
ing enough such matrices, at least one of them
is nonsingular. However, the unique values of
Xk1−1 ⊕ n2n−1 and Yk1−1 can be obtained from
(41). Although we could not get Xk1−1 and n2n−1

separately, but Xk1−1⊕n2n−1 and Yk1−1 are solely
sufficient to obtain intermediate variables for the
next step i = k1 (i.e. cark and car′k).
Hence, as long as the correct values of k1 and
k2 are known, we can retrieve unknown bits of
Xi, Yi and n2i−k1 one by one starting from the LSB
except Xk1−1, Xn−1, Yn−1, and n2n−1. At each step
the intermediate variables required for next step is
calculated. For the LSB, car0 and car′0 are zero and
car′′n−k1 is driven from (32).
Anyway, the correct values of k1 and k2 are not
known and we have to guess them from the most
probable to the least probable one. Pr(k1 = i) =

Pr(k2 = i) =
(i
n)
2n Thus we guess the values of k1

and k2 according to the following order of priority:

k1, k2 =
n

2
,
n

2
± 1, . . . ,

n

2
± n

2
.

The correct guess, definitely recovers the correct
values of X,Y and n2. But, what happens if we
guess these values incorrectly?
As described, one can construct one equation of the
form (36) for each difference. For the correct guess
of k1 and k2, all of these s equations are valid and
consistent with each other. For the wrong guesses
of k1 or k2, these equations are not necessarily
valid (more precisely each equation is valid with
the probability of 1

2) and one can find some contra-
dictions between them which discovers the wrong
guesses. For example, for bit i = 0 the jth1 difference
may result in, say (P

(j1)
0 , Q

(j1)
0 , R

(j1)
n−k1) = (1, 1, 0)

and M
(j1)
0 = 1 while the jth2 difference may result in

(P
(j2)
0 , Q

(j2)
0 , R

(j2)
n−k1) = (1, 1, 0) and M

(j2)
0 = 0. Such

contradictions happens with probability of 1
2 . In

this problem all the wrong guesses are detected due
to the high redundancy of equations. This claim
will be discussed more precisely at the end of this
session.

The recursive differential cryptanalysis ends here and
yields X,Y and n2. In case of SASI, an additional stage
should be done to extract the secrets K1,K2, n1 and ID
from X,Y and n2. After obtaining almost all bits of X,Y
and n2, we can find the values of K1 and K2 as follows.

TABLE 2: PMF of the rank of the matrix

Rank Probability

32 2.8× 10−7

64 1.25× 10−14

80 9.6× 10−4

88 1.19× 10−2

92 4.26× 10−2

94 1.67× 10−1

96 7.78× 10−1

from (27) and (21):

Xi = K1i−k1 ⊕K2i

Yi = K2i−k2 ⊕K1i ⊕ n1i−k2

Ai = IDSi ⊕K1i ⊕ n1i (42)

for i = 0, . . . , n− 1. Hence, it holds that:

K1i ⊕K1i−k2 ⊕K1i−k1−k2 = Vi. (43)

Where Vi = Ai−k2 ⊕ IDSi−k2 ⊕Xi−k2 ⊕ Yi is known for
i = 0, . . . , n− 2, i ̸= k2− 1, k1 + k2− 1. Therefore, set of
equations given by (43) creates a system of n− 3 linear
equations in n variables.

Let’s first assume that set of equations given by (43)
holds for all i = 0, . . . , n− 1. The rank of the coefficient
matrix of such linear system equations, namely R, takes
some limited number of values between n/2 and n
depending on the values of nonuniformly distributed
random variables k1 and k2. Table 2 shows the prob-
ability mass function of R for n = 96. In our problem,
we have totally n − 3 equations so (43) gives at least
R−3 independent linear equations in K1i’s. On the other
hand, (22) and (42) holds:

IDSi ∨ (Xi ⊕K1i−k1) = (B − n2)i (44)

which also brings new linear equations in terms of K1i
if IDSi = 0 which has a probability of 1

2 . Therefore, in
average we obtain from (44) n/2 more equations that
along with R − 3 independent equations in (43) holds
an overdefined system of linear equations in Ki (except
the case R = 32 which has the negligible probability of
2.8× 10−7). So the unique solution of this system, gives
all bits of K1. The remaining secrets, K2, n1 and ID are
also recovered respectively by (42) and (24).

probability of success. Here, we discuss that for a
reliable full disclosure attack, how many differential pair
of sessions (S(0), S(j)), j = 1, . . . , s, is required.

