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Abstract

Unconditionally secure multiparty computation (MPC) allows a set of n mutually distrusting parties to securely
compute an agreed function f over some finite field in the presence of a computationally unbounded adversary,
who can actively corrupt any t out of the n parties. Designing an asynchronous MPC (AMPC) protocol with a
communication complexity ofO(n) field elements per multiplication gate is a long standing open problem. We solve
the open problem by presenting two AMPC protocols with the corruption threshold t < n/4. Our first protocol is
statistically secure (i.e. involves a negligible error in the protocol outcome) in a completely asynchronous setting and
improves the communication complexity of the previous best AMPC protocol in the same setting by a factor of Θ(n).
Our second protocol is perfectly secure (i.e. error free) in a hybrid setting, where one round of communication is
assumed to be synchronous and improves the communication complexity of the previous best AMPC protocol in the
hybrid setting by a factor of Θ(n2).

Starting with the seminal work of Beaver (CRYPTO 1991), it is by now a well-known technique to evaluate mul-
tiplication gates in an MPC protocol using shared random multiplication triples. The central contribution common to
both the presented protocols is a new and simple framework for generating shared random multiplication triples. All
the existing protocols approach the problem by first producing shared pairs of random values, followed by computing
the shared product of each pair of random values by invoking known protocols for multiplication. Our framework
takes a completely different approach and avoids using the multiplication protocols that are typically communica-
tion intensive. Namely, we ask the parties to verifiably share random multiplication triples and then securely extract
shared random multiplication triples unknown to the adversary. The framework is of independent interest and can be
adapted to any honest majority setting.
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1 Introduction

Threshold unconditionally secure multiparty computation (MPC) is a powerful concept in secure distributed computing.
It enables a set of n mutually distrusting parties to jointly and securely compute a publicly known function f of their
private inputs over some finite field F, even in the presence of a computationally unbounded active adversary Adv,
capable of corrupting any t out of the n parties. In any general MPC protocol [8, 14, 32, 2], the function f is usually
expressed as an arithmetic circuit (consisting of addition and multiplication gates) over F and then the protocol evaluates
each gate in the circuit in a shared/distributed fashion. More specifically, each party secret share its private inputs among
the parties using a linear secret sharing scheme (LSS) [15], say Shamir [33], with threshold t1. The parties then interact
to maintain the following invariant for each gate in the circuit: given that the input values of the gate are secret shared
among the parties, the corresponding output value of the gate also remains secret shared among the parties. Finally the
(shared) circuit output is publicly reconstructed. Intuitively, the privacy follows since each intermediate value during the
shared circuit evaluation remains secret shared. Due to the linearity of the LSS, the addition (linear) gates are evaluated
locally by the parties. However, maintaining the above invariant for the multiplication (non-linear) gates requires
interaction among the parties. The focus therefore is rightfully placed on measuring the communication complexity
(namely the total number of field elements communicated) required to evaluate the multiplication gates in the circuit.

In the recent past, several efficient unconditionally secure MPC protocols have been proposed [23, 22, 3, 18, 5, 10].
The state of the art unconditionally secure MPC protocols have linear (i.e.O(n) field elements) amortized communica-
tion complexity per multiplication gate for both the perfect setting [5] (i.e. error-free) as well as for the statistical setting
[10] (where a negligible error is allowed). The amortized communication complexity is derived under the assumption
that the circuit is large enough so that the terms that are independent of the circuit size can be ignored [10]. Moreover,
these protocols have the optimal resilience of t < n/3 and t < n/2 respectively. The significance of linear commu-
nication complexity roots from the fact that the amortized communication done by each party for the evaluation of a
multiplication gate is independent of n. This makes the protocol “scalable” in the sense that the communication done by
an individual party does not grow with the number of parties in the system. In fact, even the best known unconditionally
secure MPC protocol in the passive security setting [18] does not achieve amortized communication complexity better
than O(n) field elements per multiplication gate. We note that if one is willing to reduce the resilience t from the
optimal resilience by a constant fraction of t, then by using techniques like packed secret sharing [21] and committee
election [12], one can break the O(n) barrier as shown in [17, 16]. However, the resultant protocols are quiet involved.

Our Motivation. All the results discussed above are in the synchronous network setting, where the delay of every
message in the network is bounded by a known constant. However, it is well-known that such networks do not ap-
propriately model the real-life networks like the Internet. Consequently, the asynchronous network model has been
proposed [7], where there are no timing assumptions and the messages can be arbitrarily delayed. The protocols in the
asynchronous model are much more involved than their synchronous counterparts due to the following general phenom-
ena, which is impossible to avoid in a completely asynchronous setting: if a party does not receive an expected message,
then it does not know whether the sender is corrupted (and did not send the message at all) or the message is just delayed
in the network. Thus, at any “stage” of an asynchronous protocol, no party can afford to listen the communication from
all the n parties, as the wait may turn out to be endless and so the communication from t (potentially honest) parties has
to be ignored. It is well known that perfectly secure (i.e. error-free) asynchronous MPC (AMPC) is possible if and only
if t < n/4 [7], while statistically secure AMPC (involving negligible error) is possible if and only if t < n/3 [9].

Unconditionally secure AMPC protocols are presented in [7, 9, 34, 31, 4, 29, 28]. The best known unconditional
AMPC protocol is reported in [28]. The protocol is perfectly secure with resilience t < n/4 and amortized communica-
tion complexity ofO(n2) field elements per multiplication gate. Designing AMPC protocols with linear communication
complexity per multiplication gate is the focus of this paper.

Our Results. We present two AMPC protocols with (amortized) communication complexity of O(n) field elements
per multiplication gate and with resilience t < n/4. The first protocol is statistically secure and works in a completely
asynchronous setting. Though non-optimally resilient, the protocol is the first AMPC protocol with linear communi-
cation complexity per multiplication gate. Our second protocol trades the network model to gain perfect security with

1Informally such a scheme ensures that the shared value remains information theoretically secure even if upto t shares are revealed.
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optimal resilience of t < n/4. The protocol is designed in a hybrid setting, that allows a single synchronous round at
the beginning, followed by a fully asynchronous setting. The hybrid setting was exploited earlier in [24, 4, 6] to enforce
“input provision”, i.e. to consider the inputs of all the n parties for the computation, which is otherwise impossible in a
completely asynchronous setting. The best known AMPC protocol in the hybrid setting was proposed in [4] with perfect
security, resilience t < n/4 and communication complexity of O(n3) field elements per multiplication gate. Thus, our
protocol significantly improves over the hybrid model protocol of [4]. Finally, we stress that no cryptographic tools are
employed in our protocols, as we aim for unconditional security against a computationally unbounded adversary.

1.1 Our Results: A Closer Look

We follow the well-known “offline-online” paradigm used in most of the recent MPC protocols [3, 4, 18, 5, 10]: the
offline (preprocessing) phase produces t-sharing of cM random multiplication triples {(a(i), b(i), c(i))}i∈[cM ] unknown2

to Adv, where c(i) = a(i)b(i). The shared multiplication triples are completely independent of f and the private inputs
of the parties; so this phase can be executed well ahead of the actual circuit evaluation (and hence the name offline
phase). Later, during the online phase the shared triples are used for the shared evaluation of the multiplication gates
in the circuit, using the standard Beaver’s circuit randomization technique [2] (see Sec. 3). The efficiency of the MPC
protocol is thus reduced to the problem of efficiently generating shared random multiplication triples. We propose a
new approach for this problem that significantly outperforms the existing ones in terms of the efficiency and simplicity.

The traditional way of generating the shared multiplication triples {(a(i), b(i), c(i))}i∈[cM ] is the following: first the
individual parties are asked to t-share random pairs of values on which a “randomness extraction” algorithm (such as the
one based on Vandermonde matrix [18] or the one based on Hyper-invertible matrix [5] or the simplest of all, namely to
add all the pairs) is applied to generate t-sharing of “truly” random pairs {a(i), b(i)}i∈[cM ]. Then known multiplication
protocols are invoked to compute t-sharing of {c(i)}i∈[cM ]. Instead, we find it a more natural approach to ask the
individual parties to “directly” share random multiplication triples and then “extract” shared random multiplication
triples unknown to Adv from the triples shared by the individual parties. This leads to a communication efficient,
simple and more natural “framework” to generate the triples. The framework is built with the following two modules:

• Multiplication Triple Sharing (Section 6.1). The first module allows a party Pi to robustly and “verifiably”
t-share Θ(n) random multiplication triples withO(n2) communication complexity and thus requiresO(n) “over-
head”. The verifiability ensures that the shared triples are indeed multiplication triples. Moreover for an honest
Pi, the shared triples remain private from Adv. Such shared triples, shared by the individual parties are referred
as local triples. Thus far, none of the existing protocol (including synchronous world) meets these requirements.

• Multiplication Triple Extraction (Section 6.2). The second module allows the parties to securely extract Θ(n)
t-shared random multiplication triples unknown to Adv from a set of 3t + 1 local t-shared multiplication triples
with O(n2) communication complexity (and thus with O(n) “overhead”), provided that at least 2t+ 1 out of the
3t + 1 local triples are shared by the honest parties (and hence are random and private). We stress that known
techniques for the extraction of shared random values from a set of shared random and non-random values fail to
extract random multiplication triples from a set of random and non-random multiplication triples 3.

We note that our framework has implications in other settings as well. For example, when compiled in a completely
synchronous setting with honest majority, our framework leads to a very simple preprocessing phase which reduces the
overall round round complexity of the existing round efficient MPC protocols of [25, 26] in point-to-point networks;
however, providing the exact details is out of scope of the current paper. For our first module, we present two protocols:
the first one probabilistically verifies the correctness of the shared multiplication triples, leading to our statistical AMPC
protocol. The second protocol verifies the shared multiplication triples in an error-free fashion in a hybrid setting,
leading to our perfectly secure hybrid AMPC protocol. For the second module, we present an error-free triple extraction
protocol. We do not employ (somewhat complex) techniques like player elimination [23, 5] and dispute control [3, 18,

2A value v is d-shared (see Definition 2.3) if there exists a random polynomial p(·) of degree at most d with p(0) = d and every honest party
holds a distinct point on v(·). Here cM denotes the number of multiplication gates in the circuit. By [X], we refer to the set {1, . . . , X}.

3Intuitively this is because all these existing information theoretically secure randomness extraction techniques apply a linear function to the
shared inputs to obtain the shared outputs. So there is no guarantee that by applying these linear functions to the shared local multiplication triples
(which have a “non-linear” relationship namely multiplication), the resultant shared outputs are also multiplication triples.
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10] in our protocols. These techniques have been used in the most recent synchronous unconditional MPC protocols
to obtain linear complexity. Briefly, these techniques suggest to carry out a computation optimistically first assuming
no corruption will take place and in case corruption occurs, fault/dispute is detected and memorized so that the same
fault/dispute does not cause failure in the subsequent computation. However, their applicability is yet to be known in
the asynchronous settings. At the heart of all our protocols lie the following two simple and interesting building blocks.

Verifiable Secret Sharing with Linear Overhead (Section 4): We propose a robust asynchronous verifiable secret
sharing (AVSS) protocol that allows a dealer D to “verifiably” t-share Θ(n) secret values with O(n2) communication
complexity (i.e.O(n) overhead). The protocol is obtained by modifying the perfectly secure AVSS protocol of [29, 28]
that allows D to 2t-share a single value. To the best of our knowledge, we are unaware of any robust secret sharing
protocol (with t < n/4) having linear overhead, even in the synchronous setting.

Transforming Independent Triples to Co-related Triples with Linear Overhead (Section 5): Taking 3t + 1 =
Θ(n) t-shared input triples (which may not be multiplication triples), say {(x(i), y(i), z(i))}i∈[3t+1], the protocol out-
puts 3t+ 1 t-shared triples, say {(x(i),y(i), z(i))}i∈[3t+1], such the x, y and z values lie on three polynomials of degree
3t/2, 3t/2 and 3t respectively. Namely, there exists polynomials X(·),Y(·) and Z(·) of degree at most 3t

2 ,
3t
2 and 3t

respectively, where X(αi) = x(i),Y(αi) = y(i) and Z(αi) = z(i) holds for 3t+1 distinct αis. The protocol has commu-
nication complexityO(n2) (i.e.O(n) overhead). The protocol further ensures the following one-to-one correspondence
between the input and the output triples: (1). the ith output triple is a multiplication triple if and only if the ith input
triple is a multiplication triple; (2). the ith output triple is known to Adv if and only if the ith input triple is known
to Adv. The former guarantees that the relation Z(·) = X(·)Y(·) is true if and only if all the 3t + 1 input triples are
multiplication triples, while the later guarantees that if Adv knows t′ input triples, then it implies 3t

2 + 1− t′ “degree of
freedom” in the polynomials X(·),Y(·) and Z(·), provided t′ ≤ 3t

2 . The protocol is borrowed from the batch verification
protocol of [10], where the goal was to probabilistically check whether a set of input triples are multiplication triples.
We use the protocol in two different contexts and “post-process” the output of the protocol (more details later).

Given the above two building blocks, our first module is realized by asking each party Pi to invoke the AVSS pro-
tocol to generate t-sharing of 3t + 1 random multiplication triples {(x(i), y(i), z(i))}i∈[3t+1]. All that is left is to
verify if the shared triples are indeed multiplication triples. This is achieved by transforming the shared triples to
{(x(i),y(i), z(i))}i∈[3t+1] using the triple transformation protocol and then verifying if Z(·) ?

= X(·)Y(·) where X(·),Y(·)
and Z(·) are the underlying polynomials, associated with {(x(i),y(i), z(i))}i∈[3t+1]. Two different methods are then pro-
posed for the verification; one leads to our statistical AMPC and the other leads to perfect AMPC in hybrid model.

The second module of the framework takes the set of 3t + 1 local t-shared multiplication triples (verifiably
shared by individual parties), say {(x(i), y(i), z(i))}i∈[3t+1] such that at least 2t + 1 of them are shared by the hon-
est parties. Then using our triple transformation protocol, the parties compute the set of shared multiplication triples
{(x(i),y(i), z(i))}i∈[3t+1]. Since all the input triples are guaranteed to be multiplication triples, the relation Z(·) =
X(·)Y(·) holds. Furthermore, since Adv may know at most t input local triples, t output triples are leaked, leaving t

2
“degree of freedom” in the polynomials, which is used to extract t2 random and private multiplication triples.

2 Model, Definitions and Notations

Model. We consider a set P = {P1, . . . , Pn} of n = 4t + 1 parties, connected by pair-wise secure (private and
authentic) channels; here t is the number of parties which can be under the control of a computationally unbounded
active (Byzantine) adversary Adv. The adversary can force the corrupted parties to deviate in any arbitrary manner
during the execution of a protocol. The communication channels are asynchronous allowing arbitrary, but finite delay
(i.e. the messages will reach to their destination eventually). The order of the message delivery is decided by a scheduler
and to model the worst case scenario, we assume that the scheduler is under the control of Adv. The scheduler can
schedule the messages exchanged between the honest parties (who are not under the control of Adv), without having
access to the “contents” of these messages. As in [7], we consider a protocol execution as a sequence of atomic steps,
where a single party is active in each such step. A party is activated when it receives a message. On receiving a message,
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it performs an internal computation and then possibly sends messages on its outgoing channels. The order of the atomic
steps are controlled by the scheduler. At the beginning of the computation, each party will be in a special start state.
A party is said to terminate/complete the computation if it reaches a halt state, after which it does not perform any
further computation. A protocol execution is said to be complete if all the honest parties terminate the commutation.

We assume that the function f to be computed is specified as a publicly known arithmetic circuit C over a finite
field F, where |F| > 2n and α1, . . . , αn, β1, . . . , βn are publicly known distinct elements from F. For our statistical
AMPC protocol, we additionally require that |F| ≥ n2 · 2κ, for a given error parameter κ, to bound the error probability
by 2−κ. The circuit C consists of input, addition (linear), multiplication, random and output gates. Without loss of
generality, we assume that f : Fn → F, where f(x1, . . . , xn) = y, such that xi ∈ F is the input of Pi and every party
is supposed to receive the output y ∈ F. We denote by cM and cR the number of multiplication and random gates in C
respectively. By [X] and [X,Y ] for Y ≥ X , we denote the sets {1, . . . , X} and {X,X + 1, . . . , Y }, respectively.

Definitions. A “property based” definition of secure AMPC in the unconditional setting was followed in [9], which
in essence is “equivalent” to the more rigorous simulation based definition of secure AMPC in the “real-world/ideal-
world” paradigm [7]. All the papers on AMPC since then follow the style of definition used in [9]. As our main goal
is to provide efficient AMPC protocols, we keep the formalities to a bare minimum and instead use the property based
definition to prove the security. However, our protocols can be proved secure according to the definition of [7].

Let f : Fn → F be a publicly known function and party Pi has input xi ∈ F. In any asynchronous multiparty
computation, each party Pi first secret share its input. Let xi be the value shared by Pi. If Pi is honest then xi = xi.
Due to the asynchronicity, the parties cannot wait for all the n parties to share their inputs and so the parties agree on
a subset Com of size n − t of shared inputs. Finally, the parties compute an estimation of f as y = f(x1, . . . , xn) and
everyone receives y, where xi = 0 if Pi 6∈ Com.

Definition 2.1 (Secure AMPC (Informal) [9]). An asynchronous protocol Π among the n parties securely computes
f if it satisfies the following conditions for every possible Adv and every possible scheduler, on all possible inputs:
(1) TERMINATION: All the honest parties terminate Π almost surely, i.e. with probability4 1. (2) CORRECTNESS:
Every honest party Pi correctly obtains y (the estimation of f ) after completing Π, irrespective of the behavior of the
corrupted parties. (3) PRIVACY: The adversary obtains no additional information about the inputs of the honest parties
in Com (in the information theoretic sense), other than what is inferred from the inputs and the outputs of the corrupted
parties.

