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Abstract. The pervasive diffusion of electronic devices in security and privacy sensitive applications has boosted
research in cryptography. In this context, the study of lightweight algorithms has been a very active direction over
the last years. In general, symmetric cryptographic primitives are good candidates for low-cost implementations. For
example, several previous works have investigated the performances of block ciphers on various platforms. Motivated
by the recent SHA3 competition, this paper extends these studies to another family of cryptographic primitives,
namely hash functions. We implemented different algorithms on an ATMEL AVR ATtiny45 8-bit microcontroller,
and provide their performance evaluation using different figures. All the implementations were carried out with the
goal of minimizing the code size and memory utilization, and evaluated using a common interface. As part of our
contribution, we additionally decided to make all the corresponding source codes available on a web page, under an
open-source license. We hope that this paper provides a good basis for researchers and embedded system designers
who need to include more and more functionalities in next generation smart devices.

1 Introduction

Whenever trying to compare different algorithms, such as in the currently running SHA3 competition for choosing a new
standard hash function, compact implementations in small embedded devices are an important piece of the puzzle. In
particular, they usually reveal a part of the algorithms complexity that does not directly appear in high-end devices, e.g.
the need to share resources or to minimize memory. Besides, implementations in small embedded devices such as smart
cards, RFIDs and sensor nodes are also motivated by an increasing number of applications. As a result, studying the
performances of cryptographic algorithms systematically in this challenging scenario is generally useful.

In a recent work, the implementation of 12 lightweight and standard block ciphers in an ATMEL AVR AtTiny45 has
been investigated [16]. In order to increase the relevance of their work, the authors additionally provided open source codes
for all their implementations on a public webpage. In this paper, we extend this initiative towards hash functions. For this
purpose, we considered three main types of algorithms. First, we targeted SHA256 and the SHA3 finalists. For the latter
ones, we only focused on the candidates satisfying the SHA3 security requirements for the 256-bit output length [26],
i.e. providing at least 2256 (second) preimage resistance and 2128 collision resistance. Second, we selected a number of
recently published lightweight hash functions, providing both 280 and 2128 “flat” security levels1 [27]. Eventually, we also
implemented several block cipher based constructions, e.g. relying on the AES Rijndael.

For all these algorithms, we aimed for the same optimization criteria (namely small source code size and limited
memory use) and used a uniform interface (see the details in Section 3). Resistance against physical (e.g. side-channel,
fault) attacks was explicitly excluded from the requirements. As the project involves many different programmers, we
naturally acknowledge possible biases in our performance evaluation results, due to slightly different implementation
choices and interpretation of the guidelines. In order to mitigate these (usual) limitations, we also provide all our source
codes on a public webpage [1]. As a result, we hope that this initiative can be used as a first step in better understanding
the performances of hash functions in a specific but meaningful class of devices.

The rest of the paper is structured as follow. A brief description of all the functions implemented is given in Section 2.
Our methodology and metrics are defined in Section 3. The description of the implementation choices for the selected
algorithms is in Section 5. Eventually, our performance evaluations and the resulting conclusions are in Section 6.

1 That is the same security level is required for collision, preimage and second preimage resistance.



2 Investigated hash functions

2.1 SHA256 and SHA3 candidates

SHA256 is a hash function from the SHA2 family standardized by NIST in FIPS PUB 180-3 [25]. As its predecessor
SHA1, it is based on the Merkle-Damg̊ard construction but implements a significant number of changes with respect
to SHA1, e.g considering its message expansion, iteration count and an improved compression function. Within the 64
iterations of its compression function, it processes an input block of 512 bits and digests it to an output of 256 bits.
Internally, SHA256 also uses a 256-bit state comprising of eight working registers A to H, each of 32 bits in size.

BLAKE-256 operates on 32-bit words and uses the same parameter sizes as SHA256. The input block length is 512
bit and the digest size is 256 bit. A total of 264 − 1 message bits can be hashed, and BLAKE-256 allows for an optional
128-bit salt. During compression of a message block, a 512-bit internal state is built using a chain value, the salt and the
current counter value. Initially, the chain value is set to the same constants as in SHA256. After initialization, 14 message-
dependent rounds are applied to the state. Each round consists of eight applications of round function Gi (a, b, c, d) which
in each iteration transforms 4 out of 16 words of the state using addition modulo 232, exclusive-or addition, left and right
rotations, and memory lookups. In the end, a new chain value is constructed from the internal state, the previous chain
value and the salt. Details on BLAKE’s inner workings can be found in [4].