First, two lemmas are stated:

Lemma 1. Assume s vectors m(j), j = 1, . . . , s where
m(j) = (m

(j)
1 ,m

(j)
2). m

(j)
i ’s (i = 1, 2, j = 1, . . . , s) are

independent uniformly distributed binary random variables.
Let 2× 2 matrix M(j) be constructed as follows:

M(j) =

(
m

(j)
1 m

(j)
2

1 1

)

13

for j = 1, . . . , s. The probability that all M(j)’s are singular
is:

Psing,2×2 = (
1

2
)s

Proof: Consider the following outcome:

A : m(j) ∈ {(1, 1), (0, 0)}, ∀j ∈ {1, . . . , s} (45)

for j = 1, . . . , s. All M(j) are singular if the outcome A
occurs. Hence,

Psing,2×2 = P (A) = (
1

2
)s.

Lemma 2. Assume s vectors m(j), j = 1, . . . , s where m(j) =
(m

(j)
1 ,m

(j)
2 ,m

(j)
3). m

(j)
i ’s (i = 1, 2, 3, j = 1, . . . , r) are

independent uniformly distributed binary random variables.
Let 3× 3 matrix M(j1,j2) be constructed as follows:

M(j1,j2) =

 m(j1)

m(j2)

1 1 1

where j1 ̸= j2 and j1, j2 ∈ {1, . . . , s}. There are s(s−1)

2 such
matrices. The probability that all M(j1,j2)’s are singular is

Psing,3×3 = 3 · (1
2
)s − 2 · (1

4
)s

Proof: Consider the following outcoums:

A : m(j) ∈ {(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)},
∀j ∈ {1, . . . , s}

B : m(j) ∈ {(0, 1, 0), (1, 0, 1), (1, 1, 1), (0, 0, 0)},
∀j ∈ {1, . . . , s}

C : m(j) ∈ {(0, 0, 1), (1, 1, 0), (1, 1, 1), (0, 0, 0)},
∀j ∈ {1, . . . , s}

All M(j1,j2)’s are singular if the outcomes B or C or A
occur. Hence,

Psing,3×3 = P (A ∨ B ∨ C)
= P (A) + P (B) + P (C)
−P (A ∧ B)− P (A ∧ C)− P (B ∧ C)+
P (A ∧ B ∧ C) (46)

For a single j,

P
(
m(j) ∈ {(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)}

)
=

1

2

Hence,

P (A) = P (B) = P (C) = (
1

2
)s (47)

Since m(j)’s are independent.

P (A ∧ B) = P (A ∧ C) = P (B ∧ C)
= P

(
m(j) ∈ {(1, 1, 1), (0, 0, 0)}, j = 1, . . . , s

)
= (

1

4
)s (48)

P (A ∧ B ∧ C) = P
(
m(j) ∈ {(1, 1, 1), (0, 0, 0)}, j = 1, . . . , s

)
= (

1

4
)s (49)

Equations (46), (47), (48), and (49) holds:

Psing,3×3 = 3 · (1
2
)s − 2 · (1

4
)s (50)

Attack success depends on the existence of at least one
nonsingular matrix M among all s(s−1)

2 matrices in (37)
for all bits i = 0, . . . , n − 2, i ̸= k1 − 1 and at least one
nonsingular matrix M among all s matrices in (41) for
bit i = k1− 1. Thus, by the mentioned lemmas:

Psucc = (1− Psing,3×3)
n−2 × (1− Psing,2×2)

=

(
1−

(
3 · (1

2
)s − 2 · (1

4
)s
))n−2

×
(
1− (

1

2
)s
)

(51)

According to (51) for Psucc > 0.96, it suffices that s =
12. Thus, for a reliable differential cryptanalysis of SASI,
13 consecutive genuine sessions are sufficient, provided
that the last message of each one is blocked.