Definition 2.2 (Statistical and Perfect AMPC [7, 9]). A statistical AMPC protocol satisfies the termination and correct-
ness with probability at least (1−2−κ), for a given error parameter κ (no compromise in the privacy property is made).
A perfect AMPC protocol satisfies the termination and correctness with probability 1 .

Definition 2.3 (d-sharing [3, 4, 18, 5]). A value s ∈ F is said to be d-shared among a set of parties P ⊆ P if every
(honest) party Pi ∈ P is holding a share si of s, such that there exists a polynomial p(·) of degree at most d, where
p(0) = s and p(αi) = si holds for every (honest) Pi ∈ P . The vector of shares corresponding to the (honest) parties in
P is called a d-sharing of s and denoted by [s]Pd . A vector ~S = (s(1), . . . , s(`)) of ` values is said to be d-shared among
a set of parties P if each s(l) ∈ ~S is d-shared among the parties in P .

We write [s]d (ignoring the superscript) to mean that s is d-shared among all the n parties. Note that d-sharings are
linear: given [a]d and [b]d, then [a+ b]d = [a]d + [b]d and [c · a]d = c · [a]d, for a publicly known constant c. In general,
given ` sharings [x(1)]d, . . . , [x

(`)]d and a publicly known linear function g : F` → Fm, where g(x(1), . . . , x(`)) =
(y(1), . . . , y(m)), then g([x(1)]d, . . . , [x

(`)]d) = ([y(1)]d, . . . , [y
(m)]d). By saying that the parties compute (locally)

([y(1)]d, . . . , [y
(m)]d) = g([x(1)]d, . . . , [x

(`)]d), we mean that every party Pi (locally) computes (y
(1)
i , . . . , y

(m)
i ) =

g(x
(1)
i , . . . , x

(`)
i ), where y(l)i and x(l)i denotes the ith share of y(l) and x(l) respectively.

Definition 2.4 (Random Multiplication Triples). A triple (x, y, z) ∈ F3 is called a multiplication triple, if z = xy holds.
A multiplication triple (x, y, z) is called random if x, y and z are uniformly random subject to z = xy.

4All probabilities are taken over all possible random coins of the honest parties. Asynchronous Byzantine agreement (ABA) is a special case
of secure computation. From [20], it follows that any (probabilistic) ABA protocol must have some non-terminating runs. Thus, the best we can
hope for is that a secure computation protocol terminates with probability 1 (see [7]).
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3 Existing Building Blocks

Private and Public Reconstruction of d-shared Values: Let [v]Pd be a d-sharing of v, shared through a polynomial
p(·) of degree at most d, where d < |P| − 2t. The goal is to make some party PR ∈ P to privately reconstruct v.
The well-know online error correction (OEC) algorithm [7, 13] allows PR to reconstruct p(·) and thus v, as p(0) = v.
We call the protocol as OEC(PR, d, [v]Pd ), which requires a communication of O(n) field elements; moreover if PR is
honest then no additional information about v is leaked to Adv. The protocol can be found in Appendix A.1.

Let {[u(i)]Pd }i∈[t+1] be a batch of t + 1 = Θ(n) d-shared values where d < |P| − 2t. The goal is to make every
party in P reconstruct {u(i)}i∈[t+1]. This can be achieved with communication complexity of O(n2) by using an idea
presented in [18, 5]. The protocol called BatRecPubl(P, d, [u(1)]Pd , . . . , [u(t+1)]Pd ) can be found in Appendix A.2.

Batch Multiplication of ` Pairs of t-shared Values using Beaver’s Technique Beaver’s circuit randomization
method [2] is a well known method for securely computing [x ·y]t from [x]t and [y]t, at the expense of two public recon-
structions, using a pre-computed t-shared random multiplication triple (from the offline phase), say ([a]t, [b]t, [c]t). For
this, the parties first (locally) compute [e]t and [d]t, where [e]t = [x]t− [a]t = [x− a]t and [d]t = [y]t− [b]t = [y− b]t,
followed by the public reconstruction of e = (x−a) and d = (y−b). Since the relation xy = ((x−a)+a)((y−b)+b) =
de+eb+da+c holds, the parties can locally compute [xy]t = de+e[b]t+d[a]t+[c]t, once d and e are publicly known.
The above computation leaks no information about x and y if a and b are random and unknown to Adv. For the sake
of efficiency, we will apply the Beaver’s trick on a batch of ` pairs of t-shared values simultaneously, where ` ≥ t+ 1.
BatRecPubl is then used to efficiently perform the public reconstruction of the 2` values (note that two reconstructions
are required for each pair) with a communication of O(d 2`

t+1e · n
2) = O(n`) field elements. We call the protocol as

BatchBeaver({([x(i)]t, [y(i)]t, [a(i)]t, [b(i)]t, [c(i)]t)}i∈[`]) and present it in Appendix A.3.

Agreement on a Common Subset (ACS) and Asynchronous Broadcast Protocol ACS [7, 9] is a well known asyn-
chronous protocol that allows the (honest) parties to agree on a common subset Com of (n − t) parties, who have
correctly shared “values”; the values may be the inputs of the individual parties or a multiplication triple or a random
value. The protocol is presented in Appendix A.4 and has communication complexity O(poly(n)).

Bracha’s asynchronous broadcast protocol (called A-Cast) [11] allows a sender Sen ∈ P to send some message
m identically to all the n parties. If Sen is honest then all the honest parties eventually terminate with output m. If
Sen is corrupted and some honest party terminates with output m′, then every other honest party eventually does the
same. The protocol needs a communication ofO(n2|m|) for a message of size |m|. We say that Pi receives m from the
broadcast of Pj if Pi outputs m in the instance of A-Cast where Pj is acting as Sen; see Appendix A.5 for the protocol.

Generating a Random Value: Protocol Rand allows the parties to generate a uniformly random value r ∈ F and
requires a communication complexity of O(poly(n)); see Appendix A.6 for the protocol5.

4 Batch Generation of t-shared Values

We present a protocol called Sh, which allows a dealer D ∈ P to t-share ` values ~S = (s(1), . . . , s(`)) in a “verifiable”
manner, where ` ≥ t+ 1. The “verifiability” ensures that irrespective of whether D is honest or not, if the honest parties
terminate the protocol then the output sharings are t-sharing. Moreover the shared secrets are private if D is honest.
The protocol communicates O(n`) field elements and broadcasts O(n2) field elements. We first explain the protocol
assuming that ~S contains t+ 1 secrets and later discuss how to extend it to share more than t+ 1 values together.

The starting point of our protocol Sh is the sharing protocol of the perfectly secure AVSS scheme of [28, 29].
The AVSS protocol of [28, 29] enables D to 2t-share (note the degree of sharing) a single secret s. The 2t-sharing is
achieved via a univariate polynomial F (x, 0) of degree at most 2t, where F (x, y) is a random bi-variate polynomial of
degree at most 2t in x and at most t in y (note the difference in degrees), such that F (0, 0) = s. Initially, D is asked to

5The number of instances of ACS,Rand and A-Cast will be independent of the circuit size and so we do not worry about their exact commu-
nication complexity, except confirming that it is poly(n).
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pick F (x, y) and hand over the ith row polynomial fi(x) of degree at most 2t and the ith column polynomial gi(y) of

degree at most t to the party Pi, where fi(x)
def
= F (x, αi) and gi(y)

def
= F (αi, y). If the sharing protocol terminates,

then it is ensured that there exists a bi-variate polynomial F ′(x, y) of degree at most 2t in x and at most t in y, such
that every honest party Pj holds a column polynomial g′j(y) of degree at most t, where g′j(y) = F ′(αj , y). This makes

the secret s′
def
= F ′(0, 0) to be 2t-shared through the polynomial f ′0(x) of degree at most 2t where f ′0(x)

def
= F ′(x, 0)

and every honest party Pj holds its share s′j of the secret s′, with s′j = f ′0(αj) = F ′(αj , 0) = g′j(0). For an honest D,

F ′(x, y) = F (x, y) will hold and thus s will be 2t-shared though the polynomial f0(x)
def
= F (x, 0).

In the above sharing protocol of [29, 28], we first note that the adversary’s view leaves (t+1)(2t+1)−t(2t+1)−t =
(t + 1) “degree of freedom” in the polynomial F (x, y) when D is honest. Informally the reason is that Adv receives
t(2t + 1) + t distinct points on F (x, y) through the t row and column polynomials of the corrupted parties while
(t + 1)(2t + 1) distinct points are required to completely define F (x, y). While [29, 28] used the t + 1 degree of
freedom for a single 2t-sharing by embedding a single secret in F (x, y), we use it to create t-sharing of t+ 1 different
secrets by embedding t + 1 secrets in F (x, y). Namely, given t + 1 secrets ~S = (s(1), . . . , s(t+1)), the dealer D in our
protocol fixes F (βl, 0) = s(l) for l ∈ [t + 1], where F (x, y) is otherwise a random polynomial of degree at most 2t in
x and at most t in y. At the end, the goal is that the secret s(l) is t-shared among the parties through the polynomial
F (βl, y) of degree at most t, which we denote by gβl(y). As depicted in Fig. 1 (in blue color), an honest party Pi can
compute its shares of the secrets in ~S by local computation on the polynomial fi(x) = F (x, αi). This follows from the
fact that for l ∈ [t+ 1] the ith share s(l)i of the secret s(l) satisfies s(l)i = gβl(αi) = fi(βl).

So all that is left is to ensure that every Pi gets fi(x) in Sh protocol. For this recall that the sharing protocol
of [29, 28] ensures that every honest Pj holds g′j(y) such that there exists a bi-variate polynomial F ′(x, y) of degree at
most 2t in x and at most t in y where F ′(αj , y) = g′j(y) holds; furthermore for an honest D, F ′(x, y) = F (x, y) holds.
Now note that g′j(αi) is the same as f ′i(αj) and thus every Pj holds a point on every f ′i(x). Now Pi can reconstruct
f ′i(x) by asking every party Pj to send its point on f ′i(x) to Pi. Since f ′i(x) has degree at most 2t and there are 4t + 1
parties, OEC enables Pi to compute f ′i(x) from the received points. Finally, we note that for a corrupted D, the values
~S′ = (F ′(β1, 0), . . . , F ′(βt+1, 0)) will be t-shared and in case of an honest D, ~S′ = ~S will hold.

g1(y) · · · gj(y) · · · gn(y) gβ1(y) · · · gβt+1(y)

f1(x) F (α1, α1) · · · F (αj , α1) · · · F (αn, α1) ⇒ s
(1)
1 = f1(β1) · · · s

(t+1)
1 = f1(βt+1)

...
...

...
...

...
...

...
... · · ·

...
fi(x) F (α1, αi) · · · F (αj , αi) · · · F (αn, αi) ⇒ s

(1)
i = fi(β1) · · · s

(t+1)
i = fi(βt+1)

...
...

...
...

...
...

...
... · · ·

...
fn(x) F (α1, αn) · · · F (αj , αn) · · · F (αn, αn) ⇒ s

(1)
n = fn(β1) · · · s

(t+1)
n = fn(βt+1)

⇓ · · · ⇓ · · · ⇓ ︸ ︷︷ ︸ · · · ︸ ︷︷ ︸
f0(x) s1 = g1(0) · · · sj = gj(0) · · · sn = gn(0) [s(1)]t · · · [s(t+1)]t︸ ︷︷ ︸ s(1) = gβ1(0) · · · s(t+1) = gβt+1(0)

[s]2t, s = f0(0)

Figure 1: Pictorial representation of the values distributed by (an honest) D in the AVSS scheme of [29, 28] and our sharing protocol Sh. The
polynomials f1(x), . . . , fn(x), g1(y), . . . , gn(y) computed from the bi-variate polynomial F (x, y) of degree at most 2t and t in x and y are
distributed in both the protocols. In the AVSS protocol, s is 2t-shared through the row polynomial f0(x) (shown in red color) of degree 2t, while
in Sh, t+ 1 values s(1), . . . , s(t+1) are t-shared through the t+ 1 column polynomials gβ1(y), . . . , gβt+1(y) (shown in blue color) of degree t.

We note that our idea of embedding several secrets in a single bi-variate polynomial is to be distinguished from the
notion of packed secret sharing [21] where k secrets are embedded in a single univariate polynomial of degree at most
t such that each party receives a single share, namely a distinct point on the polynomial. In the later, a single share is the
share for k secrets and the robust reconstruction of the secrets is possible only if the adversary controls at most t−k+ 1
instead of t parties. Protocol Sh, on the other hand, ensures that each secret in ~S is independently t-shared and thus the
robust reconstruction of each secret is possible even when the adversary corrupts t parties.

In Appendix B, we present the protocol Sh with its proof and a brief description of the AVSS of [29, 28]. We note
that the protocol communicates O(n2) elements (over the pair-wise channels) and broadcasts O(n2) elements from F.
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Sharing more than t + 1 Values Together. On having ` secrets for ` > t + 1, D can divide them into groups of
t+ 1 and execute an instance of Sh for each group. This will require communication of O(d `

(t+1)e · n
2) = O(n`) field

elements, since (t + 1) = Θ(n). The broadcast communication can be kept O(n2) (independent of `) by executing
all instances of Sh (each handling t + 1 secrets) in parallel and by asking each party to broadcast only once for all the
instances, after confirming the veracity of the “pre-condition” for the broadcast for all the instances of Sh. The sharing
protocol of the AVSS scheme of [29, 28] describes the same idea to keep the broadcast communication independent of
` when D 2t-shares ` secrets; for details see Appendix B. In the rest of the paper, we will say that a party t-shares `
values, where ` ≥ t+ 1 using an instance of Sh to mean the above.

5 Transforming Independent Shared Triples to Co-related Shared Triples

We present a protocol TripTrans which takes as input a set of (3t+1) “independent” t-shared triples, say {([x(i)]t, [y(i)]t,
[z(i)]t)}i∈[3t+1], and outputs a set of (3t + 1) “co-related” t-shared triples, say {([x(i)]t, [y

(i)]t, [z
(i)]t)}i∈[3t+1], such

that the following holds: (a) There exist polynomials X(·),Y(·) and Z(·) of degree at most 3t
2 ,

3t
2 and 3t respectively,

such that X(αi) = x(i),Y(αi) = y(i) and Z(αi) = z(i) holds, for i ∈ [3t+ 1]. (b) The ith output triple (x(i),y(i), z(i))
is a multiplication triple if and only if the ith input triple (x(i), y(i), z(i)) is a multiplication triple. This further implies
that Z(·) = X(·)Y(·) is true iff all the 3t + 1 input triples are multiplication triples. (c) If Adv knows t′ input triples
and if t′ ≤ 3t

2 , then Adv learns t′ distinct values of X(·),Y(·) and Z(·), implying 3t
2 + 1 − t′ “degree of freedom” on

X(·),Y(·) and Z(·). If t′ > 3t
2 , then Adv will completely know X(·),Y(·) and Z(·).

The protocol is inherited from the protocol for the batch verification of the multiplication triples proposed in [10].
The idea is as follows: we assume X(·) and Y(·) to be “defined” by the first and second component of the first 3t

2 + 1
input triples, compute 3t

2 “new” points on the X(·) and Y(·) polynomials and compute the product of the 3t
2 new points

using Beaver’s technique making use of the remaining 3t
2 input triples. The Z(·) is then defined by the 3t

2 computed
products and the third component of the first 3t

2 + 1 input triples. In a more detail, we define the polynomial X(·) of
degree at most 3t

2 by setting X(αi) = x(i) for i ∈ [3t2 + 1] and get [x(i)]t = [X(αi)]t = [x(i)]t for i ∈ [3t2 + 1]. Following
the same logic, we define Y(αi) = y(i) for i ∈ [3t2 + 1] and get [y(i)]t = [Y(αi)]t = [y(i)]t for i ∈ [3t2 + 1]. Moreover,
we set Z(αi) = z(i) for i ∈ [3t2 + 1] and get [z(i)]t = [Z(αi)]t = [z(i)]t for i ∈ [3t2 + 1].

Now for i ∈ [3t2 +2, 3t+1], we compute [x(i)]t = [X(αi)]t and [y(i)]t = [Y(αi)]t which requires only local compu-
tation on the t-sharings

{
([x(i)]t, [y

(i)]t)
}
i∈[ 3t

2
+1]

, as this is computing a linear function. For i ∈ [3t2 + 2, 3t+ 1], fixing

z(i) to be the same as z(i) will, however, violate the requirement that Z(·) = X(·)Y(·) holds when all the input triples are
multiplication triples; this is because for i ∈ [3t2 +2, 3t+1], x(i) = X(αi) 6= x(i) and Y(αi) = y(i) 6= y(i) and thus z(i) =

x(i)y(i) 6= x(i)y(i). Here we resort to the Beaver’s technique to find [z(i)]t = [x(i)y(i)]t from [x(i)]t and [y(i)]t, using
the t-shared triples {([x(i)]t, [y(i)]t, [z(i)]t)}i∈[ 3t

2
+2,3t+1]. We note that the triples {([x(i)]t, [y(i)]t, [z(i)]t)}i∈[ 3t

2
+2,3t+1]

used for the Beaver’s technique are never touched before for any computation.
It is easy to see that (x(i),y(i), z(i)) is a multiplication triple if and only if (x(i), y(i), z(i)) is a multiplication

triple. For i ∈ [3t2 + 1], this is trivially true, as for such an i, ([x(i)]t, [y
(i)]t, [z

(i)]t) = ([x(i)]t, [y
(i)]t, [z

(i)]t). For
i ∈ [3t2 + 2, 3t+ 1], it follows from the correctness of the Beaver’s technique and the fact that ([x(i)]t, [y

(i)]t, [z
(i)]t) is

used to compute [z(i)]t from [x(i)]t and [y(i)]t and so z(i) = x(i)y(i) if and only if z(i) = x(i)y(i).
For privacy, we see that if Adv knows the ith input triple then the ith output triple will be known to Adv: for

i ∈ [3t2 + 1] the statement is trivially true, while for i ∈ [3t2 + 2, 3t + 1], the statement follows because Adv will
know the ith input triple (x(i), y(i), z(i)), which is used to compute [z(i)]t from [x(i)]t and [y(i)]t. Since (x(i) − x(i))
and (y(i) − y(i)) are disclosed during the computation of [z(i)]t, Adv will learn x(i), y(i) and z(i). Thus if Adv knows
t′ input triples where t′ ≤ 3t

2 then Adv will learn t′ output triples and hence t′ values of X(·),Y(·) and Z(·), leaving
3t
2 + 1− t′ degree of freedom in these polynomials. The protocol is presented in Fig. 2. The properties of the protocol
are formally stated and proved in Appendix C. We note that all the honest parties eventually terminate the protocol and
the protocol incurs communication of O(n2) elements from F.
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Figure 2: Protocol for transforming a set of independent shared triples to a set of co-related shared triples.
Protocol TripTrans({([x(i)]t, [y(i)]t, [z(i)]t)}i∈[3t+1])

1. For each i ∈ [ 3t
2
+ 1], the parties locally set [x(i)]t = [x(i)]t, [y(i)]t = [y(i)]t and [z(i)]t = [z(i)]t.

2. Let the points {(αi,x(i))}i∈[ 3t
2

+1] and the points {(αi,y(i))}i∈[ 3t
2

+1] define the polynomial X(·) and Y(·) respectively of

degree at most 3t
2

. The parties locally compute [x(i)]t = [X(αi)]t and [y(i)]t = [Y(αi)]t, for eacha i ∈ [ 3t
2
+ 2, 3t+ 1].

