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Abstract

We study the problem of “privacy amplification”: key agreement between two parties who both know
a weak secret w, such as a password. (Such a setting is ubiquitous on the internet, where passwords are
the most commonly used security device.) We assume that the key agreement protocol is taking place
in the presence of an active computationally unbounded adversary Eve. The adversary may have partial
knowledge about w, so we assume only that w has some entropy from Eve’s point of view. Thus, the
goal of the protocol is to convert this non-uniform secret w into a uniformly distributed string R that
is fully secret from Eve. R may then be used as a key for running symmetric cryptographic protocols
(such as encryption, authentication, etc.).

Because we make no computational assumptions, the entropy in R can come only from w. Thus
such a protocol must minimize the entropy loss during its execution, so that R is as long as possible.
The best previous results have entropy loss of Θ(κ2), where κ is the security parameter, thus requiring
the password to be very long even for small values of κ. In this work, we present the first protocol
for information-theoretic key agreement that has entropy loss linear in the security parameter. The
result is optimal up to constant factors. We achieve our improvement through a somewhat surprising
application of error-correcting codes for the edit distance.

The protocol can be extended to provide also “information reconciliation,” that is, to work even
when the two parties have slightly different versions of w (for example, when biometrics are involved).

1 Introduction

The classical problem of privacy amplification, introduced by Bennett, Brassard, and Robert [1], considers
the setting in which two parties, Alice and Bob, start out knowing a common string w that is partially
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secret. Following [2], we make no assumption on the distribution of w beyond a lower bound on its entropy.
The goal of Alice and Bob is to perform key agreement: to agree on a string R that is fully secret. Formally,
R should be statistically close to uniform from the point of view of the adversary Eve (we will let 2−κ be
the statistical distance between the distribution of R and the uniform distribution, and call κ the security
parameter). Such R can then be used as a key for symmetric cryptography.

We make no computational assumptions and therefore model Eve as being computationally unbounded.
This requirement implies that all the entropy in R comes from w. Thus, one of the most important
requirements of such a protocol is that the output length of R must be as long as possible given the
entropy of w. The difference between the entropy of w and the length of R is called the entropy loss.

We can model the communication channel between Alice and Bob as authenticated or unsecured.
Equivalently, we can model Eve as passive or active. If Eve is passive (i.e., merely listens in on the
messages between Alice and Bob but cannot modify them), strong extractors [22] provide an optimal
solution to this problem. Alice simply sends an extractor seed to Bob, they both extract R from w using
the seed, and the entropy loss can be as low as 2κ.

However, if Eve is active (i.e., can modify the messages), the problem becomes considerably harder.
In particular, one needs to worry not only about achieving R that is 2−κ-close to uniform, but also about
ensuring that Alice and Bob output the same R with probability at least 1 − 2−κ. While the specific
focus of our paper is to obtain R of maximum length, there are other parameters that one might wish
to optimize. For instance, one might wish to minimize the round complexity or to minimize the entropy
required in w for the protocol to work. Renner and Wolf [24], building on a series of works by Maurer,
Renner and Wolf [19, 20, 29, 21], presented the first protocol that is secure against active Eve and works
even when w is less than half-entropic (i.e., hW ≤ λw/2 where hW and λw denote the entropy and the
length of w). Moreover, by the use of extractors with asymptotically optimal seed length [12] and through
the analysis of Kanukurthi and Reyzin [15], it can be seen that the protocol of [24] achieves entropy loss
of Θ(κ2) and takes Θ(κ) rounds of communication. (The work of [15], which builds upon [24], achieves the
same asymptotic parameters but considerably improves the constants hidden inside Θ by eliminating the
need for complicated extractors.) Dodis and Wichs [11] reduce the number of messages in the protocol from
Θ(k) to just 2, but do not improve the entropy loss. They also present a two-message non-constructive
(in other words, non-polynomial-time) protocol with an entropy loss of Θ(κ). (They achieve this result
by introducing a primitive called non-malleable extractors and showing nonconstructively that they exist.)
While this result shows the theoretical feasibility of achieving such a low entropy loss, the only efficient
solution that matches this entropy loss relies on Random Oracles [4]—i.e., an “assumption” that a publicly
known truly random function is available. (It should be noted that single-message protocols for the same
problem exist [20, 8]; however, they have entropy loss λw − hW + Θ(κ) and thus require w to be at least
half-entropic.)

Achieving an efficient privacy amplification protocol with entropy loss Θ(κ) and without resorting to
the Random Oracle Model has, until now, been an open question.

Our Contribution We construct the first efficient protocol for privacy amplification over unsecured
channels whose entropy loss (and number of rounds) is linear in the security parameter κ. This security
loss is optimal up to constant factors, because extractor bounds require entropy loss at least 2κ − O(1)
even in the case of authenticated channels [23]. We thus demonstrate that, up to constant factors, privacy
amplification over unsecured channels can be as entropy-efficient as over authenticated ones.

Extension to Information Reconciliation/Fuzzy Extractors Consider the following generalization:
Alice starts out with w, but Bob starts out with w′ that is close to w in some metric space. Their goal is
still the same: to agree on the same uniform string R. This problem is known as privacy amplification with
information reconciliation [1] or as fuzzy extractors [10]. Constructions secure against active Eve appeared
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in [25, 8, 15, 11].
This setting arises, for example, when Alice and Bob have access to a (possibly) noisy channel that can

be partially eavesdropped by Eve; or when a trusted server (Alice) stores the biometric of a user (Bob),
and the user subsequently uses his fresh biometric reading to authenticate himself to the server; or when
Alice and Bob are mobile nodes wanting to authenticate each other based on the fact that their knowledge
of a location is greater than Eve’s (e.g., if they are much closer to a particular location than Eve, and thus
are able to observe it at higher resolution).

Using the same approach as in [15], our protocol extends to this setting, as well.

A Related Problem Ishai, Kushilevitz, Ostrovsky, and Sahai [14] consider the problem of constructing
a two-party protocol that extracts m “clean” instances of a joint distribution (X,Y ) from O(m) “dirty”
instances. This task can be viewed as a generalization of randomness extraction (the special case is when
X and Y are identical bits). However, the techniques of [14] do not directly apply to the case when we have
only one instance of a distribution. Furthermore, the entropy loss achieved in their work is significantly
greater (constant factor times m) than in our case, where we obtain an entropy loss which is independent
of the entropy or length of the secret and linear in the security parameter.

Construction Techniques Our starting point is the protocol for interactive authentication from [15],
which generalizes the authentication protocol of Renner and Wolf [24]. We focus only on the case when
Alice and Bob share the same secret w; i.e., when w = w′ (as mentioned, the more general case can be
addressed in the exact same way as in [15]). Using known techniques from the works of [24] and [15], it
suffices to construct a message authentication protocol that can authentically transfer a message m from
Alice to Bob using w.

The authentication protocol of [24, 15] works by authenticating bits of m one by one. For each bit of
m, Bob sends Alice a random extractor seed, and, if the bit is equal to 1, Alice responds with the output
of the extractor on input w using Bob’s seed. Alice also sends Bob a random extractor seed of her own,
to which he always responds (applying the extractor to w using Alice’s seed), regardless of the bit of m.
Each extractor output is κ bits long. This results in Θ(κ) entropy loss for every bit authenticated, and
Θ(κ2) entropy loss overall, because the message being authenticated needs to be Θ(κ) bits long (it is,
actually, a MAC key in the protocol of [15]). The security proof shows that to succeed in breaking such
an authentication protocol, the active adversary Eve must respond to at least one fresh random challenge
on her own without interacting with either Alice or Bob. Because the extractor output is a nearly-uniform
κ-bit string, Eve cannot succeed with probability much higher than 2−κ.

The high level intuition for our protocol is as follows. If we were to shorten the length of the extractor
output (in the authentication protocol) to be a constant number of bits, then we only lose Θ(1) bits
of entropy for every bit of m and obtain an Θ(κ) entropy loss overall. On the other hand, the success
probability of an adversary is a constant (by the same proof as before). If we could instead now ensure
that Eve must respond to several (namely, Θ(κ)) fresh random challenges on her own, then we could show
that the success probability is 2−κ. This can be done by encoding m in a special error-detecting code of
distance Θ(κ) and ensuring that to introduce Θ(κ) errors required to avoid detection, Eve must come up
with Θ(κ) extractor outputs on her own.

It turns out that the code we need is a code for the edit distance [16] (the distance that counts the
number of single-character insertions and deletions required to convert one string into another), for the
following reasons. We observe that, since the authentication of m is done bit-by-bit, Eve can change m by
inserting individual bits, deleting them, or changing them from 0 to 1 or from 1 to 0. Deletions, insertions
of 1, and changes from 0 to 1 require Eve to guess an extractor output on a fresh random seed. Thus, Eve
can create edit errors in the message, but at least some types of the edit errors (namely, insertions of 1 and
deletions) require her to find an extractor output on her own. Because in the context of [24, 15] the length
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of m and the number of 1s in it are known a priori to both Alice and Bob, insertions of 0 and changes of
1 to 0 must be accompanied by deletions and changes of 0 to 1; in fact, we show that, no matter how Eve
chooses to modify the string, at least a quarter of the operations require her to find an extractor output
on her own. So, if instead of authenticating the bits of the m, Alice first encoded m in an error-detecting
code for 4κ edit errors, Eve would have to respond to at least κ fresh random challenges on her own. Of
course, the length of the codeword must still remain linear in the length of m. The codes of Schulman
and Zuckerman [26] have this property (though we need to modify them to ensure the number of 1s is the
same for every codeword of a given length).

Proof Techniques While using an error-detecting code and shortening the extractor outputs intuitively
may seem to work in a straightforward manner, the proofs turn out to be quite tricky. In particular, we
will need to use a proof technique that is completely different from the one used in [24] and [15], for the
following reason. In the authentication protocols of [24, 15], Alice authenticates bits of the message one
at a time. The proofs make use of induction on the length of the message received so far by Bob to show
that if Eve was successful in changing any bit(s) of the message, then Eve must have responded to one
fresh random challenge on her own. We, on the other hand, cannot use such an induction argument since
we need to precisely characterize how many fresh random challenges Eve must have responded in relation
to the number of bits modified. Instead, we use a new proof technique wherein we view the entire protocol
transcript from the point of view of Eve as a string of literals, where each literal represent an interaction
either with Alice or Bob. Using combinatorial arguments, we show that Eve cannot interleave these literals
to her advantage without having to respond to many fresh random challenges.

