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Abstract

The notion of aggregate signature has been motivated by applications and it enables any user to
compress different signatures signed by different signers on different messages into a short signature.
Sequential aggregate signature, in turn, is a special kind of aggregate signature that only allows a signer
to add his signature into an aggregate signature in sequential order. This latter scheme has applications in
diversified settings, such as in reducing bandwidth of a certificate chains, and in secure routing protocols.
Lu, Ostrovsky, Sahai, Shacham, and Waters presented the first sequential aggregate signature scheme in
the standard (non idealized ROM) model. The size of their public key, however, is quite large (i.e., the
number of group elements is proportional to the security parameter), and therefore they suggested as an
open problem the construction of such a scheme with short keys. Schröder recently proposed a sequential
aggregate signature (SAS) with short public keys using the Camenisch-Lysyanskaya signature scheme,
but the security is only proven under an interactive assumption (which is considered a relaxed notion
of security). In this paper, we propose the first sequential aggregate signature scheme with short public
keys (i.e., a constant number of group elements) in prime order (asymmetric) bilinear groups which is
secure under static assumptions in the standard model. Further, our scheme employs constant number of
pairing operation per message signing and message verification operation. Technically, we start with a
public key signature scheme based on the recent dual system encryption technique of Lewko and Waters.
This technique cannot give directly an aggregate signature scheme since, as we observed, additional
elements should be published in the public key to support aggregation. Thus, our construction is a
careful augmentation technique for the dual system technique to allow it to support a sequential aggregate
signature scheme via randomized verification. We further implemented our scheme and conducted a
performance study and implementation optimization.

Keywords: Public key signature, Aggregate signature, Sequential aggregate signature, Dual system
encryption, Bilinear pairing.

1 Introduction

Aggregate signature is a relatively new type of public key signature which enables any user to combine
n signatures signed by different n signers on different n messages into a short signature. The concept of
public key aggregate signature (PKAS) was introduced by Boneh, Gentry, Lynn, and Shacham [9], and
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they proposed an efficient PKAS scheme in the random oracle model using the bilinear groups. After
that, numerous PKAS schemes were proposed using bilinear groups [14, 22, 6, 7, 1, 15] or using trapdoor
permutations [24, 3, 25].

One application of aggregate signature is the certificate chains of the public key infrastructure (PKI) [9].
The PKI system has a tree structure, and a certificate for a user consists of a certificate chain from a root node
to a leaf node, each node in the chain signing its predecessor. If the signatures in the certificate chain are
replaced with a single aggregate signature, then the bandwidth for signatures transfer can be significantly
saved. Another application is to the secure routing protocol of the internet protocol [9]. If each router
which participates in the routing protocol uses PKAS instead of a public key signature (PKS), then the
communication overload of signature transfer can be dramatically reduced. Further, aggregate signatures
have other applications such as reducing bandwidth in sensor networks or ad-hoc networks, and in software
authentication in the presence of software update [1].

1.1 Previous Methods

Aggregate signature schemes are categorized as full aggregate signature, synchronized aggregate signature,
and sequential aggregate signature depending on the type of signature aggregation. They have also been
applied to regular signatures in the PKI model, and to ID-based signatures (with trusted key server).

The first type of aggregate signature is full aggregate signature which enables any user to freely aggre-
gate different signatures of different signers. This full aggregate signature is the most flexible aggregate
signature since it does not require any restriction on the aggregation step (though, restriction may be needed
at times for certain applications). However, there is only one full aggregate signature scheme that was pro-
posed by Boneh et al. [9]. Since this scheme is based on the short signature scheme of Boneh et al. [10],
the signature length it provides is also very short. However, the security of the scheme is just proven in the
idealized random oracle model and the number of pairing operations in the aggregate signature verification
algorithm is proportional to the number of signers in the aggregate signature.

The second type of aggregate signature is synchronized aggregate signature which enables any user to
combine different signatures with the same synchronizing information into a single signature. The synchro-
nized aggregate signature has a demerit which dictates that all signers should share the same synchronizing
information (like a time clock or other shared value). Gentry and Ramzan introduced the concept of syn-
chronized aggregate signature, they proposed an identity-based synchronized aggregate signature scheme
using bilinear groups, and they proved its security in the random oracle model [14]. We note that identity-
based aggregate signature (IBAS) is an ID-based scheme and thus relies on a trusted server knowing all
private keys (i.e., its trust structure is different than in regular PKI). However, it also has a notable advantage
such that it is not required to retrieve the public keys of signers in the verification algorithm since an identity
string plays the role of a public key (the lack of public key is indicated in our comparison table as public key
of no size!). Recently, Ahn et al. presented a public key synchronized aggregate signature scheme without
relying on random oracles [1].

