
Enabling 3-share Threshold Implementations for
any 4-bit S-box

Sebastian Kutzner1, Phuong Ha Nguyen2, and Axel Poschmann2.

1 Laboratory of Physical Analysis & Cryptographic Engineering (PACE)
Temasek Laboratories @ NTU.

2 Division of Mathematical Sciences,
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

Abstract. Threshold Implementation (TI) is an elegant and widely ac-
cepted countermeasure against 1-st order Differential Power Analysis
(DPA) in Side Channel Attacks. The 3-share TI is the most efficient
version of TI, but so far, it can only be applied to 50% of all 4-bit
S-boxes. In this paper, we study the limitations of decomposition and
introduce factorization to enable the 3-share TI for any optimal 4-bit
S-box. We propose an algorithm which can decompose any optimal 4-bit
S-box to quadratic vectorial boolean functions with a time complexity
of 219. Furthermore, we use our new methodology in combination with
decomposition to optimize ciphers utilizing many different S-boxes, and,
to highlight the strength of our new methodology, we construct a 3-share
Threshold Implementation of SERPENT which was believed to be not
possible until now. Last, we show how to implemented all SERPENT
S-boxes with only one mutual core.

1 Introduction

Side Channel Attacks (SCA) [4] were introduced in 1997 by Kocher et al. and ex-
ploit the fact that while a device is processing data, information about this data
is leaked through different channels, e.g., power consumption, electromagnetic
emanation and so forth. DPA [5] is a more advanced technique using statisti-
cal methods to analyze data collected from many measurements. It exploits the
correlation between intermediate results, which depend on a small part of the
secret, and the power consumption.

Several countermeasures (far too many to address all of them) have been
proposed during the last years, for example, to increase the SNR ratio [9], to bal-
ance the leakage of different values [7] or to break the link between the processed
data and the secret, i.e., masking [2]. Due to the presence of glitches masked im-
plementation might still be vulnerable to DPA [8,10]. A recent countermeasure
against DPA was introduced in 2006 by Nikova et.al. [11] and is called Threshold
Implementation (TI). It is based on secret sharing (or multi-party computation)
techniques and is provable secure against first order DPA even in the presence
of glitches. Furthermore, it can be implemented very efficiently in hardware [13].

2 Sebastian Kutzner1, Phuong Ha Nguyen2, and Axel Poschmann2.

The number of shares required for a Threshold Implementation depends on
the degree d of the non-linear function (S-box) and [11,12] have shown that it is
at least d+1. It implies that the higher the degree of the non-linear function, the
more shares are required and the larger is the implementation. Since a degree of
two is the minimal degree of a non-linear function, the optimal number of shares
is three. Therefore, to apply a 3-share Threshold Implementation to a larger
degree function, this function must be represented as a composition of quadratic
functions [13].

Nowadays, 4-bit S-boxes are used in cryptographic algorithms due to their
efficient hardware implementation. In [6], the authors define a set of 4-bit S-
boxes, which fulfill certain cryptographic properties to resist linear and differ-
ential cryptanalysis, as optimal S-boxes. The PRESENT S-box is an example
for such an optimal 4-bit S-box for which, after decomposition to two quadratic
boolean functions, the 3-share TI can be applied [13]. This motivates us to study
which of these optimal S-boxes are suitable for the 3-share TI. In this paper, we
show that all optimal 4-bit S-boxes which can be protected by the 3-share TI
belong to the alternating group A16 of the symmetric group S16

1. This answer
implies that we can not apply the 3-share TI to those S-boxes which do not
belong to A16. Therefore, we introduce the Factorization structure. This new
idea has two big contributions: first, it allows us to decompose any 4-bit S-box
to quadratic vectorial boolean functions and hence, enabling us to apply the
3-share TI to any given 4-bit S-box. Second, it helps us to optimize hardware
implementation of ciphers with different S-boxes by enabling sharing a mutual
core between them. To support our claims we first show how our idea can be
used to efficiently implement the SERPENT S-boxes and second, how to apply
the 3-share TI to SERPENT, what, up to now, was believed to be not possible.

Finding a decomposition or factorization of an arbitrary optimal S-box is not
a trivial problem. Sometimes, the time complexity is more than 252 and might be
beyond our capacity. To solve this problem we first intensively study the struc-
ture of optimal S-boxes. We derive an algorithm which can not only decompose
any optimal S-box with a time complexity of 219 but also finds decompositions
which are very efficient in terms of hardware costs.

The paper is organized as follows. In Section 2 the Threshold Implementation
countermeasure and the results of the journal of cryptology paper are recalled.
Section 3 studies the set of optimal 4-bit S-boxes for which the 3-share TI can be
applied. In Section 4 the Factorization Structure is introduced. In Section 5 our
new ideas are applied to the SERPENT cipher. Section 6 concludes the paper.