Grøstl-256 is an iterated hash function consisting of a compression function built from two distinct permutations, which
however share some transformations, called p and q respectively [20]. These are constructed using the wide-trail design
strategy. The hash function is based on a byte-oriented sp-network which borrows components from the aes [13], described
by the transforms AddRoundConstant, SubBytes, ShiftBytes and MixBytes. Grøstl is a wide-pipe construction where the
size of the internal state (represented by a two 8 × 16-byte matrices) is significantly larger than the size of the output.

JH-256 is a hash function based on a generalized AES design methodology [37]. It has a 1024-bit state and works on
512-bit input blocks which are processed in three steps. First, the input block is XORed with the left half of the state.
A bijective function E8 is then applied to the state. Finally, the right half of the state is XORed with the input block.
The bijective function E8 divides the state into an eight-dimensional array on which a substitution-permutation network
(SPN) and a maximum-distance seperable (MDS) code are applied.

Keccak is a sponge function family [5, 6]. It uses the sponge construction on top of a permutation Keccak-f [b], with the
width b chosen between 25 and 1600 by multiplicative steps of 2. Depending on b, the resulting function ranges from
a toy cipher to a wide function. The SHA3 candidate Keccak proposes to use exclusively Keccak-f [1600] for all output
lengths/security levels [7], whereas lightweight alternatives can use for instance Keccak-f [200] or Keccak-f [400], leaving
Keccak-f [800] as an intermediate choice [8]. Inside Keccak-f [b], the state to process is organized in 5 × 5 lanes of b/25
bits each, or alternatively as b/25 slices of 25 bits each. The round function processes the state using a non-linear layer
(χ), a linear diffusion operation (θ), inter- and intra-slice dispersion steps (ρ, π) and the addition of round constants (ι).
Details of the design strategy can be found in [6].

Skein-x-y is a cryptographic hash function based on the Threefish block cipher [19]. Its internal state (x) can be 256-,
512- or 1024-bit large, and the output (y) can be of any size. In addition to the simple hashing, it supports a variety
of optional features, e.g. MAC and tree-hashing. It is optimized for 64-bit processors. The hash chaining mode of Skein,
called UBI, is a variant of the Matyas-Meyer-Oseas hash mode. Threefish is a tweakable block cipher designed for Skein.
Its core design principle is based on three operations - XORs, additions and rotations - combined in a large number of
rounds (namely 72 or 80). It uses no S-boxes, its nonlinearity comes from alternating additions with XORs. The key
schedule generates the subkeys from the key and the 128-bit tweak. We primarily focused on Skein-512-256 which is one
of the versions submitted to the NIST SHA3 competition.

2.2 Lightweight hash functions

S-Quark and D-Quark are hardware-oriented hash functions with respective digests of length 256 and 176 bits [2]. This
family is based on the sponge construction with respective widths 256 and 176 bits and rates 32 and 16 bits. The absorbing
phase consists in XORing the message with a part of the state and applying a permutation P. The digest is obtained by
squeezing 32/16 bits of the state, then applying the permutation P, and so on until the correct digest size is obtained.
The permutation P is composed of 1024/704 iterations of an update function that essentially consists in performing linear
retro-action on the state (the polynomials used slightly differ from a version to another). Note that the capacity of S-Quark
is only c = 224, leading to 112-bit security level (instead of 128 for other lightweight hash functions in our evaluations).

PHOTON is a sponge-based, lightweight, and hardware-oriented hash function family introduced in 2011 [21]. The
internal state is represented as a matrix with 4- or 8-bit entries depending on which of the five PHOTON flavors has been
selected. Each PHOTON round consists in XORing the message into the state (absorbing) and applying a permutation P



twelve times. The first step when applying P is AddConstants where round constants are XORed to the first column of
the state. Then, in the SubCells layer, the PRESENT S-box (PHOTON-160/36/36) or AES S-box (PHOTON-256/32/32)
is applied to every entry of the state. During ShiftRows the rows of the state matrix are rotated. In the MixColumnsSerial
layer a flavor-specific MixColumns matrix is applied to every column of the state several times. This strategy results in
a much more compact hardware implementation compared to, e.g. the AES MixColumns layer. When all blocks of the
message have been absorbed, a flavor-specific number of squeezing iterations are performed. In each iteration, a small
amount of the state is extracted as part of the new hash value and the permutation P is applied twelve times.