3. The parties execute BatchBeaver({([x(i)]t, [y
(i)]t, [x

(i)]t, [y
(i)]t, [z

(i)]t)}i∈[ 3t
2

+2,3t+1]) to compute 3t
2

sharings

{[z(i)]t}i∈[ 3t
2

+2,3t+1] and let the points {(αi, z(i))}i∈[3t+1] define the polynomial Z(·) of degree at most 3t. The parties

output {([x(i)]t, [y
(i)]t, [z

(i)]t)}i∈[3t+1] and terminate.

a Computing a new point on a polynomial of degree d is a linear function of d+ 1 given unique points on the same polynomial.

6 The Framework for Generating Multiplication Triples

We are now ready to present our new framework for generating t-sharing of cM + cR random multiplication triples
unknown to Adv, which requires communication ofO((cM+cR)n) and broadcast ofO(n3) field elements. As discussed
earlier, the framework consists of two modules, elaborated next.

6.1 Module I: Verifiably Sharing Multiplication Triples

A Probabilistic Solution in a Completely Asynchronous Setting. Our protocol TripleSh allows a party D ∈ P to
verifiably share multiplication triples with linear “overhead”, where the verification resorts to a probabilistic approach.
In the protocol, D is asked to t-share 3t + 1 random multiplication triples {(x(i), y(i), z(i))}i∈[3t+1] using protocol
Sh. To check if the triples are multiplication triples or not, the sharings of these triples are first transformed to
{([x(i)]t, [y

(i)]t, [z
(i)]t)}i∈[3t+1] via TripTrans and then the relation Z(·) ?

= X(·) · Y(·) is verified through a public

checking of Z(α)
?
= X(α) · Y(α) for a random α from F. To ensure that no corrupted D can pass this test, the value α

should be generated using Rand once D completes sharing of the triples. It follows via the property of TripTrans that
if all the input triples {(x(i), y(i), z(i))}i∈[3t+1] are not multiplication triples, then Z(α) 6= X(α) · Y(α) except with
probability at most 3t

|F| for a random α, since Z(α) is of degree at most 3t. Moreover if D is honest then Adv will
learn only one point on X(·),Y(·) and Z(·) (namely at α) leaving 3t

2 “degree of freedom” in these polynomials. So if
the verification passes, then the parties output 3t

2 shared triples {([a(i)]t, [b(i)]t, [c
(i)]t)} on the “behalf” of D, where

a(i) = X(βi),b
(i) = Y(βi) and c(i) = Z(βi) for 3t

2 βis distinct from the random α.
In TripleSh, the above idea is applied on ` batches of 3t+ 1 t-shared triples, where ` ≥ t+ 1 and a single random

α is used for all the ` batches. Using BatRecPubl, we then efficiently perform the public reconstruction of 3` values,
namely the values of the polynomials at α. The protocol thus outputs ` · 3t2 = Θ(n`) shared multiplication triples. The
protocol and its proof can be found in Appendix D. We note that for an honest D, all the honest parties will eventually
terminate the protocol and the output multiplication triples will remain private. For a corrupted D, if some honest party
terminates, then all the honest parties eventually do the same and the output triples are multiplication triples except with
probability 3t

|F| . Finally the protocol requires communication of O(n2`) and broadcast of O(n2) elements from F.

An Error-Free Solution in a Hybrid Setting: An inherent drawback of a completely asynchronous setting is that
the inputs of up to t potentially honest parties may get ignored. Since this might be undesirable for many real-world
applications, [4, 6] introduced a “partial synchronous” or hybrid setting wherein the very first communication round is
a synchronous round. It was shown in [4] how to enforce “input provision” from all the n parties using the synchronous
round (with some additional technicalities). We further utilize the first synchronous round to present an error-free triple
sharing protocol called HybTripleSh for t-sharing multiplication triples. We dispose the high level idea in the following
and defer the details to Appendix E.

HybTripleSh follows the footstep of TripleSh, except that it verifies the relation Z(·) = X(·)Y(·) in an error-free
fashion, by leaking at most t points on the polynomials to the adversary. Since this leaves at least t

2 degree of freedom
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on each of the polynomials for an honest D, the parties output t2 shared multiplication triples {[a(i)]t, [b(i)]t, [c
(i)]t}i∈[ t

2
]

on the behalf of D after successful verification, where a(i) = X(βi),b
(i) = Y(βi) and c(i) = Z(βi). The idea for the

error-free verification is the following: each party Pi is given “access” to the triple (X(αi),Y(αi),Z(αi)) and is given
the responsibility of confirming if it is a multiplication triple. If the confirmation comes from all the parties, then
it can be concluded that the relation Z(·) = X(·)Y(·) is true. This is because the confirmation comes from at least
(n − t) = 3t + 1 honest parties and the degree of the polynomials X(·), Y(·) is at most 3t

2 and the degree of Z(·) is at
most 3t. Moreover, at most t values on each polynomial are leaked to Adv through the t corrupted parties (for an honest
D). Unfortunately, in a completely asynchronous setting, we cannot wait for the confirmation from all the parties in P ,
as the wait may turn out to be endless6. The synchronous round in the hybrid setting thus comes to our rescue.

In the synchronous round, every party Pi is asked to “non-verifiably” t-share a dummy multiplication triple, say
(f (i), g(i), h(i)) which is used later to verify if (X(αi),Y(αi),Z(αi)) is a multiplication triple on behalf of Pi, although
without further participation of Pi. By non-verifiably we mean that neither the correctness of the t-sharing nor the fact
that the shared triple is a multiplication triple is guaranteed if Pi is corrupted. The synchronous round however ensures
that a dummy triple is non-verifiably shared on the behalf of every party Pi. Even if a corrupted Pi does not send the
shares of the dummy triples to some party by the end of the round, the receiver can take some default value to complete
the sharing. By defining “good” dummy triples as the ones that are t-shared and are multiplication triples, we now show
how the verification is carried out using these dummy triples. Note that the honest parties share good dummy triples.

Given a dummy triple (f (i), g(i), h(i)), we check if (X(αi),Y(αi),Z(αi)) is a multiplication triple by computing
the sharing of the product of X(αi) and Y(αi) via the Beaver’s technique and using the shared dummy triple and then
publicly verifying if the resultant product is the same as Z(αi). The later can be verified by checking if the difference
of the product and Z(αi) is 0 or not. If Pi is honest then the dummy triple is random and thus no information is leaked
about (X(αi),Y(αi),Z(αi)). If the checking fails, then the sharing of (X(αi),Y(αi),Z(αi)) are publicly reconstructed
for its public verification. Note that in such a case, either Pi or D must be corrupted and thus the privacy of the triple is
lost already. However, if (X(αi),Y(αi),Z(αi)) is found to be a non-multiplication triple then D is definitely corrupted
in which case the protocol is halted after outputting t

2 default sharing of multiplication triples.
When the shared triple (f (i), g(i), h(i)) is not a good dummy triple due to the reason that it is a non-multiplication

triple (but t-shared correctly), the checking of the corresponding multiplication triple (X(αi),Y(αi),Z(αi)) might fail
leading to its public reconstruction and verification. But in this case Pi is surely corrupted and thus loosing the privacy
of the triple does not matter. Furthermore, the public verification of the multiplication triple will be successful for an
honest D, implying that an honest D can not be disqualified. The case when the shared triple (f (i), g(i), h(i)) is not a
good dummy triple due to the reason that it is not t-shared correctly is more intricate to handle. The problem could
be during the reconstruction of the values that are not t-shared, while executing the Beaver’s technique. We solve this
problem via a “variant” of OEC that concludes the reconstructed value upon receiving shares from any 3t + 1 parties
without further waiting. This however, might cause different parties to reconstruct different values when the input
sharing is not t-shared. Therefore an ABA protocol is run to reach agreement and then continue with the agreed value.

Finally we note that in the protocol HybTripleSh, the above idea is actually applied on ` batches of 3t + 1 t-
shared triples in parallel, where ` ≥ t + 1. This allows the efficient public reconstruction of all the required sharings
(corresponding to the ` batches) using BatRecPubl. The protocol thus outputs ` · t2 = Θ(n`) shared multiplication
triples. The protocol and its properties are available in Appendix E. We note that the properties of the protocol are same
as that of TripleSh, except that now the output triples will be multiplication triples without any error.

6.2 Module II: Extraction of Random Multiplication Triples from Local Multiplication Triples

Let Com ⊂ P be a publicly known set of 3t + 1 parties, such that every party in Com has verifiably t-shared `
multiplication triples among the parties in P , where the the triples shared by the honest parties are random and unknown
to Adv. We present a protocol called TripExt that “extracts” ` · t2 = Θ(n`) random t-shared multiplication triples
unknown to Adv from these ` · (3t + 1) “local” t-shared multiplication triples with a communication of O(n2`). The
high level idea of the protocol is as follows: the input triples from the parties in Com are perceived as ` batches of
3t+ 1 triples where the lth batch contains the lth local triple from each party in Com. Then the transformation protocol

6The confirmation is needed from all the n parties as we need 3t + 1 “true” confirmations and t corrupted parties may provide a “false”
confirmation.
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TripTrans is executed on the lth batch to obtain a new set of 3t + 1 triples and the three associated polynomials of
degree 3t

2 , 3t
2 and 3t, namely Xl(·),Yl(·) and Zl(·). Since, each input triple is guaranteed to be a multiplication triple,

the multiplicative relation holds among the polynomials, i.e. Zl(·) = Xl(·)Yl(·). Since Adv gets to know at most t
input triples in the lth batch, the transformation ensures that Adv gets to know at most t points on each of the three
polynomials, leaving t

2 degree of freedom on each polynomial. The random output multiplication triples for the lth
batch, unknown to Adv, are then extracted as

{
([Xl(βi)]t, [Y

l(βi)]t, [Z
l(βi)]t)

}
i∈[ t

2
]
; see Appendix F for the details.

6.3 Module I + Module II⇒ Preprocessing (Offline) Phase with Linear Overhead

Our preprocessing phase protocol now consists of the following steps: (1) Every party in P acts as a dealer and t-
share 2(cM+cR)

t random multiplication triples, either using an instance of the protocol TripleSh (if it is a completely
asynchronous setting) or an an instance of the protocol HybTripleSh (if it is a hybrid setting). (2) The parties then
execute an instance of ACS to decide on a common set Com of 3t+ 1 dealers who have correctly shared multiplication
triples in their respective instances of TripleSh/HybTripleSh. (3) Finally the parties execute the triple extraction protocol
TripExt on the triples shared by the parties in Com to extract (cM + cR) random shared multiplication triples.

Now depending upon whether we use the protocol TripleSh or HybTripleSh above, we get either a completely asyn-
chronous preprocessing phase protocol PreProc involving an error of 3t2

|F| in the output or an error-free preprocessing
phase protocol HybPrePro for the hybrid setting. The output triples will be private, as the multiplication triples of the
honest dealers in Com are random and private. The protocols and their properties are provided in Appendix G.

7 The New AMPC Protocols

Once we have a preprocessing phase protocol, the online phase protocol for the shared circuit evaluation is straight
forward, based on the standard technique of circuit evaluation in the information theoretic setting using preprocessed
multiplication triples [3, 18, 4, 5, 10]. As this approach is quiet standard, we present the complete details in Appendix H.
We note that in our hybrid AMPC protocol, during the offline phase, apart from t-sharing of (cM + cR) random
multiplication triples, the parties generate t-sharing of n · (t+1) additional multiplication triples. The additional triples
are used to enforce “input provision” from all the n parties during the online phase by using the method of [4]. This
implies that now the preprocessing phase protocol and the online phase protocol starts in parallel, so that both can
use the first synchronous round. While the preprocessing phase protocol uses it for the error-free generation of the
multiplication triples, the online phase protocol uses it to enforce input provision. As the values shared by the parties in
these two protocols are independent, this will not cause any problem. Finally we have the following theorem:

Theorem 7.1 (The AMPC Theorem). Let f : Fn → F be a function expressed as an arithmetic circuit over a finite
field F, consisting of cM and cR multiplication and random gates. Then for every possible Adv and for every possible
scheduler, there exists a statistical AMPC protocol to securely compute f , provided |F| ≥ max{3t2 · 2κ, 2n} for a
given error parameter κ. The protocol incurs communication of O((cM + cR)n) elements (over the pair-wise secure
channels) and broadcast of O(n3) elements from F and requires two invocations to ACS and n invocations to Rand.

If the first communication round is synchronous, then there exists a perfect AMPC protocol to securely compute
f , for every possible Adv and for every possible scheduler, provided |F| ≥ 2n. In the protocol, the inputs of all (the
honest) parties are considered for the computation. The protocol requires communication of O((cM + cR)n+ n3) and
broadcast of O(n3) elements from F. It also requires two invocations to ACS and n2 invocations to ABA.

Open Problems: This paper leaves the following interesting open problems: (1) Can we obtain a perfectly secure
AMPC protocol tolerating t < n/4 corruptions in a completely asynchronous setting with an amortized communication
complexity of O(n) field elements per multiplication? (2) Our statistical AMPC protocol has non-optimal resilience; it
would be interesting to see whether we can improve the resilience of the protocol to t < n/3 (which is optimal), without
affecting the communication complexity. (3) If one is willing to reduce the resilience t from the optimal resilience by
a constant fraction, then by using additional techniques like packed secret sharing, committee election and quorum
forming, one can achieve additional efficiency in the synchronous MPC protocols, as shown in [17, 16, 19]. It would be
interesting to see whether such techniques can be used in the asynchronous settings to gain additional improvements.
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[3] Z. Beerliová-Trubı́niová and M. Hirt. Efficient multi-party computation with dispute control. In S. Halevi and
T. Rabin, editors, Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York,
NY, USA, March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in Computer Science, pages 305–328.
Springer Verlag, 2006.
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A Exiting Building Blocks in Details

A.1 Private Reconstruction of a d-shared Value using OEC [7, 13, 29]

Let v be a value which is d-shared among a set of parties P ⊆ P , where d < |P| − 2t. The goal is to make some party,
say PR, to reconstruct the value v robustly. In the synchronous setting, this can be achieved by asking every party in
P to send its share of v to PR, who can apply the Reed-Solomon (RS) error correction [27] algorithm on the received
shares to reconstruct the value. Given the condition that d < (|P| − 2t), the reconstruction will be robust, even if at
most t corrupted parties in P send incorrect or no shares. In an asynchronous setting, achieving the same requires a bit
of trick as explained in the OEC protocol of [13].

The intuition behind the OEC is that PR keeps waiting till it receives d+ t+ 1 shares which are d-consistent (i.e. lie
on a unique polynomial of degree at most d). This step requires applying the RS error correction algorithm repeatedly.
Let RSDec(d, r, I) denote an RS error correction procedure, which takes as input a set I of shares (contains possibly
some incorrect shares) of a d-shared value (that we would like to reconstruct) and outputs a polynomial of degree at
most d, by correcting at most r errors (incorrect shares) in I. Coding theory [27] says that RSDec can correct upto r
errors in I and correctly output the original polynomial provided that |I| ≥ d + 2r + 1. There are several efficient
implementations of RSDec (for example, the Berlekamp-Welch algorithm [27]). Once PR receives d+ t+ 1 consistent
shares that lie on a unique polynomial p(·) (returned by RSDec) of degree at most d, then PR outputs p(0) as v. The
correctness follows from the fact that at least d + 1 shares out of the d + t + 1 consistent shares are from the honest
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parties in P and those d + 1 shares uniquely define the original polynomial p(·) implying that p(·) = p(·). Note
that the corrupted parties in P may send incorrect shares to PR or may not send any value. But the shares of at least
|P| − t ≥ (d + t + 1) honest parties in the set P are d-consistent and they will eventually reach to PR. As mentioned
in [7, 29], the above procedure is nothing but applying the RS error correction algorithm in an “online” fashion.

The above steps are formally described in the protocol OEC presented in Fig. 3. The current description is inspired
from [13] (skipping several other formal details).

Figure 3: Protocol OEC.
OEC(PR, d, [v]

P
d )

1. The following code is executed by every party Pi ∈ P:

• Send the share vi of v to the party PR and terminate.

2. For r = 0, . . . , t, party PR executes the following code during the iteration r:

(a) LetW denote the set of parties in P from whom PR has received the shares and Ir denote the shares received from
the parties inW , whenW contains exactly d+ t+ 1 + r parties.

(b) Wait until |W| ≥ d+ t+ 1+ r. Execute RSDec(d, r, Ir). If no polynomial of degree at most d is obtained at the end
of RSDec, then skip the next step and proceed to the next iteration. Otherwise, let pr(·) be the polynomial of degree at
most d obtained at the end of RSDec.

