
On 3-share Threshold Implementations for 4-bit
S-boxes

Sebastian Kutzner1, Phuong Ha Nguyen2, Axel Poschmann2 and Huaxiong
Wang2.

1 Laboratory of Physical Analysis & Cryptographic Engineering (PACE)
Temasek Laboratories @ NTU.

2 Division of Mathematical Sciences,
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

Abstract. One of the most promising lightweight hardware counter-
measures against SCA attacks is the so-called Threshold Implementation
(TI) [12] countermeasure. In this work we resolve many of the remaining
open issues towards it’s applicability. In particular, our contribution is
three-fold: first we define which optimal (from a cryptographic point of
view) S-boxes can be implemented with a 3-share TI. Second, we intro-
duce two methodologies to efficiently implement these S-boxes. Third,
as an example, we successfully apply these methodologies to PRESENT
and are able to decrease the area requirements of its protected S-box by
57%.

1 Introduction

Side Channel Attacks (SCA) [6] were introduced in 1997 by Kocher et al. and ex-
ploit the fact that while a device is processing data, information about this data
is leaked through different channels, e.g., power consumption, electromagnetic
emanation and so forth. DPA [7] is a well known technique analyzing many mea-
surements. It exploits the correlation between intermediate results, which partly
depend on a secret, and the power consumption.

Several countermeasures (far too many to address all of them) have been
proposed during the last years, for example, to increase the SNR ratio [10], to
balance the leakage of different values [9] or to break the link between the pro-
cessed data and the secret, i.e., masking [10]. Due to the presence of glitches
masked implementation might still be vulnerable to DPA [10]. A recent counter-
measure against DPA was introduced in 2006 by Nikova et.al. [11] and is called
Threshold Implementation (TI). It is based on secret sharing (or multi-party
computation) techniques and is provable secure against first order DPA even in
the presence of glitches. Furthermore, it can be implemented very efficiently in
hardware [13].

The number of shares required for a Threshold Implementation depends on
the degree d of the non-linear function (S-box) and [11,12] have shown that it is
at least d+1. It implies that the higher the degree of the non-linear function, the



2 Authors Suppressed Due to Excessive Length

more shares are required and the larger is the implementation. Since a degree of
two is the minimal degree of a non-linear function, the optimal number of shares
is three. Therefore, to apply a 3-share Threshold Implementation to a larger
degree function, this function must be represented as a composition of quadratic
functions [13].

In this work we focus on 3-share Threshold Implementations of optimal 4-bit
S-boxes. These S-boxes were defined in [8] and fulfill certain cryptographic prop-
erties which make them secure against cryptanalytic attacks. First we answer
the question which of these optimal S-boxes can be protected using only 3-
shares 1. Second, we introduce two methodologies to efficiently implement these
S-boxes in a 3-share TI scenario. We successfully apply these methodologies to
the PRESENT S-box resulting in the smallest protected implementation known
so far. Last, we investigate the security of our new design by practical mea-
surements. During those investigations we develop a new attack model and, to
the best of our knowledge, for the first time use the sum of square t-differences
(SOST) [4] as a new distinguisher.

The remainder of this work is organized as follows. First we proof an open
conjecture and recall important definitions in Section 2. Subsequently in Sec-
tion 3, we introduce two new methodologies that allow to significantly reduce
the area requirements of all TI S-boxes using the PRESENT S-box as an exam-
ple. Section 4 describes the optimized hardware implementation of TI-PRESENT
and its experimental analysis is performed in Section 5. Finally, Section 6 con-
cludes the paper.

2 Decomposability of 4-bit S-boxes

The 3-share Threshold countermeasure can only be applied to permutations with
a maximum degree of two [11,12]. Therefore, the decomposability of cubic 4-bit
S-boxes into a composition of several quadratic vectorial boolean functions plays
an important role when implementing the 3-share Threshold countermeasure.
For example, in [13] the authors decompose the cubic PRESENT S-box into two
quadratic vectorial boolean function F (·) and G(·) in order to apply the 3-share
Threshold countermeasure.