The third type of aggregate signature is sequential aggregate signature (SAS) that enables each signer to
aggregate his signature to a previously aggregated signature in a sequential order. The sequential aggregate
signature has the obvious limitation of signers being ordered to aggregate their signatures in contrast to the
full aggregate signature and the synchronized aggregate signature. However, it has an advantage such that it
is not required to share synchronized information among signers in contrast to the synchronized aggregate
signature, and many natural applications lead themselves to this setting. The concept of sequential aggre-
gate signature was introduced by Lysyanskaya et al., and they proposed a public key sequential aggregate
signature scheme using the certified trapdoor permutations in the random oracle model [24]. Boldyreva et
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Table 1: Comparison of aggregate signature schemes

Scheme Type ROM KOSK PK Size AS Size Sign Time Verify Time Assumption
BGLS [9] Full Yes No 1kp 1kp 1E lP CDH
GR [14] IB, Sync Yes No – 2kp +λ 3E 3P + lE CDH
AGH [1] Sync Yes Yes 1kp 2kp +32 6E 4P + lE CDH
AGH [1] Sync No Yes 1kp 2kp +32 10E 8P + lE CDH
LMRS [24] Seq Yes No 1k f 1k f lE lE cert TDP
Neven [25] Seq Yes No 1k f 1k f +2λ 1E + 2lM 2lM uncert CFP
BGOY [7] IB, Seq Yes No – 3kp 4P + lE 4P + lE Interactive
GLOW [15] IB, Seq Yes No – 5k f 10P + 2lE 10P + 2lE Static
LOSSW [22] Seq No Yes 2λkp 2kp 2P + 4λ lM 2P + 2λ lM CDH
Schröder [27] Seq No Yes 2kp 4kp lP + 2lE lP + lE Interactive
Ours Seq No Yes 11kp 8kp 8P + 5lE 8P + 4lE Static
ROM = random oracle model, KOSK = certified-key model, IB = identity based
λ = security parameter, kp,k f = the bit size of element for pairing and factoring, l = the number of signers
P = pairing computation, E = exponentiation, M = multiplication

al. presented an identity-based sequential aggregate signature scheme in the random oracle model using
an interactive assumption [6], but it was shown that their construction is not secure by Hwang et al. [17].
After that, Boldyreva et al. proposed a new identity-based sequential aggregate signature by modifying
their previous construction and proved its security in the generic group model [7]. Recently, Gerbush et
al. showed that the modified IBAS scheme of Boldyreva et al. is secure under static assumptions using the
dual form signatures framework [15]. The first sequential aggregate signature scheme without the random
oracle idealization was proposed by Lu et al. [22]. They converted the PKS scheme of Waters [28] to the
PKAS scheme, and proved its security under the well known CDH assumption. However, the scheme of
Lu et al. has a demerit since the number of group elements in the public key is proportional to the security
parameter (for a security of 280 they need 160 elements or about 80 elements in a larger group); they left as
an open question to design a scheme with shorter public key. Schröder proposed a PKAS scheme with short
public keys relying on the Camenisch-Lysyanskaya signature scheme [27], however the scheme’s security is
proven under an interactive assumption (which typically, is a relaxation used when designs based on static
assumptions are hard to find).1 Therefore, the construction of sequential aggregate signature scheme with
short public keys without relaxations like random oracles or an interactive assumptions was left as an open
question.

1.2 Our Contributions

Challenged by the above question, the motivation of our research is to construct an efficient sequential
aggregate signature scheme secure in the standard model (i.e., without employing assumptions like random
oracle or interactive assumptions as part of the proof) with short public keys (e.g., constant number of group