(c) If for at least d+ t+1 shares vi ∈ Ir it holds that pr(αi) = vi, then output pr(·) and pr(0) and terminate. Otherwise,
proceed to the next iteration.

The properties of the protocol OEC are stated in Lemma A.1.

Lemma A.1. Given [v]Pd for P ⊆ P and d < |P| − 2t, let the sharing is done using polynomial p(·) of degree at most
d. Then for every possible Adv and for every possible scheduler, protocol OEC achieves:

(1) TERMINATION: Every honest party in P will eventually terminate the protocol. Moreover, if PR is honest then PR
will also eventually terminate the protocol. (2) CORRECTNESS: Party PR will output p(·) and v. (3) PRIVACY: If PR is
honest then Adv obtains no additional information about v. (4) COMMUNICATION COMPLEXITY: The protocol incurs
communication of O(n) elements from F.

PROOF: The TERMINATION property is argued as follows. The honest parties in P will terminate the protocol trivially
after sending their shares of v to PR. We now argue that (an honest) PR will terminate the protocol as well. Let
Adv corrupts r̂ parties in P , where r̂ ≤ t. Further assume r̂1 corrupted parties send wrong values and r̂2 corrupted
parties send nothing ever, subject to r̂1 + r̂2 = r̂. Consider the (t − r̂2)th iteration; since r̂2 parties in P never send
any value, PR will receive d + t + 1 + t − r̂2 distinct values on the polynomial p(·), of which r̂1 are corrupted. Since
|It−r̂2 | = d+ t+ 1 + t− r̂2 ≥ d+ 2r̂1 + 1, the algorithm RSDec will correct r̂1 errors and will return pt−r̂2(·) = p(·)
during the (t− r̂2)th iteration. Therefore the protocol will terminate at the latest after (t− r̂2)th iteration.

To argue CORRECTNESS, assume that the protocol terminates during the rth iteration and PR outputs p̄r(0) such
that the polynomial p̄r(·) is consistent with d + t + 1 shares from Ir. To prove the correctness, we now show that
p̄r(·) = p(·). However, the equality follows from the fact that at least d+ 1 shares in Ir belong to the honest parties and
thus they lie on p(·) as well. In other words, these d + 1 shares are the common points of the two polynomials which
are of degree at most d.

The PRIVACY is argued as follows. It is easy to see that if PR is honest, then Adv gets no additional information
about v. Since the (honest) parties in P send their shares to PR over the point-to-point private channels, no additional
information about v or the values of p(·) is revealed to Adv during OEC.

In the protocol, each party in P sends its share to PR, leading to the communication of O(n) elements from F. 2

A.2 Batch Public Reconstruction of Several d-shared Values

Let u(1), . . . , u(t+1) be d-shared among a set of parties P ⊆ P , where d < |P| − 2t; i.e., [u(1)]Pd , . . . , [u
(t+1)]Pd is

available. The goal is to make every party in P to reconstruct u(1), . . . , u(t+1). Trivially this can be done by executing
n · (t + 1) instances of OEC (n instances for each [u(i)]Pd ) that would require communicating O(n3) field elements.
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Instead, by using an idea presented in [18, 5] (for the synchronous setting), we present a protocol BatRecPubl which
requires to communicate O(n2) field elements. The idea is the following: we first “expand” the t + 1 sharings to n
sharings, say [v(1)]Pd , . . . , [v

(n)]Pd , by applying a linear function. Specifically, by interpreting u(1), . . . , u(t+1) as the
coefficients of a polynomial u(·) of degree at most t and by letting v(1), . . . , v(n) to be the evaluations of u(·) at n
publicly known distinct points, each [v(i)]d can be computed as linear combination of the given t + 1 sharings. Once
the parties compute [v(1)]d, . . . , [v

(n)]d, then v(i) is reconstructed towards the party Pi using an instance of OEC. Each
Pi then sends v(i) to every other party in P . Finally, each party applies OEC on the received v(i)s to reconstruct the
polynomial u(·) and outputs u(1), . . . , u(t+1). The protocol is presented in Fig. 4.

Figure 4: Protocol BatRecPubl for the public reconstruction of t+ 1 d-shared Values.
BatRecPubl(P, d, [u(1)]Pd , . . . , [u

(t+1)]Pd )

Let u(x) =
∑t+1
i=1 u

(i)xi−1 be the polynomial of degree at most t and v(i) = u(αi) for i ∈ [n]. Then we have
[u(0)]Pt = (v(1), . . . , v(n)).

1. For each j ∈ [n], the parties in P (locally) compute [v(j)]Pd as:

[v(j)]Pd = [u(1)]Pd + αj · [u(2)]Pd + α2
j · [u(3)]Pd + . . .+ αtj · [u(t+1)]Pd .

2. For each i ∈ [n], party Pi and the parties in P execute OEC(Pi, d, [v
(i)]Pd ) to enable Pi to privately reconstruct v(i).

3. For each i ∈ [n], party Pi executes the following code:

(a) Execute an instance OEC(Pi, t, [u(0)]
P
t ) to reconstruct the polynomial u(x). For each j ∈ [n], participate in the

instance OEC(Pj , t, [u(0)]
P
t ) to enable the party Pj to reconstruct the polynomial u(x).

(b) On reconstructing the polynomial u(x) at the end of the instance OEC(Pi, t, [u(0)]
P
t ), output the t+ 1 coefficients of

u(x) and terminate.

The properties of the protocol BatRecPubl are stated in Lemma A.2.

Lemma A.2. Given [u(1)]Pd , . . . , [u
(t+1)]Pd for P ⊆ P and d < |P| − 2t, for every possible Adv and for every possible

scheduler, protocol BatRecPubl achieves:

(1) TERMINATION: Every honest party in P will eventually complete the protocol. (2) CORRECTNESS: Every honest
party in P will output u(1), . . . , u(t+1). (3) COMMUNICATION COMPLEXITY: The protocol incurs communication of
O(n2) elements from F.

PROOF: The TERMINATION property of the protocol follows from the termination property of OEC (Lemma A.1). For
CORRECTNESS, we note that the correctness property of OEC (Lemma A.1) implies that each honest party Pi ∈ P will
eventually reconstruct v(i) at the end of the instance OEC(Pi, d, [v

(i)]Pd ). Moreover, (v(1), . . . , v(n)) = [u(0)]Pt ; so from
the correctness property of OEC, each honest party Pi will output the polynomial u(x) at the end of OEC(Pi, t, [u(0)]Pt )
and hence will output u(1), . . . , u(t+1), which are the coefficients of u(x). The COMMUNICATION COMPLEXITY fol-
lows from the communication complexity of OEC (Lemma A.1) and the fact that 2n instances of OEC are executed. 2

We note that unlike OEC that enables the reconstruction of the polynomial used for the given input sharing, proto-
col BatRecPubl allows to reconstruct only the d-shared values and not the individual polynomials that are used for the
sharings. We further note that the above mentioned property of OEC is instrumental in the correctness of BatRecPubl,
since the entire polynomial u(x) is required to be reconstructed in BatRecPubl in order to output the coefficients of
u(x).

A.3 Batch Multiplication of ` Pairs of t-shared Values using Beaver’s Technique

Protocol BatchBeaver is presented in Fig. 5.
The properties of the protocol BatchBeaver are stated in Lemma A.3.

Lemma A.3. Let {([x(i)]t, [y(i)]t)}i∈[`] be a batch of ` pairs of t-sharing and {([a(i)]t, [b(i)]t, [c(i)]t)}i∈[`] be the t-
sharing of ` random multiplication triples unknown to Adv, where ` ≥ t+ 1 = Ω(n). Then for every possible Adv and

15



Figure 5: Protocol to perform batch multiplication of ` pairs of t-shared values where ` ≥ t+ 1.
Protocol BatchBeaver({([x(i)]t, [y(i)]t, [a(i)]t, [b(i)]t, [c(i)]t)}i∈[`])

1. For each i ∈ [`], the parties in P locally compute [e(i)]t and [d(i)]t, where [e(i)]t = [x(i)]t − [a(i)]t = [x(i) − a(i)]t and
[d(i)]t = [y(i)]t − [b(i)]t = [y(i) − b(i)]t.

2. The parties execute d 2`
t+1
e instances of BatRecPubl and publicly reconstructa{d(i), e(i)}i∈[`]. If ` is not an exact multiple

of t+ 1, some default sharings are added to make ` an exact multiple of t+ 1.

3. For each i ∈ [`], the parties in P locally compute [x(i)y(i)]t = d(i)e(i) + e(i)[b(i)]t + d(i)[a(i)]t + [c(i)]t and terminate.

a A single instance of BatRecPubl can reconstruct t + 1 values. To reconstruct 2` values, d 2`
t+1
e instances of BatRecPubl are

required.

for every possible scheduler, protocol BatchBeaver achieves:

(1) TERMINATION: All the honest parties eventually terminate. (2) CORRECTNESS: The protocol outputs {[x(i) ·
y(i)]t}i∈[`]. (3) PRIVACY: The view of Adv is distributed independently of the x(i)s and y(i)s. (4) COMMUNICATION

COMPLEXITY: The protocol requires communication of O(n`) elements from F.

PROOF: The TERMINATION property follows from the termination property of BatRecPubl. The CORRECTNESS fol-
lows from the fact that for each i ∈ [`], we have x(i)y(i) = ((x(i)−a(i))+a(i))((y(i)−b(i))+b(i)) = d(i)e(i)+e(i)b(i)+
d(i)a(i) + c(i), where e(i) = x(i) − a(i) and d(i) = y(i) − b(i). The PRIVACY is argued as follows: the only step where
the parties communicate is during the reconstruction of d(i)s and e(i)s. Now e(i) = x(i) − a(i) and the fact that a(i) is
random and unknown to Adv implies that even after learning e(i), the value x(i) remains as secure as it was before from
the view point of Adv. Similarly, as b(i) is random, even after learning d(i), the value y(i) remains as secure as before
from the view point of Adv. This proves the privacy property. The COMMUNICATION COMPLEXITY follows from the
communication complexity of BatRecPubl and the fact that 2d `

t+1e instances of BatRecPubl are executed in total and
(t+ 1) = Θ(n). 2

A.4 Agreement on a Common Subset (ACS)

Protocol ACS is a well known protocol to allow the parties to agree on a common subset of n − t parties, say Com,
where each party in Com satisfies a “property” Q, where Q has the following characteristics:

1. Every honest party will satisfy Q eventually, while a corrupted party may or may not choose to satisfy Q.

2. If some honest party Pi ∈ P finds some (probably corrupted) party Pj ∈ P to satisfy Q, then every other honest
party in P will eventually find Pj to satisfy Q.

The idea behind ACS is to execute n instances of an ABA protocol [13], one on the behalf of each party to decide if it
should be included in Com. Protocol ACS is presented in Fig. 6.

Figure 6: Protocol for the agreement on a common subset of parties satisfying some property Q.

Protocol ACS

CODE FOR THE PARTY Pi — Every party in P executes this code:

1. For each Pj ∈ P such thatQ(j) = 1 (i.e. Pj satisfies the propertyQ), participate in ABAj with input 1. Here for j ∈ [n],
ABAj denotes the instance of an ABA protocol executed for Pj ∈ P to decide whether Pj will be in the common subset.

2. Upon terminating (n− t) instances of ABA with output 1, enter input 0 to all other instances of ABA, for which you have
not entered a value yet.

3. Upon terminating all the n instances of ABA, let your SubSeti be the set of all indices j for which ABAj had output 1.

4. Set Com to be the set of parties corresponding to the indices in SubSeti, output Com and terminate.

The properties of the protocol ACS are stated in Lemma A.4.
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Lemma A.4 ([7]). Let Q be a property satisfying the above described conditions. Then for every possible Adv and for
every possible scheduler, protocol ACS achieves:
(1) TERMINATION: All the honest parties terminate the protocol almost surely (i.e. with probability 1). (2) CORRECT-
NESS: Every honest party will output a set of n − t parties Com such that every party in Com satisfies the property Q
eventually. (3) COMMUNICATION COMPLEXITY: The protocol requires communication of O(poly(n)) elements from
F.

A.5 Asynchronous Broadcast

We recall the Bracha’s asynchronous broadcast protocol from [13] and present it in Fig. 7.

Figure 7: Bracha’s asynchronous broadcast protocol with n = 3t+ 1 parties.

Protocol A-Cast

CODE FOR THE SENDER Sen (WITH INPUT m) — only Sen executes this code:

1. Send the message (MSG,m) to all the parties.

CODE FOR THE PARTY Pi — every party in P executes this code:

1. Upon receiving a message (MSG,m) from Sen, send the message (ECHO,m) privately to all the parties.

2. Upon receiving (n−t) messages (ECHO,m?) that agree on the value ofm?, send the message (READY,m?) privately
to all the parties.

3. Upon receiving (t + 1) messages (READY,m?) that agree on the value of m?, send the message (READY,m?)
privately to all the parties.

4. Upon receiving (n− t) messages (READY,m?) that agree on the value of m?, send the message (OK,m?) privately
to all the parties, output m? and terminate.

The properties of the protocol are stated in Lemma A.5.

Lemma A.5 ([13]). Let Sen ∈ P has a message m of size `, which it wants to reliably send to all the parties in P .
Then for every possible Adv and every possible scheduler, protocol A-Cast achieves:

(1) TERMINATION: If Sen is honest then then all the honest parties eventually terminate. Moreover, even if Sen is
corrupted and some honest party terminates, then all the honest parties eventually terminate. (2) CORRECTNESS: All
the honest parties upon terminating output m?. Moreover, if Sen is honest then m? = m. (3) COMMUNICATION

COMPLEXITY: The protocol incurs communication of O(n2`) bits.

A.6 Generating a Uniformly Random Value

In the protocol Rand, every party Pi ∈ P t-shares a random value r(i). For this, party Pi can use any existing perfectly
secure AVSS scheme [7, 4, 29] (in fact our AVSS protocol Sh can also be used for this purpose). The parties then
execute an instance of ACS and decide a set of n−t parties Com who have correctly shared the values in their respective
instances of AVSS. Finally, the parties set [r]t =

∑
Pi∈Com[r(i)]t and publicly reconstruct the value r. Since the shared

values of at least n − 2t honest parties in Com are unknown to Adv and random (thanks to the privacy property of
AVSS), r is indeed random. The communication complexity of the protocol is n times the communication complexity
of AVSS which is poly(n).

B Protocol Sh and its Properties

In this section, we first recall the sharing protocol of the perfectly secure AVSS scheme of [28, 29] which allows D to
2t-share a single secret. Then we present the protocol Sh with the required modifications and extension so as to allow
D to t-share t + 1 secrets. We finally discuss how to t-share ` values together where ` ≥ t + 1, keeping the broadcast
communication independent of `.
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B.1 AVSS Protocol of [28, 29] for 2t-sharing a Single Value

The goal of the sharing protocol of the AVSS scheme of [28, 29] is to enable D to 2t-share (and not t-share) a secret
s. The protocol is structured with three stages. The first stage is the distribution stage, where D selects a bi-variate
polynomial F (x, y) of different degrees in x and y; namely the degree of x is at most 2t and the degree of y is at most
t. We call such a polynomial a bi-variate polynomial of degree-(2t, t). The polynomial F (x, y) is an otherwise random
polynomial except that F (0, 0) = s. The dealer then hands the ith row polynomial fi(x) of degree at most 2t and the

ith column polynomial gi(y) of degree at most t to the party Pi, where fi(x)
def
= F (x, αi) and gi(y)

def
= F (αi, y).

The second stage is the verification stage, where the parties interact to verify whether the dealer has distributed
“consistent” row and column polynomials to “sufficiently many” parties. More specifically, the parties interact to verify
whether that there exists a set of 3t+ 1 parties called CORE and a bi-variate polynomial of degree-(2t, t), say F ′(x, y),
such that the following holds:

• Every (honest) party Pi in CORE has a row polynomial, say f ′i(x), of degree at most 2t and a column polynomial,
say g′i(y), of degree at most t, such that f ′i(x) = F ′(x, αi) and g′i(y) = F ′(αi, y) holds. We often say in this case
that the row and column polynomials are consistent with F ′(x, y).

• If D is honest then F ′(x, y) = F (x, y) and hence f ′i(x) = fi(x) and g′i(y) = gi(y) holds.

The last stage called completion stage ensures that even the (honest) parties outside the CORE possess their respective
column polynomial, consistent with F ′(x, y); i.e. every Pi ∈ P \ CORE possesses g′i(y), where g′i(y) = F ′(αi, y).
Once this is done, we say that D has committed the polynomial F ′(x, y) and the secret s′, where s′ = F ′(0, 0). Now s′

is 2t-shared through the polynomial f ′0(x) with f ′0(x) = F ′(x, 0) of degree at most 2t and every party Pi will have its
share s′i of s′, where s′i = f ′0(αi) = g′i(0). For an honest D, we have s′ = s. Furthermore, the privacy of the 2t-sharing
of s follows from the fact that the view of Adv in the protocol leaves (t+ 1) “degree of freedom” in F (x, y). Informally
this is because (t + 1)(2t + 1) distinct points are required to know F (x, y), but only t(2t + 1) + t distinct points are
revealed to Adv through the t row and column polynomials. We now recall the sharing protocol of AVSS scheme of
[29, 28] in Fig. 8. Prior to that, we recall the following definition and algorithm presented in [13, 7].

Definition B.1 ((n, t)-star[13, 7]). Let G be an undirected graph with the n parties in P as its vertex set. We say that a
pair (C,D) of sets with C ⊆ D ⊆ P is an (n, t)-star in G, if the following holds:

1. |C| ≥ n− 2t;

2. |D| ≥ n− t;

3. For every Pj ∈ C and every Pk ∈ D the edge (Pj , Pk) exists in G.

In [7], the authors have presented an elegant and efficient algorithm for finding an (n, t)-star, provided the graph con-
tains a clique of size n−t. The algorithm, called FindStar outputs either an (n, t)-star or the message star-Not-Found
in polynomial time. Whenever the input graph contains a clique of size n− t, FindStar always outputs an (n, t)-star in
the graph.