2 The Threshold Implementation Countermeasure

In this section we recall the preliminaries of the Threshold implementation coun-
termeasure and revisit the results of [13] describing a 3-share TI of PRESENT.

1 This result is independently found from that of http://eprint.iacr.org/2012/
300.pdf which was accepted in CHES2012.

Enabling 3-share Threshold Implementations for any 4-bit S-box 3

2.1 Threshold Implementation Countermeasure

In [11], the Threshold Implementations(TI) was introduced as a side channel
attack countermeasure. It is based on secret sharing and multiparty computation
and provable secure against the 1-st order DPA, even in the presence of glitches.
The method can be described as follows. The variable x is divided into s shares
xi, 1 ≤ i ≤ s, such that x =

⊕s
i=1 xi. Let

F(x, y, z, . . .) : GF (2)m → GF (2)n

be a vectorial boolean function which needs to be shared. Denote x̄i = (x1,
. . . , xi−1, xi+1, . . . , xs), i.e, the vector x̄i does not contain the share xi. In order
to share F , a set of s vectorial boolean functions Fi is constructed and must
fulfill the following properties:

1. Non-completeness: All the function Fi must be independent to the input
variables x, y, z, . . ., i.e the inputs of Fi does not have xi, yi, zi, . . . or
Fi = Fi(x̄i).

2. Correctness: F(x, y, z, . . .) =
⊕s

i=1 Fi(x̄i, ȳi, z̄i, . . .).

According to the Theorem 2 and 3 of [11], if the inputs satisfy the following
condition

Pr(x̄ = X̄, ȳ = Ȳ , . . .) = qPr(x =

s⊕
i

Xi, y =

s⊕
i

Yi, . . .), (1)

where q is a constant, then the shared version of function F can resist against
the first order DPA in presence of glitches.

In general, the function F is a S-box layer and the output of the previous
round of the cipher is the input of the current round. Hence, we have a following
property for the output of F. Assume that, the output of F is u = (u1, u2, . . . , ui),
then we have the following property for output of F :

Uniformity: Pr(ū = Ū |u =
⊕s

i Ui) is a constant.
If the function u = F (x) is invertible, then every vector ū is reached for

exactly one input vector x̄. In this paper, the function F is a 4-bit S-box. Hence,
its 3-share version is required to be 12-bit permutation.

The number of shares s depends on the degree of the original vectorial
boolean function F(x, y, z, . . .). Assume that the degree of F is d, then s is
computed as follows:

Theorem 1. [12] The minimum number of shares required to implement a prod-
uct of d variables satisfying Property 1 and 2 is given by

s ≥ 1 + d

Since the minimum degree of a nonlinear vectorial boolean function is 2, the
number of shares s is at least 3. The more shares are needed, the bigger the
hardware implementation. Therefore, the 3-share TI is the most efficient case.

4 Sebastian Kutzner1, Phuong Ha Nguyen2, and Axel Poschmann2.

2.2 3-share TI for cubic 4-bit S-boxes

In [13] the authors describe how to apply the 3-share TI to PRESENT. Since
the PRESENT S-box S(·) is a cubic 4-bit permutation, the minimum number
of shares is 4 [12]. To apply TI with only 3 shares, the authors decomposed the
S-box into two quadratic permutations S(·) = F (G(·)) as shown in Figure 1.

4
g3

g2

g1

y3

y2

y1

f1

f2

f3

4

4

4

4

4

4

4

4

S2

S3

S1

G F
4 44

S
4 4

Fig. 1. Composition of PRESENT’s s-box [13]

3 TI-Decomposition

In the previous section we recalled how the authors of [13] used the decomposition
of a cubic function into two quadratic ones to reduce the number of needed shares
in a TI from 4 to 3. In this section we want to investigate the decomposability
of optimal 4-bit S-boxes in a more general way. First, we recall the definition of
optimal S-boxes and decompositions. Then we define all optimal 4-bit S-boxes
which can be decomposed into quadratic boolean functions, i.e., belong to A16. In
addition, we describe how to construct the decompositions for all these S-boxes
with a time complexity of 219.

3.1 Optimal 4-bit S-boxes

Definition 1. Two sboxes S(x), S
′
(x) are linearly equivalent iff there exist two

4× 4-bit invertible matrices A,B and two 4-bit vector c, d such that

S
′
(x) = A(S(Bx⊕ c)⊕ d),∀x ∈ {0, . . . , 15}

An S-box is considered as optimal if it fulfills the following requirements [6]:

Definition 2. Let S : F 4
2 → F 4

2 be an S-box. If S fulfills the following conditions
we call S an optimal S-box:

1. S is a bijection,
2. Lin(S) = 8,
3. Diff(S) = 4,

Enabling 3-share Threshold Implementations for any 4-bit S-box 5

where Lin(S) and Diff(S) are the linearity and differentiality of S-box S. The
reader is refered to [6] for the definitions of Lin(S) and Diff(S).