Next, one might like to claim that if Eve were to respond with multiple extractor outputs for random,
independent seeds, then her success in giving the right response for each of the seeds is also independent
of her success for other seeds. Unfortunately, this intuition does not quite hold and there are subtleties
in proving the theorem in this manner. We could try to use average min-entropy (introduced in [10]),
which gives us a guarantee that on average the entropy in w does not get reduced by too much, and
implies the desired bound on the probability that Eve is successful in a single fresh random challenge.
However, if the min-entropy in a particular run is below average, then Eve has an easier task for all fresh
random random challenge simultaneously. In an extreme case, here may be a particular bad run (which
occurs with very small probability) in which all information about w is revealed. This, in turn, destroys
all independence in the events of Eve’s success for each challenge. To counter this, we take the approach
of considering two separate cases — the case when the run does not reveal too much about w and where
we can argue “sufficient independence” (which happens with high probability), and the case when the run
might reveal too much about w (perhaps all of it) and we cannot argue independence (which happens with
low probability). Now, if we make an assumption that w begins with Θ(κ) bits of entropy more than what
would be needed otherwise, we can show that the probability with which independence does not hold is
low enough for our theorem to be true.

Organization of the paper We introduce notation and define our security model in Section 2. In
Section 3, we briefly describe some of the existing tools that we require for our construction. Our main
construction is given in Section 4. We give the proof of our main theorem in 5.

2 Preliminaries

Notation Let Ul denote the uniform distribution on {0, 1}l. Let X1, X2 be two probability distributions
over some set S. Their statistical distance is

SD (X1, X2)
def
= max

T⊆S
{Pr[X1 ∈ T ]− Pr[X2 ∈ T ]} =

1

2

∑
s∈S

∣∣∣∣Pr
X1

[s]− Pr
X2

[s]

∣∣∣∣
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(they are said to be ε-close if SD (X1, X2) ≤ ε). The min-entropy of a random variable W is H∞(W ) =
− log(maxw Pr[W = w]). For a joint distribution (W,E), define the (average) conditional min-entropy of
W given E [10] as

H̃∞(W | E) = − log( E
e←E

(2−H∞(W |E=e)))

(here the expectation is taken over e for which Pr[E = e] is nonzero). A computationally unbounded
adversary who receives the value of E cannot give the correct value of W (in a single attempt) with

probability greater than 2−H̃∞(W |E). Throughout this paper, for any string x, we use the notation λx
to denote its length and hx to denote its entropy (i.e, H∞(X)). We make use of the following lemma
[10, Lemma 2.2b], which states that the average min-entropy of a variable from the point of view of an
adversary does not decrease by more than the number of bits (correlated with the variable) observed by
the adversary.

Lemma 1. If B has at most 2λ possible values, then H̃∞(A | B) ≥ H∞(A,B) − λ ≥ H∞(A) − λ. and,
more generally, H̃∞(A | B,C) ≥ H̃∞(A,B | C)− λ ≥ H̃∞(A | C)− λ.

We also use the following lemma [10, Lemma 2.2a], which says that min-entropy is t bits less than the
average min-entropy with probability at most 2−t.

Lemma 2. For any δ > 0, the conditional entropy H∞(A | B = b) is at least H̃∞(A | B) − log(1δ ) with
probability at least 1− δ over the choice of b.

Model and Security definition Let w ∈ {0, 1}n be chosen according to distribution W be the secret
value held by Alice and Bob respectively. Let Protocol (A,B) be executed in the presence of an active
adversary Eve. Let Receiveda,Senta,Received b,Sentb be the random variables describing the messages
received by Alice, sent by Alice, received by Bob, and sent by Bob, respectively, when (A,B) is executed
in the presence of Eve. (We will use receiveda, senta, received b, sentb to denote specific values of these
variables.) Because Eve is computationally unbounded, we can assume she is deterministic. We assume
that if either party aborts, Eve is immediately informed of it (we can think of it as being included in Sent).
We denote the private coins of Alice and Bob by ra and rb respectively.

In a Privacy Amplification Protocol, the outputs of Alice and Bob will be denoted by kA =
A(w, receiveda, ra) and kB = B(w, received b, rb). Each of kA and kB can be either a key or a special
symbol ⊥, signifying that the party has detected an active attack and is aborting the protocol.

Before formally defining security, let us explain the reasoning behind the definition. We would like
for the outputs of Alice and Bob to match. However, this goal is unachievable in general [19]: Eve could
simply interfere with the last message of the protocol to force the recipient of that message to reject while
the sender will accept (this is assuming the last message influences the recipient’s accept/reject decision; if
not, the same argument could be made using the last message that does). Instead, we will make a weaker
requirement: with high probability, kA = kB or kA = ⊥ or kB = ⊥ (a more strict, asymmetric definition
is also possible: it could require, for example, that kA = kB or kB = ⊥, ensuring that if Alice detects a
problem, then Bob does, too; it may make sense if Alice makes her accept/reject decision before Bob).

We would also like for the keys output by Alice and Bob to be (nearly) random. Let us focus on Alice’s
key kA. We could ask for distribution of kA | kA 6= ⊥ to be close to uniform, but that definition seems
unachievable, because Eve could disrupt the protocol unless she is confident that kA is in a small set of
possible values, in which case kA | kA 6= ⊥ is far from uniform, simply because kA 6= ⊥ is very rare and kA is
constrained in such a case. 1 The problem comes from trying to condition on rare events; indeed, if kA 6= ⊥

1As was pointed out to us by Gil Segev and Yevgeniy Dodis, the definitions in [11, 15, 6, 7] suffer from this problem and
the protocols in those works probably do not satisfy their own definitions for this trivial reason, even though the protocols
are secure with respect to a more appropriate definition. The definiton of [19] and its variants used in subsequent works,
such as [20, 29, 21], requires that, with high probability, either kA has high entropy or kA = ⊥; Maurer [19] states that an
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is very rare, then we shouldn’t care about the marginal distribution of kA in this rare case. This problem
could be solved by requiring that the product of Pr[kA 6= ⊥] and distance of kA | kA 6= ⊥ from uniform be
small. For aesthetic reasons, we prefer to solve it differently: we follow the approach of [9, Section 6], and
compare the distribution of kA to the distribution that is ⊥ with the same probability as Pr[kA =⊥], and
is uniform otherwise. We note that this problem does not come up in defining security for single-message
protocols, e.g., [8], because Alice always outputs kA 6=⊥.

Definition 1. An interactive protocol (A,B) played by Alice and Bob on a communication channel fully
controlled by a computationally unbounded adversary Eve, is a (hW , λk, δ, ε)-privacy amplification protocol
if it satisfies the following properties whenever H∞(W ) ≥ hW :

1. Correctness. If Eve is passive, then Pr[kA = kB] = 1.

2. Robustness. For any Eve, the probability that the following experiment outputs “Eve wins” is at most
2−δ: sample w from W ; let receiveda, received b be the messages received by Alice and Bob upon
execution of (A,B) with Eve actively controlling the channel, and let kA = A(w, receiveda, ra), kB =
B(w, received b, rb). Output “Eve wins” if kA 6= kB∧kA 6= ⊥∧kB 6= ⊥. (Note that this is pre-application
robustness in the terminology of [8, 9]; we do not address post-application robustness here.)

3. Extraction. Define purify(r) to be a randomized function whose input is either a binary string or ⊥.
If r = ⊥, then purify(r) = ⊥; else, purify(r) is a uniformly chosen random string of lentgh λk. Note
that the pair Sent = (Senta,Sentb) contains an active Eve’s view of the protocol. We require that for
any Eve,

SD ((kA,Sent), (purify(kA),Sent)) ≤ ε and SD ((kB,Sent), (purify(kB),Sent)) ≤ ε .

The quantity hW − λk is the known as the entropy loss of the protocol.
We can allow Eve to additionally have some information on the secret w, sampled as a random variable

E that is correlated with W . We avoided introducing it above to simplify notation; to add it in, require that
robustness holds even when Eve is given this additional information, and include E into Sent for defining
extraction. Of course, the definition is required to hold only when H̃∞(W | E) ≥ hW .

An important building block that we will construct is an interactive authentication protocol. In an
authentication protocol, both Alice and Bob have the same input w as in the privacy amplification protocol,
and Alice additionally takes as input a message m that she wants to send to Bob authentically. The goal
is merely to transmit this message, not to agree on a key. We let ma denote the message that Alice is
trying to send and mb denote the message that Bob receives. Each party has an output, denoted by tA
and tB, that is “accept” or “reject”; additionally, Bob outputs mb. We stress that mb is determined by
the protocol transcript which, in turn, is controlled by an adaptive adversary. We now present the formal
definition. (The definition we use is just an interactive variant of one-time message authentication codes.
See [15, Definition 4] for one such definition.)

Definition 2. An interactive protocol (A,B) played by Alice and Bob on a communication channel fully
controlled by an adversary Eve, is a (hW , κ)-interactive authentication protocol if ∀m, it satisfies the follow-
ing properties whenever H∞(W ) ≥ hW and ma = m:

1. Correctness. If Eve is passive, then Pr[ma = mb] = 1.

alternative definition could be provided “in terms of any reasonable constraint on the deviation of a distribution from the
uniform distribution” without specifying how.
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2. Robustness. For any Eve, the probability that the following experiment outputs “Eve wins” is at
most 2−κ: sample w from W ; let receiveda, received b be the messages received by Alice and Bob
upon execution of (A,B) with Eve actively controlling the channel, and let A(w, receiveda, ra,ma) =
tA,B(w, received b, rb) = (mb, tB). Output “Eve wins” if (mb 6= ma ∧ tB = “accept”).

The minimum, over all possible Eves, of the quantity hW − H̃∞(W | Senta,Sentb, tA, tB) is known as the
entropy loss of the protocol.

Similarly to Definition 1, in this definition we can also allow Eve to have some information on the
secret w by simply giving this information as input to Eve.

We note that in this definition, asymmetry is essential: it is not enough that Alice outputs “reject”
when ma 6= mb, because if Bob doesn’t detect that he got the wrong message, he may mistakenly rely on
it in subsequent steps (for example, if the message is an extractor seed, and Eve manages to tamper with
it without being detected by Bob, then Bob may extract a key that has no secrecy, and Eve will be able to
read any messages he encrypts with that key). In contrast, since Alice is the one sending ma, she knows
the correct message even if Eve tampers with the protocol and is not detected by Alice.

For the sake of simplicity, we might omit tA, tB from the outputs of Alice and Bob when it is clear from
context what values they take (generally, “accept” if all checks in the protocol are satisfied, and “reject”
otherwise).

3 Building Blocks

We begin by presenting the building blocks needed for our main construction of a privacy amplification
protocol with optimal entropy loss.