B.2 Protocol Sh for t-sharing t+ 1 Values

The protocol Sh for t-sharing of t + 1 secrets, say ~S = (s(1), . . . , s(t+1)) is obtained by making the following modifi-
cation in the first step of the distribution stage of the protocol presented in Figure 8. Specifically, D now embeds t+ 1
secrets from ~S in the polynomial F (x, y) as follows:

– D selects a random bivariate polynomial F (x, y) of degree-(2t, t) over F, such that F (βl, 0) = s(l), for l ∈ [t+ 1].

Additionally, in the completion stage, we add the following step after the step 1 to enable every party Pi 6∈ CORE to
compute f ′i(x), consistent with the bi-variate polynomial F ′(x, y) committed by D to the parties in CORE; note that
as per the protocol (in Fig. 8), after completing the step 1 of the completion stage, every party Pj ∈ P will have their
column polynomial g′j(y) consistent with the committed bi-variate polynomial F ′(x, y):
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Figure 8: The sharing protocol of the AVSS of [28, 29].
Distribution Stage

The following code is executed by D:

1. On having a secret s, select a random bivariate polynomial F (x, y) of degree-(2t, t) over F, such that F (0, 0) = s. Let

fi(x)
def
= F (x, αi) and gi(y)

def
= F (αi, y), for i ∈ [n].

2. For every i ∈ [n], send the row polynomial fi(x) and the column polynomial gi(y) to the party Pi and terminate.

Verification Stage

i. CODE FOR Pi (FOR PAIR-WISE CONSISTENCY CHECKING): Every party in P (including D) executes the following code.

1. Wait to receive from D a row polynomial, say f ′i(x), and a column polynomial, say g′i(y), of degree at most 2t and t

respectively. Upon receiving, send f ′ij and g′ij to the party Pj , for every j ∈ [n], where f ′ij
def
= f ′i(αj) and g′ij

def
= g′i(αj).

2. Upon receiving f ′ji and g′ji from the party Pj , check if f ′i(αj)
?
= g′ji and g′i(αj)

?
= f ′ji. If both the equalities hold, then

broadcast the message OK(Pi, Pj).

3. Construct the undirected consistency graph Gi with P as the vertex set. Add an edge (Pj , Pk) in Gi upon receiving the
message OK(Pk, Pj) and OK(Pj , Pk) from the broadcast of Pk and Pj respectively.

ii. CODE FOR D (FOR GENERATING CORE). Only D executes the following code: Let GD be the consistency graph of D.

1. After every new receipt of some OK(?, ?) message, update GD. If a new edge is added to GD, then execute FindStar on
GD. Let there are α distinct (n, t)-stars that are found in the past, from different executions of FindStar, where α ≥ 0.

(a) If an (n, t)-star is found from the current execution of FindStar that is distinct from all the previously obtained α
(n, t)-stars, do the following:

i. Call the new (n, t)-star as (Cα+1,Dα+1).
ii. Construct a set Fα+1 and add Pj to Fα+1 if Pj has at least 2t+ 1 neighbours from the set Cα+1 in GD.

iii. Construct a set Eα+1 and add Pk to Eα+1 if Pk has at least 3t+ 1 neighbours from the set Fα+1 in GD.
iv. For each β ∈ [α], update the existing Fβ and Eβ sets (constructed earlier) as follows:

A. Add Pj to Fβ , if Pj 6∈ Fβ and Pj has at least 2t+ 1 neighbours from the set Cβ in GD.
B. Add Pk to Eβ , if Pk 6∈ Eβ and Pk has at least 3t+ 1 neighbours from the set Fβ in GD.

(b) If an (n, t)-star that has been already found in the past is obtained from the current execution of FindStar, then
execute the steps (a).iv(A-B) to update the existing Fβs and Eβs for β ∈ [α].

Let (Eγ ,Fγ) be the first pair among the generated (Eβ ,Fβ)s, such that |Eγ | ≥ 3t + 1 and |Fγ | ≥ 3t + 1. Assign
CORE = Eγ and broadcast ((Cγ ,Dγ), (Eγ ,Fγ)).

iii. CODE FOR Pi (FOR VERIFYING CORE): Every party in P (including D) executes the following code.

1. Wait to receive ((Cγ ,Dγ), (Eγ ,Fγ)) from the broadcast of D, such that |Eγ | ≥ 3t+ 1 and |Fγ | ≥ 3t+ 1.

2. Wait until (Cγ ,Dγ) becomes an (n, t)-star in the consistency graph Gi. For this, wait to receive the corresponding OK
messages from the broadcast of the parties in Cγ and Dγ .

3. Wait till every Pj ∈ Fγ has at least 2t + 1 neighbours from Cγ and every Pk ∈ Eγ has at least 3t + 1 neighbours from
Fγ in Gi.

Once the above conditions are satisfied, set CORE = Eγ and terminate.

Completion Stage

Let F ′(x, y) be the bi-variate polynomial of degree-(2t, t), committed by D to the parties in CORE, such that the row and

column polynomials of the parties in CORE are consistent with F ′(x, y). For every Pi 6∈ CORE, let f ′i(x)
def
= F ′(x, αi) and

g′i(y)
def
= F ′(αi, y). The parties in P execute the following code to have the secret F ′(0, 0) 2t-shared though the polynomial

f ′0(x), where f ′0(x) = F ′(x, 0):

1. For every Pi 6∈ CORE, the parties in CORE and party Pi execute OEC(Pi, t, [g
′
i(0)]

CORE
t ), to enable Pi to reconstruct

the polynomial g′i(y); for this every party Pj ∈ CORE sends f ′j(αi) to Pi, where Pj holds the row polynomial f ′j(x).

2. Party Pi outputs g′i(0) (which is the same as f ′0(αi)) as its share of the secret F ′(0, 0) and terminate.
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– For every Pi 6∈ CORE, the parties in P and party Pi execute OEC(Pi, 2t, [f
′
i(0)]P2t), to enable Pi to reconstruct the

polynomial f ′i(x). That is, every party Pj ∈ P sends g′j(αi) to Pi, where Pj holds the column polynomial g′j(y).

Finally, we modify the last step of the completion stage as follows to enable the parties to output the shares correspond-
ing to the t-sharing of the secrets in ~S:

– For each i ∈ [n], party Pi outputs its share ~S′i, where ~S′i = (f ′i(β1), . . . , f
′
i(βt+1)) and terminate.

We appeal to the proof of the properties of the sharing protocol of the perfectly secure AVSS scheme [29, 28] for proving
the properties of our protocol Sh, stated in Lemma B.2.

Lemma B.2. Let ~S = (s(1), . . . , s(t+1)) be a vector of t+ 1 values, which a dealer D ∈ P wants to t-share among the
parties in P . Then for every possible Adv and scheduler, the protocol Sh achieves: (1) TERMINATION: If D is honest,
then every honest party will eventually terminate Sh. Moreover, even if D is corrupted and some honest party terminates
Sh, then all the honest parties will eventually terminate Sh. (2) CORRECTNESS: Once an honest party terminates Sh,
there exists a vector ~S′ = (s′(1), . . . , s′(t+1)) of t+ 1 values, such that ~S′ will be eventually t-shared among the parties
in P . Moreover, if D is honest, then ~S′ = ~S. (3) PRIVACY: If D is honest, then the information received by Adv during
the protocol Sh is distributed independently of the shared secrets in ~S. (4) COMMUNICATION COMPLEXITY: The
protocol requires communication of O(n2) elements and broadcast of O(n2) elements from F.

PROOF (TERMINATION): From the termination property of the AVSS scheme of [29, 28], it follows that if D is honest
then the parties will eventually complete the sharing phase; moreover even if D is corrupted and some honest party
completes the sharing phase, then every other honest party will also eventually do the same. Now the completion
of the sharing phase of the AVSS scheme of [29, 28] implies that every party in P will eventually have its column
polynomial. It now follows by the property of OEC that every honest party will eventually compute its row polynomial
f ′i(x) since each f ′i(0) is already 2t-shared among the parties via the column polynomials. After the computation of
row polynomial, the parties output their shares of the secrets and terminate the protocol. This completes the proof of
the termination property.

CORRECTNESS: The correctness property of the AVSS scheme of [29, 28] ensures that if some honest party terminates
the sharing protocol, then there exists a unique bi-variate polynomial, say F ′(x, y), of degree-(2t, t), such that every
honest party Pi ∈ P has the column polynomial g′i(y) of degree at most t, where g′i(y) = F ′(αi, y); moreover if D is
honest then F ′(x, y) = F (x, y) and hence g′i(y) = gi(y). Our Sh protocol ensure the same. We define D’s committed
secret in Sh as ~S′ = (s′(1), . . . , s′(t+1)), where s′(l) is the constant term of the polynomial g′βl(y) of degree at most t
and g′βl(y) = F ′(βl, y). By the additional step added in the protocol Sh (in the completion stage), every party Pi now
eventually computes its row polynomial f ′i(x) of degree at most 2t, where f ′i(x) = F ′(x, αi). The correctness of this
step follows by the correctness of the OEC protocol and the fact that for each Pi 6∈ CORE, the value f ′i(0) is 2t-shared
among the parties in P through the column polynomials g′1(y), . . . , g′n(y). Now it is easy to see that the ith share
s
′(l)
i = g′βl(αi) of the committed secret s′(l) is the same as F ′(βl, αi) and thus f ′i(βl). So every party Pi can compute

its shares of the committed secrets by evaluating f ′i(x) at x = β1, . . . , βt+1 and hence ~S′ will be t-shared. Moreover, it
is easy to see that if D is honest then ~S′ = ~S will hold. This completes the proof of the correctness.

PRIVACY: For privacy, we consider an honest D. Without loss of generality, let P1, . . . , Pt be under the control of Adv.
It is easy to see that in the protocol Sh, Adv will obtain t row and column polynomials, namely f1(x), . . . , ft(x), g1(y),
. . . , gt(y). Each row polynomial is of degree at most 2t and provides 2t + 1 distinct points on F (x, y). On the other
hand, each column polynomial is of degree at most t and can provide t + 1 distinct points; however out of these t + 1
points, t points are the common points with the row polynomials and already counted in the view of Adv. So each
column polynomial adds one new point on F (x, y) to the view of Adv. This in total provides Adv with t(2t + 1) + t
distinct points on F (x, y).

Now F (x, y) is of degree-(2t, t) and it requires the knowledge of (t + 1)(2t + 1) distinct points on F (x, y) to
uniquely interpolate the polynomial; this gives (2t+ 1)(t+ 1)− t(2t+ 1)− t = t+ 1 degree of freedom for F (x, y).
More specifically, from the view point of the adversary, for every possible choice of the t + 1 secrets, there exists a
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unique bi-variate polynomial of degree-(2t, t), which is consistent with the t+ 1 secrets (which constitute t+ 1 distinct
points on the polynomial) and the t(2t + 1) + t distinct points known to Adv in the protocol. This implies that the
information obtained by Adv is distributed independently of the t+ 1 secrets.

COMMUNICATION COMPLEXITY: The communication complexity follows from the communication complexity anal-
ysis of the AVSS scheme of [29, 28]. 2

B.3 Sharing more than t+ 1 Values Together using Sh

If D wants to t-share ` secrets, where ` > t+ 1, then it can form `
t+1 groups, each consisting of t+ 1 secrets (without

loss of generality, we assume that ` is a multiple of t + 1) and execute an instance of Sh for each group. This requires
communication of O(n`) field elements, as t + 1 = Θ(n). To keep the total broadcast communication independent
of `, we follow the same trick as used in [29, 28] for keeping the broadcast communication independent of ` while
generating 2t-sharing of ` secrets. We first note that the broadcast communication occurs only in the verification stage
of the protocol. We execute all instances of the Sh protocol (each handling t + 1 secrets) in parallel so that each party
broadcasts only when the pre-condition for the broadcast is satisfied in all the Sh instances. Specifically, we ensure that
the parties (locally) construct a single consistency graph for all instances of Sh, instead of `

t+1 individual consistency
graphs. For this, we ask every party Pi to broadcast the OKmessage involving party Pj (namely the OK(Pi, Pj) message)
only if the ith row polynomial is “pair-wise consistent” with the jth column polynomial and the ith column polynomial
is pair-wise consistent with the jth row polynomial in all the `

t+1 instances of Sh. That is, Pi should check whether

f ′i(αj)
?
= g′ji and g′i(αj)

?
= f ′ji holds in all the `

t+1 instances of Sh, before broadcasting the message OK(Pi, Pj).
Now a single consistency graph is constructed for all the `

t+1 instances and accordingly a single C,D, E and F set is
broadcasted. The above trick keeps the over all broadcast communication to be O(n2).

C Properties of the Triple Transformation Protocol TripTrans

Lemma C.1. Let {([x(i)]t, [y(i)]t, [z(i)]t)}i∈[3t+1] be a set of 3t + 1 shared triples. Then for every possible Adv and
every possible scheduler, protocol TripTrans achieves:

(1) TERMINATION: All the honest parties eventually terminate the protocol. (2) CORRECTNESS: The protocol outputs
3t+1 shared triples {([x(i)]t, [y

(i)]t, [z
(i)]t)}i∈[3t+1] such that the following holds (a) There exist polynomials X(·),Y(·)

and Z(·) of degree 3t
2 ,

3t
2 and 3t respectively, such that X(αi) = x(i),Y(αi) = y(i) and Z(αi) = z(i) holds for

i ∈ [3t + 1]. (b) Z(·) = X(·)Y(·) holds iff all the input triples are multiplication triples. (3) PRIVACY: If Adv knows
t′ ≤ 3t

2 input triples then Adv learns t′ values on X(·),Y(·) and Z(·). (4) COMMUNICATION COMPLEXITY: The
protocol incurs communication of O(n2) elements from F.

PROOF (TERMINATION): This property follows from the termination property of BatchBeaver (see Lemma A.3).

CORRECTNESS: By construction, it is ensured that the polynomials X(·),Y(·) and Z(·) are of degree 3t
2 ,

3t
2 and 3t

respectively and X(αi) = x(i),Y(αi) = y(i) and Z(αi) = z(i) holds for i ∈ [3t+ 1]. To argue the second statement in
the correctness property, we first show that if the input triples are multiplication triple then Z(·) = X(·)Y(·) holds. For
this, it is enough to show the multiplicative relation Z(αi) = X(αi)Y(αi), which is the same as z(i) = x(i)y(i), holds
for i ∈ [3t + 1]. For i ∈ [3t2 + 1], the relation z(i) = x(i)y(i) holds since we have x(i) = x(i), y(i) = y(i), z(i) = z(i)

and the triple (x(i), y(i), z(i)) is a multiplication triple by assumption. For i ∈ [3t2 + 2, 3t+ 1], we have z(i) = x(i)y(i)

due to the correctness of the protocol BatchBeaver and the assumption that the triples used in BatchBeaver, namely{
(x(i), y(i), z(i))

}
i∈[ 3t

2
+2,3t+1]

are multiplication triples. Proving the other way, that is, if Z(·) = X(·)Y(·) is true

then all the input triples are multiplication triples is easy. Since Z(·) = X(·)Y(·), it implies that z(i) = x(i)y(i) for
i ∈ [3t + 1]. This trivially implies

{
(x(i), y(i), z(i))

}
i∈[ 3t

2
+1]

are multiplication triples. On the other hand, if some

triple in
{

(x(i), y(i), z(i))
}
i∈[ 3t

2
+2,3t+1]

, say (x(j), y(j), z(j)) is not a multiplication triple, then (x(j),y(j), z(j)) is not a
multiplication triple as well (by the correctness of the Beaver’s technique), which is a contradiction.
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PRIVACY: First note that if Adv knows more than 3t
2 input triples, then it knows all the three polynomials completely.

Now to prove the privacy, we show that if Adv knows the input triple (x(i), y(i), z(i)), then it also knows the output
triple (x(i),y(i), z(i)). If i ∈ [3t2 + 1], this follows trivially since (x(i),y(i), z(i)) is the same as (x(i), y(i), z(i)). Else
if i ∈ [3t2 + 2, 3t + 1], then Adv knows the t-sharing of (x(i), y(i), z(i)) which is used to compute the t-sharing of z(i)

from the t-sharing of x(i) and y(i). Since the values (x(i)− x(i)) and (y(i)− y(i)) are disclosed during the computation
of z(i), Adv knows x(i), y(i) and hence z(i). So we proved that the knowledge of t′ input triples allows Adv to know t′

output triples. It now follows that Adv knows t′ points on the polynomials X(·),Y(·) and Z(·).

COMMUNICATION COMPLEXITY: One instance of BatchBeaver is invoked in the protocol and this requires commu-
nication of O(n2) elements from F. 2

D Probabilistic Triple Sharing Protocol in the Asynchronous Setting

The probabilistic triple sharing protocol TripleSh in the asynchronous setting in presented in Fig. 9.

Figure 9: A probabilistic protocol for t-sharing ` · 3t2 random multiplication triples where ` ≥ t+ 1.
Protocol TripleSh(D)

1. D selects ` · (3t+1) random multiplication triples {(x(i,l), y(i,l), z(i,l))}i∈[3t+1], l∈[`] and t-shares them by executing an
instance of Sh and the parties participate in the instance of Sh.

2. After terminating the instance of Sh initiated by D, the parties execute TripTrans({([x(i,l)]t, [y(i,l)]t, [z(i,l)]t)}i∈[3t+1])

to compute {([x(i,l)]t, [y
(i,l)]t, [z

(i,l)]t)}i∈[3t+1] for each l ∈ [`]. Let Xl(·), Yl(·) and Zl(·) denote the associated
polynomials.

3. After terminating the instances of TripTrans, the parties execute an instance of Rand to generate a random value α.

4. After terminating the instance of Rand, the parties (locally) computea {([Xl(α)]t, [Yl(α)]t, [Zl(α)]t)} from
{([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}i∈[3t+1] for l ∈ [`].