In this section we prove the Nikova’s conjecture presented at the poster ses-
sion of CHES 2010. There the authors conjecture that any decomposable 4-bit
S-box/permutation must belong to A16, i.e., the alternating group of the 4-bit
symmetric group S16. A 4-bit S-box/permutation is considered as decomposable
if and only if it can be written as a composition of several quadratic vectorial
boolean functions. We recall some properties of a permutation in S16.

Lemma 1. A16 is a subgroup of S16, i.e., if p1(·) and p2(·) are permutations in
A16, then the resulting permutation of their composition p3(·) = p1(p2(·)) must
be in A16 as well.

1 This result is independently found from that of http://eprint.iacr.org/2012/
300.pdf which was accepted in CHES2012.



On 3-share Threshold Implementations for 4-bit S-boxes 3

Lemma 2. All linear and quadratic permutations in S16 are in A16.

Proof. In [13], the authors state that there are around 226 quadratic permuta-
tions. Since the number of linear and quadratic permutations is not big, we can
check the parity of all these permutations. If a permutation has a parity of +1,
it belongs to A16.

All parities of the considered permutations are +1. Hence, all these permu-
tations belong to A16.

Theorem 1. If a permutation p(·) can be written as a composition of quadratic
permutations, then p(·) is in A16.

Proof. The theorem is directly derived from the lemma 1 and lemma 2.

Corollary 1. Theorem 1 implies that if a cubic permutation does not belong to
A16, it can not be written as a composition of several quadratic permutations.

Note 1. The composition of a quadratic permutation and a linear permutation
is again a quadratic permutation. Hence, a quadratic permutation is able to be
decomposed in a composition of linear and quadratic permutations. This fact will
be used for our improvement of the hardware implementation of the PRESENT
S-box in the next sections.

Optimal and Decomposable 4-bit S-boxes An S-box is considered as opti-
mal if it fulfills the following requirements [8]:

Definition 1. Let S : F4
2 → F 4

2 be an S-box. If S fulfills the following conditions
we call S an optimal S-box:

1. S is a bijection,
2. Lin(S) = 8,
3. Diff(S) = 4,

where Lin(S) and Diff(S) denote the linearity and differentiality of S-box S.
The reader is referred to [8] for more detail on definitions of Lin(S) and Diff(S).

Definition 2. Two S-boxes S(x), S
′
(x) are linearly equivalent iff there exist two

4× 4-bit invertible matrices A,B and two 4-bit vector c, d such that

S
′
(x) = A(S(Bx⊕ c)⊕ d),∀x ∈ {0, . . . , 15}

Optimal S-boxes attract our attention due to their importance in designing
cryptographic ciphers. An arbitrary optimal S-box always belongs to a certain
class. In [8], the authors define 16 classes of linearly equivalent S-boxes in S16.
Each class can be represented by using one its S-box which is called representa-
tive of class.

Based on Note 1, if the representative of a considered class is decomposable,
then all S-boxes in this class are decomposable as well, i.e., they belong to A16.
Checking the parity of the permutation of all class representatives reveals that
exactly 8 classes (50%) are decomposable (see Table 1).

Note 2. The PRESENT S-box belongs to class 1. It implies that the PRESENT
S-box is decomposable (which was shown in [13]).



4 Authors Suppressed Due to Excessive Length

Table 1. Decomposability of S-box classes.