3.1 Extractors

Extractors [22] yield a close-to-uniform string from a random variable with high min-entropy, using a
uniformly random seed i as a kind of catalyst. Strong extractors are ones in which the extracted string
looks random even in the presence of the seed. We will use only strong extractors in this paper and thus
sometimes omit the adjective “strong.”

Definition 3. Let Ext : {0, 1}n → {0, 1}l be a polynomial time probabilistic function that uses r bits of
randomness. We say that Ext is an (n, t, l, ε)-strong extractor if for all random variables W over {0, 1}n
such that H∞(W ) ≥ t, we have SD ((Ext(W ;X), X), (Ul, X)) ≤ ε, where X is the uniform distribution
over {0, 1}r.

Universal hash functions are perhaps the simplest extractors, allowing t = ` − 2 + 2 log 1
ε (see [27,

Theorem 8.1], [13, Lemma 4.8], and references therein).
If an extractor works when the guarantee on W is for conditional min-entropy rather than min-entropy,

it is called an average-case extractor. This notation was introduced in [10, Section 2.5]. Vadhan [28,
Problem 6.8] showed that all extractors are average-case extractors with a slight loss of parameters: namely,
any (t, ε)-extractor for t ≤ n−1 is also a (t, 3ε)-average-case extractor. Some extractors—namely, universal
hash function [5]—don’t lose parameters at all in the average case [10, Section 2.5] (in fact, almost universal
hash functions [27] work as well [8]).

For the purposes of this work, we would like to argue that extractor outputs are hard to predict for an
adversary. We first recall the following lemma [15, Lemma 1] on the average entropy of extractor outputs.

Lemma 3. Let Ext be a (n, t, `, ε)-strong extractor and W be a random variable over {0, 1}n with H∞(W ) ≥
t. Then H̃∞(Ext(W ;X) | X) ≥ min

(
l, log 1

ε

)
−1. More generally, if Ext is an average-case (n, t, `, ε)-strong

extractor and H̃∞(W | E) ≥ t, then H̃∞(Ext(W,X) | X,E) ≥ min
(
`, log 1

ε

)
− 1.
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The above lemma says that (assuming log 1
ε > `) an `−bit extractor output has an entropy of ` − 1

bits on average, over all seeds; this implies that it cannot be predicted with probability higher than 2`−1.
In this work, we will sometimes require a stronger guarantee. We will require that the probability, for a
random seed, that an extractor output has entropy less than `− 1 is low. If we tried to use the bound on
the average entropy of Ext(W ;X) | X to directly obtain a bound on the real entropy of Ext(W ;X)|X = x
(for instance, by using the Markov’s inequality), we get that Prx[H∞(Ext(W ;X)) ≤ ` − δ] ≤ 2−δ. This
quantity is too high when δ is low. We show in the next lemma that we can obtain a tighter bound for the
case when the extractor output is short.

Lemma 4. Let Ext be a (n, t, `, ε)-strong extractor and W be a random variable over {0, 1}n with H∞(W ) ≥
t. Then Prx[H∞(Ext(W ;x)) ≤ ` − 1] ≤ 2`ε (note that x is fixed inside the probability statement, so
H∞(Ext(W ;x)) = H∞(Ext(W ;x) | x)).

Proof. For each x let sx denote the extractor output that maximizes Pr[Ext(W,x) = s]. Define the set of

Bad
def
= {x : Prx[Ext(W,x) = sx] ≥ 2−`+1}. Let T = {(sx, x)} where x ∈ Bad. Our goal is determine the

maximum probability that x ∈ Bad.
The first line below follows from the definition of an extractor; the rest follows from it by simple

probability manipulation and the definition of Bad:

Pr[(Ext(W,X), X) ∈ T ] ≤ Pr[(Ul, X) ∈ T ] + ε∑
x∈Bad

Pr[Ext(W,X) = sx, X = x] ≤
∑
x∈Bad

Pr[Ul = sx, X = x] + ε∑
x∈Bad

Pr[Ext(W,X) = sx | X = x] Pr[X = x] ≤
∑
x∈Bad

Pr[Ul = sx | X = x] Pr[X = x] + ε∑
x∈Bad

2−`+1 Pr[X = x] ≤
∑
x∈Bad

2−` Pr[X = x] + ε

2−`+1 Pr[x ∈ Bad] ≤ 2−` Pr[x ∈ Bad] + ε

Pr[x ∈ Bad] ≤ 2`ε.

It then follows from here that,

Pr
x

[H∞(Ext(W ;x)) ≤ `− 1] = Pr
x

[x ∈ Bad] ≤ 2`ε

3.2 Edit distance codes

Codes for insertion and deletion errors were first considered in the work of Levenshtein [16]. The first
polynomial-time encodable and decodable codes that have constant rate and can correct a constant fraction
of errors were given by Schulman and Zuckerman in [26]. For our application, we only require the code to
be polynomial-time encodable and not necessarily polynomial-time decodable (this will be sufficient to get
polynomial-time error detection when m sent in the clear from Alice to Bob, which is all we need). We
also add a requirement that all codewords have the same Hamming weight. Let m be a message of length
λm. For any two strings c and c′ of length λc, let EditDis(c, c′) denote the edit distance between c and c′;
i.e., the number of single-bit insert and delete operations required to change string c to c′ is EditDis(c, c′).

Definition 4. A function Edit(·) : {0, 1}λm → {0, 1}λc, is a (λm, eA, ρ)-error-detecting code for edit errors
if it satisfies the following properties:

• c = Edit(m) can be computed in polynomial (in λm) time, given m, for all m ∈ {0, 1}λm;
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• For any m,m′ ∈ {0, 1}λm with m 6= m′, EditDis(c′, c) > eAλc, where c = Edit(m) and c′ = Edit(m′).

• For any m,m′ ∈ {0, 1}λm, Hamming weight of (i.e., the number of ones in) Edit(m) equals the
Hamming weight of Edit(m′).

ρ = λm
λc

is called the rate and eA is called the relative distance of the code.

Schulman and Zuckerman [26] proved the following:

Theorem 1. There exist constants eA, ρ, such that for any λm, there exists a (λm, eA, ρ)-error-detecting
code for edit errors.

Remark. Schulman and Zuckerman did not have the requirement of fixed Hamming weight, however, such
codes can be constructed easily2 using the same techniques and keeping the rate and the relative distance
constant.

3.3 Interactive authentication protocol

We use the interactive authentication protocol from [15] that Alice and Bob run in order to send bits au-
thentically to each other. Let the security parameter be κ. Let Alice and Bob share an n-bit secret w ∈W
with min-entropy hW . Let the message that Alice wishes to authenticate be m = m1 . . .mλm . Assume that
Bob knows λm and the number of ones in m (say wt(m)). Let Ext be a (λw, t, κ+1, 2−κ−1)-strong extractor
with seed length q bits. 3 That is, Ext takes seeds of input length q, outputs κ + 1-bit strings that are
2−κ−1-close to uniform, as long as the input has sufficient entropy t. (In particular, t ≥ 3κ+ 1 is sufficient
if Ext is a universal hash function.) The authentication protocol from [15], which is a modification of the
scheme from [24], is presented below. Note that this protocol is simply an interleaving of two processes:
Alice is responding to λm random challenges from Bob, one per message bit, with her response varying de-
pending on the value of the bit. Bob is responding to λm+1 challenges from Alice, the same way each time.

Protocol Auth(w,m):

1. Alice sends Bob a fresh random challenge x1 ∈r {0, 1}q (where ∈r is used to denote choosing uniformly
at random).

2. Bob receives x1, sends rx1 = Ext(w;x1), and a fresh random challenge y1 ∈r {0, 1}q to Alice.

3. For i = 1 to λm :

• Alice receives rxi , yi. If rxi 6= Ext(w;xi), she aborts. Otherwise, if mi = 1, she sends to Bob
(1, ryi = Ext(w; yi)), and if mi = 0, she sends to Bob (0,⊥).4 She also sends to Bob a fresh
random challenge xi+1 ∈r {0, 1}q.

• Bob receives mi, ryi , xi+1. If mi = 1 and ryi 6= Ext(w; yi), he aborts. If i = λm, he sets
mb = m1 . . .mλm and aborts unless the number of 1 bits in mb matches what he knows wt(m)
should be. He sends rxi+1 = Ext(w;xi+1) to Alice. If i < λm, he also sends a fresh random
challenge yi+1 ∈r {0, 1}q to Alice. If i = λm, he outputs tB =“accept” and mb.

2Schulman and Zuckerman [26] build a two-layered code by greedily searching a logarithmic-size space for a small code for
edit errors, concatenating those small codewords and then interleaving them with fixed patterns of 0s and 1s. By changing
the greedy search to focus only on the subset of strings whose Hamming weight is half their length, one can get the required
construction.

3In this protocol, which forms the basis of our protocol, the output of the extractor is of length κ. In our final protocol,
we will be using an extractor whose output is of constant length.

4Note that while rxi , ryi are of length security parameter here, in our result we will use a modification of this protocol that
allows us to set their lengths to be constant.
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4. Alice receives rxλm+1
. If rxλm+1 6= Ext(w;xλm+1), she aborts. Else, she outputs tA =“accept”.

(In the protocol above, “Alice/Bob aborts” means she/he sets tA/tB to “reject”.)
We need the following definition before we can describe the intuition behind the security of this au-

thentication scheme.

Definition 5. We say that Eve responded to Alice(Bob) with a fresh random challenge if

• Eve received a fresh random challenge x from Alice(Bob) at some time instance t.

• At some time instance, t+ i, Eve sent Alice(Bob) r such that r = Ext(w;x).

• Between the time instance t and t+ i, Eve did not receive Ext(w;x′) for any x′ from either Alice or
Bob.

In other words, we say that Eve responded to a fresh random challenge sent by Alice (Bob), if Alice
(Bob) sends a challenge and Eve responds to it without having received a response to an extractor challenge
(on any, not necessarily the same, seed) in the meantime. (Note that if Eve sends ⊥ in response to Bob’s
challenge, thereby authenticating a zero bit, it is not considered as a response to a fresh random challenge.)
The intuition for the security of the above protocol is as follows. Note that Eve can insert a 0 bit (this
does not require a response from Alice) and can change a 1 bit to a 0 bit. Since Bob knows λm as well as
wt(m), if Eve were to insert 0 bits or change a 1 bit to a 0, then she must also either remove 0 bits or insert
1 bits. Now, removing 0 bits sent by Alice or inserting 1 bits require responding to a random challenge of
Alice or Bob. By Lemma 3, we have that the rxi and ryi values have entropy κ from Eve’s point of view.
Since the responses (rxi and ryi) have entropy κ bits, Eve cannot respond to a fresh random challenge by
Alice or Bob with probability > 2−κ. Hence, the probability of Eve’s success can be shown to be at most
2−κ.