1Gerbush et al. showed that a modified Camenisch-Lysyanskaya signature scheme in composite order groups is secure under
static assumptions [15]. However, it is unclear whether the construction of Schröder can be directly applied to this modified
Camenisch-Lysyanskaya signature scheme. The reason is that aggregating Gp1 and Gp2 subgroups is hard and a private key
element g2,3 ∈ Gp2 p3 can not be generated by the key generation algorithm of an aggregate signature scheme. Additionally, our
work and findings are independent from the work of Gerbush et al.
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elements). To achieve this goal, we use the public key signature scheme derived from the identity-based
encryption (IBE) scheme that adopts the innovative dual system encryption techniques of Waters [29, 21].
That is, an IBE scheme is first converted to a PKS scheme by the clever observation of Naor [8]. The PKS
schemes that adopt the dual system encryption techniques are the scheme of Waters [29] which includes
a random tag in a signature and the scheme of Lewko and Waters [21] which does not include a random
tag in a signature. The scheme of Waters is not appropriate to aggregate signature since the random tags
in signatures cannot be compressed into a single value. The scheme of Lewko and Waters in composite
order groups is easily converted to an aggregate signature scheme if the element of Gp3 is moved from a
private key to a public key, but it is inefficient because of composite order groups.2 Therefore, we start
the construction from the IBE scheme in prime order (asymmetric) bilinear groups of Lewko and Waters.
However, this PKS scheme which is directly derived from the IBE scheme of Lewko and Waters is not easily
converted to a sequential aggregate signature scheme (as far as we see). The reason is that we need a PKS
scheme that supports multi-user setting and public re-randomization to construct a SAS scheme by using the
randomness reuse technique of Lu et al. [22], but this PKS scheme does not support these two properties.

Here we first construct a PKS scheme in prime order (asymmetric) bilinear groups which supports multi-
user seting and public re-randomization by modifying the PKS scheme of Lewko and Waters, and we prove
its security using the dual system encryption technique. Next, we convert the modified PKS scheme to
a SAS scheme with short public keys by using the randomness reuse technique of Lu et al. [22], and we
prove its security without random oracles and based on the traditional static assumptions. Our security proof
crucially relies on the fact that we add additional randomization elements to the SAS verification algorithm,
so that we can expand these elements to a semi-functional space; this allows us to introduce in the SAS
scheme public-key elements used in aggregation. Note that Table 1 gives a comparison of past schemes to
ours. Finally, to support our claim of efficiency, we implemented our SAS scheme using the PBC library
(code available from authors [19]) and we measured the performance of the scheme. Additionally, as part
of the implementation we provide a computational preprocessing method which improves the amortized
performance of our scheme.

1.3 Additional Related Work

There are some works on aggregate signature schemes which allow signers to communicate with each other
or schemes which compress only partial elements of a signature in the aggregate algorithm [4, 2, 16, 11].
Generally, communication resources of computer systems are very expensive compared to the computation
resources. Thus, it is preferred to perform several expensive computational operations instead of a single
communication exchange. Additionally, a signature scheme with added communications does not corre-
spond to a pure public key signature schemes, but corresponds more to a multi-party protocol. In addition,
signature schemes which compress just partial elements of signatures cannot be an aggregate signature since
the total size of signatures is still proportional to the number of signers.

Another research area related to aggregate signature is multi-signature [5, 22]. Multi-signature is a
special type of aggregate signature in which all signers generate signatures on the same message, and then
any user can combine these signature to a single signature. Aggregate message authentication code (AMAC)
is the symmetric key analogue of aggregate signature: Katz and Lindell introduced the concept of AMAC

2We can safely move the element of Gp3 from a private to a public key since it is always given in assumptions. Lewko obtained
a prime order IBE scheme by translating the Lewko-Waters composite order IBE scheme using the dual pairing vector spaces [20].
One may consider to construct an aggregate signature scheme using this IBE scheme. However, it is not easy to aggregate individual
signatures since the dual orthonormal basis vectors of each users are randomly generated.
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and showed that it is possible to construct AMAC schemes based on any message authentication code
schemes [18].

2 Preliminaries

We first define public key signature and sequential aggregate signature, and then give the definition of their
correctness and security.

2.1 Public Key Signature

A public key signature (PKS) scheme consists of three PPT algorithms KeyGen, Sign, and Verify, which
are defined as follows: The key generation algorithm KeyGen(1λ ) takes as input the security parameters
1λ , and outputs a public key PK and a private key SK. The signing algorithm Sign(M,SK) takes as input a
message M and a private key SK, and outputs a signature σ . The verification algorithm Verify(σ ,M,PK)
takes as input a signature σ , a message M, and a public key PK, and outputs either 1 or 0 depending on
the validity of the signature. The correctness requirement is that for any (PK,SK) output by KeyGen and
any M ∈M, we have that Verify(Sign(M,SK),M,PK) = 1. We can relax this notion to require that the
verification is correct with overwhelming probability over all the randomness of the experiment.