Decomposable 0 1 2 4 5 7 8 13

Not decomposable 3 6 9 10 11 12 14 15

3 One S-box for all

In this section, we introduce a new methodology to improve the hardware imple-
mentation costs of the Threshold countermeasure. To illustrate our contribution
we chose PRESENT as an example. Figure 1 shows how to apply the Threshold
countermeasure to a 4-bit S-box: first it is decomposed into two stages G and
F (horizontal), then each stage is shared (vertical). Figure 1 also shows that
in [13] the authors implemented F and G using six different 8 × 4 vectorial
Boolean functions f1, f2, . . . , g3. In the following we will show how to implement
the same functionality with only one 8× 4 vectorial Boolean function, this way
significantly reducing the area/memory requirements of the S-box.

4
g3

g2

g1

y3

y2

y1

f1

f2

f3

4

4

4

4

4

4

4

4

S2 

S3 

S1 

G F
4 44

S
4 4

Fig. 1. Decomposition of an S-box [13]

3.1 The Horizontal Level

In order to apply the 3-share Threshold countermeasure to a cubic S-box S(·),
in the first step the S-box is decomposed into a composition of two quadratic
permutations F (·) and G(·) (see Figure 1).

Lemma 3. Assume a vectorial boolean function S(·) = G(G(·)), where G(·) is
a vectorial boolean function. Then the hardware implementation of S(·) can be
reduced by reusing the implementation of G(·).

Proof. Experiments have shown that the costs for additional logic, e.g., a mul-
tiplexer, is less than implementing G(x) twice. Numbers are provided in section
4.3.



On 3-share Threshold Implementations for 4-bit S-boxes 5

The main problem of Lemma 3 is how to find a G(x) such that G(G(x)) lies
in the desired class, e.g., class 1 for the PRESENT S-box. We discovered that
the only classes reachable by the construction G(G(x)) are 0, 1, 2 and 8. For
class 1 we found the following quadratic G(x) such that S

′
(·) = G(G(·)).

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
G(x) 0 4 1 5 2 F B 6 8 C 9 D E 3 7 A

G(G(x)) 0 2 4 F 1 A D B 8 E C 3 7 5 6 9

The ANF of G(x, y, z, w) = (g3, g2, g1, g0) is as follows:

g3 = x+ yz + yw

g2 = w + xy

g1 = y

g0 = z + yw

Using Definition 2 we know that the S-box of PRESENT S(·) is linearly
equivalent to the found S

′
(·) = G(G(·)), i.e

S(x) = A(S
′
(Bx⊕ c)⊕ d) = A(G(G(Bx⊕ c))⊕ d),∀x ∈ {0, . . . , 15}.

It can be constructed with the following 4 × 4-bit matrices A, B and 4-bit
constants c, d:

A =


1 0 1 0
0 1 0 0
1 0 0 0
1 0 1 1

 , B =


1 1 0 0
0 1 1 0
0 0 1 0
0 1 0 1

 , (1)

c and d are (0001)2 = 1 and (0101)2 = 5, respectively.

3.2 The Vertical Level

In the second step G(·) has to be divided into three 8 × 4 vectorial Boolean
functions G1(·), G2(·) and G3(·). In practice, all these vectorial boolean functions
are implemented separately. We can reduce the implementation costs by using
the following lemma:

Lemma 4. The hardware templates of the vectorial boolean functions of G(·)
are the same except for the indices of the inputs and the existence of constants.

Proof. The lemma is derived from the construction of the vectorial boolean func-
tions G1(·), G2(·) and G3(·). For example, if we take the latter constructed G(x),
then:



6 Authors Suppressed Due to Excessive Length

G1(x2, y2, z2, w2, x3, y3, z3, w3) = (g13, g12, g11, g10)

g13 = x2 + y2z2 + y2z3 + y3z2 + y2w2 + y2w3 + y3w2

g12 = w2 + x2y2 + x2y3 + x3y2

g11 = y2

g10 = z2 + y2w2 + y2w3 + y3w2

G2(x1, y1, z1, w1, x3, y3, z3, w3) = (g23, g22, g21, g20)