SPONGENT is a family of lightweight hash functions based on a wide PRESENT-type permutation [9]. It relies on a
sponge construction: a simple iterated design that takes a variable-length input and can produce an output of an arbitrary
length n based on a permutation πb operating on a state of a fixed number b of bits. The different variants are referred to
as SPONGENT-n/c/r for different hash sizes n, capacities c, and rates r. Out of the 13 proposed variants, we implemented
SPONGENT-160/160/80 and SPONGENT-256/256/128.

Keccak also proposes lightweight alternatives, different from the SHA3 submission, as explained in Section 2.1.

2.3 Block cipher based constructions

Rogaway-Steinberger LP/lp362 is a hash function construction based on a fixed-key block cipher. The construction
principle was developed by Rogaway and Steinberger in 2008 [30] and defines a so-called linearly-determined, permutation
based (LP) compression function. An LPA

mkr compression function operates on a matrix A (satisfying a special indepen-
dence criterion) and k permutations, turning an input block of mn bits into an output block of rn bits. The parameter n
gives the bit width of the block cipher. We used the block cipher NOEKEON [11] for realizing the fixed-key permutations,
for which n equals 128 bits. An LP362 compression function converts a 384-bit input block into a 256-bit output block
by using six fixed-key permutations. In case of the LP362 scheme, every permutation uses a different key, whereas in the
lp362 scheme, all permutations use the same key (according to [30] both have similar security bounds). XOR operations
and finite-field multiplications are used for combining the output of the individual permutations into a single value. The
compression function is turned into a hash function using the Merkle-Damg̊ard [15, 24] construction.

Hirose double block length (DBL) construction is a hash function based on a block cipher whose key size exceeds
its block size. It has been proposed by Hirose in 2006 [22]. Unlike most previous DBL hash function constructions, Hirose
achieves almost optimal collision resistance (if instantiated with an ideal cipher) [22]. For each iteration of the compression
function it executes two instances of the block cipher with the same key. The shared key for the parallel encryptions can
be used to achieve a performance gain, since only one key schedule is necessary per iteration. The construction requires
the key size k to be bigger than the block size n. In fact, the difference between key and block size n− k determines the
input size of the compression function, and thus determines the efficiency of the compression function. The output size is
2n. With AES-256 as the instantiated block cipher (which will be our choice), Hirose DBL has an output size of 256 bit
and the compression function takes 128 bit of input per iteration.

The Davies-Meyer construction is the most famous cipher-based construction for compression functions. Let a block
cipher E(K,P ) encrypt the plaintext P using the key K. Then, Davies-Meyer construction updates a chaining value Hi

according to a message block M as follows: Hi+1 = E(M,Hi) ⊕ Hi. Two instantiations of this construction, using the
ciphers Rijndael-256/256 and SEA which are later described, have been studied.

Shrimpton-Stam construction. Based on the proof that compression function constructions relying on PRPs can-
not reach optimal security using less than 3 permutations, Shrimpton and Stam proposed a construction relying on
3 different PRPs [32] where the chaining value Hi is updated according to a message block M in the following way
Hi+1 = f3 (f1(M)⊕ f2(Hi))⊕ f1(M). They mention that these permutations can be instantiated by a cipher (using three
different keys) but only in plaintext feedback mode (that is, the same as in the Davies-Meyer construction). A single
instantiation based on Rijndael-256/256 has been considered here.

Rijndael-256/256 is a member of the well-known block cipher family among which the AES standards were chosen [12].
Unlike AES-256, which has a 256-bit key, but a 128-bit state, this 256/256 version processes 256-bit key and state.
It is thus a good candidate to instantiate pseudorandom permutations in hash function constructions such as Davies-
Meyer or Shrimpton-Stam. Rijndael-256/256 encryption iterates a round function 14 times. This round is composed of
four transformations: SubBytes (that applies a non-linear S-box to the bytes of the states), ShiftRows (a wire crossing),
MixColumns (a linear diffusion layer), and finally AddRoundKey (a bitwise XOR with the round key). The round keys
are generated from the secret key by means of an expansion routine that re-uses the S-box.

SEA is a scalable family of encryption algorithms, designed for low-cost embedded devices, with variable bus sizes and
block/key lengths [33]. In this paper, we focus on SEA192,8, i.e. a version of the cipher with 192-bit block and key size.
SEA is a Feistel cipher that exploits rounds with 3-bit S-boxes, a diffusion layer made of bit and word rotations and a
mod 2n key addition. Its key scheduling is based on rounds similar to the encryption ones and is designed such that keys
can be derived “on-the-fly” both in encryption and decryption.