5. The parties execute d 3`
t+1
e instances of BatRecPublb to reconstruct {(Xl(α),Yl(α),Zl(α))}l∈[`].

6. Upon terminating the instances of BatRecPubl, the parties (locally) verify Zl(α)
?
= Xl(α) · Yl(α) for each l ∈ [`].

• If the verification fails for some l ∈ [`], then the parties output default t-sharing of ` · 3t
2

publicly known multipli-
cation triples and terminate.

• If the verification is successful for every l ∈ [`], then the parties locally compute and output ` · 3t
2

sharings
{([a(i,l)]t, [b

(i,l)]t, [c
(i,l)]t)}i∈[ 3t

2
], l∈[`] and terminate. Here a(i,l) = Xl(βi),b

(i,l) = Yl(βi), c(i,l) = Zl(βi)

and β1, . . . , β 3t
2

are (the publicly known) elements, distinct from the random α.

a As {(αi,x(i,l))}i∈[3t+1], {(αi,y(i,l))}i∈[3t+1] and {(αi, z(i,l))}i∈[3t+1] uniquely define the polynomials Xl(·),Yl(·) and Zl(·)
respectively, the values Xl(α),Yl(α) and Zl(α) can be expressed as a linear combination of {x(i,l)}i∈[3t+1], {y(i,l)}i∈[3t+1]

and {z(i,l)}i∈[3t+1] respectively.
b BatRecPubl allows to publicly reconstruct t+ 1 values and so 3`/(t+ 1) instances are required to reconstruct 3` values.

The properties of the protocol TripleSh are stated in Lemma D.1

Lemma D.1. For every possible Adv and for every possible scheduler, protocol TripleSh achieves:

(1) TERMINATION: If D is honest then all the honest parties eventually terminate the protocol. If D is corrupted and
some honest party terminates, then all the honest parties eventually terminate. (2) CORRECTNESS: If D is honest then
` · 3t2 multiplication triples will be t-shared, where ` ≥ t+ 1. If D is corrupted and some honest party terminates then
` · 3t2 triples will be t-shared; moreover except with probability at most 3t

|F| , the triples will be multiplication triples. (3)
PRIVACY: If D is honest, then the view of Adv in the protocol is distributed independently of the output multiplication
triples. (4) COMMUNICATION COMPLEXITY: The protocol incurs communication of O(n2`) elements and broadcast
of O(n2) elements from F. Additionally one invocation to Rand is required.
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PROOF (TERMINATION): We start with noting that D starts TripleSh by invoking an instance of Sh and the termination
property of the protocol Sh (see Lemma B.2) implies that if D is honest, then the instance of Sh will terminate. Once the
instance of Sh is terminated, the remaining sub-protocols in TripleSh, namely the instance of Rand and the instances of
TripTrans and BatRecPubl will eventually terminate. So the honest parties will terminate the protocol TripleSh when
D is honest. On the other hand, if D is corrupted and some honest party has terminated the protocol TripleSh, then it
implies that the honest party has terminated all the sub-protocols in TripleSh, namely the instance of Sh, the instance
of Rand and the instances of TripTrans and BatRecPubl. The termination property of Sh (see Lemma B.2) implies
that in this case, every other honest party will eventually terminate the instance of Sh too. Subsequently, all the other
sub-protocols, namely Rand,TripTrans and BatRecPubl will eventually terminate for each honest party. This proves
that if some honest party terminates TripleSh, then every other honest party will eventually terminate TripleSh.

CORRECTNESS: We first consider the easy case of an honest D. The correctness property of Sh (see Lemma B.2)
implies that all the triples {(x(i,l), y(i,l), z(i,l))}i∈[3t+1], l∈[`] will be t-shared among the parties. Since the triples are

indeed multiplication triples (as D is honest), the condition Zl(α)
?
= Xl(α) · Yl(α) will be true for each l ∈ [`]. It thus

follows that the output triples will be multiplication triples and will be t-shared.
We next consider a corrupted D and assume that some honest party has terminated the protocol TripleSh. This

implies that it has terminated all the sub-protocols in TripleSh, including the instance of Sh. The correctness property of
the Sh protocol (see Lemma B.2) implies that there exists triples, say {(x′(i,l), y′(i,l), z′(i,l))}i∈[3t+1],l∈[`] that are t-shared
among the parties. Since TripTrans is executed with the t-shared triples {(x′(i,l), y′(i,l), z′(i,l))}i∈[3t+1] for l ∈ [`], it
follows from the correctness property of TripTrans that the output t-shared triples, say {(x′(i,l),y′(i,l), z′(i,l))}i∈[3t+1],
satisfy Xl(αi) = x′(i,l),Yl(αi) = y′(i,l) and Zl(αi) = z′(i,l) for l ∈ [`]. The correctness property of TripTrans also
implies that the relation Zl(·) = Xl(·) · Yl(·) is true iff all the 3t+ 1 triples {(x′(i,l), y′(i,l), z′(i,l))}i∈[3t+1] are multipli-
cation triples. This implies that if some triple in the set {(x′(i,l), y′(i,l), z′(i,l))}i∈[3t+1] is not a multiplication triple, then

the verification Zl(α)
?
= Xl(α) · Yl(α) will pass for a random α only if α is a root of the polynomials. However since

α is completely random (follows from the property of Rand) and is known to the corrupted D only after the instance of
Sh is completed, the only way of ensuring that the verification Zl(α)

?
= Xl(α) · Yl(α) passes even though the triples

{(x′(i,l), y′(i,l), z′(i,l))}i∈[3t+1] are not multiplication triples is by correctly guessing the value of α, which can be done
with probability at most 3t

F , as Zl(·) is of degree at most 3t.

PRIVACY: We consider an honest D. We fix an l ∈ [`] and show that the information obtained by Adv in the rest
of the protocol does not leak anything about the output triples {(a(i,l),b(i,l), c(i,l))}i∈ 3t

2
, except the fact that they

are multiplication triples. The privacy property of the protocol Sh (see Lemma B.2) implies that the multiplication
triples {(x(i,l), y(i,l), z(i,l))}i∈[3t+1] are not known to Adv till the end of Sh. Similarly from the privacy property of
TripTrans (by substituting t′ = 0), it follows that the multiplication triples {(x(i,l),y(i,l), z(i,l))}i∈[3t+1] obtained
by executing TripTrans with {(x(i,l), y(i,l), z(i,l))}i∈[3t+1] remain private and Adv learns no points on the polynomi-

als Xl(·),Yl(·) and Zl(·). During the public verification of Zl(α)
?
= Xl(α) · Yl(α), Adv learns one point on these

polynomials, leaving 3t
2 degree of freedom in these polynomials. As a result {(a(i,l),b(i,l), c(i,l))}i∈ 3t

2
will remain

private. Specifically, the degree of Xl(·) is at most 3t
2 . So from the view point of the adversary, for every possible

choice of {a(i,l)}i∈[ 3t
2
], there exists a unique polynomial Xl(·) of degree at most 3t

2 , which will be consistent with

{(βi,a(i,l))}i∈[ 3t
2
] and (α,Xl(α)), where βis are distinct from α. The same logic applies for the polynomials Yl(·) and

Zl(·).

COMMUNICATION COMPLEXITY: We note that the instance of Sh requires communication of O( `·(3t+1)
t+1 · n2) =

O(n2`) and broadcast of O(n2) elements. Each instance of TripTrans incurs communication of O(n2) field elements
and there are ` such instances. The instances of BatRecPubl need total communication ofO(n`) following the argument
as follows: each instance of BatRecPubl requiresO(n2) communication (see Lemma A.2) and TripleSh invokes 3d `

t+1e
instances of BatRecPubl; moreover t+ 1 = Θ(n). 2
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E Error-Free Triple Sharing Protocol in the Hybrid Setting

Looking ahead, in protocol HybTripleSh, each party will be asked to t-share a number of random (dummy) multiplica-
tion triples in the synchronous round without any sanity checking. Such triples are said to be generated “non-verifiably”
and might allow the corrupted parties to do arbitrary sharings in place of t-sharings. By noting that any arbitrary distri-
bution of values to the honest parties in the name of sharing can be perceived as a d-sharing for an appropriate d ≤ 3t
(since there are 3t + 1 honest parties and the shares of these honest parties can define a polynomial of degree at most
3t), we refer a sharing with an arbitrary degree below 3t + 1 as an arbitrary sharing and we denote such an arbitrary
sharing without specifying the subscript that denotes the degree of sharing; for example [v] instead of [v]d. Note that
an arbitrary sharing with degree at most t becomes a valid sharing. Looking ahead, if the corrupted parties generate
arbitrary sharing (instead of t-sharing) then arbitrary sharings might be input to the protocols OEC, BatRecPubl and
BatchBeaver when invoked inside HybTripleSh. This may cause problem in the termination property of the protocols.
We therefore modify the protocols OEC, BatRecPubl and BatchBeaver so that they always terminate, even if the input
sharings are not t-sharings. Furthermore, the correctness is still guaranteed in the modified protocols when the inputs
sharings are valid t-sharing. We next discuss how to obtain the modified protocols and note that a linear function applied
on a set of arbitrary sharings leads to arbitrary sharings.

• mOEC(PR, [v]): mOEC (standing for modified OEC) is obtained from OEC by modifying the steps for PR, the
party that would like to reconstruct the input sharing, as follows: party PR waits for the shares from any 3t + 1
parties and includes them in I. Then it applies RSDec(t, t, I). If a polynomial of degree at most t is obtained from
RSDec, then it outputs the same polynomial (and its constant term). Otherwise it outputs a default polynomial of
degree at most t (and its constant term). Now it is easy to note that (an honest) PR always terminates the protocol
(irrespective of the degree of sharing of v), since the 3t + 1 honest parties in P will send their shares to PR.
Furthermore, if the input sharing is a t-sharing, then clearly the output of PR in mOEC is the same as it would be
in the protocol OEC (with input [v]t); this follows from the property of RSDec. Note that mOEC has the same
communication complexity as that of OEC.

• mBatRecPubl(P, [u(1)], . . . , [u(t+1)]): mBatRecPubl is obtained by modifying BatRecPubl where each instance
of OEC is replaced by mOEC. The termination now follows from the termination of mOEC. Furthermore, when
the input sharings are t-sharings, then the output (of the honest parties) in mBatRecPubl will be the same as it
would be in the protocol BatRecPubl (with inputs [u(1)]t, . . . , [u

(t+1)]t); i.e. all the honest parties will robustly
reconstruct u(1), . . . , u(t+1). However, if all the input sharings are not t-sharings, then different (honest) parties
may end up reconstructing different t + 1 values, depending upon the output of the instances of mOEC. The
communication complexity of mBatRecPubl is the same as that of BatRecPubl.

• mBatchBeaver({([x(i)]t, [y(i)]t, [a(i)], [b(i)], [c(i)])}i∈[`]): it is obtained by modifying BatchBeaver, where each
instance of BatRecPubl is replaced by mBatRecPubl. We note that in mBatchBeaver, only the sharings {([a(i)],
[b(i)], [c(i)])}i∈[`] of the triples may be arbitrary (and possibly the triples may be non-multiplication triples); the
sharings of the pairs {([x(i)]t, [y(i)]t)}i∈[`] (whose product need to be computed) will be t-sharings. The termina-
tion now follows from the termination of mBatRecPubl. Furthermore, when the sharings {[a(i)], [b(i)], [c(i)])}i∈[`]
are t-sharing of multiplication triples, then the output (of the honest parties) in mBatchBeaver will be the same
as it would be in the protocol BatchBeaver; i.e. the parties will output t-sharings {[x(i)y(i)]t}i∈[`]. Otherwise, the
parties will output arbitrary sharings {[z(i)]}i∈[`], where each z(i) can be any arbitrary value. The communication
complexity of mBatchBeaver is the same as that of BatchBeaver.

We are now ready to present the error-free protocol HybTripleSh for triple sharing in the hybrid model. In the protocol,
we assume the existence of an almost surely terminating ABA protocol [1, 30]; the efficient almost surely terminating
ABA protocol of [30] designed with 4t+ 1 parties with a communication complexity of poly(n) is good enough for our
purpose. We now present the protocol in Fig. 10 where the idea discussed in Section 6.1 is applied ` times in parallel
for ` ≥ t+ 1.

Lemma E.1. In a hybrid network model where the first communication round is a synchronous round, protocol
HybTripleSh achieves the following for every possible Adv and every possible scheduler:
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Figure 10: An error-free protocol for t-sharing ` · t2 random multiplication triples where ` ≥ t+ 1.
Protocol HybTripleSh(D)

First Synchronous Round

Every party Pi ∈ P executes the following code:

1. Select ` random dummy multiplication triples {(f (i,l), g(i,l), h(i,l))}l∈[`] and t-share them using Shamir secret sharing.

2. For every j ∈ [n], receive from Pj the shares of the dummy triples selected by Pj , till the first round is over. If some
share is not received from Pj by the end of first round, then set them to a publicly known default value.

Let {([f (i,l)], [g(i,l)], [h(i,l)])}l∈[`], Pi∈P denote the arbitrary sharings of the dummy triples done by the party Pi.

The Remaining Asynchronous Protocol

1. D selects ` · (3t+1) random multiplication triples {(x(i,l), y(i,l), z(i,l))}i∈[3t+1], l∈[`] and t-shares them by executing an
instance of Sh and the parties participate in the instance of Sh.

2. After terminating the instance of Sh, the parties do the following for each l ∈ [`]:

(a) Execute TripTrans({([x(i,l)]t, [y(i,l)]t, [z(i,l)]t)}i∈[3t+1]) to compute {([x(i,l)]t, [y
(i,l)]t, [z

(i,l)]t)}i∈[3t+1]. Let
Xl(·), Yl(·) and Zl(·) denote the associated polynomials.

(b) Locally compute {([x(i,l)]t, [y
(i,l)]t, [z

(i,l)]t)}i∈[3t+2,n] from {([x(i,l)]t, [y(i,l)]t, [z(i,l)]t)}i∈[3t+1] such that
x(i,l) = Xl(αi), y(i,l) = Yl(αi) and z(i,l) = Zl(αi) for i ∈ [3t+ 2, n].

3. For i ∈ [n], the parties verify the ` shared triples {([x(i,l)]t, [y
(i,l)]t, [z

(i,l)]t)}l∈[`] using the ` shared dummy triples
{([f (i,l)], [g(i,l)], [h(i,l)])}l∈[`] shared by Pi as follows:

(a) The parties execute mBatchBeaver({[x(i,l)]t, [y
(i,l)]t, [f

(i,l)], [g(i,l)], [h(i,l)]}l∈[`]) and compute the sharings
{[z(i,l)]}l∈[`].

(b) The parties compute (locally) {[γ(i,l)]}l∈[`], where [γ(i,l)] = [z(i,l)]− [z(i,l)]t, for l ∈ [`].

(c) The parties execute d `
t+1
e instances of mBatRecPubl on {[γ(i,l)]}l∈[`] to reconstruct these values. Let the output

of mBatRecPubl for Pj be {γ(i,l,j)}l∈[`]a.

(d) The parties participate in the instance ABA(i) of ABA where party Pj inputs 0 if γ(i,l,j) = 0 for all l ∈ [`],
otherwise Pj inputs 1.

(e) If the output of ABA(i) is 0 then the parties (locally) set a Boolean flag flagi = 1 to indicate
that {(x(i,l),y(i,l), z(i,l))}l∈[`] are correct multiplication triples. Else if the output of ABA(i) is 1 then
the parties execute d 3`

t+1
e instances of BatRecPubl on {([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}l∈[`] to reconstruct

{(x(i,l),y(i,l), z(i,l))}l∈[`]. After reconstruction, the parties check if all the triples {(x(i,l),y(i,l), z(i,l))}l∈[`]
are multiplication triples and accordingly (locally) set flagi = 1 or flagi = 0

4. If flagi = 1 for all i ∈ [n], then the parties output ` · t
2

sharings {([a(i,l)]t, [b
(i,l)]t, [c

(i,l)]t)}i∈[ t
2
], l∈[`] and terminate,

where a(i,l) = Xl(βi),b
(i,l) = Yl(βi) and c(i,l) = Zl(βi), for i ∈ [ t

2
] and l ∈ [`]. Else, the parties output ` · t

2
default

sharings of multiplication triples and terminate.

a Each instance of mBatRecPubl can be used to reconstruct t + 1 shared values and so to reconstruct ` shared values, d `
t+1
e

instances are required. If the γ(i,l)s are not t-shared then different parties may reconstruct different values at the end of

mBatRecPubl and so the extra index j here is used to capture the values which are reconstructed by Pj at the end of

mBatRecPubl.

(1) TERMINATION: If D is honest then all the honest parties eventually terminate the protocol with probability 1. If
D is corrupted and some honest party terminates, then all the honest parties eventually terminate the protocol with
probability 1. (2) CORRECTNESS: If D is honest then ` · t2 multiplication triples will be t-shared, where ` ≥ t + 1. If
D is corrupted and some honest party terminates then ` · t2 multiplication triples will be t-shared, where ` ≥ t+ 1. (3)
PRIVACY: If D is honest, then the view of Adv in the protocol is distributed independently of the ` · t2 output multiplica-
tion triples, where ` ≥ t + 1. (4) COMMUNICATION COMPLEXITY: The protocol requires communication of O(n2`)
and broadcast of O(n2) elements from F, apart from n invocations to ABA.