g23 = x3 + y3z3 + y1z3 + y3z1 + y3w3 + y1w3 + y3w1

g22 = w3 + x3y3 + x1y3 + x3y1

g21 = y3

g20 = z3 + y3w3 + y1w3 + y3w1

G3(x1, y1, z1, w1, x2, y2, z2, w2) = (g33, g32, g31, g30)

g33 = x1 + y1z1 + y1z2 + y2z1 + y1w1 + y1w2 + y2w1

g32 = w1 + x1y1 + x1y2 + x2y1

g31 = y1

g30 = z1 + y1w1 + y1w2 + y2w1

Therefore, we only need to implement G1(·) and then reuse it for G2(·) and
G3(·) by arranging the inputs appropriately.

Note that this technique can be applied not only for this special case but
also in general whenever a function is shared. For example, let’s take a look at
the implementation presented in [13], stating the following ANFs for G1, G2 and
G3:

G1(x2, y2, z2, w2, x3, y3, z3, w3) = (g13, g12, g11, g10)

g13 = y2 + z2 + w2

g12 = 1 + y2 + z2

g11 = 1 + x2 + z2 + y2w2 + y2w3 + y3w2 + z2w2 + z2w3 + z3w2

g10 = 1 + w2 + x2y2 + x2y3 + x3y2 + x2z2 + x2z3 + x3z2 + y2z2 + y2z3 + y3z2

G2(x1, y1, z1, w1, x3, y3, z3, w3) = (g23, g22, g21, g20)

g23 = y3 + z3 + w3

g22 = y3 + z3

g21 = x3 + z3 + y3w3 + y1w3 + y3w1 + z3w3 + z1w3 + z3w1

g20 = w3 + x3y3 + x1y3 + x3y1 + x3z3 + x1z3 + x3z1 + y3z3 + y1z3 + y3z1

G3(x1, y1, z1, w1, x2, y2, z2, w2) = (g33, g32, g31, g30)

g33 = y1 + z1 + w1

g32 = y1 + z1

g31 = x1 + z1 + y1w1 + y1w2 + y2w1 + z1w1 + z1w2 + z2w1

g30 = w1 + x1y1 + x1y2 + x2y1 + x1z1 + x1z2 + x2z1 + y1z1 + y1z2 + y2z1



On 3-share Threshold Implementations for 4-bit S-boxes 7

As one can see, our trick can also be applied to this implementation by han-
dling the constants separately as gi0, gi1, gi2, gi3 comprise of similar monomials
with different indices. Alternatively, it is possible to use correction terms, i.e.,
add the constant 1 to g22, g21, g20 and g32, g31, g30 such that the template of the
terms match again.

4 Hardware Implementation

In the last sections we have described how to optimize the decomposition of
cubic 4 × 4 S-boxes using the PRESENT S-box as an example. In this section
we will describe an exemplary hardware implementation of PRESENT protected
with the TI countermeasure with a shared data path and an unshared Keysched-
ule that is similar to profile 2 described in [13]. First we introduce the design
flow used before we detail the hardware architectures and finally summarize the
implementation results.

4.1 Design flow

For the hardware implementation in VHDL, we used the Boolean minimization
tool BOOM II [1,2] to obtain the four ANFs of G. For functional simulation we
used Mentor Graphics ModelSimXE 6.4b and Synopsys DesignCompiler version
E-2010.12-SP2 was used to synthesize the designs to the Virtual Silicon (VST)
standard cell library UMCL18G212T3, which is based on the UMC L180 0.18µm
1P6M logic process and has a typical voltage of 1.8 Volt [14]. We used Synopsys
Power Compiler version E-2010.12-SP2 to estimate the power consumption of
our ASIC implementations. For synthesis and for power estimation we advised
the compiler to keep the hierarchy and use a clock frequency of 100 KHz. Note
that the wire-load model used, though it is the smallest available for this library,
still simulates the typical wire-load of a circuit with a size of around 10, 000 GE.
We provide the power figures for information only and would like to highlight
that it is not possible to compare them across different technologies.