The security notion of existential unforgeability under a chosen message attack is defined in terms of the
following experiment between a challenger C and a PPT adversary A: C first generates a key pair (PK,SK)
by running KeyGen, and gives PK to A. Then A, adaptively and polynomially many times, requests a
signature query on a message M under the challenge public key PK, and receives a signature σ . Finally,
A outputs a forged signature σ∗ on a message M∗. C then outputs 1 if the forged signature satisfies the
following two conditions, or outputs 0 otherwise: 1) Verify(σ∗,M∗,PK) = 1 and 2) M∗ was not queried
by A to the signing oracle. The advantage of A is defined as AdvPKS

A = Pr[C = 1] where the probability is
taken over all the randomness of the experiment. A PKS scheme is existentially unforgeable under a chosen
message attack if all PPT adversaries have at most a negligible advantage in the above experiment (for large
enough security parameter).

2.2 Sequential Aggregate Signature

A sequential aggregate signature (SAS) scheme consists of four PPT algorithms Setup, KeyGen, Ag-
gSign, and AggVerify, which are defined as follows: The setup algorithm Setup(1λ ) takes as input a
security parameter 1λ and outputs public parameters PP. The key generation algorithm KeyGen(PP)
takes as input the public parameters PP, and outputs a public key PK and a private key SK. The aggre-
gate signing algorithm AggSign(AS′,M,PK,M,SK) takes as input an aggregate-so-far AS′ on messages
M = (M1, . . . ,Ml) under public keys PK = (PK1, . . . ,PKl), a message M, and a private key SK, and out-
puts a new aggregate signature AS. The aggregate verification algorithm AggVerify(AS,M,PK) takes as
input an aggregate signature AS on messages M = (M1, . . . ,Ml) under public keys PK = (PK1, . . . ,PKl),
and outputs either 1 or 0 depending on the validity of the sequential aggregate signature. The correctness
requirement is that for each PP output by Setup, for all (PK,SK) output by KeyGen, any M, we have
that AggVerify(AggSign(AS′,M′,PK′,M,SK),M′||M,PK′||PK) = 1 where AS′ is a valid aggregate-so-far
signature on messages M′ under public keys PK′.

The security notion of existential unforgeability under a chosen message attack is defined in terms of
the following experiment between a challenger C and a PPT adversary A:
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Setup: C first initializes a certification list CL as empty. Next, it runs Setup to obtain public parameters
PP and KeyGen to obtain a key pair (PK,SK), and gives PK to A.

Certification Query: A adaptively requests the certification of a public key by providing a key pair
(PK,SK). Then C adds the key pair (PK,SK) to CL if the key pair is a valid one.

Signature Query: A adaptively requests a sequential aggregate signature (by providing an aggregate-so-
far AS′ on messages M′ under public keys PK′), on a message M to sign under the challenge public
key PK, and receives a sequential aggregate signature AS.

Output: Finally (after a sequence of the above queries), A outputs a forged sequential aggregate signature
AS∗ on messages M∗ under public keys PK∗. C outputs 1 if the forged signature satisfies the following
three conditions, or outputs 0 otherwise: 1) AggVerify(AS∗,M∗,PK∗) = 1, 2) The challenge public
key PK must exists in PK∗ and each public key in PK∗ except the challenge public key must be in
CL, and 3) The corresponding message M in M∗ of the challenge public key PK must not have been
queried by A to the sequential aggregate signing oracle.

The advantage of A is defined as AdvSAS
A = Pr[C = 1] where the probability is taken over all the random-

ness of the experiment. A SAS scheme is existentially unforgeable under a chosen message attack if all
PPT adversaries have at most a negligible advantage (for large enough security parameter) in the above
experiment.

2.3 Asymmetric Bilinear Groups

Let G,Ĝ and GT be multiplicative cyclic groups of prime order p. Let g, ĝ be generators of G,Ĝ. The
bilinear map e : G× Ĝ→GT has the following properties:

1. Bilinearity: ∀u ∈G,∀v̂ ∈ Ĝ and ∀a,b ∈ Zp, e(ua, v̂b) = e(u, v̂)ab.

2. Non-degeneracy: ∃g, ĝ such that e(g, ĝ) has order p, that is, e(g, ĝ) is a generator of GT .

We say that G,Ĝ,GT are bilinear groups with no efficiently computable isomorphisms if the group opera-
tions in G,Ĝ, and GT as well as the bilinear map e are all efficiently computable, but there are no efficiently
computable isomorphisms between G and Ĝ.