PROOF (TERMINATION): This follows from the termination property of Sh,mBatchBeaver,mBatRecPubl, the termi-
nation property of the almost surely terminating ABA and the fact that the first synchronous round will always terminate.
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CORRECTNESS: We first consider an honest D, where the t-shared triples {([x(i,l)]t, [y(i,l)]t, [z(i,l)]t)}i∈[3t+1], l∈[`]
will be multiplication triples. By the property of TripTrans, the relation Zl(·) = Xl(·)Yl(·) will hold for all l ∈ [`]
and the triples {([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}i∈[n], l∈[`] will be multiplication triples. Now consider an honest Pi in P ,

where the dummy triples shared by Pi will be multiplication triples and will be t-shared. It thus follows from the
properties of mBatchBeaver that {z(i,l)}l∈[`] = {x(i,l)y(i,l)}l∈[`] will hold and each such z(i,l) will be t-shared. This
further implies that {[γ(i,l)]}l∈[`] = {[0]t}l∈[`] will hold, as z(i,l) = z(i,l) will hold. It thus follows from the properties
of mBatRecPubl that each honest Pj will reconstruct γ(i,l,j) = 0 for all l ∈ [`] and will input 0 to the instance ABA(i)

which further implies that the honest parties will set flagi = 1 at the end of ABA(i). Next consider a corrupted Pi,
where the dummy triples (probably non-multiplication triples) may be arbitrarily shared by Pi. Corresponding to such
an i, if the output of ABA(i) is 1, then the parties will robustly reconstruct the triples {([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}l∈[`],

which in this case are multiplication triples and so the parties will set flagi = 1. So for an honest D, flagi = 1 will hold
for all i ∈ [n]. It is now easy to see that the multiplication triples {(a(i,l),b(i,l), c(i,l))}i∈[ t

2
], l∈[`] will be t-shared among

the parties.
On the other hand, if D is corrupted, then there are two possible cases: the parties either output default t-sharing

of ` · t2 publicly known multiplication triples or the parties output triples as computed in the protocol. We focus on
the second case, which also implies that flagi = 1 for all i ∈ [n]. Here, it is enough to show that corresponding to
every honest Pi, the triples {([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}l∈[`] are indeed multiplication triples, which will further con-

firm that Zl(·) = Xl(·)Yl(·) holds, implying that all the triples shared by D are multiplication triples. An honest
Pi will correctly t-share its random dummy multiplication triples. This implies that the parties will correctly obtain
{[z(i,l) = x(i,l)y(i,l)]t}l∈[`] at the end of mBatchBeaver. Now if all the ` triples in {([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}l∈[`] are

not multiplication triples, then clearly all the ` values in {γ(i,l) = z(i,l) − z(i,l)}l∈[`] will not be 0. However, if this
is the case, then every honest party would have input 1 to ABA(i) and obtain 1 as its output. This is because each
γ(i,l) would be t-shared (as the dummy triples were t-shared) and so all the honest parties would correctly reconstruct
{γ(i,l)}l∈[`] at the end of mBatRecPubl. Moreover, after obtaining 1 as the output of ABA(i), the parties would have
publicly reconstructed the triples {(x(i,l),y(i,l), z(i,l))}l∈[`] and would have set flagi = 0 after finding that all the triples
in {(x(i,l),y(i,l), z(i,l))}l∈[`] are not multiplication triples. However, this is a contradiction.

PRIVACY: For privacy, we consider an honest D. We first fix an l ∈ [`] and then claim that Adv will learn at most
t points on the polynomials Xl(·),Yl(·) and Zl(·), which are of degree at most 3t

2 ,
3t
2 and 3t respectively. Then fol-

lowing similar arguments as used for proving the privacy property of TripleSh, it will follow that the multiplication
triples {(a(i,l),b(i,l), c(i,l))}i∈[ t

2
] will be random from the view point of Adv, as there exists t

2 “degree of freedom”

in the polynomials. Since D is honest, clearly all the shared triples in {([x(i,l)]t, [y(i,l)]t, [z(i,l)]t)}i∈[3t+1] will be ran-
dom and unknown to Adv and so from the properties of TripTrans (by substituting t′ = 0), it follows that all the
shared triples in {([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}i∈[n] will be random and so Adv will not learn any point on Xl(·),Yl(·)

and Zl(·) after TripTrans. Now there can be at most t corrupted Pis and corresponding to them, Adv will learn
the multiplication triple (x(i,l),y(i,l), z(i,l)) during its verification, as Adv will know the corresponding dummy triple
(f (i,l), g(i,l), h(i,l)), used for its verification. However, corresponding to the honest Pis, the random dummy multi-
plication triples (f (i,l), g(i,l), h(i,l)) will be t-shared and will be not known to Adv. This further implies that while
computing [z(i,l) = x(i,l)y(i,l)]t using ([f (i,l)]t, [g

(i,l)]t, [h
(i,l)]t), no additional information about the multiplication

triple (x(i,l),y(i,l), z(i,l)) will be leaked to Adv. Finally, the sharings [z(i,l)]t and [z(i,l)]t will be independent, except that
z(i,l) = z(i,l) and so Adv will already know that γ(i,l) = 0 and thus no new information is added to its view after the
public reconstruction of [γ(i,l)]t. So overall, Adv will learn t values on Xl(·),Yl(·) and Zl(·).

COMMUNICATION COMPLEXITY: During the synchronous round, each party has to Shamir share ` multiplication
triples, which will incur communication of O(n2`) elements from F. Sharing of ` · (3t + 1) triples by D during the
instance of Sh requires communication of O(n2`) elements and broadcast of O(n2) elements from F. Apart from this,
there will be ` instances of TripTrans incurring communication of O(n2`) elements, n instances of mBatchBeaver
incurring communication of O(n2`) elements, d n`t+1e instances of mBatRecPubl incurring communication of O(n2`)

elements and at most d 3n`t+1e instances of BatRecPubl incurring communication of O(n2`) elements. Moreover, n
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invocations of ABA are involved, one on behalf of each party. So overall, the protocol requires communication of
O(n2`) elements and broadcast of O(n2) elements from F and n invocations to the ABA protocol. 2

F The Triple Extraction Protocol

Protocol TripExt is presented in Fig. 11. We make a simplifying assumption that Com contains the first 3t+ 1 parties.

Figure 11: Protocol for extracting ` · t2 random multiplication triples from a set of ` · (3t+1) local multiplication triples.
Protocol TripExt(Com, {([x(i,l)]i, [y(i,l)]t, [z(i,l)]t)}l∈[`], Pi∈Com)

Without loss of generality, assume Com = {P1, . . . , P3t+1}. For each l ∈ [`], the parties do the following in parallel:

1. The parties execute the protocol TripTrans({([x(i,l)]t, [y(i,l)]t, [z(i,l)]t)}i∈[3t+1]) and compute the shar-
ings {([x(i,l)]t, [y

(i,l)]t, [z
(i,l)]t)}i∈[3t+1], such that the points {(αi,x(i,l))}i∈[3t+1], {(αi,y(i,l))}i∈[3t+1] and

{(αi, z(i,l))}i∈[3t+1] lie on the polynomial Xl(·),Yl(·) and Zl(·) respectively of degree at most 3t
2
, 3t

2
and 3t.

2. The parties locally compute [a(i,l)]t = [Xl(βi)]t, [b(i,l)]t = [Yl(βi)]t and [c(i,l)]t = [Zl(βi)]t for i ∈ [ t
2
] and terminatea.

a Computing Xl(βi),Y
l(βi) and Zl(βi) is performing a linear operation on {x(i,l)}i∈[3t+1], {y(i,l)}i∈[3t+1] and

{z(i,l)}i∈[3t+1] respectively.

The properties of the protocol TripExt are stated in Lemma F.1.

Lemma F.1. Let Com be a publicly known set of 3t + 1 parties, such that each Pi ∈ Com has verifiably t-shared `
random multiplication triples {(x(i,l), y(i,l), z(i,l))}l∈[`]. Then for every possible Adv and for every possible scheduler,
protocol TripExt achieves:

(1) TERMINATION: All the honest parties eventually terminate the protocol. (2) CORRECTNESS: Each of the ` · t2
output triple {(a(i,l),b(i,l), c(i,l))}l∈[`], i∈[ t

2
] is a multiplication triple and will be t-shared. (3) PRIVACY: The view of

Adv in the protocol is distributed independently of the output multiplication triples {(a(i,l),b(i,l), c(i,l))}l∈[`], i∈[ t
2
]. (4)

COMMUNICATION COMPLEXITY: The protocol incurs communication of O(n2`) elements from F.

PROOF (TERMINATION): This property follows from the termination property of the protocol TripTrans.

CORRECTNESS: To argue correctness, we have to show that each triple in
{

(a(i,l),b(i,l), c(i,l))
}
l∈[`], i∈[ t

2
]

is a correct

multiplication triple and is t-shared. For the proof, we fix an l ∈ [`] and show that
{

(a(i,l),b(i,l), c(i,l)
)
}i∈[ t

2
] is indeed

a multiplication triple. Recall that a(i,l) = Xl(βi),b
(i,l) = Yl(βi) and c(i,l) = Zl(βi), for each i ∈ [ t2 ], for three poly-

nomials Xl(·),Yl(·) and Zl(·). To complete the proof, it is enough to show that the protocol ensures the multiplicative
relation Zl(·) = Xl(·)Yl(·) holds. However, this follows from the correctness property of the triple transformation pro-
tocol TripTrans and the fact that Xl(·),Yl(·) and Zl(·) are computed from the 3t+1 triples

{
(x(i,l), y(i,l), z(i,l)

)
}i∈[3t+1],

all of which are multiplication triples.

PRIVACY: We fix l ∈ [`] and prove the privacy for the triples in {(a(i,l),b(i,l), c(i,l))}i∈[ t
2
]. Specifically, we show

that the view of the adversary in the protocol TripExt is distributed independently of the multiplication triples in
{(a(i,l),b(i,l), c(i,l))}i∈[ t

2
]. For this, we first claim that Adv learns at most t points on the polynomials Xl(·),Yl(·)

and Zl(·). However, this follows from the privacy property of the protocol TripTrans and the fact that at most t input
triples

{
(x(i,l), y(i,l), z(i,l)

)
}i∈[3t+1] are known to Adv. Given the above claim, the proof goes as follows: since the

degree of Xl(·) is at most 3t
2 , from the view point of the adversary, for every possible choice of {a(i,l)}i∈[ t

2
], there

exists a unique polynomial Xl(·) of degree at most 3t
2 , which will be consistent with the points {(βi,a(i,l))}i∈[ t

2
] and

the t points from {(αi,x(i,l))}i∈[3t+1] known to Adv. Thus {Xl(βi) = a(i,l)}i∈[ t
2
] will be random to Adv. The same

argument allows us to claim that {b(i,l)}i∈[ t
2
] and {c(i,l)}i∈[ t

2
] will be random to Adv subject to Zl(βi) = Xl(βi)Yl(βi).
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COMMUNICATION COMPLEXITY: For communication complexity, we note that ` instances of the protocol TripTrans
are executed, where each instance requires communication of O(n2) elements from F. 2

G The Preprocessing Phase Protocols

We first present the asynchronous probabilistic preprocessing phase protocol PreProc, which is given in Fig. 12.

Figure 12: An asynchronous pre-processing phase protocol to generate t-sharing of cM + cR random multiplication
triples.

Protocol PreProc

TRIPLE SHARING — For i ∈ [n], every party Pi executes the following code:

• Act as a dealer D and execute an instance of TripleSh to t-share ` random multiplication triples
{(x(i,l), y(i,l), z(i,l))}l∈[`], where ` = 2(cM+cR)

t
a. Let this instance of TripleSh be denoted as TripleShi.

• For every j ∈ [n] participate in the instance TripleShj .

AGREEMENT ON A COMMON SUBSET — For i ∈ [n], every party Pi executes the following code:

• Create an accumulative set Ci = ∅.
• Upon terminating the instance TripleShj , include Pj in Ci.
• Participate in an instance of ACS with the accumulative set Ci as your input.

• Wait to terminate the instance of ACS with an output Com consisting of 3t+ 1 parties.

TRIPLE EXTRACTION AND TERMINATION — The parties in P execute the following code:

• The parties execute TripExt(Com, {([x(i,l)]i, [y(i,l)]t, [z(i,l)]t)}l∈[`], Pi∈Com), output sharing of ` · t
2
= cM + cR

triples {([a(i,l)]t, [b
(i,l)]t, [c

(i,l)]t)}l∈[`], i∈[ t
2
], where ` = 2(cM+cR)

t
and terminate.

a For this, D execute the instance of TripleSh by setting the ` for TripleSh to be 4·(cM+cR)
3t2

. This is because
an instance of TripleSh outputs ` · 3t2 shared triples for D with respect to the ` of TripleSh; so for ` =
4·(cM+cR)

3t2
, an instance of TripleSh will output 4·(cM+cR)

3t2
· 3t2 = 2(cM+cR)

t shared triples for D.

The properties of the protocol PreProc are stated in Lemma G.1.

Lemma G.1. For every possible Adv and every possible scheduler, protocol PreProc achieves: (1) TERMINATION:
All the honest parties terminate the protocol with probability 1. (2) CORRECTNESS: The cM + cR output triples will
be t-shared among the parties. Moreover, the output triples will be multiplication triples except with error probability
at most 3t2

F . (3) PRIVACY: The view of Adv in the protocol is independent of the output multiplication triples. (4)
COMMUNICATION COMPLEXITY: The protocol incurs communication of O((cM + cR)n) and broadcast of O(n3)
elements from F plus one invocation to ACS and n invocations to Rand are required.

PROOF (TERMINATION): We first prove that the instance of ACS will terminate with an output consisting of 3t + 1
parties. The instances of TripleSh corresponding to at least 3t+ 1 honest parties in P will be eventually terminated by
all the honest parties. Now the termination of ACS follows from the termination property of the underlying Byzantine
agreement protocol. Given that ACS terminates with an output consisting of 3t+ 1 parties, the termination property of
TripExt (see Lemma F.1) ensures that all the honest parties will terminate the protocol PreProc.

CORRECTNESS: It is easy to see that if the honest parties terminate PreProc then the output triples are indeed t-
shared. The correctness property of TripleSh ensures that the triples shared by the parties in Com are indeed t-shared
and the correctness property of TripExt ensures that its output triples are also t-shared. What remains to be shown is
that the output triples are multiplication triples. Here we note that except with probability at most 3t2

|F| , all the triples
shared by the parties in Com are indeed multiplication triples. This is because there can be at most t corrupted parties
in Com who as a dealer might not have shared multiplication triples in its instance of TripleSh; the rest follows from the
union bound and the correctness property of TripleSh. Given this pre-condition, it follows from the correctness of the
protocol TripExt that the output triples are indeed multiplication triples.
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PRIVACY: Given that there will be at least 2t + 1 honest parties in the set Com and the multiplication triples shared
by the honest parties in Com are random and unknown to Adv, the privacy property of TripExt ensures that the output
triples in the protocol PreProc are random and unknown to Adv.

COMMUNICATION COMPLEXITY: We find claim that a single instance of TripleSh in PreProc will require a com-
munication of O(cM + cR) and broadcast of O(n2) elements from F. This is because here D has to share 2(cM+cR)

t

multiplication triples which implies that the ` for the protocol TripleSh is 4·(cM+cR)
3t2

; this is because TripleSh outputs
` · 3t2 multiplication triples and so in order to output 2(cM+cR)

t multiplication triples, TripleSh has to be executed with
` = 4·(cM+cR)

3t2
. So by substituting ` = 4·(cM+cR)

3t2
and t = Θ(n) in Lemma D.1, we find that a single instance TripleSh in

PreProc will incur communication of O(cM + cR) and broadcast of O(n2) elements. So n instances of TripleSh will
require communication of O((cM + cR)n) and broadcast of O(n3). Similarly substituting ` = 2(cM+cR)

t in Lemma
F.1, we find that the instance of TripExt in PreProc will have communication complexity O((cM + cR)n). So overall,
PreProc requires communication of O((cM + cR)n) and broadcast of O(n3) elements from F. 2

G.1 The Hybrid Model Error-Free Preprocessing Phase Protocol and Its Properties

The goal of the protocol HybPrePro is to generate t-sharing of cM + cR random multiplication triples in an error-free
fashion, assuming that the first communication round is a synchronous round. We also generate t-sharing of n · (t+ 1)
additional random multiplication triples, to be used later during the online phase of our hybrid AMPC protocol, so
as to enforce input provision from all the n parties by using the technique of [4]; more on this in the next section.
The protocol goes along the same line as the asynchronous preprocessing phase protocol PreProc, with the following
differences:

• Instead of t-sharing 2(cM+cR)
t random multiplication triples, each party now t-shares 2(cM+cR+n(t+1))

t random
multiplication triples. This is because now we require additional n·(t+1) random sharings from the preprocessing
phase (to be used later for the input provision during the online phase).

• Instead of executing an instance of the probabilistic triple sharing protocol TripleSh, each party shares the triples
using an instance of the error-free triple sharing protocol HybTripleSh. Moreover the parties set the ` for each
instance of HybTripleSh to be 4(cM+cR+n·(t+1))

t2
; this is because an instance of HybTripleSh outputs ` · t2 shared

multiplication triples and so for ` = 4(cM+cR+n·(t+1))
t2

, an instance of HybTripleSh will output 2(cM+cR+n(t+1))
t

shared triples.

After each party shares the triples, as in the protocol PreProc, we execute an instance of ACS to agree on a set Com of
3t + 1 “good” dealers, who have correctly shared the multiplication triples. We then execute an instance of the triple
extraction protocol TripExt to extract t-sharing of cM + cR + n · (t+ 1) random multiplication triples. As the protocol
is a straight forward modification of the protocol PreProc we do not provide the formal details. The properties of the
protocol are stated in Theorem G.2.

Lemma G.2. Assuming a hybrid network where the first communication round is a synchronous round, for every
possible Adv and every possible scheduler, protocol HybPrePro achieves:

(1) TERMINATION: All the honest parties eventually terminate with probability 1. (2) CORRECTNESS: cM + cR + n ·
(t + 1) multiplication triples will be t-shared among the parties. (3) PRIVACY: The view of Adv during the protocol
will be independent of the output multiplication triples. (4) COMMUNICATION COMPLEXITY: The protocol incurs
communication of O((cM + cR)n+ n3) and broadcast of O(n3) elements from F, plus one invocation to ACS and n2

invocations to ABA.