In addition the authors define 16 classes of linearly equivalent S-boxes in S16,
i.e class 0, class 1, . . ., class 15. An optimal S-boxes belongs to a certain class
and each class can be represented by using one its S-box.

For the sake for convenience, we follow the notations in [6]. We write the
4× 4-bit matrix A in the hexadecimal, for example:

A =

1 0 1 0
0 1 0 0
1 0 0 0
1 0 1 1

 =

a
4
8
b

 =
(
0xb84a

)
, (2)

By utilizing definition 1 we do not have to investigate all S
′
(·) but we can

focus our investigations on one representative S(·) of each class, i.e., if S(·)
belongs to class i, then all the results of S(·) can be transferred to S

′
(·), i =

0, . . . , 15.

3.2 Decomposition of Optimal 4-bit S-boxes

Definition 3. If a vectorial boolean function S(·) can be written as a composi-
tion of several lower degree vectorial boolean functions F1(·), F2(·), . . . , Fn(·) , i.e
S(·) = Fn(. . . F2(F1(·))), then F1(·), F2(·), . . . , Fn(·) is called the decomposition
of S(·).

We recall some properties of a permutation in S16.

Lemma 1. A16 is a subgroup of S16, i.e if p1(·) and p2(·) are permutations in
A16 then its composition permutation p3(·) = p1(p2(·)) must be in A16 as well.

Lemma 2. All the linear and quadratic permutations in S16 are in A16.

Proof. In [13], the author stated that there are around 226 quadratic permuta-
tions. Since the number of the linear and quadratic permutations is not big, we
can check the parity of all these permutations. If a permutation has a parity of
+1, then it belongs to A16 (i.e., it is an even permutation). If its parity equals -1,
then it does not belong to A16 (i.e., it is an odd permutation). All the considered
permutations have the parity +1. It implies that these permutations belong to
A16.

Theorem 2. If a permutation p(·) is able to be represented as a composition of
quadratic permutations, then p(·) is in A16.

Proof. The theorem is directly derived from the Lemma 1 and Lemma 2.

Note 1. The composition of a quadratic permutation and a linear permutation
is a quadratic one. Hence, a quadratic permutation is able to be described as a
composition of linear and quadratic permutations.

6 Sebastian Kutzner1, Phuong Ha Nguyen2, and Axel Poschmann2.

Based on Note 1, if one S-box of a considered class can be decomposed, then
all S-boxes of this class can be decomposed as well. After checking the parities
of permutation of all 16 representative S-boxes, the decomposable classes are: 0,
1, 2, 4, 5, 7, 8, 13 because their representative have parity +1. For example, the
PRESENT S-box can be described as a composition of quadratic permutations
because it belongs to class 1.

As described in 2.2, after the decomposition into several 4-bit quadratic per-
mutations we need to convert each of these 4-bit permutations into 12-bit per-
mutations. These 12-bit quadratic permutations have to fulfill all 3 requirements
for a Threshold Implementation [12], i.e., non- completeness, correctness and the
uniformity property.

Definition 4. A 4-bit linear or quadratic permutation is called sharable if it can
be converted to a 12-bit permutation which fulfills the following properties: cor-
rectness, non-completeness and uniformity. All linear permutations are sharable
[12].

Definition 5. A 4-bit permutation is called TI-decomposable if it can be de-
scribed as a composition of several sharable permutations.

Our aim is to prove that all S-boxes belonging to the 8 classes 0, 1, 2, 4,
5, 7, 8, 13 are TI-decomposable S-boxes. In order to prove this, we shall show
that there exist one TI-decomposable S-box in each class - all S-boxes in one
class can be constructed by applying only linear permutations 1 and all linear
permutations are sharable 4.

For an arbitrary S-box to be TI-decomposable it must belong to A16 (note
that the reverse condition is not necessarily true). Also, an S-box S(·) might
not always be decomposable into two quadratic permutations F (G(·)), but one
has to find a decomposition with at least three quadratic permutations F (·),
H(·), G(·) such that S(·) = F (H(G(·))). Even if we know that an S-box can be
decomposed into three quadratic permutations, the time complexity for finding
a solution for F (·), H(·) and G(·) is not practical, i.e., more than 252 by using
the method described in [13].

Therefore, we need a more efficient method to find a decomposition of arbi-
trary optimal S-boxes in A16. We introduce the following lemma which not only
solves this problem but also gives a deep insight into decomposition of S-boxes.

Let R be the following sharable permutation ,

R = [0, 4, 1, 5, 2, 15, 11, 6, 8, 12, 9, 13, 14, 3, 7, 10].
We introduce a special structure of a decomposition:

S(·) = AnF (An−1F (....A0(F (·))...)