2.4 Complexity Assumptions

We employ three static assumptions in prime order bilinear groups. Assumptions 1 and 3 have been used
extensively, while Assumption 2 was introduced by Lewko and Waters [21].

Assumption 1 (Symmetric eXternal Diffie-Hellman) Let (p,G,Ĝ,GT ,e) be a description of the asym-
metric bilinear group of prime order p. Let g, ĝ be generators of G,Ĝ respectively. The assumption is that if
the challenge values

D = ((p,G,Ĝ,GT ,e),g, ĝ, ĝa, ĝb) and T,

are given, no PPT algorithm B can distinguish T = T0 = ĝab from T = T1 = ĝc with more than a negligible
advantage. The advantage of B is defined as AdvA1

B (λ ) =
∣∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]

∣∣ where the
probability is taken over the random choice of a,b,c ∈ Zp.
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Assumption 2 (LW2) Let (p,G,Ĝ,GT ,e) be a description of the asymmetric bilinear group of prime order
p. Let g, ĝ be generators of G,Ĝ respectively. The assumption is that if the challenge values

D = ((p,G,Ĝ,GT ,e),g,ga,gb,gc, ĝ, ĝa, ĝa2
, ĝbx, ĝabx, ĝa2x) and T,

are given, no PPT algorithm B can distinguish T = T0 = gbc from T = T1 = gd with more than a negligible
advantage. The advantage of B is defined as AdvA2

B (λ ) =
∣∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]

∣∣ where the
probability is taken over the random choice of a,b,c,x,d ∈ Zp.

Assumption 3 (Decisional Bilinear Diffie-Hellman) Let (p,G,Ĝ,GT ,e) be a description of the asymmetric
bilinear group of prime order p. Let g, ĝ be generators of G,Ĝ respectively. The assumption is that if the
challenge values

D = ((p,G,Ĝ,GT ,e),g,ga,gb,gc, ĝ, ĝa, ĝb, ĝc) and T,

are given, no PPT algorithm B can distinguish T = T0 = e(g, ĝ)abc from T = T1 = e(g, ĝ)d with more than a
negligible advantage. The advantage of B is defined as AdvA3

B (λ ) =
∣∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]

∣∣
where the probability is taken over the random choice of a,b,c,d ∈ Zp.

3 Aggregate Signature

We construct a SAS scheme in prime order (asymmetric) bilinear groups and prove its existential unforge-
ability under a chosen message attack. The main idea is to modify a PKS scheme to support multi-user
setting and signature aggregation by using the “randomness reuse” technique of Lu et al. [22]. To support
multi-user setting, it is required for all users to share common elements in the public parameters. To use the
randomness reuse technique, it is crucial for a signer to publicly re-randomize a sequential aggregate signa-
ture to prevent a forgery attack. Thus we need a PKS scheme with short public key that supports “multi-user
setting” and “public re-randomization”.

Before we present a SAS scheme, we first construct a PKS scheme with short public key that will be
augmented to support multi-user setting and public re-randomization. One method to build a PKS scheme
is to use the observation of Naor [8] that private keys of fully secure IBE are easily converted to signatures
of PKS. Thus we can convert the prime order IBE scheme of Lewko and Waters [21] to a prime order PKS
scheme. However, this directly converted PKS scheme does not support multi-user setting and public re-
randomization since it needs to publish additional public key components: Specifically, we need to publish
an element g for multi-user setting and elements u,h for public re-randomization. Note that ĝ, û, ĥ are
already in the public key, but g,u,h are not. One may try to publish g,u,h in the public key. The technical
difficulty arising in this case is that the simulator of the security proof can easily distinguish the changes
of the verification algorithm that checks the validity of the forged signature from the normal verification
algorithm to the semi-functional one, without using an adversary.