4.2 Architecture and Design

Figure 2 depicts our architecture. The main differences between our design and
profile 2 in [13] are the S-box module and a part of the storage modules for the
shared data path. The three shares of the data path are stored in three identical
replications of the storage module denoted by State, md1 and md2. Each of them
comprises of 60 flip-flops that can act as a normal 60-bit wide register (vertical
shifting direction) or as a 4-bit wide 15 stages shift register (horizontal). The
remaining 4-bits are stored in a similar way (denoted with I, II and III in Fig. 2)
but with two additional 2-to-1 input MUXes (one for each shifting direction).
Those 4-bits act as a shift register in a vertical way, allowing to change the
input to G. The parallel 60-bit wide output is concatenated with the output of



8 Authors Suppressed Due to Excessive Length

the 4-bit wide register and is transformed by the P-layer of PRESENT. The Key

module stores the key state and performs the PRESENT keyschedule.
The S-box module comprises of only one 8× 4 vectorial Boolean function G

(47 GE) that is used for all three shares and for both staged instead of six as
used in [13]. Recall, that we implement the PRESENT S-box S(x) as S(x) =
A(G(G(Bx⊕ c))⊕ d). Therefore, the inputs to G are transformed by Bx+c (two
times 7 GE) and its output is temporarily stored for two clock cycles in two
consecutive 4-bit flip-flops (48 GE) until all three shares have been computed.
Since, for the second stage, we do not need to process the input to G by Bx+c,
we transform all three shares by B−1(x+c) (21 GE)2 and store them in I, II
and III. After the second stage is completed, the three shares are transformed
by Ax+d (18 GE) and stored in the shift registers State, md1 and md2, which are
shifting horizontally, and the new 4-bit nibbles are ready to be processed.

Fig. 2. Architecture of a serialized TI-PRESENT-80 using our new optimization
techniques.

The FSM module comprises of one initial state, six states for the S-box, one
state for the permutation layer that is used instead of the sixth S-box state at
the end of each round, a finished state that sets the done signal to high, and a
done state. The output is gated by an AND-gate that only lets data pass to the
final output XOR after 31 rounds have been processed.

It takes in total 6 ∗ 16 = 96 clock cycles for one round, hence the output is
ready after 2976 clock cycles. During the 16 clock cycles required to output the

2 Compared to using two MUXes (19 GE), this approach has the advantage of a
simpler control logic at roughly the same area requirements.



On 3-share Threshold Implementations for 4-bit S-boxes 9

Table 2. Breakdown comparison of the post-synthesis implementation results
of a serialized PRESENT-80 are shown in the upper half using D-flip-flops with
enable (D-FF + en). The lower half shows estimated figures using scan-flip-flops
and clock gating (s-FF + cg). All figures are Gate Equivalents (GE)

Ref. Etc. Key FSM State md1 md2 S-box Sum

D-FF + en
[13] 58 778 139 587 587 587 351 3087

this work 58 778 146 608 608 608 151 2957
Difference 0 0 +7 +21 +21 +21 -200 -130

s-FF + cg
[13] 58 520 139 389 389 389 351 2235

this work 58 520 146 410 410 410 151 2105
(estimated) Difference 0 0 +7 +21 +21 +21 -200 -130

result nibble-wise, the next message and key can be loaded, which takes 20 clock
cycles. Thus in total our architecture requires 2996 clock cycles to process one
message, compared to 578 clock cycles reported in [13].

4.3 Performance figures

Our main goal is to investigate the savings that one can achieve using our new
optimization technique, hence we compare our core to profile 2 as published
in [13]. However, there the authors use a combination of clock-gating and scan-
flip-flops, which results in storing costs of 6 GE per bit (plus a negligible overhead
for clock gating logic). For ASIC prototyping it is sometimes not desirable to
use clock gating, thus we decided to use D-flip-flops with enable signal, which
results in storage costs of 9 GE per bit.