, whereAn, . . . , A0 are invertible matrices and S(·), F (·) are two vectorial boolean
functions. We recall, based on 5, if F (·) is a sharable permutation then S(·) is a
TI-decomposable S-box. We make the following observation:

1. if A = 0x1249, then S(·) = R(AR(·)) ∈ class 0

Enabling 3-share Threshold Implementations for any 4-bit S-box 7

2. if A = 0x1248, then S(·) = R(AR(·)) ∈ class 1
3. if A = 0x1259, then S(·) = R(AR(·)) ∈ class 2
4. if A = 0x1295, then S(·) = R(AR(·)) ∈ class 8
5. if A = 0x12e6, then S(·) = R(AR(R(·))) ∈ class 4
6. if A = 0x1843, then S(·) = R(AR(R(·))) ∈ class 7
7. if A = 0x134b, then S(·) = R(AR(R(·))) ∈ class 13
8. if A = 0x14a7, then S(·) = R(AR(R(R(·)))) ∈ class 5

With this idea we are able to construct a representative TI-decomposable S-
box for all latter mentioned 8 classes. Hence, based on 1 and Note 1 we are able
construct all possible optimal S-boxes belonging to these 8 classes by adapting A,
B, c and d. This way we can reduce the time complexity to find a decomposition
for a given S-box to 219. Using this trick we derive the following lemma:

Lemma 3. Let Fi(·), 1 ≤ i ≤ 4, be sharable permutations. Then,

1. For any optimal S-boxes S(·) in the classes 0, 1, 2, 8, there exist sharable
permutations F1(·) and F2(·) such that S(·) = F1(F2(·)).

2. For any optimal S-boxes S(·) in classes 4, 7, 13, there exist no sharable per-
mutations F1(·) and F2(·) such that S(·) = F1(F2(·)) (proven by exhaustive
search), but there exist F1(·), F2(·), F3(·) such that S(·) = F1(F2(F3(·))).

3. For any optimal S-boxes S(·) in class 5, there exist no sharable permutations
F1(·) and F2(·) such that S(·) = F1(F2(·)) (proven by exhaustive search),
but there exist F1(·), F2(·), F3(·), F4(·) such that S(·) = F1(F2(F3(F4(·)))).
Note that there might be a solution such that S(·) = F1(F2(F3(·))) belongs
to class 5, but due to the time complexity we could not find such a solution
by exhaustive search. Anyway, here the only goal was to construct an S-box
belonging to class 5 out of an arbitrary number of sharable decompositions.

Theorem 3. All S-boxes which belong to classes 0, 1, 2, 4, 5, 7, 8, 13 are TI-
decomposable.

Proof. This theorem is directly derived from Lemma 3.

Out of the 16 classes there remain 8 classes which are not decomposable, i.e.,
all these S-boxes do not belong to A16. Hence, there is no method known so far
on how to apply the 3-share TI to these S-boxes. In the next section, we shall
introduce a new methodology to solve this open problem.

4 Factorization

In the previous section we were left with the representatives of the 8 remaining
classes: 3, 6, 9, 10, 11, 12, 14 and 15. We know that these representatives are odd
permutations, i.e., they do not belong to A16 and hence can not be decomposed.
In this section we will introduce a new methodology to solve this problem.

First, let us recall the two following lemmas.

8 Sebastian Kutzner1, Phuong Ha Nguyen2, and Axel Poschmann2.

Lemma 4. The composition of an odd permutation and an even permutation is
an odd permutation.

Proof. The following facts are well-known: the parity of a permutation equals
the product of the parities of its decomposed permutations. The parity of an odd
permutation is -1, the parity of an even permutation is +1. Hence, the parity of
a composition of an odd permutation and an even permutation is -1, i.e., an odd
permutation.

Lemma 5. The 4-bit cubic permutation α(x) = (x + 1)%16, 0 ≤ x ≤ 15, i.e
α(·) is modulo-addition over finite field F16, is an odd permutation.

Proof. The permutation parity of α(·) is -1. It implies that α(·) is an odd per-
mutation.

Denote Gi(·) [6] the representatives of class i and Hi(·) permutations such
that Gi(·) = α(Hi(·)), i = 3, 6, 9, 10, 11, 12, 14, 15. According to the Lemmas
4 and 5, Hi(·) must be an even permutation.

The way to our solution consists of two steps:

1. Prove that all Hi(·) are TI-decomposable.
2. Factorize α(·).

If we can solve both steps, we can apply TI for all Gi(·) of the remaining 8
classes.