PROOF: The termination, correctness and privacy follow from the properties of the protocol HybTripleSh and TripExt and
similar arguments as used in Lemma G.1. For communication complexity, we see that each instance of HybTripleSh needs
communication ofO(cM +cR+n ·(t+1)) and broadcast ofO(n2) elements from F, plus n invocations to ABA. This is
because each instance of HybTripleSh outputs t-sharing of 2(cM+cR+n·(t+1))

t multiplication triples, which implies that
the ` (for the protocol HybTripleSh) is 4(cM+cR+n·(t+1))

t2
(recall that HybTripleSh outputs ` · t2 multiplication triples).
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So n instances of HybTripleSh incurs a communication ofO((cM + cR)n+n3) and broadcast ofO(n3) elements from
F and it requires n2 invocations to ABA. 2

H The AMPC Protocols

We first discuss the statistical AMPC protocol in the completely asynchronous setting followed by the perfect AMPC
protocol in the hybrid setting.

H.1 The Statistical AMPC Protocol in the Asynchronous Setting

Given the statistical preprocessing phase protocol PreProc that generates t-sharing of cM + cR random multiplication
triples, the online computation is straight-forward, consisting of two phases: the input phase, where the parties share the
input to the computation and the computation phase, where the shared circuit evaluation is performed; we next elaborate
on these two phases.

H.1.1 The Input phase

In the input phase protocol implemented by the protocol Input, the parties provide their input(s) for the computation.
More specifically, party Pi executes an instance of Sh to t-share its private input xi. Due to asynchronicity, the parties
cannot wait to terminate more than n− t instances of Sh. So the parties execute an instance of ACS to agree on a set of
n− t parties whose inputs will be taken into computation. For the remaining t parties, default t-sharing of 0 is taken as
the input to the computation. The steps for the input phase protocol Input are given in Fig. 13.

Figure 13: Protocol for the input phase.
Protocol Input

1. INPUT SHARING — For i ∈ [n], every party Pi executes the following code:

• On having the input xi ∈ F for the computation, act as a dealer and execute an instance of Sh to t-share xi. Let this
instance of Sh be denoted by Shi.

• For every j ∈ [n], participate in the instance Shj .

2. AGREEMENT ON A COMMON SUBSET AND TERMINATION — For i ∈ [n], every party Pi executes the following code:

• Create an accumulative set Ci = ∅.
• On terminating the instance Shj , include Pj in Ci.
• Participate in an instance of ACS with the accumulative set Ci as your input.

• Wait to terminate the instance of ACS with an output Com consisting of 3t+ 1 parties.

• For every Pj ∈ Com output the shares obtained in the instance Shj and for every Pj 6∈ Com, output 0 as the shares
and terminate.

The properties of the protocol Input are stated in Lemma H.1.

Lemma H.1. For every possible Adv and for every possible scheduler, protocol Input achieves:

(1) TERMINATION: All the honest parties terminate the protocol with probability 1. (2) CORRECTNESS: Each honest
party will output its shares corresponding to t-sharing of the inputs of the parties in Com. (3) PRIVACY: The infor-
mation obtained by Adv in the protocol is distributed independently of the inputs of the honest parties in the set Com.
(4) COMMUNICATION COMPLEXITY: The protocol incurs communication of O(n3) elements and broadcast of O(n3)
elements from F and requires one invocation to ACS.

PROOF: TERMINATION: We first claim that the instance of ACS will eventually terminate for each honest party (with
probability 1) with an output consisting of 3t+ 1 parties. This follows from the fact that there are 3t+ 1 honest parties
in P and the Sh instance dealt by each honest party will be terminated eventually. Now it is easy to see that once the
instance of ACS terminates, the parties will terminate the protocol Input.

30



CORRECTNESS: It follows from the correctness of Sh.

PRIVACY: The privacy property of the protocol Sh implies that the information obtained by Adv in the instances of
Sh executed by the honest parties (dealers) in Com is distributed independently of the values shared in those instances.
This implies the privacy property for the protocol Input.

COMMUNICATION COMPLEXITY: Each instance of Sh needs communication of O(n2) elements and broadcast of
O(n2) elements from F; this follows from the communication complexity of the protocol Sh. So in total, protocol
Input requires communication of O(n3) and broadcast of O(n3) field elements. 2

H.1.2 The Computation phase

The computation phase is implemented by the protocol CircEval, where the circuit is securely “evaluated” on a gate by
gate basis. The protocol (securely) implements the following invariant for each gate of the circuit: given the t-sharing
of the input(s) of a gate, the protocol allows the parties to securely compute the t-sharing of the output of the gate.
A gate is said to be evaluated if the t-sharing of the output of the gate is computed. This is achieved as follows for
various gates: the linearity of the t-sharing ensures that the linear gates can be evaluated locally. For a multiplication
gate, the parties associate a multiplication triple from the set of preprocessed multiplication triples and then evaluate
the gate by applying the Beaver’s circuit randomization technique. Similar to [5] for the sake of efficiency, we evaluate
t+ 1 multiplication gates at once by using the protocol BatchBeaver, assuming that in general the circuit is well-spread
and we will have sufficiently many “ independent” multiplication gates to evaluate in parallel. Here two gates are
called independent of each other if the input of one gate does not depend on the output of the other gate. For every
random gate, the parties associate a multiplication triple from the set of preprocessed multiplication triples and the first
component of the triple is considered as the outcome of the random gate; this explains the need for generating cM + cR
random t-shared multiplication triples in the offline phase (cM triples corresponding to cM multiplication gates and cR
triples corresponding to cR random gates). Once all the gates are evaluated, the t-sharing of the output gate is publicly
reconstructed.

Protocol CircEval is presented in Fig. 14. In the protocol, we assume that {([a(i)]t, [b(i)]t, [c
(i)]t)}i∈[cM+cR] are the

t-shared multiplication triples from the preprocessing phase. Moreover, we assume that it is a common knowledge that
the shared triple ([a(i)]t, [b

(i)]t, [c
(i)]t) is associated with the ith multiplication gate in the circuit and the shared triple

([a(cM+i)]t, [b
(cM+i)]t, [c

(cM+i)]t) is associated with the ith random gate in the circuit.

Figure 14: Protocol for evaluating the circuit using preprocessed multiplication triples.
Protocol CircEval({([a(i)]t, [b

(i)]t, [c
(i)]t)}i∈[cM+cR])

For all the gates in the circuit the (honest) parties in P do the following (depending upon the type of gate) and then terminate:

• ADDITION/LINEAR GATE: The parties locally apply the linear function on their respective shares of the inputs of the gate.

• RANDOM GATE: If this is the ith random gate in the circuit then the parties locally output their shares corresponding to the
sharing [a(cM+i)]t.

• MULTIPLICATION GATES: Up to t + 1 multiplication gates are processed simultaneously. Let
([x(1)]t, [y

(1)]t), . . . , ([x
(t+1)]t, [y

(t+1)]t) be the input sharings of the gates and ([a(1)]t, [b
(1)]t, [c

(1)]t), . . . ,
([a(t+1)]t, [b

(t+1)]t, [c
(t+1)]t) be the associated multiplication triples. The parties execute BatchBeaver({([x(i)]t, [y(i)]t,

[a(i)]t, [b
(i)]t, [c

(i)]t)}i∈[t+1]) to compute {[x(i) · y(i)]t}i∈[t+1].

• OUTPUT GATE (OUTPUT [s]t TO EVERYBODY): The parties execute OEC(Pi, t, [s]t) for every Pi ∈ P and terminate.

The properties of the protocol CircEval are stated in Lemma H.2.

Lemma H.2. Given t-sharings {([a(i)]t, [b(i)]t, [c
(i)]t)}i∈[cM+cR] of cM + cR random multiplication triples and t-

sharings of the inputs of the parties (for the computation), protocol CircEval achieves the following for every possible
Adv and every possible scheduler:

(1) TERMINATION: All the honest parties eventually terminate the protocol. (2) CORRECTNESS: All the gates are
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evaluated correctly. (3) PRIVACY: For every gate in the circuit, the evaluation of the gate reveals no additional
information about the inputs and the output of the gate to Adv. (4) COMMUNICATION COMPLEXITY: The protocol
requires communication of O(n · cM + n2) elements from F.

PROOF: The correctness and termination property follows from the correctness and termination property of BatchBeaver
and OEC. For privacy, we see that the evaluation of random and linear gates require no communication among the par-
ties. Moreover, for the multiplication gates, we use the protocol BatchBeaver by employing the random multiplication
triples from the preprocessing phase and so the privacy follows from the privacy property of BatchBeaver. For com-
munication complexity, we observe that each instance of BatchBeaver in CircEval requires communication of O(n2)
elements from F (follows by substituting ` = t + 1 in Lemma A.3) and so evaluating cM multiplication gates will
require communication of O( cMt+1 · n

2) = O(n · cM ) elements, as t + 1 = Θ(n). The reconstruction of the function
output requires communication of O(n2) field elements (follows from the property of OEC). 2

H.1.3 The Statistical AMPC Protocol

Let f : Fn → F be a publicly known function over F, expressed as an arithmetic circuit C over F, consisting of cM
and cR number of multiplication and random gates respectively. Then the statistical AMPC protocol AsynAMPC to
securely compute the function f is given in Fig. 15.

Figure 15: The statistical AMPC protocol.
Protocol AsynAMPC(C, cM , cR)

The parties in P do the following and terminate:

1. Invoke PreProc to generate t-sharing of cM + cR random multiplication triples.

2. Invoke Input to generate the t-sharing of the inputs of the parties for the computation.

3. Invoke CircEval to evaluate the circuit C.

We now prove the first part of (i.e. with respect to statistical AMPC) Theorem 7.1.

(Informal) Proof of the first part of Theorem 7.1: We first note that properties of the protocol PreProc imply
that all the honest parties will terminate the protocol PreProc and will output t-sharing of cM + cR random triples,
unknown to Adv. Moreover, except with probability at most 3t2

|F| , the triples will be multiplication triples. Given this
precondition, it is easy to see that each honest party will eventually terminate Input and CircEval with correct outputs.
Now if |F| ≥ 3t2 · 2κ, then 3t2

|F| ≤ 2−κ and thus it follows that except with error probability at most 2−κ, protocol
AsynAMPC will satisfy the correctness property (of AMPC). The privacy property follows from the privacy property
of PreProc, Input and CircEval, while the communication complexity follows from the communication complexity of
PreProc, Input and CircEval. 2

H.2 The Perfect AMPC Protocol in the Hybrid Setting

Given the error-free preprocessing phase protocol HybPrePro in the hybrid setting which generates t-sharing of cM +
cR + n · (t+ 1) random multiplication triples, the online phase protocol in the hybrid setting is almost the same as that
in the previous protocol and consists of two phases: the input phase and the computation phase. The computation phase
(where the shared circuit evaluation is performed) is exactly the same as in the previous protocol. However, the input
phase protocol is slightly modified. More specifically, we use the technique used in [4] to enforce input provision from
all the n parties by using the additional n ·(t+1) shared multiplication triples generated during the hybrid preprocessing
phase; the details follow.

H.2.1 The Input Phase Protocol in the Hybrid Model

We now briefly recall from [4] how using the first synchronous round, we can enforce input provision and consider the
inputs of all the n parties for the computation. Assume that each party Pi has a input x(i) ∈ F for the computation. The
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idea is that during the first synchronous round, each party Pi computes a degree-t Shamir sharing [33] of his input x(i)

and sends one share to each party. If a party does not receive the share corresponding to the input of some party by the
end of this synchronous round, then it substitutes a default publicly known share. In [4], this (trivial) one round protocol
is called PrepareInputs. An easy observation is that if Pi is honest then x(i) will be t-shared at the end of PrepareInputs.
However, for a corrupted Pi, its input x(i) may not be t-shared. Note that the protocol PrepareInputs need to be
executed parallely with the preprocessing phase protocol HybPrePro, as the protocol HybPrePro also need to use
the first synchronous round. Now later, the parties execute the fully asynchronous protocol Input (the protocol for
the input phase in the completely asynchronous protocol AsynAMPC), where the input for a party Pi will be now a
vector x̃(i) consisting of his “real input” x(i), plus his shares x

(j)
i of the inputs x(j) of the other parties. As a result of

the asynchronous protocol Input, the parties will agree on a common set Com of 3t + 1 parties, whose vectors are
(eventually) t-shared among the parties. For every party Pi ∈ Com, the t-sharing [x(i)]t of his input is obtained directly
from the t-sharing of the first component of his t-shared vector x̃(i). On the other hand, for every party Pk 6∈ Com, the
t-sharing [x(k)]t of his input x(k) is “restored” using a protocol called RestoreInputs [4]. We next present the high level
description of RestoreInputs; for the complete details, see [4].

The idea behind the protocol RestoreInputs is the following: consider a party Pk 6∈ Com. There will be 3t + 1

shares of his input x(k), namely {x(k)i }Pi∈Com, each of which will be t-shared as a component of the input vector x̃(i)

corresponding to the parties in Com. Now at most t parties in Com might have t-shared incorrect shares of the input
x(k); these t-shared incorrect shares are error-corrected in a shared fashion and finally the t-sharing of x(k) is restored.
To perform the error correction in a shared fashion, t+ 1 random t-sharings from the preprocessing phase are used and
this is why, n · (t+ 1) additional t-shared multiplication triples (t+ 1 corresponding to each party) are generated in the
preprocessing phase protocol HybPrePro. Note that the protocol RestoreInputs is a completely asynchronous protocol
and will be executed only after the preprocessing phase is over. We also note that the error correction may fail in case
if Pk is corrupted and did not t-shared his input x(k) during the synchronous protocol PrepareInputs; however, if this
is the case then all the honest parties will come to known this at the end of RestoreInputs and a default t-sharing is
substituted as the input sharing for such a corrupted Pk.

In a more detail, the shared error correction is done as follows: let Pk ∈ Com and the goal is to restore [x(k)]t by
using t+ 1 random t-sharings from the preprocessing phase, say [r(0)]t, . . . , [r

(t)]t, provided the party Pk has correctly
t-shared his input x(k) among the parties in Com during the synchronous protocol PrepareInputs. For this, we first

define a blinding polynomial b(x)
def
= r(0) + r(1)x+ . . .+ r(t)xt and let every party Pi ∈ P to privately reconstruct bi,

where bi = b(αi). For this, the parties first locally compute [bi]t = [r(0)]t + αi[r
(1)]t + . . .+ αti[r

(t)]t, followed by the
private reconstruction of [bi]t towards Pi. Thus, each party will have a distinct point on the blinding polynomial, which
has degree at most t. The next step is that for every Pi ∈ Com, the parties locally compute [di]t = [x

(k)
i ]t+[bi]t, followed

by the public reconstruction of these [di]ts. Finally, the parties apply the RS error correction on the 3t + 1 publicly
reconstructed dis to correct t errors and check whether there exists a polynomial, say p(·), having degree at most t,
such that at least 2t + 1 reconstructed dis lie on p(·). If this is the case, then every party Pi outputs p(αi) − bi as his
share for x(k); otherwise the parties output a default t-sharing. The intuition here is that the parties try to reconstruct the
polynomial p(·) = b(·) + q(·), where q(·) is the polynomial through which Pk has shared x(k) during the synchronous
protocol PrepareInputs. Now if Pk is honest, then q(·) will be a polynomial of degree at most t and so will be the
polynomial p(·). So even if the corrupted parties in Com share incorrect shares (points) of q(·), the error correction will
correctly output b(·) + q(·) and every honest party Pi will have the correct share q(αi) = p(αi)− b(αi). Moreover, the
input x(k) will remain private, due to the blinding polynomial. For the complete protocol steps and the formal details,
see [4].

Thus, the input phase in the hybrid model is “splitted” into two parts: the first part, namely PrepareInputs utilizes
the synchronous round, while the second part restores all the inputs using the protocol Input and RestoreInputs, both
of which are executed in a complete asynchronous setting. It is easy to see that protocol PrepareInputs will have
communication complexity O(n2). In the protocol Input, each party will now have to t-share n + 1 values using Sh:
one value corresponding to its real input and n values corresponding to the shares of the inputs of all the parties. This
will require a total communication ofO(n3) and broadcast ofO(n3) elements from F. The protocol RestoreInputs will
be executed on behalf of t parties not in Com. An instance of RestoreInputs executed on the behalf of a party Pi
will require private reconstruction of n values (namely n points on the blinding polynomial) and public reconstruction
of n values (namely n points on the blinded polynomial p(·)). So a single instance of RestoreInputs will require
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communication of O(n2) elements from F and so for the t instances it will be O(n3) elements.

H.2.2 The Error-free AMPC Protocol

Finally, the error-free AMPC protocol HybridAMPC in the hybrid model is a sequence of the following steps:

1. The parties start executing the protocol HybPrePro from the first synchronous round to generate t-sharing of
cM + cR + n · (t+ 1) random multiplication triples. Parallely, the parties execute the protocol PrepareInputs.

2. After terminating HybPrePro and PrepareInputs, the parties execute the protocol Input. In the protocol Input,
the input for a party is a vector of his real input plus the shares of the inputs of the other parties received during
PrepareInputs.

3. After terminating Input, the parties execute RestoreInputs to restore the t-sharing of the inputs of the parties not
in the common set Com, where Com is the set of 3t+ 1 parties, whose vectors are t-shared during Input.

4. After terminating RestoreInputs, the parties execute CircEval to evaluate the circuit and then terminate.

(Informal) Proof of the second part of Theorem 7.1: We first note that properties of the protocol HybPrePro imply
that all the honest parties will terminate the protocol HybPrePro and will output t-sharing of cM + cR + n · (t + 1)
random multiplication triples. Given this precondition, it is easy to see that each honest party will eventually terminate
PrepareInputs, Input,RestoreInputs and CircEval with correct outputs. Thus protocol HybridAMPC will satisfy the cor-
rectness property (of AMPC). The privacy property follows from the privacy property of HybPrePro, Input,RestoreInputs
and CircEval, while the communication complexity follows from the communication complexity of HybPrePro,
PrepareInputs, Input,RestoreInputs and CircEval. 2
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