To analyze the entropy loss in the case of passive Eve (an active Eve can’t learn too much more), we
note that Bob reveals κ + 1 bits of information correlated to w for each of his λm + 1 messages to Alice,
while Alice reveals κ+1 bits of information correlated to w for each of her wt(m) messages to Bob in which
mi = 1. Therefore, the entropy loss of the authentication protocol is (κ + 1)(λm + wt(m) + 1) = Θ(λmκ)
by Lemma 1. Specifically, we apply Lemma 1 where A equals W and B equals all the bits sent by Alice
and Bob; the uniformly random extractor seeds sent by Alice and Bob increase H∞(A,B) and decrease λ
by the same amount, and thus cancel out.

This entropy loss analysis shows that as long as H∞(W ) ≥ t+ (κ+ 1)(λm + wt(m) + 1), (where t is the
threshold entropy that is needed by the specific extractor used for the extraction to be secure), the entropy
in w is sufficient for the extractor to work until the last round, ensuring that the protocol is secure (this
analysis requires an average-case extractor; our analysis later will not have this requirement).

The entropy loss of Θ(λmκ) in the authentication protocol translates to an entropy loss of Θ(κ2) for
the privacy amplification protocol (because the privacy amplification protocol of [15] needs to authenticate
a message—namely, a MAC key—of length Θ(κ)).

4 Main Construction

Our main construction of a privacy amplification protocol is obtained by building an improved authenti-
cation protocol with low entropy loss. In particular, our main theorem is:

Theorem 2. Let κ denote the security parameter. Let Edit(·) be a (λm, eA, ρ)-error-detecting code for

constants 0 < eA, ρ < 1; let λc = λm/ρ. Set τ =
⌈
4(κ+2)
λceA

+ 1
⌉
5. Let Ext be a (λW , t, τ, 2

−2κ)-strong

5λc = λm/ρ, where ρ is a constant by Theorem 1. λm = Θ(κ) and eA is a constant. Hence τ is a constant.
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extractor with seed length q bits, and Ext′ be an average-case (λW , t, κ + τ + λc + 4, 2−(κ+τ+λc+4))-strong
extractor with seed length q′ bits, for some t.

Then there exists an efficient (hW , κ)-interactive authentication protocol for messages of length λm with
entropy loss λc(2τ +1)+ τ +κ+7. The protocol is secure as long as hW ≥ 2λcτ + t+κ+4+max(λc+3, κ)
and κ is sufficiently large (specifically, κ ≥ 4 + τ + log2(2λc + 1)).

We now show why this theorem is sufficient for our result. Kanukurthi and Reyzin [15] use a message
authentication protocol (in a black-box manner) to obtain a privacy amplification protocol whose entropy
loss is the same, up to constant factors, as the entropy loss of the authentication protocol for sending a
message m of length λm = Θ(κ). In this work, we use the improved protocol given by the theorem above
as a substitute for message authentication protocol Auth used in [15]. This, together with the fact that
eA, ρ, and τ are constants, as well as the fact that there exist (n, t, `, ε) extractors (such as universal hash
functions) for which t = Θ(`+ log 1

ε ) gives us the following corollary to Theorem 2:

Corollary 1. For a sufficiently large6 security parameter κ, there exists an efficient (hW , λk, 2
−κ, ε) privacy

amplification protocol with entropy loss O(κ+ log 1
ε ), as long as hW = Ω(κ+ log 1

ε ).

To obtain a privacy amplification protocol from an authentication protocol, we follow the approach
of [24]. Here we provide a very high-level intuition. Alice uses the authentication protocol to simply
authenticate a seed to an extractor, which is then used to extract the final key. Since an extractor seed
(x) can be of length κ, using the constant rate codes of [26] our authentication protocol has entropy loss
that is linear in κ. This translates into a privacy amplification protocol with the same entropy loss. While
this is the high-level intuition, there is a subtle challenge. The adversary may learn information about
the final key by making queries to Alice and Bob which depend on x, thus making this approach insecure.
To address this issue, the protocol of [24] (and [15] which is a modification of the former), requires a
few additional steps. Alice uses this extracted key to then authenticate (using an information-theoretic
one-time MAC), a fresh extractor seed. The key extracted from this seed becomes the final key which they
agree upon. It is important to note that these addition steps all contribute to an entropy loss of only O(κ).
(See [24, 15] for further details.) This results in a total entropy loss that remains linear in the security
parameter.

The rest of the paper will focus on proving Theorem 2. Below, we present our improved authentication
protocol. We present the proof of security and entropy loss for our authentication protocol in Section 5.

Improved Authentication Protocol We start with the authentication protocol described in Section 3.3
and decrease the length of the extractor output in each round to be the constant τ defined in the statement
of Theorem 2 (instead of κ + 1). This gives us an Θ(λm) entropy loss for the authentication protocol as
desired. Unfortunately, the security of this protocol no longer holds. The security proof in [15] shows
that in order to get Bob to accept any message m′ 6= m, Eve must respond to at least one fresh random
challenge from either Alice or Bob. The probability with which Eve could respond to a fresh random
challenge from either Alice or Bob is 2−τ+1, which is not low enough if τ is a constant.

To rectify this problem, we ensure that in order to make Bob accept a different message, Eve must
respond to many (namely, Θ(κ)) fresh random challenges, which translates into a success probability of
only 2−κ as desired. To do so, we have Alice transmit the message c = Edit(m) (see Definition 4) and
Bob verify that c is a valid codeword (or, equivalently, since we do not require that codeword validity be
efficiently verifiable, Alice can send m to Bob in the clear and Bob can re-encode it to check if he gets c).

6 We note that this constraint on κ, which comes from the statement of Theorem 2, is very minor. Indeed, λm is about
2κ, because m is a key for the message authentication code with security κ. Furthermore, 1/ρ is under 54, because the
code of [26] has rate at least 1/27, and balancing the codeword increases its length by a factor of at most 2. So λc is

about 108κ, and τ = 4(κ+2)
λceA

+ 1 is about 9 for eA obtained from [26]. So, using the codes from [26], the constraint becomes

κ ≥ 4 + 9 + log2(108κ+ 1), or κ ≥ 25; better error-correcting codes for edit distance will lower this constraint.
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We now describe the authentication protocol precisely. Let the message that Alice wishes to authenti-
cate be m ∈ {0, 1}λm .

Protocol NewAuth(w,m):

A. Alice sends Bob the message m. Let the message received by Bob be m′.

B. Alice and Bob execute protocol Auth(w, c) for c = Edit(m), using extractor Ext for all the responses,
except that Bob does not output “accept” in the last round of Auth even if all the checks pass.
Instead, the parties perform the following additional steps.

C. Let the string received by Bob be denoted by c′. Bob computes Edit(m′). If c′ 6= Edit(m′), then Bob
aborts. Otherwise, Bob performs a “liveness test” on Alice by sending her a fresh random challenge
ylive ∈ {0, 1}q

′
.

D. Alice, after her last step, if she has not yet aborted, sends Bob a response rylive , computed via
rylive = Ext′(w; ylive).

E. Bob checks that the received rylive = Ext′(w; ylive). If not, he aborts. If the check passes, he outputs
tB=“accept” and mb = m′.

Intuition The key to our improvement is to show that protocol Auth gives Eve an edit channel in the
following sense. We will show that the success probability of Eve in changing the message c to a message
c′ is exponential in the edit distance between these two messages; since this distance must be greater than
eAλc for Bob to accept at the end, Eve will fail if eAλc is high enough. Success probability also depends
exponentially on τ , with higher τ giving lower success probability.

Indeed, consider what Eve can do. She can avoid delivering a message from Alice to Bob (this corre-
sponds to deleting a bit from the c), but then she would have to respond to Alice’s fresh random challenge
contained in that message on her own to avoid detection; the probability of guessing a correct response to
such a challenge is at most 2−τ+1. She can also change a message from Alice that conveys a “0” bit into
a message that conveys a “1” bit, but that would require coming up with a response to Bob’s challenge,
which again can happen with probability at most 2−τ+1. If Eve attempts to do these things multiple times,
the freshness of random extractor seeds (almost) guarantees independence and the joint probability of Eve
succeeding in all of these events is (almost) the product of the probability of her success in each of the
individual events. In addition, she can also perform actions where she does not need to reply to extractor
queries on her own. Indeed, she can “insert” “0” bits by (easily) responding to Bob’s challenges on her
own and can also change a “1” to a “0”, but since the number of 1s and the total length are fixed, she will
have to pay elsewhere with deletions and changes of “0” to “1”.

Final “Liveness Test” So far our argument only gurantees that either Alice or Bob will abort. However,
the robustness property of an authentication protocol (as defined in Definition 2), needs to ensure that
w.h.p Bob doesn’t accept an incorrect message mb. In particular, we say that Eve wins only if (mb 6=
ma ∧ tB = “accept”). If our protocol didn’t have a final liveness test (where Bob receives a response to a
random challenge from Alice), it is possible that Alice aborts and Bob doesn’t detect it (i.e., tB = “accept”,
even when mb 6= ma). Therefore, the final “liveness test” is needed to make sure that Bob detects if Alice
aborts and outputs tB = “‘reject”. (As pointed out in Footnote 1, this definition is a corrected version of
the definitions which appeared in prior works such as [11, 15, 6]. Therefore, unlike in those works, we use
this final liveness test to satisfy it.)

We translate this intuition into a proof in the next section.
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5 Proof of the Main Theorem

In this section, we give a high-level overview of the proof of our main theorem. Namely we show that
the new authentication protocol we presented in Section 4 is a secure authentication scheme with Θ(λm)
entropy loss, where λm is the length of the message being authenticated.

We prove this in two broad steps. First we show that the authentication protocol gives Eve an edit
distance channel in the following sense: Eve can modify several bits of the message that Alice authenticates
to Bob. Second, we argue irrespective of what algorithm Eve uses or what modifications she does, the likely
edit distance between the two messages can be bounded in terms of the security parameter, because the
more bits Eve modifies, the less likely she is to be to able to answer all the required challenges successfully.
As long as the code we use can detect changes up to this distance, Eve will fail.

Technical Challenges As mentioned before, the security proofs of [24, 15] rely on showing that for Eve
to modify the message that Alice sent, she would have to respond to at least one fresh random challenge
on her own. The proofs use induction on the length of the message received by Bob so far and show that
at any stage either Eve has responded to a random challenge on her own or the string received by Bob is
essentially the same as what Alice had sent.