3 Methodology and metrics

In order to be able to compare the performances of the different hash functions in terms of speed and memory space, the
developers were asked to respect a list of common constraints, detailed hereunder.

1. The code has to be written in assembly, if possible in a single file. It has to be commented and easily readable, for
example, giving the functions the name they have in their original specifications.

2. The function has to be implemented in a low-cost way, minimizing the code size and the RAM use.
3. Data does not have to be preserved by the hashing process. This allows direct modification of the data zones in RAM,

hence reducing the amount of memory needed.
4. The interface should be made up of 3 functions. (1) init takes no input and initializes the internal state, which is a

dedicated memory zone seen as a black box, and returns no output; (2) update takes as input a full block of data,
updates its internal state by processing that block and returns no output; (3) final takes as input the (possibly empty)
last chunk of data together with its size and processes it before finalizing the hash computation. By convention, the
data passed to final is necessarily an incomplete block.

5. Data exchanges are performed with pre-defined memory zones where data has to be put before calling functions, or can
be found on their return. For example, the data block to hash has to be put at the pre-defined address SRAM DATA
before a call to update, and the final hash can be found at SRAM STATE on return of final. Most input/output values
are thus implicitly passed. The only explicitly passed value is the size of the data passed to final.

6. Only the internal state is preserved between calls to these functions. No assumption can be made that other RAM
zones (e.g. SRAM DATA) or registers will stay unchanged.

7. The target device is an 8-bit microcontroller from the ATMEL AVR device family, more precisely the ATtiny45. It
has a reduced set of instructions and, e.g. has no hardware multiplier.

A common interface file was provided to all designers (available on [1]). Note that for some functions (e.g. for block cipher
based), the padding was not explicitly defined. In these cases, we appended n null bytes, followed by the length of the
message coded as a 64-bit value, where n is chosen to make the global message length a multiple of the block size.

The basic metrics considered for evaluation are code size, number of RAM words, and cycle count. From these basic
metrics, combined metrics were extracted (see Section 6). Performances were measured on 4 different message lengths: 8,
50, 100 and 500 bytes, ranging from a very small (smaller than one block) to a large message.

Note finally that, as mentioned in introduction, all hash functions were implemented by different designers, with slightly
different interpretations of the low-cost optimizations. As a result, some of the guidelines were not always followed, because
of the cipher specifications making them less relevant (which will be specified when necessary).

4 Description of the AtTiny45 microcontroller

The ATtiny45 is an 8-bit RISC microcontroller from ATMEL’s AVR series. The microcontroller uses a Harvard architecture
with separate instruction and data memory. Instructions are stored in a 4 kB Flash memory (2048× 16 bits). Data memory
involves the 256-byte static RAM, a register file with 32 8-bit general-purpose registers, and special I/O memory for
peripherals like timer, analog-to-digital converter or serial interface. Different direct and indirect addressing methods are
available to access data in RAM. Especially indirect addressing allows accessing data in RAM with very compact code
size. Moreover, the ATtiny45 has integrated a 256-bytes EEPROM for non-volatile data storage.

The instruction-set of the microcontroller contains 120 instructions which are typically 16-bits wide. Instructions can
be divided into arithmetic logic unit (ALU) operations (arithmetic, logical, and bit operations) and conditional and
unconditional jump and call operations. The instructions are processed within a two-stage pipeline with a pre-fetch and
an execute phase. Most instructions are executed within a single clock cycle, leading to a good instructions-per-cycle ratio.
Compared to other microcontrollers from ATMEL’s AVR series such as the ATmega devices, the ATtiny45 has a reduced
instruction set (e.g. no multiply instruction), smaller memories (Flash, RAM, EEPROM), no in-system debug capability,
and less peripherals. However, the ATtiny45 has lower power consumption and is cheaper in price.