To solve this problem, we devise a method that allows a PKS scheme to safely publish elements g,u,h in
the public key for multi-user setting and public re-randomization. The main idea is to additionally randomize
the verification components using v̂, v̂ν3 , v̂−π in the verification algorithm. If a valid signature is given
in the verification algorithm, then the additionally added randomization elements v̂, v̂ν3 , v̂−π are canceled.
Otherwise, the added randomization components prevent the verification of an invalid signature. Therefore,
the simulator of the security proof cannot distinguish the changes of the verification algorithm even if g,u,h
are published, since the additional elements v̂, v̂ν3 , v̂−π prevent the signature verification.

7



3.1 Our PKS Scheme

The PKS scheme in prime order bilinear groups is described as follows:

PKS.KeyGen(1λ ): This algorithm first generates the asymmetric bilinear groups G,Ĝ of prime order p of
bit size Θ(λ ). It chooses random elements g,w ∈G and ĝ, v̂ ∈ Ĝ. Next, it chooses random exponents
ν1,ν2,ν3,φ1,φ2,φ3 ∈ Zp and sets τ = φ1 +ν1φ2 +ν2φ3,π = φ2 +ν3φ3. It selects random exponents
α,x,y ∈ Zp and sets u = gx,h = gy, û = ĝx, ĥ = ĝy. It outputs a private key SK = (α,x,y) and a public
key as

PK =
(

g,u,h, w1 = wφ1 ,w2 = wφ2 ,w3 = wφ3 ,w, ĝ, ĝν1 , ĝν2 , ĝ−τ ,

û, ûν1 , ûν2 , û−τ , ĥ, ĥν1 , ĥν2 , ĥ−τ , v̂, v̂ν3 , v̂−π , Ω = e(g, ĝ)α
)
.

PKS.Sign(M,SK): This algorithm takes as input a message M ∈ {0,1}k where k < λ and a private key
SK = (α,x,y). It selects random exponents r,c1,c2 ∈ Zp and outputs a signature as

σ =
(

W1,1 = gα(uMh)rwc1
1 ,W1,2 = wc1

2 ,W1,3 = wc1
3 ,W1,4 = wc1 ,

W2,1 = grwc2
1 ,W2,2 = wc2

2 ,W2,3 = wc2
3 ,W2,4 = wc2

)
.

PKS.Verify(σ ,M,PK): This algorithm takes as input a signature σ on a message M ∈{0,1}k under a public
key PK. It first chooses random exponents t,s1,s2 ∈ Zp and computes verification components as

V1,1 = ĝt ,V1,2 = (ĝν1)t v̂s1 ,V1,3 = (ĝν2)t(v̂ν3)s1 ,V1,4 = (ĝ−τ)t(v̂−π)s1 ,

V2,1 = (ûMĥ)t ,V2,2 = ((ûν1)Mĥν1)t v̂s2 ,V2,3 = ((ûν2)Mĥν2)t(v̂ν3)s2 ,V2,4 = ((û−τ)Mĥ−τ)t(v̂−π)s2 .

Next, it verifies that ∏
4
i=1 e(W1,i,V1,i) ·∏4

i=1 e(W2,i,V2,i)
−1 ?

= Ωt . If this equation holds, then it outputs
1. Otherwise, it outputs 0.

We first note that the inner product of (φ1,φ2,φ3,1) and (1,ν1,ν2,−τ) is zero since τ = φ1+ν1φ2+ν2φ3,
and the inner product of (φ1,φ2,φ3,1) and (0,1,ν3,−π) is zero since π = φ2 +ν3φ3. Using these facts, the
correctness requirement of the above PKS scheme is easily verified as

4

∏
i=1

e(W1,i,V1,i) ·
4

∏
i=1

e(W2,i,V2,i)
−1 = e(gα(uMh)r, ĝt) · e(gr,(ûMĥ)t)−1 = Ω

t .

Theorem 3.1. The above PKS scheme is existentially unforgeable under a chosen message attack if As-
sumptions 1, 2, and 3 hold. That is, for any PPT adversary A, there exist PPT algorithms B1,B2,B3 such
that AdvPKS

A (λ )≤AdvA1
B1
(λ )+qAdvA2

B2
(λ )+AdvA3

B3
(λ ) where q is the maximum number of signature queries

of A.

The proof of this theorem is given in Section 4.1.