In order to have a fairer comparison between our results and [13], we also
report post-synthesis figures for a modified variant of their source code where
we replaced the clock gating and scan-flip-flops with D-flip-flops with enable (9
GE). The upper half of Table 2 shows these post-synthesis results. We have also
estimated the area requirements of our implementation using 6 GE scan-flip-flops
in combination with clock gating. This is shown in the lower half of Table 2.

Please note that the area of 387 GE for the S-box module in [13] comprises
of both the shared S-box (359 GE) for the data path and the unshared S-box
(28 GE) for the keyschedule. Thanks to a more optimized ANF [5] the unshared
PRESENT S-box we used only takes 22 GE, and since the unshared S-box is
only used in the KeySchedule module we account it’s area share there. We have
also taken into account that our post-synthesis results of the S-box, FSM and the
top level glue logic (etc.) are smaller than the ones reported in [13] and estimated
the figures accordingly.

As one can see, the top level glue logic and the Key module are identical in
both architectures, while the control logic (FSM) is slightly more complex for our
approach. Compared to [13] our architecture requires six additional 4-bit wide
2-to-1 MUXes, which increase the area requirements of the storage components



10 Authors Suppressed Due to Excessive Length

by 21 GE each. The S-box module is 57% smaller than the one reported in [13]
yielding area savings of 200 GE. using our new approach in total it is possible
to save 130 GE.

5 Experimental Results

In order to evaluate the security of our new approach, we analyzed power con-
sumption traces obtained from SASEBO G-II. In the next subsection the mea-
surement setup is introduced and subsequently the results of different DPA ex-
periments are shown and compared to the results of [13]. In addition, we utilize
additional techniques to investigate possible first order leakage. In the end we
revisit the idea of Wagner et al. [15] which describes an attack targeting counter-
measures where the masks and the masked state are processed simultaneously
as it is usually the case for Threshold implementations.

5.1 Measurement Setup

The SASEBO G-II hosts two FPGAs, i.e., one control FPGA (Xilinx XC3S400A-
4FTG256, Spartan-3A series) and one cryptographic FPGA (Xilinx XC5VLX50-
1FFG324, Virtex-5 series) which is decoupled from the rest of the board to
minimize electronic noise from surrounding components. It is supplied with a
voltage of 1V by an external stabilized power supply as well as with a 3MHz
clock (24 MHz on-board clock oscillator utilizing a clock divider of 8). The power
consumption is measured over a 1 Ω resistor inserted in the VDD line by using
a differential probe. All power traces are collected with a LeCroy WR610Zi-s-32
at a sampling rate of 1GS/s.

5.2 Side-channel Resistance

Figure 3 shows an exemplary power trace of the first round of an encryption
run as well as a zoomed extract. The high peaks in the power consumption at
the left of Figure 3(a) are caused by the loading of the plaintext and key to the
cryptographic FPGA. The encryption starts at sample 8500 - for our analyses we
omit these first 8500 samples. In Figure 3(b) one can clearly identify the peaks
in the power consumption for every single clock cycle (300 samples between the
peaks equals 3 MHz).

To verify our measurement setup we first used 200,000 measurements and
attacked our implementation knowing the random masks, i.e., we can guess in-
termediate masked values. Plaintexts and masks were chosen at random and are
uniformly distributed. In [13] the authors chose the Hamming distance of two
subsequent state nibbles as the leakage model. We think this model is not optimal
since all 3*64 bit of the three states (State, md1, md2) are updated simultane-
ously. Hence, when attacking only one nibble, there is a lot of noise decreasing
the correlation. We found that attacking the Hamming distance between two
subsequent outputs of an S-box stage is more promising since here only 12 bit



On 3-share Threshold Implementations for 4-bit S-boxes 11

(a) First round (b) Zoomed extract

Fig. 3. Exemplary power trace

(3 shares * 4-bit S-box output) are updated simultaneously. Figure 4 shows the
correlation results using the old model introduced in [13] and our new model.
Using the old model one can nicely determine the 15 peaks representing the 15
updates of the state, i.e., the 15 shift operations, but the correlation coefficient
is approximately five times lower than the one attacking the intermediate values
between two S-box stages. The correct key guess becomes distinguishable after
approximately 4,000 measurements.