5 Implementation details

5.1 SHA256 and SHA3 candidates

SHA256. Like its predecessor SHA1, SHA256 is optimized for 32-bit software implementation. Hence, it can be expected
to be similarly efficient on 8-bit AVR processors. Implementing the iteration step of its compression function, a main
observation is that six out of eight working registers are just circularly copied. To reduce code and clock cycles for such
memory transfer operations, register name reassignment by circular pointer arithmetic is performed instead on the working



registers residing in 256 bits of RAM. Circular pointer arithmetic as part of the iteration step is likewise used to update the
input word according to the message expansion. Besides 32-bit modular additions, SHA2 requires 32-bit right rotations
by r = {2, 6, 7, 11, 13, 17, 18, 19, 22, 25} bits and right shifts by s = {3, 10}. Rotations and shifts by parameters larger
than 8 bits first swap 8-bit register accordingly; then single bit operations on the swapped 32-bit word are performed to
correspond to f = {r, s} mod 8. SHA256 uses up to three 32-bit bit rotations processing the same input in a row so that
reordering of rotation and shift operations by ascending f -values improves efficiency.

BLAKE-256. The RAM consumption is mainly due to storing 64 byte input data, 64 byte state, 32 byte chain value,
8 byte salt, and an 8 byte counter. The initialization vectors (32 byte) and constants (64 byte) are stored in the flash
memory of the microcontroller. We refrained from transferring the constant table into the RAM in order to keep RAM
consumption low. BLAKE’s permutation table σ consists of 10×16 entries. However, each entry is only a four bit number
so we merged two entries in one byte and later select the upper/lower 4-bits by masking. Thus, the permutation table
requires just 80 byte of ROM instead of 160 byte. In order to maintain a decent performance while keeping the code
size down we incorporated the observation made by Osvik [28] which efficiently loads and stores in-/outputs of the round
function Gi (a, b, c, d). Furthermore, we use loops where applicable and move recurring duties such as loading and storing
the counter into functions. An exception to this rule is the implementation of the round function. Since it is called 80
times when hashing one message block its runtime heavily impacts the overall performance. Therefore, we decided to
unroll critical parts of the round function.

Grøstl-256. Grøstl has a state of 64 bytes. During the update function, we need to keep the state, the input message and
the previously computed hash in memory. Thus, we need 192 byte of RAM. The ShiftBytes is computed by offloading each
row, one at a time, from the state into the register of the microcontroller and then writing it back in the new position. In
order to increase the performances and reduce the number of accesses to the memory, the SubBytes is computed together
with the ShiftBytes. The MixBytes is computed as proposed by Johannes Feichtner [18, 31], and is carried out one column
at a time. Finally, to easily compute the padding, 8 bytes of memory are used to keep track of the numbers of messages.
This 8 bytes, are copied directly in the appropriate position of the padding block.

JH-256. Specifications for a bitsliced implementation of JH are available, but they suppose that 42 256-bit round constants
can be stored in memory, which is not compliant with our low-cost constraints. Hence,JH was implemented according to
the reference specifications. The utilisation percentage of the RAM is high as JH needs 128 bytes to store the state, 64 for
the input block and 32 for the round constant. In order to improve the performances, the S-box and linear transformation
were combined into two look up tables, of 32 bytes each, as was done in the optimized 8-bit implementation provided
by JH author [36]. For the same reason, the initial state was precomputed and stored in program memory. It allows us
to save the initialisation phase which is equivalent to the processing of one input block. Regarding the permutation, it is
performed by reading the states bytes in a different order at the beginning of each round. Finally, state bits are reorganised
at the begining and end of each function E8. This bitwise permutation is time consuming and requires additional memory.
Those problems can be partially prevented by reorganizing the input bytes before XORing them with the state.

Keccak. In a first level, we implemented the sponge construction, which comes down to XORing r-bit message blocks
into the state, with r > 0 the rate, and to calling the underlying permutation. In a second level, we implemented the
permutations Keccak-f [b] for b ∈ {200, 400, 800, 1600}. The sponge construction imposes that the capacity c is twice the
security strength level and that b = r+c, and our implementation allows any combination of rate and capacity under these
constraints. For clarity, the benchmark focuses on three specific instances: the SHA3 candidate Keccak[r = 1088, c = 512],
and the lightweight variants Keccak[r = 144, c = 256] and Keccak[r = 40, c = 160] for the 128-bit and 80-bit security
strengths levels, respectively. Any pair of instances with c = 256 and c = 160 would have satisfied the requirements,
but our choice aims at minimizing b for a given c and thereby the RAM usage, consistently with a lightweight context.
Variants with other RAM usage/code size/cycle count trade-offs can be found in Table 4. Inside the implementation, some
operations (i.e., the rotations in θ and ρ) are performed on a lane basis, mapping a lane to b/200 byte(s). Some other
operations, such as χ or the parity computation in θ, are instead slice-oriented, taking advantage of the representation of
8 consecutive slices in 25 bytes [8]. Note that in the specific case of Keccak-f [200], the two approaches collide as the state
contains exactly 8 slices or 25 lanes, mapped to 25 bytes. RAM usage is composed of b/8 bytes for the state and some
working memory (b/40 bytes, or 0 for Keccak-f [200] as the AVR registers suffice). If the desired output length is greater
than the rate (e.g. for lightweight instances), an additional output buffer is needed to perform the squeezing phase.