3.2 Our SAS Scheme

The SAS scheme in prime order bilinear groups is described as follows:
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SAS.Setup(1λ ): This algorithm first generates the asymmetric bilinear groups G,Ĝ of prime order p of bit
size Θ(λ ). It chooses random elements g,w ∈ G and ĝ, v̂ ∈ Ĝ. Next, it chooses random exponents
ν1,ν2,ν3,φ1,φ2,φ3 ∈ Zp and sets τ = φ1 +ν1φ2 +ν2φ3,π = φ2 +ν3φ3. It publishes public parameters
as

PP =
(

g, w1 = wφ1 ,w2 = wφ2 ,w3 = wφ3 ,w, ĝ, ĝν1 , ĝν2 , ĝ−τ , v̂, v̂ν3 , v̂−π
)
.

SAS.KeyGen(PP): This algorithm takes as input the public parameters PP. It selects random exponents
α,x,y∈Zp and computes u = gx,h = gy, û = ĝx, ûν1 = (ĝν1)x, ûν2 = (ĝν2)x, û−τ = (ĝ−τ)x, ĥ = ĝy, ĥν1 =
(ĝν1)y, ĥν2 = (ĝν2)y, ĥ−τ = (ĝ−τ)y. It outputs a private key SK = (α,x,y) and a public key as

PK =
(

u,h, û, ûν1 , ûν2 , û−τ , ĥ, ĥν1 , ĥν2 , ĥ−τ , Ω = e(g, ĝ)α
)
.

SAS.AggSign(AS′,M′,PK′,M,SK): This algorithm takes as input an aggregate-so-far AS′ = (S′1,1, . . . ,S
′
2,4)

on messages M′=(M1, . . . ,Ml−1) under public keys PK′=(PK1, . . . ,PKl−1) where PKi =(ui,hi, . . . ,Ωi),
a message M ∈ {0,1}k where k < λ , a private key SK = (α,x,y) with PK = (u,h, . . . ,Ω) and PP. It
first checks the validity of AS′ by calling AggVerify(AS′,M′,PK′). If AS′ is not valid, then it halts. If
the public key PK of SK does already exist in PK′, then it halts. Next, it selects random exponents
r,c1,c2 ∈ Zp and outputs an aggregate signature as

AS =
(

S1,1 = S′1,1gα(S′2,1)
xM+y ·

l−1

∏
i=1

(uMi
i hi)

r(uMh)rwc1
1 , S1,2 = S′1,2(S

′
2,2)

xM+y ·wc1
2 ,

S1,3 = S′1,3(S
′
2,3)

xM+y ·wc1
3 , S1,4 = S′1,4(S

′
2,4)

xM+y ·wc1 ,

S2,1 = S′2,1 ·grwc2
1 , S2,2 = S′2,2 ·w

c2
2 , S2,3 = S′2,3 ·w

c2
3 , S2,4 = S′2,4 ·wc2

)
.

SAS.AggVerify(AS,M,PK): This algorithm takes as input a sequential aggregate signature AS on messages
M = (M1, . . . ,Ml) under public keys PK = (PK1, . . . ,PKl) where PKi = (ui,hi, . . . ,Ωi). It first checks
that any public key does not appear twice in PK and that any public key in PK has been certified. If
these checks fail, then it outputs 0. If l = 0, then it outputs 1 if S1 = S2 = 1, 0 otherwise. It chooses
random exponents t,s1,s2 ∈ Zp and computes verification components as

C1,1 = ĝt , C1,2 = (ĝν1)t v̂s1 , C1,3 = (ĝν2)t(v̂ν3)s1 , C1,4 = (ĝ−τ)t(v̂−π)s1 ,

C2,1 =
l

∏
i=1

(ûMi
i ĥi)

t , C2,2 =
l

∏
i=1

((ûν1
i )Mi ĥν1

i )t v̂s2 ,

C2,3 =
l

∏
i=1

((ûν2
i )Mi ĥν2

i )t(v̂ν3)s2 , C2,4 =
l

∏
i=1

((û−τ

i )Mi ĥ−τ

i )t(v̂−π)s2 .

Next, it verifies that ∏
4
i=1 e(S1,i,C1,i) ·∏4

i=1 e(S2,i,C2,i)
−1 ?

= ∏
l
i=1 Ωt

i . If this equation holds, then it
outputs 1. Otherwise, it outputs 0.