4.1 All Hi(·) are TI-decomposable

Lemma 6. For all Hi(·) above, there exist no sharable permutations F1(·), F2(·)
such that Hi(·) = F1(F2(·)), but there exist F1(·), F2(·), F3(·) such that Hi(·) =
F1(F2(F3(·))).

Proof. In Table 6 we provide the sharable permutations F1(·), F2(·), F3(·) with
F2(·) = F3(·) such that Hi(·) = F1(F2(F3(·))) for all Hi(·). The permutations
F1(·), F2(·) (F3(·) respectively) are written as a sequence of 16 hexadecimal dig-
its. For example F1 = de07f8213ba659c4 equals

F1 = [0xd, 0xe, 0x0, 0x7, 0xf, 0x8, 0x2, 0x1, 0x3, 0xb, 0xa, 0x6, 0x5, 0x9, 0xc, 0x4]

4.2 Factorize α(·)

We make the following observation: any given vectorial boolean function S(·)
can be written as follows:

S(·) = U(·)⊕ V (·),
where ⊕ is the bitwise XOR operation and U(·), V (·) are vectorial boolean
function. We call this method TI-Factorization.

We may factorize any given optimal 4-bit S-box by using at least 3 quadratic
vectorial boolean functions as follows and the idea is described in Figure 4.2:

Enabling 3-share Threshold Implementations for any 4-bit S-box 9

Table 1. The F1 and F2 (F3 respectively) for all Hi

Hi F1 F2

3 de07f8213ba659c4 8c04159d72fa63eb

6 fe70d812396a5b4c 8c04159d63eb72fa

9 163d47f52a98c0eb 04268cea7351bfd9

10 138eba279f4605dc 0d481c5937eb26fa

11 14a9de0523f8cb76 028aec64935fb17d

12 1a95d04e68b2f73c 039b128a5ed74fc6

14 1af5b04e862d79c3 038a129bf57ce46d

15 10fd287e9c35a4b6 0a1b38295647fdec

1. Construct U(·) such that it contains all cubic terms of the ANF of S(·).
2. Find two vectorial boolean functions such that U(·) = F (G(·))
3. Compute V (·) = S(·)⊕ U(·)

V

G F

X

S(x)

Fig. 2. Factorization Structure.

Note 2. To use the idea of factorization in the context of TI, the 3 properties of
[11] - correctness, non-completeness and uniformity - have to be considered. For
the properties to be fulfilled, G(·) must be a sharable permutation.

Definition 6. A 4-bit linear or quadratic vectorial boolean function is called
sharable if it can be converted to a 12-bit vectorial boolean function which fulfills
the following properties: correctness and non-completeness. All 4-bit vectorial
boolean function are sharable.

Definition 7. A 4-bit permutation is called TI-factorizable if it can be described
as a composition of several sharable vectorial boolean functions and its converted
12-bit vectorial boolean function is a 12-bit permutation.

Note 3. TI-decomposable S-boxes are a subset of TI-factorizable S-boxes.

10 Sebastian Kutzner1, Phuong Ha Nguyen2, and Axel Poschmann2.

Denote (α1, α2, α3, α4) = α(x, y, z, w), where x, y, z, w, αi, 1 ≤ i ≤ 4, are in
F2. The ANF of α(·) is

α1 = x⊕ yzw
α2 = y ⊕ zw
α3 = z ⊕ w
α4 = w ⊕ 1

Now, we show that the permutation α(·) is TI-factorizable. In order to fac-
torize α(·) = F (G(·)) ⊕ V (·), we use 3 sharable vectorial boolean functions
(a, b, c, d) = G(x, y, z, w) (a sharable permutation), (A,B,C,D) = F (a, b, c, d)
and (X,Y, Z,W) = V (x, y, z, w) as follows:

ANF of G(·):

a = x⊕ yz
b = y

c = z

d = w

ANF of F (·):

A = ad

B = 0

C = 0

D = 0

and ANF of V (·):

X = x⊕ xw
Y = y ⊕ zw
Z = z ⊕ w
W = w ⊕ 1

In the appendix we describe the construction of the 12-bit permutation α12(·)
of α(·). Since α12(·) is a 12-bit permutation, α(·) is TI-factorizable 7.

Note 4. The 3-share versions of V (·) and F (·) satisfy the non-completeness and
correctness properties and their inputs are uniformly distributed, i.e., the equa-
tion 1 is satisfied. Therefore, the 3-share versions of V (·) and F (·) are secure to
first order DPA. Since the 3-share version of α(·) fulfills all required properties,
i.e. non-completeness, correctness and uniformity and its input also satisfies the
equation 1, the 3-share version of α(·) is secure to first order DPA as well.

Enabling 3-share Threshold Implementations for any 4-bit S-box 11

We now have solved both problems defined in the beginning of this chapter:
we have proven that all Hi are TI-decomposable and α(·) is TI-factorizable.
From 3 it follows that all Gi(·) are also TI-factorizable and hence, the TI can
be applied to all of the remaining 8 classes. Based on our results we derive the
following theorem.