Next, we measured 5,000,000 traces. As in [13] we considered three different
attack models for the DPA attack: HW of the S-box input, HW of the S-box
output and the HD between two subsequent states. In addition we also con-
sidered our new model attacking the intermediate value between S-box stages.
All attacks were performed nibble-wise, i.e., 16 key guesses had to be analyzed.
Figure 5 shows the results of the DPA attack for the four models. As can be seen
- and as expected - none of the attack models reveals the correct key nibble.

As mentioned in the introduction we want to extend our DPA analysis by
utilizing additional measures to detect first-order leakage. We try to utilize the
sum of square t-differences (SOST) introduced in [4]. Originally it was used to
find points which contain the most information according to the chosen model
in a template attack profiling phase. Here, we use it to see if there are any points
containing any information (with a known key). The main advantage of SOST
is, comparable to MIA [3], that it does not require a linear dependency between
the attack model and the power consumption contrary to, e.g., the Pearson
correlation coefficient.

Subsequently, we tried SOST as a new DPA distinguisher. As classification
function we chose the HD of two subsequent state nibbles. As one can see in Fig-
ure 6(a) the overall information content is very low. For comparison, Figure 6(b)
shows the SOST trace, i.e., the information content targeting a plaintext nibble
(note that for this analysis we included the first 8500 samples). Nonetheless,
we performed a DPA attack using SOST as a distinguisher. Figure 6(c) shows



12 Authors Suppressed Due to Excessive Length

(a) HD of subsequent state nibbles (b) HD of intermediate S-box outputs

(c) Number of traces at sample 1699

Fig. 4. DPA result with known masks



On 3-share Threshold Implementations for 4-bit S-boxes 13

(a) HW of the S-box output (b) HD of subsequent state nibbles

(c) HW of S-box input (d) HD of intermediate S-box outputs

Fig. 5. DPA results



14 Authors Suppressed Due to Excessive Length

the results but as can be seen, there are no clear peaks indicating the correct
key guess. To show that the idea indeed works and to highlight the strength
of SOST as distinguisher we attacked the intermediate state with known masks
using 200,000 measurements as in Figure 4. Figure 6(d) shows the result of this
attack and as can be seen, the correct key hypothesis can be clearly identified
and the relative difference between the highest and the second highest peak is
much bigger than using the Pearson correlation coefficient. Hence, we think that
in future work it is worth to evaluate the strength of SOST in more detail.

(a) HD of subsequent state nibbles using cor-
rect key hypothesis

(b) HW of plaintext

(c) DPA attack using SOST as distinguisher,
correct hypothesis in red

(d) DPA attack using SOST as distinguisher,
correct hypothesis in red, known masks

Fig. 6. Results using the sum of square t-differences

Last, in 2004 Wagner et al. [15] introduced the Zero-offset attack for the,
as they said, unlikely case that masked plaintexts and masks are processed at
the same time. For the implementations in [13], our implementation, and espe-
cially Threshold Implementations in general, this case is true and hence these



On 3-share Threshold Implementations for 4-bit S-boxes 15

implementations should be susceptible to this attack. Therefore, we took the
previously measured 5,000,000 traces and performed the Zero-offset attack. Fig-
ure 7 shows the results of this attack using the before mentioned Hamming
distance model. As we can see in 7 there are some red correlation peaks repre-
senting the correct key hypothesis rise above the rest. But repeating the attack
for the second and third key nibble showed that the correct hypothesis cannot
be distinguished. We repeated the attack using different models, i.e., targeting
the intermediate state and using the Hamming weight, but none of the attacks
worked. Simulations finally showed that the Zero-offset attack, i.e., squaring
the power consumption, does not work with Threshold implementations. Future
work will be done in this direction to find more suitable preprocessing functions.