We, on the other hand, cannot use such an inductive proof on the length of the message for the following
reason. The statement we want to make is not about whether Eve responded to a random challenge on her
own or not. Instead, we would want to keep track of how many random challenges Eve responded to and
precisely study the effects of responding to these challenges on the edit distance of the messages. Since the
entire protocol is just an interleaving of challenges and responses sent back and forth, categorizing points
in the protocol where Eve responded to a fresh random challenge on her own becomes a delicate task. In
fact, it turns out that viewing the protocol in terms of the message received by Bob (or Alice) as was done
in [24, 15] does not capture all the information needed to categorize the points where Eve had to respond
to a random challenge.

Instead, we need to use a new proof technique, in which we view the entire protocol from Eve’s
perspective. In fact, we represent Eve’s view of any run of the authentication protocol by a string E.
This string will allow us to capture all the information including the order in which Eve interacted with
the honest parties. This turns out be crucial in categorizing points in the protocol in which Eve had to
respond to a random challenge. Once we do this, we use combinatorial arguments to relate the number
of random challenges that Eve responded to on her own to the edit distance between the messages of the
honest parties. Finally, we compute the probability with which Eve can respond to all the fresh random
challenges so that neither Alice nor Bob rejects (the last-round liveness test ensures that if Alice rejects,
then Bob does, too).

Organization In Section 5.1 we will introduce the notation for the string representation E of the protocol
from Eve’s point of view. Using that notation, in Section 5.3.1 we will characterize the points in the protocol
(corresponding to literals in the string E) where Eve must respond to a fresh random challenge. We call
these points as costly literals. Now, if we could compute the probability with which Eve can respond to
every fresh random challenge, and relate the number of costly literals in E to the edit distance between the
two messages c and c′, then we will be done. We do precisely this. In Section 5.3.2, we present the details
of relating the edit distance between c and c′ to the number of costly literals in the string E, showing
that a high edit distance (required by the edit distance codes if c 6= c′, because Bob verifies that c′ is a
codeword) implies a high number of costly literals in E. Finally, we compute the probability with which
Eve can respond to all fresh random challenges (which correspond to the costly literals in E) in Section
5.3.3.
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Notation Let A be an alphabet. Let a ∈ A be a literal from the alphabet. When we write a∗, we mean
all strings of the form aa · · · a︸ ︷︷ ︸

i

, where i ≥ 0 is an integer. When i ≥ 1, we write a+. Let x1 and x2 denote

any two strings. We write x1||x2 to denote the concatenation of the two strings.

5.1 String representation of the authentication protocol

We now present our proof ideas in more detail. As mentioned before, we view the entire protocol as it
takes place from Eve’s perspective. Alice and Bob no longer communicate with each other; they always
communicate with Eve. (For example, if Alice sends a message to Bob that Eve doesn’t modify, we view
it as Alice sending a message to Eve and Eve forwarding it on to Bob.)

At the beginning, Alice sends Eve a challenge x1. Subsequently, in any round i, 1 ≤ i ≤ λc, Eve’s
interaction with Alice will consist of Eve sending a challenge yi and response to the challenge xi issued by
Alice in the previous message (which should be equal to Ext(w;xi)—else, Alice will abort). Alice then sends
Eve a response to yi (namely, (1,Ext(w; yi)) or (0,⊥)), as well as the next challenge xi+1. For i = λc + 1,
Eve sends Alice the response to the challenge xλc+1 and as well as the challenge ylive, a seed to Ext′(·)
(where Ext′(.) is as defined in Theorem 2). We will call this two-message interaction that starts with a
message from Eve to Alice and then from Alice to Eve as a roundtrip between Eve and Alice. To be more
concise, we will use the literal ‘a’ to denote this roundtrip that takes place between Eve and Alice. Note
that the initial sending of x1 by Alice is not a roundtrip and is not represented by a literal.

Let us now consider Eve’s interaction with Bob. In any round 1 < i ≤ λc, Eve’s interaction with Bob
starts with Eve sending a challenge xi and a response to the challenge yi−1 issued by Bob in the previous
round, which should be equal to (1,Ext(w; yi−1)) or (0,⊥) (else, Bob will reject). Bob then sends Eve a
challenge yi and a response to the challenge xi, namely, Ext(w;xi). For i = 1, the interaction is the same,
except that Eve does not provide a response in her first message, because there is no yi−1. For i = λc + 1,
the interaction is the same, except that Bob provides ylive, a seed to Ext′(·), instead of a seed to Ext(·). In
the last round of interaction between Eve and Bob, she simply sends him a response rylive and gets nothing
in response (but Eve still has to make sure the response is valid, because otherwise Bob will abort). We
denote each such roundtrip between Eve and Bob by ‘b’.

The notation a and b will be important for our proof. Note that we do not index a or b by the round
i. This is because that information will largely be irrelevant to us. However, in any roundtrip with Alice,
Alice is authenticating some bit (either 0 or 1) and Bob is receiving some bit (either 0 or 1). This allows us
to have two different literals, a0 and a1 depending on which bit Alice is authenticating in that roundtrip.
Likewise, we will also use b0 and b1 to denote Eve’s roundtrips with Bob depending on which bit Bob
is receving in that roundtrip. If we do not subscript the a or b literals, it means that the claim holds
irrespective of the bit being authenticated.

Certain rounds of interaction deviate from the usual interactions. So we will distinguish them by using
specially subscripting the corresponding a and b literals. In the first interaction between Eve and Bob,
he receives just a challenge from Eve and no response to any challenge. (He also sends a challenge yi
and a response rx1 = Ext(w, x1).) So we will distinguish the first interaction between Eve and Bob from
subsequent interactions by denoting it as bch. Likewise, in the last interaction between Eve and Alice, Alice
replies with a long extractor response, i.e., with rylive = Ext′(w, ylive). We will denote this last interaction
between Eve and Alice by along. Finally, in the last round of interaction between Eve and Bob, Bob receives
only a response from Eve and no challenge (to which Bob would have to respond). So we will denote this
last interaction between Eve and Bob by bre. (Note that Eve’s interaction with Bob also deviates in the
second-to-last round (i.e., λc + 1) because Bob sends Eve a seed to Ext′() rather to Ext; but we will not
require special notation for this round.)

Using this notation, we can write out the entire protocol from Eve’s point of view by simply creating
a string (call it E) denoting Eve’s actions. As an example, if Eve is passive and Alice is authenticating
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c = c1, c2, · · · , cλc to Bob, then E = bch, ac1 , bc1 , ac2 , bc2 , · · · , acλc , bcλc , along, bre. Note that since Eve might
be active, E will not necessarily take the structure as above. Instead E can be any interleaving of a and b
literals.

As we already said, a and b literals, except bre, represent roundtrips; thus, if Eve sends a message
that causes Alice or Bob to abort, the string E does not contain the corresponding literal. Moreover,
even though bre is not a roundtrip, E will not contain bre if Bob rejects. Thus, the presence of along in E
indicates that Alice accepts and the presence of bre in E indicates that Bob accepts.

Observe that no matter what Eve does, her entire interaction can be represented by a string E. Indeed,
all Eve can do is send challenges and extractor responses to Alice and Bob, interleaving them arbitrarily.
We can assume that Alice and Bob respond instantaneously (because it only makes Eve stronger if she
does not have to wait), so we do not need model a situation in which Eve has two simultaneous round trips
with Alice and Bob. Therefore, we can always write down the string E by looking at one round-trip at a
time from Eve’s point of view. We next give a high-level outline of how to use the string E to prove that
Protocol NewAuth is secure.

5.2 Outline of the Proof

We first recall some notation. We assume that, at the start of the protocol, Alice sends Bob the message
m that she wishes to authenticate. Let Bob receive m′. Alice runs protocol NewAuth to authenticate
the codeword, c = edit(m). c′ denotes the codeword received by Bob. Our ultimate goal will be use
the string representation of the authentication protocol to argue that Eve′s probability of attacking the
authentication scheme is low. In particular, we wish to show that the event (m′ 6= m ∧ tB = “accept”)
occurs with a low probability.

To show this, we need to introduce the notion of a “well-formed” string representation. We call the string
E “well-formed” if it ends with along, bre. We will be able to prove that the event (m′ 6= m∧tB =“accept”∧E
is well-formed) occurs with probability of at most 2−(κ+1). We will also prove that the event (tB =“accept”
∧E is not well-formed) occurs with probability at most 2−(κ+1). It is easy to see that proving these two
statements suffices to prove our main theorem by the union bound.7

5.3 Eve’s success when E is well-formed

For this section we consider only the case when E is well-formed and analyze Eve′s probability of success
in this situation. We handle the scenario where E is not well-formed in Section 5.4.2.

Let α(E) be the function that outputs the subscripts of the a literals (other than along) read out in
order. Then it is easy to see that α(E) represents the message that Alice thinks she sent. Likewise if
β(E) is a function that outputs the subscripts of the b literals (other than bch and bre) read out in order,
then β(E) is simply the message received by Bob. Observe that if Eve is passive, E will take the structure
described above and α(E) = β(E) (which is consistent with the fact that Alice’s and Bob’s messages are
equal). Note that the literals along, bch, bre do not form a part of the messages α(E), β(E).

Recall that we would like to use the string representation E to categorize those points in the protocol
where Eve would have to respond to a fresh random challenge. This brings us to the notion of costly
literals.

7It is tempting to think that the union bound is not necessary and we could therefore slightly improve our parameters.
Indeed, we could avoid the union bound if we bound the following conditional probabilities by 2−κ: Pr[m′ 6= m∧tB =“accept”| E
is well-formed] and Pr[tB =“accept” | E is not well-formed]. If Eve chooses independently of anything in the protocol whether
to try for a well-formed E or a not well-formed E, then we can bound these conditional probabilities in the same way as we
bound the unconditional ones. However, since we allow Eve to be adaptive, she can decide whether to aim for a well-formed
E depending on how the protocol proceeds: for example, she can choose to go for a not-well-formed E only in the rare cases
when she can be confident of her success. Thus makes bounding the conditional probability impossible. The necessity of the
union bound here is the same as in [15].
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Definition 6. A literal in E is costly if in the real run of the protocol (that E represents), either Eve
would have to respond to a fresh random challenge (as defined in Definition 5) on her own in the roundtrip
corresponding to the literal, or Alice or Bob would abort.

5.3.1 Characterizing costly literals in string E

In this section, we precisely characterize the literals in E that are costly. We first prove the following
lemma.

Lemma 5. The following statements about costly literals are true:

A. Any a-literal (including along) is costly if it is not immediately preceded by a b-literal in E.

B. The last literal in the following sequence is costly: ba∗0b1. Equivalently, a b1-literal is costly if there
are no a1-literals between it and the closest preceding b-literal. (Note that the sequence starts with
bch, so the closest preceding b-literal is well defined.)