Fig. 2 shows the theoretical attack probability of suc-
cess (51) in terms of number of differential pairs (s) as
well as experimental results for n = 96. The experimental
results is based on about 500 times running the simu-
lated SASI protocol for s = 2, . . . , 20.

Probability of detecting wrong guesses of k1 and
k2. For each bit i (except the MSB), there are at most
eight distinct set of coefficients (P

(j)
i , Q

(j)
i , R

(j)
i−k1). Thus,

there are at least s − 8 equations with the coefficients
that are repetitive. since the probability of consistency
of two equations with repetitive coefficients are 1

2 (i.e.
the probability of equality of their associated constants
M

(j)
i), the probability of consistency of all the repet-

itive equations for a wrong guess of k1 and k2 is
Pnon−det = (12)

(s−8)(n−1) which for s = 12 is completely
negligible. Thus the probability of detection of the all
n2 − 1 wrong guesses is Pdet = (1 − Pnon−det)

n2−1 =

(1 − (12)
(s−8)(n−1))n

2−1 which is very close to one for
n = 96 and s = 12.

Attack summery. This attack is active (though the
attacker only blocks some messages), retrieves all secret
data of the tag, and requires only thirteen consecutive
genuine authentication sessions for probability of suc-
cess more than 0.96.

5 CONCLUSIONS

We introduced new cryptanalysis techniques for full
disclosure attack on ultralightweight authentication pro-
tocols. We called them recursive linear and recursive
differential attacks. The former is based on constructing
a systems of linear equations in ith bit of secret variables
and solve them in a recursive manner starting from
the LSB. This attack, if can be applied successfully,

14

Fig. 2: Recursive differential cryptanalysis of SASI. Com-
parison of theoretical and experimental attack probabil-
ity of success

is very efficient since it is passive, deterministic, and
requires only one authentication session. We showed the
effectiveness of this attack on SLMAP and Yeh et al.
protocols.

In recursive differential attack, we again try to create
a system of linear equations and solve them recursively.
But these linear equations are derived from differential
relations. This attack is more powerful than the first one
and naturally has more requirements. The attacker is an
active one who only blocks some specific messages of the
protocols. This attack usually requires a couple of proto-
col sessions and reveals all secrets of the protocol with
high probability of success. We applied this technique
on LMAP++ and SASI protocols successfully.

REFERENCES

[1] G. Avoine, X. Carpent, and B. Martin,”Privacy-Friendly Synchro-
nized Ultralightweight Authentication Protocols in the Storm,”
Journal of Network and Computer Applications, vol. 35, pp. 826-
843, 2012.

[2] H. Chien, ”SASI: A New Ultralightweight RFID Authentication
Protocol Providing Strong Authentication and Strong Integrity,
IEEE Trans. Dependable and Secure Computing, vol. 4, no. 4, pp.
337-340, Oct.-Dec. 2007.

[3] T. Cao, E. Bertino, and H. Li, ”Security Analysis of the SASI
Protocol,” IEEE Trans. Dependable and Secure Computing, vol. 6,
no. 1, pp. 73-77, Jan.-Mar. 2009.

[4] R.C.-W. Phan, ”Cryptanalysis of a New Ultralightweight RFID
Authentication ProtocolSASI,” IEEE Trans. Dependable and Secure
Computing, vol. 6, no. 4, pp. 316-320, Oct.-Dec. 2009.

[5] P. Peris-Lopez, J.C. Hernandez-Castro, J.M. Estevez-Tapiador, and
A. Ribagorda, ”LMAP: A Real Lightweight Mutual Authentication
Protocol for Low-Cost RFID Tags,” Proc. Second Workshop RFID
Security, July 2006.

[6] P. Peris-Lopez, J.C. Hernandez-Castro, J.M. Estevez-Tapiador, and
A. Ribagorda, ”EMAP: An Efficient Mutual-Authentication Proto-
col for Low-Cost RFID Tags,” Proc. OTM 06 Workshop, pp. 352-361,
2006.