Skein-x-y. We implemented the SHA3 finalist Skein-512-256, with an output of 256 bits, limited to the hashing func-
tionality. The internal state is therefore made of eight 64-bit words. To keep the program memory space small and the
code readable, some basic 64-bits functions like loading, saving, adding, . . . , have been coded. The registers are only used
temporarily, except the round counter. The message, the state, the key, the key-schedule and the tweak are always in
the data space, and modified directly. The three main Threefish functions (addkey, mix and permute) were implemented
following the reference specifications. Besides, the modulo 3 and modulo 9 values used in the key schedule were saved in
the program memory space. We have also developed Skein-256-256, slightly optimized for the speed and data memory
space performances, by leaving most of the time three out of the four state words in the registers.



5.2 Lightweight hash functions

S-Quark and D-Quark. The critical point in the implementation of QUARK hash functions is the update of the state2.
This update phase considers the state as two LFSRs that will be updated using three retro-action polynomials3. This
design is thought for hardware, a context where it is very efficient, but is much more expensive in software. Nevertheless,
our choice to implement this step using a bit-slice approach provides rather good performances. The platform is an 8-bit
microprocessor and the retro-action polynomials are such that the last 8 bits of each LFSR are not considered. Hence, our
implementation performs 8 updates at the same time reducing from 1024/704 to 128/88 polynomial computations. The
state is stored in RAM, as it is too large to be kept in registers. Computations are ordered in such a way that the shift of
the state is performed on the fly.

PHOTON-160/36/36 and PHOTON-256/32/32. First note that these implementation significantly differ, since
PHOTON-160 has a state matrix with 4-bit cells and uses the PRESENT S-box while PHOTON-256 has 8-bit entries
and uses the AES S-Box. This results in different implementation strategies.

The state of the implemented PHOTON-160/36/36 variant consists of 7-by-7 4-bit elements which are packed into 25
bytes in order to save memory. This allows an optimal usage of the RAM but naturally also results in additional code
in order to extract the correct nibble out of the state. It is a trade-off between code size/speed and RAM usage. As the
interface only allows messages that are a multiple of 8 bits while each iteration of a PHOTON-160/36/36 round function
absorbs 36 bits, we just process an input block of length 72 bits and call the PHOTON round function internally twice
for a full 72-bit block. The largest amount of computational time is spend in the permutation layer for ShiftRows and
especially during the MixColumnsSerial step as finite field arithmetic has to be carried out on 4-bit values.

The internal state of PHOTON-256/32/32 consists of 36 bytes, arranged as a 6-by-6 matrix, that goes over four
different transformations to produce a 32 byte hash digest. Due to their sizes both state and digest have to be stored
in SRAM. This generates an inherent implementation overhead, as state bytes need to be fetched from and stored to
SRAM once for each transformation. We partially reduce this overhead by merging all row-based transformations, and
also by incrementing code size. Due to its use of AES-like permutations, the implementation of the PHOTON-256/32/32
transformations can be carried out quite efficiently on 8-bit controllers. The SubCells transformation is implemented as
a memory aligned lookup table resulting in important cycle savings. The MixColumnsSerial transformation, consisting of
six consecutive calls to the AES MixColumns transformation, is similarly optimized by implementing the multiplication
by ‘02’ as a memory aligned lookup table [13].

SPONGENT-160/160/80 and SPONGENT-256/256/128. The SPONGENT-160 state is 160 + 80 = 240 bits
or 30 bytes large. Therefore, the state can be stored in the registers already available on the target device. However,
SPONGENT uses a PRESENT-like bit permutation in πb and therefore every output bit of an S-Box is mapped to a
distinct nibble after permutation. If we were to store the state in the available registers, we would only have two registers
for additional computations and this would lead to a large code size when implementing the bit permutation. Therefore,
the state is stored in SRAM and a three-step iterative approach is used for the bit permutation to achieve a smaller code
size. For the permutation, each four consecutive nibbles are permuted and stored in SRAM at the same places. Then, the
permuted nibbles are re-ordered to obtain permuted bytes and finally bytes are re-ordered to their appropriate places in
the state. Although this approach is code-size efficient, note that it leads to an increase in running time of the overall
hashing process. The remaining operations like round constant computation, padding and control logic are implemented
in a straightforward manner.