Proof. We will consider each case of the claim separately.

A. Indeed, consider an a-literal that is not preceeded by a b-literal. It requires Eve to respond to Alice’s
outstanding challenge, issued in the previous a-literal (or, for the first a-literal, to x1). By definition
of fresh random challenge (Definition 5), this challenge is fresh, because Eve did not interact with
either party after receiving it, because there is no a- or b-literal between the current one and the time
the challenge was issued.

B. Indeed, consider such a b1 literal. It requires Eve to respond to Bob’s outstanding challenge, issued in
the previous b literal. Eve receives no extractor outputs for a0-literals. And, because E is well-formed,
along cannot precede b1, Therefore, by Definition 5, this challenge is fresh.

5.3.2 Bounding edit distance in terms of the number of costly literals

For this section, we can forget about the details of the protocol altogether and focus on the properties
of the string E. We wish to show that a high edit distance between α(E) and β(E) cannot be achieved
without a lot of costly literals. In other words, we want to show that if there are few costly literals, then
the edit distance is small. We will show this by constructing a method to convert α(E) into β(E) such that
the total number of edit operations (insertions and deletions) performed is no greater than some constant
times the number of costly literals. We will do this in two steps:

A. First, we will present an algorithm that converts the string E into a new string E′ with the following
properties:

• Let c′ = c′1, · · · , c′λc denote β(E) i.e., the string received by Bob.

• Then E′ = bch, ac′1 , bc′1 , · · · , ac′i , bc′i , · · · , ac′λc , bc′λc , along, bre and, in particular, β(E′) = α(E′) = c′.

• The edit distance between E and E′ is bounded by a constant times the number of costly literals
in E.

B. Finally, we show that if E and E′ are well-formed strings that do take the structure as above, then
the edit distance between c and c′ is equal to the edit distance between E and E′.
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The next theorem and its corollary formally state and proving the relation between the edit distance
and the number of costly literals in E. We will conclude this section by showing a lower bound on the
number of fresh random challenges that Eve must respond to in order to succeed in modifying the message.

Let the number of costly literals in E be at most L. Then the following theorem states that the edit
distance between the message authenticated by Alice and received by Bob is at most 4L.

Theorem 3. Let E be a string consisting of a0, b0, a1, b1 literals, as well as the special literals along, bch, bre
that each appear only once. Assume that the number of b0 literals is equal to the number of a0 literals, the
number of b1 literals is equal to the number of a1 literals, that the first b literal is bch, and that the string
ends in alongbre. Assume the number of costly literals in E be at most L. Let E′ be the string defined above.
Then the edit distance between E and E′ is at most 4L (and, by definition of E′, α(E′) = β(E′) = β(E)).

Proof. To convert E into E′,

A. We first scan E and mark what we call the edit literals in E. These edit literals are marked so that
the edit distance between E and E′ is at most number of edit literals in E.

B. Now, we need to show that if the number of costly literals is L, then the number of edit literals is at
most 4L. It will be easier to prove the above statement by categorizing edit literals into (disjoint sets
of) good edit literals and bad edit literals. Our proof will be in three steps:

(a) Using notation #bad to denote the number of bad edit literals and #edit to denote the number
of edit literals, we first show that #edit ≤ 2×#bad (Lemma 6).

(b) Next, letting #costly to denote the number of costly literals, we will show that #bad ≤
2×#costly = 2L (Lemma 7).

(c) Finally, combining the above two lemmas, we get #edit ≤ 4× #costly = 4L, which is the
required statement.

We now proceed to give the details. We begin by explain what we do with the the string once the edit
literals are marked. Next, we show how to mark literals as good edit literals and bad edit literals.

Definition 7. Edit Literals: When a literal in E is marked as an edit literal, it corresponds to the following:

• If an ap-literal (where p ∈ {0, 1}) is marked as an edit literal, then to convert E into E′, the edit
ap-literal is deleted from E.

• When a bp-literal (where p ∈ {0, 1}) is marked as an edit literal, then when going from E to E′, an
ap literal is inserted just before the bp literal.

Clearly E can be converted to E′ by at most as many insertion and deletion operations as the number
of edit literals, and hence the edit distance between E and E′ is at most number of edit literals. As we
describe next, to mark the edit literals in E, we first split E into disjoint substrings and mark the edit
literals in each substring.

Marking Bad/Good Edit Literals in E. To do this, let E be written as the concatenation of k strings;
i.e., E = E1||E2|| · · · ||Ek. Each Ei consists of a contiguous sequence of one or more a literals followed by
one or more b literals (except for E1, which may not have any a literals). For example,

E = a1, a1, a1, bch, b1︸ ︷︷ ︸
E1

, a0, a1, b0︸ ︷︷ ︸
E2

, a1, . . .︸ ︷︷ ︸
E3

, . . . , . . . , b0︸ ︷︷ ︸
Ek−1

, a1, along, bre︸ ︷︷ ︸
Ek
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or
E = bch︸︷︷︸

E1

, a1, a1, a1, b0, b1︸ ︷︷ ︸
E2

, a0, . . .︸ ︷︷ ︸
E3

, . . . , . . . , b0︸ ︷︷ ︸
Ek−1

, a1, a0, along, bre︸ ︷︷ ︸
Ek

.

Note that E is well-formed, so Ek always ends with alongbre.
We now describe the algorithm to mark literals in each substring Ei as (good/bad) edit literals. Note

that we never mark the literals along, bch, bre as edit literals.

Algorithm MarkEdits

(1) E1 has the form a∗bchb
∗. Mark all the literals in it except bch as bad edit literals.

(2) For i > 1, if Ei is not the last substring, then it has the form a∗apbqb
∗ (where p ∈ {0, 1}, q ∈ {0, 1}).

Call the last a literal and the first b literal in Ei “pivots” and proceed as follows:

(a) if p = q, mark every literal in Ei other than the pivots as a bad edit literal.

(b) if p = 1, q = 0, mark every literal in Ei other than the a-pivot as a bad edit literal. In addition,
mark the a-pivot as a good edit literal.

(c) if p = 0, q = 1: If Ei is of the form a∗a1a
∗a0b1b

∗, make the a literal subscripted by 1 as the pivot
(instead of the original a-pivot) and mark all literals other than the pivots as bad edit literals.
(There may be many different a1 literals. Which specific one we choose as the pivot is immaterial.)

(d) if p = 0, q = 1: If Ei is not of the form a∗a1a
∗a0b1b

∗ (i.e., Ei is of the form a∗0a0b1b
∗), mark every

literal in the Ei other than the a-pivot as a bad edit literal. In addition, mark the a-pivot as a
good edit literal.

(3) The last Ek has the form a∗alongbre. Mark all a literals as bad edit literals, except along.

By inspection, after the edit literals are marked and the string is derived by deletion and insertion
according to the markings, the result is E′. It remains to analyze the number of edit literals.

Lemma 6. #edit ≤ 2×#bad.

Proof. Let #good denote the number of good edit literals. Since the set of good and bad edit literals are
disjoint, it holds that #edit = #good+ #bad. So it suffices to show that #good ≤ #bad. It is easy to see
that the only times we mark a literal as a good edit literal are in cases 2b and 2d. In both cases, the good
edit literal is the a-pivot; and corresponding to it there is a unique b literal (namely the b-pivot) that is
marked as bad.

Lemma 7. #bad ≤ 2×#costly.

Proof. To prove this lemma, we will categorize our bad edit literals into badb0 , badb1 , and bada disjoint sets
of literals. To show that #bad ≤ 2×#costly, we need to show that badb0 +badb1 +bada ≤ 2×#costly. We
will prove this in two steps. In Lemma 8 we will show that #bada + #badb1 = #costly. Then, in Lemma
9, we will show that #badb0 ≤ #bada + #badb1 .

Lemma 8. #bada + #badb1 = #costly.

Proof. We will prove the lemma by proving that it holds for every substring Ei defined as above.
First consider i = 1. The substring E1 is of the form a∗bchb

∗. In this case, all the a literals are marked
as bad edit literals, and, indeed, they are all costly by Lemma 5, because none of them is preceded by a b
literal. Similarly, all b1-literals are marked as bad edit literals, and, indeed they are all costly by Lemma 5,
because there are no a literals between them and b-literals that precede them.
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If 1 < i < k, then Ei of the form a∗apbqb
∗ (where p, q ∈ {0, 1}), then Algorithm MarkEdits marks all

the a-literals except the a-pivot as a bad edit literal. And, indeed, all but one of the a-literals is costly by
Lemma 5, because only the first is immediately preceded by a b literal. Hence, the number of bad and costly
a-literals is the same. If the first b-literal in Ei is b1, then it is marked as bad by Algorithm MarkEdits
whenever there is no a1 literal in Ei, which is exactly when it is costly by Lemma 5. All the other b1 literals
are always marked as bad and, indeed are costly, because there are no a literals immediately preceding
them.

Finally, Ek of the form a∗alongbre, then all a-literals but the first one are costly by Lemma 5, and all
but the last one are marked as bad, so again the number of costly literals is equal to the number of bad
ones.

Lemma 9. #badb0 ≤ #bada + #badb1.

Proof. Recall (from right before the statement of Theorem 3) that the number of 0s in α(E) is equal to
the number of 0s in β(E). Therefore, the number of b0 literals is the same as the number of a0 literals. By
inspecting the cases in Algorithm MarkEdits, we see that b0 literal is marked as bad if and only if it is not
preceded immediately by an a0 literal. Call an a0 literal displaced if it is not immediately succeeded by a
b0 literal. Because the number of a0 literals is equal to the number of b0 literals, the number of displaced a0
literals is equal to the number of bad b0 literals. We will now analyze the number of displaced a0 literals.

Consider a displaced a0 literal. Because E is well-formed, it must be immediately succeeded by an a
literal, a bch literal, or a b1 literal. In the first two cases, it will be marked as bad. In the third case, it will
be marked as bad (by Step 2c of Algorithm MarkEdits), or the following b1 literal will be marked as bad
(by step 2d of Algorithm MarkEdits).

Thus, every displaced a0 literal is either marked as bad, or corresponds to a bad b1 literal. Hence, the
number of displaced a0 literals is at most #bada + #badb1 .

We combine Lemma 8 and Lemma 9 to get Lemma 7. From Lemma 7 and Lemma 6 we obtain
Theorem 3.

Theorem 3 states if E has at most L costly literals, then the edit distance between E and E′ is at most
4L. Ultimately, we need a bound on the edit distance between α(E) and β(E). We show it in the following
Corollary.