Theorem 4. All 4-bit optimal S-boxes in the symmetric group S16 are TI-
factorizable. It implies that all these S-boxes can be protected by using the 3-share
TI.

Note 5. We can generalize the factorization structure for 4-bit permutation as
follows. It is always true that, there exists a set of quadratic vectorial boolean
functions Fi, V and quadratic permutation Gi, 1 ≤ i ≤ n, such that, for any
4-bit S-box S(·):

S(·) =

n⊕
i=1

Fi(Gi(·))⊕ V (·).

The Figure 4.2 describes the general idea. Hence, it may be possible to directly
construct the 12-bit permutation S12(·) of a given 4-bit cubic S-box S(·) without
taking the detour using α(·). We used α(·) for the sake of clarity.

V

G

G

F

F

1 1

n n

X

S(x)

Fig. 3. General Factorization Structure.

5 Applications of TI-decomposable and TI-factorizable
S-boxes

In [6] the authors propose an idea stating that two linear equivalent S-boxes can
share the same core, i.e., the same class representativeGi, to save implementation

12 Sebastian Kutzner1, Phuong Ha Nguyen2, and Axel Poschmann2.

costs. Unfortunately, it is not possible to share a core between different equivalent
classes. We pick up this idea and show that by using our new methodologies we
can overcome this shortcoming.

In particular, we want to highlight two major benefits of our methodologies.
First, using different compositions of the same sharable permutation enables us
to construct representatives of all classes in A16. We can use this fact to improve
the idea of [6] and use the same core for all S-boxes in A16. By using factorization
we can even extend this idea further to classes not in A16.

Second, since all these S-boxes, independent of their class, are now con-
structed by only using linear and quadratic permutations and/or vectorial boolean
functions, and can be used for a 3-share Threshold Implementation.

In the following we want to give an example of how to apply our methodolo-
gies. We chose SERPENT because it has 8 different S-boxes of which 4 belong
to A16 and the other 4 do not belong to A16. This makes SERPENT the perfect
example to show the application of our methodologies.

5.1 SERPENT

Let S ∼ S′
denote S is linear equivalent to S

′
, and let Gi be a representative of

class i. The equivalences of the 8 SERPENT S-boxes are as follows [6]:

S0 ∼ G2

S1 ∼ G0

S2 ∼ S6 ∼ G1

S3 ∼ S7 ∼ G9

S4 ∼ S5 ∼ G14

(3)

As we can see there are 5 equivalent classes, meaning by using the idea of [6]
we need to implement 5 cores.

Let us recall some results from section 3.2. Let R be the following sharable
permutation:

R = [0, 4, 1, 5, 2, 15, 11, 6, 8, 12, 9, 13, 14, 3, 7, 10].

1. if A = 0x1249, then S(·) = R(AR(·)) ∈ class 0
2. if A = 0x1248, then S(·) = R(AR(·)) ∈ class 1
3. if A = 0x1259, then S(·) = R(AR(·)) ∈ class 2

Based on these results, instead of needing 3 cores G0, G1, G2 to construct
the 4 S-boxes S0, S1, S2, S6, we only need to implement R(·) and the matrices
0x1249, 0x1248 and 0x1259 to construct 4 class representatives. Then, we con-
struct the final 4 S-boxes S0, S1, S2 and S6 by applying Si = Â(S(B̂x⊕ c)⊕ d)
1 with the parameters provided in Table 2.

Moreover, we make the following observation for the SERPENT S-boxes
which do not belong to A16.

Enabling 3-share Threshold Implementations for any 4-bit S-box 13

Table 2. The parameters Â, B̂, ĉ, d̂ of the S-boxes S0, S1, S2, S6 of SERPENT

Â B̂ ĉ d̂ class

SERPENT S0 [1] 0x4659 0x3f98 0xa 0x2 2

SERPENT S1 [1] 0xd597 0xc43a 0xf 0x8 0

SERPENT S2 [1] 0xbd87 0x2418 0xe 0x1 1

SERPENT S6 [1] 0x5978 0xce96 0x7 0xa 1

1. if A = 0x1529, then S(·) = R(AR(R(·))) ∼ H9

2. if A = 0x1c38, then S(·) = R(AR(R(·))) ∼ H14

Where Gi = (Hi + 1)%16, i = 9, 14. Hence, we can construct H9 and H14 by
only using R(·), the matrices 0x1529, 0x1c38, and by applying Hi = Ã(S(B̃x⊕
c̃)⊕ d̃) the R(·) with the parameters provided in Table 3. Recall that Hi is not
necessarily a representative of class i but is needed to construct the representative
Gi of class i.