[7] P. Peris-Lopez, J.C. Hernandez-Castro, J.M. Estevez-Tapiador, and
A. Ribagorda, ”M2AP: A Minimalist Mutual-Authentication Pro-
tocol for Low-Cost RFID Tags,” Proc. Ubiquitous Intelligence and
Computing, pp. 912-923, 2006.

[8] H. Sun, W. Ting, and K. Wang, ”On the Security of Chiens
Ultralightweight RFID Authentication Protocol,” IEEE Trans. De-
pendable and Secure Computing, vol. 8, no. 2, pp. 315-317, Mar.-
Apr. 2011.

[9] M. Safkhani, Nasour Bagheri, Majid Naderi, and Somitra Kumar
Sanadhya, ”Security Analysis of LMAP++, an RFID Authenti-
cation Protocol”, International Conference on Internet Technology
and Secured Transactions (ICITST’11), Dec. 2011.

[10] T. Li, ”Employing lightweight primitives on low-cost rfid tags
for authentication,” Proc. IEEE Vehicular Technology Conference,
(VTC ’08), pp. 1-5, Sept. 2008.

[11] S. Wang and W. Zhang, ”Passive Attack on RFID LMAP++
Authentication Protocol,” Cryptography and Network Security
(CANS’11), LNCS 7092, pp. 185193, 2011.

[12] T. Li, G. Wang. SLMAP - A Secure ultra-Lightweight RFID Mutual
Authentication Protocol, In Proc. Chinacrypt07, pp.19-22, Oct. 2007.

[13] J. C. Hernandez-Castro, J. E. Tapiador, P. Peris-Lopez, J. A. Clark,
and E.-G. Talbi, ”Metaheuristic traceability attack against SLMAP,
an RFID lightweight authentication protocol,” International Journal
of Foundations of Computer Science (IJFCS), vol. 23, no. 2, pp. 543-
553, 2012.

[14] K.H. Yeh, N.W. Lo, and E. Winata, ”An Efficient Ultralightweight
Authentication Protocol for RFID Systems,” In Proc. of RFIDSec
Asia 2010, Cryptology and Information Security Series, vol. 4, pp.
4960, 2010.

[15] P. Peris-Lopez , J.C. Hernandez-Castro,R.C.W. Phan, M.E. Tapi-
ador, T. Li, ”Quasi-Linear Cryptanalysis of a Secure RFID Ultra-
lightweight Authentication Protocol,”In 6th China international
conference on information security and cryptology (Inscrypt10),
pp. 427-442, Oct. 2010.

[16] P. D’ Arco and A. De Santis, ”On Ultralightweight RFID Au-
thentication Protocols,” IEEE IEEE Trans. Dependable and Secure
Computing, vol. 8, no. 4, Jul.-Aug. 2011.

[17] S. Vaudenay, ”On privacy models for RFID,” In Proc. of ASI-
ACRYPT 2007. LNCS, vol. 4833, pp. 6887, 2007.

[18] J.C. Hernandez-Castro, J.M.E. Tapiador, P. Peris-Lopez, and J.-
J. Quisquater, ”Cryptanalysis of the SASI Ultralightweight RFID
Authentication Protocol,” In Proc. of Intl Workshop on Coding and
Cryptography (WCC 09), May 2009.

[19] D. Han, ”Grobner Basis Attacks on Lightweight RFID Authentica-
tion Protocols,” Journal of Information Processing Systems, Vol.7,
No.4, pp. 691-706, 2011.

[20] M. Matsui, ”The First Experimental Cryptanalysis of the Data
Encryption Standard,” in the proceedings of CRYPTO 1994, Lecture
Notes in Computer Science, vol. 839, pp. 1-11, 1994.

[21] E. Biham and A. Shamir, ”Differential cryptanalysis of DES-like
cryptosystems,” Journal of Cryptology, vol. 4, no.1, pp. 3-72, 1991.

[22] A. Klimov, A. Shamir, ”A new class of invertible mappings,” In
proc. of Cryptographic hardware and embedded systems-CHES
2002, Lecture Notes in Computer Science, vol. 2523, pp. 47083,
2003.