Corollary 2. Let E be a string consisting of a0, b0, a1, b1 literals, as well as the special literals along, bch, bre
that each appear only once. Assume that the number of b0 literals is equal to the number of a0 literals,
the number of b1 literals is equal to the number of a1 literals, that the first b literal is bch, and that the
string ends in alongbre. Assume that the number of costly literals in E is at most L. Then the edit distance
between α(E) and β(E) is at most 4L.

Proof. The procedure described in Theorem 3 transforms E into E′ by using insert and delete op-
erations only on the a literals, leaving b literals untouched. Therefore, edit-distance(α(E), α(E′)) =
edit-distance(E,E′) ≤ 4L. And α(E′) = β(E′) = β(E), so edit-distance(α(E), β(E)) = edit-distance(E,E′).
And, by Theorem 3, edit-distance(E,E′) ≤ 4L.

Corollary 3. Let Alice and Bob execute protocol NewAuth in the presence of an active adversary Eve.
Assume that the string representation of the authentication protocol, E, is well-formed. (This automatically
implies that Alice and Bob accept the protocol transcript.) If the message mb output by Bob is not the same
as the message ma sent by Alice, then Eve must have responded to at least eAλc/4 fresh random challenges
on her own.
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Proof. Since Bob accepts, it must be that c′ is a valid codeword, which means that Bob received the
same length string with the same number of zeros and ones as Alice sent (because the edit distance
code Edit contains only fixed-length, fixed-Hamming-weight strings). Therefore, E satisfies the conditions
of Corollary 2. Assume that Eve responded to fewer than eAλc/4 fresh random challenges. Then, by
Definiton 6, E has fewer than eAλc/4 costly literals, and thus by Corollary 2, the edit distance α(E) and
β(E) is less than eAλc. But α(E) and β(E) are distinct valid codewords, which contradicts the properties
of the edit distance code from Definition 4.

5.3.3 Relating the number of fresh random challenge responses to the probability of Eve’s
success

So far we have shown that the edit distance between the message authenticated by Alice and received by
Bob gives us a lower bound on the number of fresh random challenges (or extractor seeds) that Eve needs to
respond to (with extractor outputs) on her own. In this section, our goal will be to get an upper bound on
the probability with which she can succeed in responding to all of those random challenges. Note that she
needs to respond to all of them correctly so that neither Alice nor Bob abort the protocol, because if Alice
aborts, then the last-round liveness test will ensure that Bob aborts, too, as we will show in Section 5.4.2.

Observe that in each round of Protocol NewAuth, Eve receives a fresh random challenge (i.e., an
extractor seed) from one of the honest parties (say Alice). Eve can see the seed and then decide whether
she wants to respond with a guess for the extractor output on her own or whether she wants to talk to Bob
first (she can send Bob the same seed or modify it). She has this freedom even if she knows in advance
the modifications she wants to make to the message being authenticated. Indeed, consider, for example, a
portion of the protocol where Alice is authenticating a sequence of 0s to Bob. Suppose that Eve would like
to delete one of these 0s. In this case, it doesn’t matter to her which 0 she is deleting and, therefore, which
challenge she choses to respond to. She could first see the challenge seed and respond to it on her own
only if the entropy of the extractor conditioned on that specific seed is lower than the average entropy
of an extractor output. This leads us to a subtle concern that we need to address: even though Lemma 3
guarantees that the entropy of an extractor output is high on average, Eve could improve her chances by
adaptively choosing which extractor seed she wishes to respond to. We handle this issue by resorting to
Lemma 4 which bounds the probability with which an extractor output evaluated on a randomly chosen
seed has entropy less than τ − 1. We use this lemma to first bound the probability that Eve will receive
even one extractor seed (in the entire run of Protocol NewAuth) for which the output entropy is less than
τ − 1.

Once this event doesn’t happen (and, therefore, the entire protocol doesn’t contain a single bad seed),
we know that the extractor outputs have high entropy. We now give a high level overview of how to bound
the probability with which Eve succeeds in responding to multiple random challenges assuming that there
are no bad seeds. Since the extractor output is τ bits long, Eve succeeds in responding to a single random
challenge with probability at most 2−(τ−1). Then we would expect that the probability that Eve responds
to µ fresh random challenges (chosen independently) would be at most 2−µ(τ−1). Unfortunately, for reasons
explained after the proof of the next lemma, that’s not quite the case, but we can get something close: we
show that the probability that Eve responds to µ fresh random challenges on her own is 2−µ(τ−1) + 2−κ−3,
if the average min-entropy of w at the last extraction is at least t + 2κ (where, recall, t is the entropy
needed for the extractor to work).

We now proceed with the formal argument. Consider a run of Protocol NewAuth, excluding the last
message rylive from Alice to Bob. We know that Eve receives one extractor seed (challenge) in each round
of interaction with an honest party. Among all the extractor seeds she receives, we denote the random
challenges to which she chooses to respond on her own (rather than by first talking to the other party) by
z1, · · · , zµ. Let Sj = 1 if Eve’s response to zj is correct, and 0 otherwise. Note that if Sj = 0, then Alice
or Bob (whoever sent zj) will abort. Once both parties abort, there are no more random challenges, so µ
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may be smaller or larger depending on how successful Eve is. For ease of notation, let Sj =⊥ for j > µ.
Let Tr denote all the messages Eve receives from Alice and Bob, up to, but not including, rylive (if Alice
or Bob aborts before rylive is sent, then Tr includes information about when the abort happens). We now
prove the following lemma.

Lemma 10. Assume that H̃∞(W | Tr) ≥ 2κ+t. Then, for any µ ≤ 2λc+1 , Pr[S1 = S2 = · · · = Sµ = 1] ≤
2−µ(τ−1) + 2−κ−3 (where the probability is taken over the choice of w and randomness of the challenges.)

Proof. Let Tri be the first i messages in Tr (if both parties abort before sending i messages, then Tri is
undefined). Note that H̃∞(W | Tri) ≥ 2κ+ t. Let Gi be the event that Tri is such that H∞(W | Tri) ≥ t.
Then the complement Ḡi is the event that the entropy loss due to the protocol communication is greater
than the expected value by at least 2κ bits. By Lemma 2, Ḡi happens with probability at most 2−2κ.

Let Hi be the event that the random challenge z issued in the ith message is such that H∞(Ext(W ; z) |
Tri) ≥ τ − 1. If Gi holds, then W has sufficient entropy conditioned on Tri and z is uniform (because
Gi does not bias z, it only potentially biases challenges before z, since responses to them are in Tri).
Hence we can apply Lemma 4 with ` = τ and ε = 2−2κ to get that Pr[H̄i | Gi] ≤ 2τ−2κ. Therefore,
Pr[H̄i ∪ Ḡi] = Pr[H̄i ∩Gi] + Pr[Ḡi] = Pr[H̄i | Gi] Pr[Gi] + Pr[Ḡi] ≤ 2τ−2κ + 2−2κ.

For ease of notation, for i greater than the number of messages in Tr, define Hi and Gi to be always
true. Let G be

⋂
i(Gi ∩Hi). That is, G is the event that Tr is such that H∞(W | Tr) ≥ t, and, for every

random challenge in Tr, the extractor response conditioned on the transcript-so-far has entropy at least
τ − 1. Thus, for each j, Pr[Sj = 1 | G] ≤ 2−τ−1, because Eve has to guess a value with entropy at least
τ − 1.

Because Alice and Bob issue at most 2λc+1 challenges (not including ylive), the probability that G does
not hold is Pr[Ḡ] ≤ (2λc + 1)(2τ−2κ + 2−2κ) by the union bound. By the constraint on κ in the statement
of Theorem 2, we know that (2λc + 1)2τ ≤ 2κ−4, ensuring that Pr[Ḡ] ≤ (2λc + 1)2τ (2−2κ + 2−2κ) ≤
2κ−4 · 2−2κ+1 = 2−κ−3.

Therefore,

Pr [S1 = 1 ∩ S2 = 1 ∩ · · · ∩ Sµ] ≤ Pr [S1 = 1 ∩ S2 = 1 ∩ · · · ∩ Sµ = 1 | G] Pr[G] + Pr[Ḡ]

≤ Pr[S1 = 1 | G]× Pr[S2 = 1 | S1 = 1 ∩ G]× · · ·
· · · × Pr[Sµ = 1 | S1 = · · · = Sµ−1 = 1 ∩ G] + 2−κ−3

≤ 2−µ(τ−1) + 2−κ−3 .

The last inequality holds because the transcript, by definition, includes information on whether Alice and
Bob abort, and therefore, information on whether each Sj is 0, 1, or ⊥. Therefore, adding the values of
S1, . . . , Sj−1 to the condition does not change the fact that the answer to the challenge zj has entropy at
least τ − 1, because we are still conditioning on nothing more than a transcript from G.

Need for Extra Buffer of 2κ Entropic Bits In the proof above, it may seem unclear why we need to
impose a restriction on the starting entropy being 2κ bits greater than needed by simple average-entropy
arguments. On an intuitive level, it might seem that since there is guarantee on the average entropy of
w, and because the challenges are all chosen independently of each other, we should be able to say that
(on average) probability of success in responding to each of the challenges should just be independent. It
seems intuitive that we should just be able to multiply the probability that each Sj = 1 directly instead of
having to condition on sufficient entropy.

Unfortunately, this intuition seems wrong. Average entropy gives us a guarantee that, on average, the
transcript doesn’t reveal too much information about w. But we are conditioning not on the average case,
but on Eve’s success. So consider the case where the first challenge is particularly lucky (for Eve), so that
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that it reveals all information about w if S1 = 1. Now, while the probability of this happening is very
small, it still destroys independence properties because, conditioned on this event, S2 = S3 = · · · = Sµ = 1
with probability 1.

One might be tempted to think that one can bypass such issues by simply adding together the average
entropy of each response that Eve needs to give, and considering the average entropy of the entire set of
responses. But this approach also doesn’t seem to work. For instance, consider the seemingly intuitive
statement: “if H∞(A) ≥ m1 and H̃∞(B | A) ≥ m2, then H∞(A,B) ≥ m1 + m2.” This statement is
false (to see a counterexample, let (A,B) equal (0, 0) and (0, 1) with probability 1/8 each and (1, 1) with
probability 7/8). Thus, even though we can bound the entropy of Eve’s first response and the average
entropy of Eve’s second response given the first, we cannot simply use those bounds to obtain the entropy
of the joint distribution of the two responses.

It is for this reason that we need to take the approach of considering three cases: the case of a transcript
that reveals too much, the case of a transcript that has weak seeds, and the case when neither of these
happens. The first two cases occur with low probability, and in third case we have something close to
independence of extractor responses.

5.4 Putting it all together

In this section we combine the above results to give the proof of our main result (Theorem 2).