Table 3. The parameters Ã, B̃, c̃, d̃ of H9, H14 of SERPENT

Ã B̃ c̃ d̃

SERPENT H9 0x4896 0x62e3 0xe 0xd

SERPENT H14 0xba4d 0xb8da 0xf 0x1

To construct the 4 remaining SERPENT S-boxes S3, S4, S5, S7, we now need
to apply Si = A(α(Hi)(Bx⊕ c)⊕ d) with the parameters provided in Table 4.

Table 4. The parameters A, B, c, d and class of some S-boxes

A B c d class

SERPENT S3 [1] 0xfbc5 0xbaf6 0x9 0xe 9

SERPENT S4 [1] 0xa98d 0x8147 0xb 0x9 14

SERPENT S5 [1] 0xad89 0x124e 0x0 0x8 14

SERPENT S7 [1] 0x8947 0x427f 0x6 0x4 9

Taking all results together, instead of implementing 8 S-boxes or 5 cores, we
are now able to implement all S-boxes using only one core R(·) (which is sharable
permutation), the function α(·) and linear transformations with the parameters
provided in this paper. More importantly, it is now possible to apply the 3-share
TI to all SERPENT S-boxes, which up to now, was believed to be not possible
for the ones not in A16.

14 Sebastian Kutzner1, Phuong Ha Nguyen2, and Axel Poschmann2.

5.2 Generic algorithm to factorize S-boxes /∈ A16

To factorize a given optimal S-box S(·) which is not in A16 we perform the
following steps:

1. Determine the class of the S-box S(·), i.e., find A, B, c, d such that S(x) =
A(Gi(Bx⊕ c)⊕ d).

2. Look up the corresponding F and G in Table 6, i.e., Gi(·) = α(F (G(·))).
3. The given S-box S(x) is factorized as follows:

S(x) = A(α(F (G(Bx⊕ c)))⊕ d)

In Table 5 we provide some parameters for several 4-bit S-boxes which do
not belong to A16.

6 Conclusion

The 3-share TI is an efficient and well-accepted countermeasure against DPA.
Until now, it was only possible to apply this countermeasure to optimal 4-bit
S-boxes which belong to A16 (roughly 50 % of all optimal S-boxes).

First, we give a deep insight into the decomposition of optimal S-boxes and
provide a methodology to share a mutual core between all S-boxes in A16. This
technique allows for very efficient (in terms of size) hardware implementations.
Based on this methodology, we present a new algorithm which can find a de-
composition of any given S-box in A16 with a time complexity of 219.

Second, we introduce a new methodology called factorization. This idea en-
ables us to decompose S-boxes not belonging to A16. We show that it is now
possible to share a mutual core between all optimal S-boxes allowing the most
efficient implementations. More importantly though, since all S-boxes are factor-
ized to linear and quadratic vectorial boolean functions only, we can apply the
3-share TI to all optimal S-boxes, which was believed to be not possible until
now.

Enabling 3-share Threshold Implementations for any 4-bit S-box 15

References

1. Eli Biham, Ross Anderson, and Lars Knudsen. Serpent: A new block cipher pro-
posal. In In Fast Software Encryption 98, pages 222–238. Springer-Verlag, 1998.

2. Jean-Sébastien Coron and Louis Goubin. c. In Proceedings of the Second Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, CHES, pages
231–237, London, UK, UK, 2000. Springer-Verlag.

3. Peter Schweitzer Daniel Engels, Markku-Juhani O. Saarinen and Eric M. Smith.
The hummingbird-2 lightweight authenticated encryption algorithm.

4. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’96, pages 104–113, London,
UK, UK, 1996. Springer-Verlag.

5. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Proceedings of the 19th Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’99, pages 388–397, London, UK, UK, 1999. Springer-
Verlag.

6. G. Leander and A. Poschmann. On the classification of 4 bit s-boxes. In Proceedings
of the 1st international workshop on Arithmetic of Finite Fields, WAIFI ’07, pages
159–176, Berlin, Heidelberg, 2007. Springer-Verlag.

7. Stefan Mangard. Masked dual-rail pre-charge logic: Dpa-resistance without routing
constraints. In Systems CHES 2005, 7th International Workshop, pages 172–186.
Springer, 2005.

8. Stefan Mangard, Berndt M. Gammel, and Infineon Technolgies Ag. Side-channel
leakage of masked cmos gates. In in Topics in Cryptology - CT-RSA 2005, The
Cryptographers Track at the RSA Conference 2005, pages 351–365. Springer, 2005.

9. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards (Advances in Information Security). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2007.

10. Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully attack-
ing masked aes hardware implementations. In CHES 2005, pages 157–171, 2005.

11. Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implemen-
tations against side-channel attacks and glitches. In Peng Ning, Sihan Qing, and
Ninghui Li, editors, ICICS, volume 4307 of Lecture Notes in Computer Science,
pages 529–545. Springer, 2006.

12. Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware implemen-
tation of nonlinear functions in the presence of glitches. Journal of Cryptology,
pages 292–321, October 2010.

13. Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong
Wang, and San Ling. Side-channel resistant crypto for less than 2,300 ge. J.
Cryptol., 24(2):322–345, April 2011.

Appendix

In this section we will prove that α12(·) is 12-bit permutation. Based on F (·),
G(·), V (·), the 12-bit permutation α12(·) of α(·) is constructed as follows:

The 4-bit input x, y, z, w is split into 3 shares, i.e., x = x1 ⊕ x2 ⊕ x3,
y = y1⊕y2⊕y3, z = z1⊕ z2⊕ z3, w = w1⊕w2⊕w3. Hence, the twelve bit input
now is x1, x2, x3, y1, y2, y3, z1, z2, z3, w1, w2, w3.

16 Sebastian Kutzner1, Phuong Ha Nguyen2, and Axel Poschmann2.

The ANF of 12-bit G12(·) of G(·) is:

a1 = x2 ⊕ y2z2 ⊕ y2z3 ⊕ y3z2
a2 = x3 ⊕ y3z3 ⊕ y1z3 ⊕ y3z1
a3 = x1 ⊕ y1z1 ⊕ y1z2 ⊕ y2z1
b1 = y2

b2 = y3

b3 = y1

c1 = z2

c2 = z3

c3 = z1

d1 = w2

d2 = w3

d3 = w1

The ANF of 12-bit F12(·) of F (·) is:

A1 = a2d2 ⊕ a2d3 ⊕ a3d2
A2 = a3d3 ⊕ a1d3 ⊕ a3d1
A3 = a1d1 ⊕ a1d2 ⊕ a2d1
B1 = 0

B2 = 0

B3 = 0

C1 = 0

C2 = 0

C3 = 0

D1 = 0

D2 = 0

D3 = 0

Enabling 3-share Threshold Implementations for any 4-bit S-box 17

The ANF of 12-bit V12(·) of V (·) is:

X1 = x2 ⊕ x3w3 ⊕ x2w3 ⊕ x3w2

X2 = x3 ⊕ x1w1 ⊕ x1w3 ⊕ x3w1

X3 = x1 ⊕ x2w2 ⊕ x1w2 ⊕ x2w1

Y1 = y2 ⊕ z3w3 ⊕ z2w3 ⊕ z3w2

Y2 = y3 ⊕ z1w1 ⊕ z1w3 ⊕ z3w1

Y3 = y1 ⊕ z2w2 ⊕ z1w2 ⊕ z2w1

Z1 = z2 ⊕ w2

Z2 = z3 ⊕ w3

Z3 = z1 ⊕ w1

W1 = w2 ⊕ 1

W2 = w3

W3 = w1

Then α12(·) = F12(G12(·)) ⊕ V12(·) is a 12-bit permutation.

Table 5. The parameters A, B, c, d and class of some S-boxes

A B c d class

HB2 S0 [3] 0x8749 0x42ef 0x7 0x9 9

HB2 S1 [3] 0x1e43 0xf8c2 0xb 0x9 10

HB2 S2 [3] 0x8d9a 0x412b 0xc 0x7 14

HB2 S3 [3] 0x3f41 0x76f2 0xe 0x7 15

HB2 S0−1 [3] 0xfcb5 0x75fc 0xc 0x1 9

HB2 S1−1 [3] 0x59de 0x328e 0xa 0x2 10

HB2 S2−1 [3] 0xf314 0xe6f4 0xd 0xc 15

HB2 S3−1 [3] 0xa9d8 0x8217 0x7 0x8 14

SERPENT S−1
3 [1] 0x7498 0x24ef 0xa 0xb 9

SERPENT S−1
4 [1] 0xf431 0xbaf2 0x6 0xd 15

SERPENT S−1
5 [1] 0x1f34 0xbaf8 0xe 0x6 15

SERPENT S−1
7 [1] 0x5cbf 0xd5f6 0x4 0xd 9

	Enabling 3-share Threshold Implementations for any 4-bit S-box
	Anonymous
	Introduction
	The Threshold Implementation Countermeasure
	Threshold Implementation Countermeasure
	3-share TI for cubic 4-bit S-boxes

	TI-Decomposition
	Optimal 4-bit S-boxes
	Decomposition of Optimal 4-bit S-boxes

	Factorization
	All Hi() are TI-decomposable
	Factorize ()

	Applications of TI-decomposable and TI-factorizable S-boxes
	SERPENT
	Generic algorithm to factorize S-boxes -.25ex-.25ex-.25ex-.25exA16

	Conclusion

	Bibliography