The state of SPONGENT-256 is 256 + 128 = 384 bits or 48 bytes large. Since the state does not fit into the available
registers, we optimized this variant with respect to code size and the state is kept in SRAM. For the permutation, iteratively
four successive bytes are loaded into registers and the permuted byte is constructed from two bits at fixed offsets of each
of these four bytes. Afterwards the processed bytes are stored back to SRAM. This method keeps the code very small
but requires a copy of the 48 bytes state and therefore doubles the required memory. Besides the two states no additional
memory is required. The S-Boxes are stored in Flash memory and must be aligned to a address dividable by 16 for easier
pointer arithmetic. Again, the remaining operations are straightforwardly implemented.

5.3 Block cipher based constructions

Rogaway-Steinberger LP/lp362. For realizing the Rogaway and Steinberger construction principle, the matrix A
suggested by Lee and Park [23] with α = 2 has been used. For operations in F2128 (addition and multiplication) we have
selected the same irreducible polynomial x128 + x7 + x2 + x+ 1 as stated in [30]. The implementation of the block cipher
NOEKEON is based on the open source version published in [16], but the decryption functionality has been removed

2 During implementation, a minor inconsistency was discovered between the paper description [2] and the reference code [3], which
use different bit ordering conventions. We chose to comply with the description provided in the original article. Compliance with
the C code can be obtained by inverting the order of bits in the input message.

3 An additional third will provide constants for the 1024/704 executions required to apply the permutation P.



since it is not required for the generation of a permutations. Two variants of the Rogaway-Steinberger scheme have been
implemented: LP362 and lp362. The two variants mainly differ in code size. The lp362 scheme uses a single fixed key for
all permutations, leading to about 100 bytes less code than for the LP362 scheme which uses a different fixed key for each
of the six permutations. Both variants have similar execution time, consume 92 bytes of RAM, and make use of 8 registers
for computing the hash value of a message.

Hirose double block length (DBL) construction For simplicity we chose an all-zero IV and the additive constant to
be 1. One of the advantages of Hirose is that the two parallel AES executions use the same key. However, due to memory
restrictions, the key should be computed on-the-fly. Hence, the two encryptions need to be processed in parallel. The AES
design follows the same design paradigm as the AES presented in [16], with a further optimized Shift Rows operation.
Decryption code is not needed and has been removed. The key scheduling is performed on-the-fly and and processes 32 bit
at a time. The full 128-bit state of one encryption block is kept in the registers. Since both encryptions are performed in
parallel, the two states have to be swapped in and out of SRAM regularly. Due to the large key size, the swap is performed
as little as every 4 rounds, keeping the resulting overhead at a minimum. The implementation needs 82 bytes of RAM.
We chose not to overwrite the input to the update function, which results in a need for 16 additional RAM bytes for the
input. By overwriting the input these additional 16 bytes can be saved if RAM size is critical.

Davies-Meyer construction. The implementation of the Davies-Meyer construction simply requires making a copy of
the message to be XORed with the resulting encryption, resulting in an additional consumption of 32 bytes of RAM.

Shrimpton-Stam construction. The implementation of Shrimpton-Stam construction only requires to take care of
remembering inputs of the ciphers to be able to XOR them to the result of the encryptions. We chose simple keys to
instantiate the functions fi so that no extra memory is required to store them. More precisely, we respectively set all key
bytes to 0x00, 0x11 and 0x22 for f1, f2 and f3.

Rijndael-256/256. The operations to be performed during a Rijndael-256/256 encryption are simple and can be made
efficient using the well-known techniques for implementing AES on lightweight processors, like the use of a lookup table
for the S-box and the efficient multiplication by ’02’ for MixColumns [14]. The main issue when working on an ATtiny45
is the state size: whereas AES state can be kept in registers, this is not possible any more for 256-bit blocks. As RAM
accesses are time-consuming on the ATtiny, the design of this implementation focuses on minimizing the number of these
accesses. This has been done by reorganizing the round loop (without, of course, affecting the behaviour of the cipher) in
such a way that the round ends with a ShiftRows operation. Additionally, we used an auxiliary state to perform ShiftRows
efficiently. As a result, we can fetch a full column from RAM, immediately perform MixColumns, AddRoundKey and
SubBytes, and write the result in the auxiliary RAM state, taking the effect of ShiftRow into account to determine the
exact locations in RAM. The next round is then performed similarly, but writing data from the auxiliary state to the
initial one, and so on.