Correctness The correctness of the protocol follows from the correctness of Auth(w, c): if both parties
follow the rules and Eve doesn’t interfere, then neither party will reject and the correct m is sent across in
the very first message from Alice to Bob.

Entropy Loss To calculate the entropy loss, note that Alice sends at most λc − 1 extractor responses
(because at least one bit of c must be 0, because all codewords have the same Hamming weight) of length τ
plus the last extractor response of length κ+τ+λc+4; and Bob sends λc+1 extractor responses of length τ .
Alice and Bob also send extractor seeds, which are uniformly random; let λra and λrb be the total bit-length
of all these seeds for Alice and Bob, respectively. For ease of analysis, assume that Alice and Bob send all
the random bits regardless of whether they abort the protocol (for instance, they send all their remaining
random bits when they abort)—clearly, this does not increase the entropy loss. Then, regardless of Eve,
the pair (senta, tA) can be written down as a string of length at most (λc − 1)τ + κ+ τ + λc + λra + 4 bits
(it suffices to write down everything Alice sends; if it is full-length, then tA = 1, else tA = 0). Because the
number of bit strings of length at most α is less than 2α+1 (notice that using “at most” instead of “exactly”
allows us to handle the case of active Eve, who gets information from observing where in the protocol abort
happened), the number of possible such pairs (sentA, tA) is at most 2(λc−1)τ+κ+τ+λc+λra+5. Similarly, the
pair (sentb, tB) can be written down as a string of length at most (λc + 1)τ + 1 (here, tB cannot be inferred
from the string length, hence the +1), and thus has at most 2(λc+1)τ+2 values. Hence, (senta, sentb, tA, tB)
has at most 22λcτ+κ+τ+λc+λra+λrb+7 values. Also, because this variable contains λra + λrb independent
uniform bits, H∞(W, (sentA, sentB, tA, tB)) ≥ H∞(W ) + λra + λrb . We can now apply Lemma 1 to get
that the entropy loss is at most 2λcτ + κ+ τ + λc + 7.

Robustness We now move on to robustness. There are two ways for Eve to succeed in the security
game, and we consider them in order to show that each one can happen with probability at most 2−κ−1,
giving us robustness 2−κ by the union bound (see Section 5.2).
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5.4.1 Bounding probability of successful message change when E is well-formed

By Corollary 3, when E is well-formed, Eve must respond to at least µ = eAλc
4 fresh random challenges in

order to make sure that neither Alice nor Bob aborts. By definition of “well-formed” in Section 5.2, she
must do so before receiving rylive .

In order to apply Lemma 10, it suffices to ensure H̃∞(W | Tr) ≥ 2κ + t, where Tr is the transcript
until just before rylive is sent. We can apply the same reasoning as the entropy loss analysis above, except
omitting the length κ + τ + λc + 4 of rylive and replacing it with a single bit indicating whether Alice

accepts in the last round. Thus, H̃∞(W | Tr) ≥ H∞(W )− 2τλc − 4. The setting of minimum H∞(W ) in
Theorem 2 ensures that this value is at least 2κ+ t.

Applying Lemma 10, we see that Eve will succeed with probability at most 2−µ(τ−1) + 2−κ−3, where
µ ≥ eAλc

4 . Because we have τ = 4(κ+2)
λceA

+ 1, we get the probability of Eve’s success with a well-formed E is

at most 2−κ−1.

5.4.2 Bounding Eve’s success probability when E is not well-formed

To complete the proof, all that is left is to show that the probability that Eve is successful and E is not
well-formed is at most 2−κ−1. As we indicated in Section 5.2, we will show that when E is not well-formed,
getting Bob to accept will itself be an unlikely event for Eve. Recall that E is not well-formed if it doesn’t
end with alongbre. As we did in Section 5.3.2, we let E be written as the concatenation of k strings; i.e.,
E = E1||E2|| · · · ||Ek where each Ei is of the form a∗b∗. If Bob accepts, then bre is the last b-literal in E.
Consider the substring Ej which contains the literal bre. (Clearly j can only be k or k − 1; if j = k − 1,
Ek contains only the a literals). We consider two distinct scenarios and show that the probability that
Eve will succeed in either of them is at most 2−κ−2, giving us a total probability of success when E is not
well-formed of at most 2−κ−1 (even though the scenarios are mutually exclusive, we need to use the union
bound here for the reason explained in Section 5.2).

Case 1: Let Ej be of the form a+b+bre or a+alongb
+bre. In other words, there is at least one b literal

that separates the preceding a literals from bre. In this scenario, Eve needs to come up with the response
contained in bre completely on her own, because she does not talk to Alice after Bob’s challenge is issued.
She succeeds in this with a probability of at most 2−κ−2 by Lemma 3, as long as the entropy of w is
at least t even conditioned on Eve’s view. (This follows because if entropy is at least t, the output of
Ext′ is of length at least κ + 3 and is at least 2−κ−3-close to uniform.) And the entropy conditioned on
Eve’s view is at least t by Lemma 1, because the entropy loss of the protocol, analyzed above, is at most
(2τ + 1)λc + κ+ τ + 7, and hW is set to exceed it by at least t in the statement of Theorem 2.

Case 2: Let Ej be of the form a+bre (where a+ is a substring of a0 and a1 literals; it cannot end with
along as the string would be well-formed otherwise). This scenario arises if Eve can get Bob to think that
the protocol is already on its last round and have him send the liveness test challenge ylive. Even though
Alice has not yet reached the last round, Eve can then issue multiple challenges yi to Alice for rounds
i <= λc in order to get responses ryi that are correlated with the response she needs to guess, rylive . In
other words, by the time Eve responds to Bob, his challenge ylive is no longer fresh.

Fortunately for us, each time Eve issues a challenge yi to Alice, she also has to provide a response rxi
to Alice’s previous challenge, and she can’t get Bob’s help with that, because Bob already thinks he is
on the last round. Thus, in order to gain τ bits of information about rylive via yi, Eve has to pay with a
guess for rxi , which is τ bits long (it’s important to note one exception: the first guess rxi is not on a fresh
random challenge xi, because there was a response from Bob—namely, rxλc+1

—after the challenge xi was
issued). If this guess is ever incorrect, Alice will abort, and at that point Eve will have to produce ylive on
her own, using all the information she has gathered from Alice’s responses.
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To make this reasoning more precise, we will consider average min-entropy of rylive conditioned on the
challenge ylive. We will assume, for ease of reasoning, that Alice’s challenges xi are all preselected at the
beginning of the protocol, and merely revealed in the correct round. Let Tr be the random variable denoting
the entire view of Eve until the moment Bob sends ylive, and also include in Tr all the xi challenges from
Alice and correct responses Ext(w;xi), even those not yet seen by Eve. Define event G the same way it is
defined in Lemma 10. Condition on G. Then, because G holds, W has sufficient min-entropy for Ext′ to
work in the last round. Thus, by Lemma 3, the average min-entropy of rylive conditioned on a uniformly
random ylive and Tr is at least κ+ 3 + τ + λc.

Assume that at the time when Bob issued this challenge, Alice had sent j messages. Then the game Eve
is playing is the following: she has to guess the variable rylive of average min-entropy at least κ+ 3 + τ +λc
by Lemma 3. Eve may be able to reduce this average min-entropy by at most τ by receiving rxj of length
τ (see Lemma 1). Given no other information, the probability with which Eve guesses this is at most
2−(κ+3+τ+λ)+τ .

However, Eve may be able to learn more information and decrease the entropy of rylive . In particular,
she may further be able to decrease it by τ each time she guesses an unrelated variable of min-entropy
τ − 1 (namely, the value rxi for j < i ≤ λc), and receives ryi of length τ8. In other words, Eve may reduce
the entropy of rylive by τ with probability 2−(τ−1), by 2τ with a probability of 2−2(τ−1), and so on.

Therefore, Eve’s probability of success, conditioned on G, is thus 2−(κ+3+τ+λc)+τ (2−(τ−1)2τ +
2−2(τ−1)22τ + · · · + 2−(λc−1)(τ−1)2(λc−1)τ ) ≤ 2−κ−3. (The additive terms, within the parenthesis, cap-
ture the amount of information Eve may learn by initiating challenge-response games with Alice after
Bob sends ylive. The more such rounds Eve plays with Alice, the more information she learns. However,
the probability with which she learns this information reduces as she needs to respond to more random
challenges as well.)

Furthermore, Pr[Ḡ] ≤ 2−κ−3 (see proof of Lemma 10 and note that the condition required for that
Lemma, namely that H̃∞(w | Tr) ≥ 2κ + t, holds by the same reasoning as in Section 5.4.1, since Tr
contains the same information). We thus get that the overall probability of success in case 2 is bounded
by 2−κ−2.

6 Conclusions and Subsequent Work

We have presented a protocol that allows two parties sharing a low entropy secret to extract a shared key
of optimal length—if the shared secret has entropy m, then the length of the extracted key is m − Θ(κ),
where κ is the security parameter. We obtain our result through a somewhat unexpected application of edit
distance codes. While our protocol has optimal entropy loss, it has a round complexity of Θ(κ). On the
other hand, Dodis and Wichs [11] showed nonconstructively, through the use of nonmalleable extractors,
that there exists a protocol with both optimal entropy loss and optimal round complexity (2 rounds, which
is shown to be necessary by [11]). Until recently, the problem of finding a polynomial-time protocol with
optimal round complexity and optimal entropy loss was open. Li [18] made progress on the open problem
by showing two-round protocol for w whose entropy rate is an arbitrary constant; his work was using
explicit constructions of nonmalleable extractors and novel protocol techniques shown in [9, 7, 17] (which
achieve optimal entropy loss when the entropy rate of w is at least 1/2). In other related work, the work
of [3] studies the reusability of authentication schemes by using (unlike in our work) one-time sessions
derived from weak long-term keys for authentication. In this setting, in order to ensure re-usability, it is
essential to guarantee privacy of the long-term key.

8Note that information on the correctness of her guess rxi doesn’t reduce the average min-entropy of rylive , because the
correct guess was already included in Tr when we defined G. If, at any point, this guess for rxi is incorrect, then Eve doesn’t
get to play the game any further, and has to guess ryλc+1 .

24



7 Acknowledgments

We thank Alexandr Andoni, Yevgeniy Dodis, and Madhu Sudan for helpful discussions. We also thank the
anonymous reviewers of STOC 2010 and Journal of the ACM for their detailed comments. We thank Gil
Segev for pointing out a subtle flaw in the definition of privacy amplification which appeared in an earlier
version of this paper.

References

[1] C. Bennett, G. Brassard, and J.-M. Robert. Privacy amplification by public discussion. SIAM Journal
on Computing, 17(2):210–229, 1988.
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