(a) HD of subsequent state nibbles,
key byte 1

(b) HD of subsequent state nibbles, key byte 2

Fig. 7. DPA results of the Zero-offset attack

6 Conclusion

In this paper we have proven that all optimal S-boxes which can be protected
by the 3-share Threshold countermeasure belong to A16. Furthermore, we intro-
duced two methodologies to efficiently implement these S-boxes in a TI scenario.
Applying these methodologies to the PRESENT S-box we were able to reduce
its area requirement by 57% (130 GE), resulting in the smallest implementation
of a protected PRESENT so far (2105 GE). Finally, we have proven the security
of our new design by practical experiments.

It is also noteworthy to point out that our contribution allows to reduce the
memory requirements of software implementation of S-boxes protected by the
TI countermeasure by a factor of six. Future work includes investigations in this
direction.



16 Authors Suppressed Due to Excessive Length

References

1. P. Fǐser and J. Hlavička. BOOM - A Heuristic Boolean Minimizer. Computers and
Informatics, 22(1):19–51, 2003.

2. P. Fǐser and J. Hlavička. Two-Level Boolean Minimizer BOOM-II. In Proceedings
of 6th Int. Workshop on Boolean Problems – IWSBP’04, pages 221–228, 2004.

3. Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual Information
Analysis. In CHES 2008, volume 5154 of LNCS, pages 426–442. Springer, 2008.

4. Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs. stochas-
tic methods. In Proceedings of the 8th international conference on Cryptographic
Hardware and Embedded Systems, CHES’06, pages 15–29, Berlin, Heidelberg, 2006.
Springer-Verlag.

5. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
led block cipher. In CHES, pages 326–341, 2011.

6. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. pages 104–113. Springer-Verlag, 1996.

7. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Proceedings of the 19th Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’99, pages 388–397, London, UK, UK, 1999. Springer-
Verlag.

8. G. Leander and A. Poschmann. On the classification of 4 bit s-boxes. In Proceedings
of the 1st international workshop on Arithmetic of Finite Fields, WAIFI ’07, pages
159–176, Berlin, Heidelberg, 2007. Springer-Verlag.

9. Stefan Mangard. Masked dual-rail pre-charge logic: Dpa-resistance without routing
constraints. In Systems CHES 2005, 7th International Workshop, pages 172–186.
Springer, 2005.

10. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards (Advances in Information Security). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2007.

11. Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implemen-
tations against side-channel attacks and glitches. In Peng Ning, Sihan Qing, and
Ninghui Li, editors, ICICS, volume 4307 of Lecture Notes in Computer Science,
pages 529–545. Springer, 2006.

12. Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware implemen-
tation of nonlinear functions in the presence of glitches. Journal of Cryptology,
October 2010.

13. Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong
Wang, and San Ling. Side-channel resistant crypto for less than 2,300 ge. J.
Cryptol., 24(2):322–345, April 2011.

14. Virtual Silicon Inc. 0.18 µm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18 µm Generic II Technology:
0.18µm, July 2004.

15. Jason Waddle and David Wagner. Towards efficient second-order power analysis.
In CHES, pages 1–15, 2004.


	Lecture Notes in Computer Science
	Authors' Instructions
	Introduction
	Decomposability of 4-bit S-boxes
	Optimal and Decomposable 4-bit S-boxes

	One S-box for all
	The Horizontal Level
	The Vertical Level

	Hardware Implementation
	Design flow
	Architecture and Design
	Performance figures

	Experimental Results
	Measurement Setup
	Side-channel Resistance

	Conclusion

	Bibliography