SEA. The reference code was written following directly the cipher specifications, and is a natural extension of the 96-
bit version designed in [16]. During its execution, plaintexts and keys are stored in RAM (accounting for a total of 48
bytes), limiting the register consumption to 12 registers for the running state, one register for the round counter and some
additional temporary storage. The S-box was implemented using its bitslice representation. The block cipher was then
inserted in a Davies-Meyer mode of operation, using a similar code as the version using Rijndael-256/256. Overall, the
implementation maintains low code size and RAM use at the cost of a large cycle count, mainly due to the large number
of rounds (177) in the 196-bit version of the cipher based on 8-bit words.

6 Performance evaluation & conclusions

We first refer to a number of other implementations of hash functions in ATMEL AVR devices [8, 17, 28, 29, 31, 34, 35]. In
general, these previous works present benchmarking results in devices from the AtMega family rather than the AtTiny one,
hence tolerating larger code sizes and RAM use. As they are hardly comparable with ours and because of place constraints,
we do not detail them in this section. Overall, we believe they provide a complementary view to ours. In particular, the
pretty complete comparisons of the XBX website certainly sheds another light on the different algorithms [35]. Note also
that some of these previous works consider older versions of the SHA3 candidates. Our following results consider the exact
SHA3 finalists, according to their last updated specifications. We recall that for the functions appearing several times in
the tables (e.g. Keccak, Skein, Quark, PHOTON, SPONGENT), the different lines correspond to different specifications
and not different implementations of the same algorithm.



Following Section 3, we evaluated the performances of our different algorithms based on three main metrics, namely the
code size (in bytes), RAM use (in bytes) and cycle counts for different message sizes4. They are represented in Figures 1,
2 and 3. Besides, we also produced so-called combined metrics that aim to summarize the efficiency of the hash functions
in the AtTiny45. We used the product of the code size and cycle count and the product of the RAM use and cycle
count for this purpose. Eventually, we additionally provide all our results in four complete tables in Appendix. As already
mentioned, these results have to be interpreted with care, as they both represent the skills of the programmer and the
algorithms efficiency. Yet, given this cautionary note, we believe a number of general observations can be extracted.

First, the code size and RAM use illustrate that the implementation constraints were reached for all algorithms.
Nevertheless, the cost of the SHA3 candidates is generally higher than the one of both lightweight hash functions and
block cipher based constructions. For some of them, the RAM use is close to the limit of the AtTiny device (i.e. 256).
This can be explained by the generally larger states of all SHA3 candidates.

Second, we observe that lightweight algorithms have large cycle counts compared to other hash functions. This implies
that their overall efficiency (measured with the combined metrics) is generally low in our implementation context. By
contrast, the flexible nature of sponge-based functions (including all lightweight proposals) allows reducing the RAM use
quite significantly, which is an interesting feature for hardware and embedded software implementations.

Third, it is noticeable that the SHA3 candidates hardly compete with AES-256 in Hirose construction or Rijndael-256-
256 in Davies-Meyer mode. This observation is quite consistently observed for all our metrics.

Eventually, and as far as SHA3 finalists (in the 256-bit versions) are concerned, our investigations suggest that BLAKE
offers the best performance figures, followed by Grøstl, Keccak, Skein and JH.

All these results were naturally obtained within a limited time frame. Hence, we encourage the reader to download codes
and possibly improve them with further optimization. Looking at how the AES implementations have evolved following
its selection as standard, it is likely that similar improvements can be expected for the hash functions in this work.

Acknowledgements. This work has been funded in part by the European Commission’s ECRYPT-II NoE (ICT-2007-
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Fig. 1. Performance evaluation: code size (bytes).

4 Note that for certain (e.g. sponge-based) functions, the data part of the RAM could be arbitrarily reduced by changing the
interface. In this case, the RAM use evaluation in the figures excluded the data RAM (reported in gray in the tables).



Fig. 2. Performance evaluation: RAM (bytes).

Fig. 3. Performance evaluation: cycle count (500-byte message).



Fig. 4. Performance evaluation: code size (bytes) x cycle count (500-byte message).

Fig. 5. Performance evaluation: RAM (bytes) x cycle count (500-byte message).
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