The aggregate signature AS is a valid sequential aggregate signature on messages M′||M under public
keys PK′||PK with randomness r̃ = r′+r, c̃1 = c′1+c′2(xM+y)+c1, c̃2 = c′2+c2 where r′,c′1,c

′
2 are random

values in AS′. The sequential aggregate signature has the following form

S1,1 =
l

∏
i=1

gαi
l

∏
i=1

(uMi
i hi)

r̃wc̃1
1 , S1,2 = wc̃1

2 , S1,3 = wc̃1
3 , S1,4 = wc̃1 ,

S2,1 = gr̃wc̃2
1 , S2,2 = wc̃2

2 , S2,3 = wc̃2
3 , S2,4 = wc̃2 .
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Theorem 3.2. The above SAS scheme is existentially unforgeable under a chosen message attack if the PKS
scheme is existentially unforgeable under a chosen message attack. That is, for any PPT adversaryA for the
above SAS scheme, there exists a PPT algorithm B for the PKS scheme such that AdvSAS

A (λ )≤ AdvPKS
B (λ ).

The proof of this theorem is given in Section 4.2.

3.3 Extensions

In this section, we discuss various extensions of our SAS scheme.

Multiple Messages. The SAS scheme of this paper only allows a signer to sign once in the aggregate
algorithm. To support multiple signing per one signer, we can use the method of Lu et al. [22]. The basic
idea of Lu et al. is to apply a collision resistant hash function H to a message M before performing the
signing algorithm. If a signer wants to add a signature on a message M2 into the aggregate signature, he first
removes his previous signature on H(M1) from the aggregate signature using his private key, and then he
adds the new signature on the H(M1||M2) to the aggregate signature.

Multi-signatures. The SAS scheme of this paper can be easily converted to a multi-signature scheme. In
case of multi-signature, some elements of public keys in SAS can be moved to the public parameters since
multi-signature only allows signers to sign on the same message. Compared to the multi-signature scheme
of Lu et al. [22], our multi-signature scheme has short size public parameters.

4 Security Analysis

In this section, we analyze the security of the basic PKS scheme and our SAS scheme.

4.1 Proof of Theorem 3.1

To prove the security of our PKS scheme, we use the dual system encryption technique of Lewko and Waters
[21]. We describe a semi-functional signing algorithm and a semi-functional verification algorithm. They
are not used in a real system, rather they are used in the security proof. When comparing our proof to
that of Lewko and Waters, we employ a different assumption since we have published additional elements
g,u,h used in aggregation (in fact, direct adaptation of the earlier technique will break the assumption and
thus the proof). A crucial idea in our proof is that we have added elements v̂, v̂ν3 , v̂−π in the public key
which are used in randomization of the verification algorithm. In the security proof when moving from
normal to semi-functional verification, it is the randomization elements v̂, v̂ν3 , v̂−π which are expanded to
the semi-functional space; this enables deriving semi-functional verification as part of the security proof
under our assumption, without being affected by the publication of the additional public key elements used
for aggregation.

For the semi-functional signing and verification we set f = gy f , f̂ = ĝy f where y f is a random exponent
in Zp.

PKS.SignSF. The semi-functional signing algorithm first creates a normal signature using the private key.
Let (W ′1,1, . . . ,W

′
2,4) be the normal signature of a message M with random exponents r,c1,c2 ∈ Zp. It

selects random exponents sk,zk ∈ Zp and outputs a semi-functional signature as

σ =
(

W1,1 =W ′1,1( f ν1ν3−ν2)skzk , W1,2 =W ′1,2( f−ν3)skzk , W1,3 =W ′1,3 f skzk , W1,4 =W ′1,4,

W2,1 =W ′2,1( f ν1ν3−ν2)sk , W2,2 =W ′2,2( f−ν3)sk , W2,3 =W ′2,3 f sk , W2,4 =W ′2,4
)
.
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PKS.VerifySF. The semi-functional verification algorithm first creates a normal verification components
using the public key. Let (V ′1,1, . . . ,V

′
2,4) be the normal verification components with random exponents

t,s1,s2 ∈ Zp. It chooses random exponents sc,zc ∈ Zp and computes semi-functional verification
components as

V1,1 =V ′1,1, V1,2 =V ′1,2, V1,3 =V ′1,3 f̂ sc , V1,4 =V ′1,4( f̂−φ3)sc ,

V2,1 =V ′2,1, V2,2 =V ′2,2, V2,3 =V ′2,3 f̂ sczc , V2,4 =V ′2,4( f̂−φ3)sczc .

Next, it verifies that ∏
4
i=1 e(W1,i,V1,i) ·∏4

i=1 e(W2,i,V2,i)
−1 ?

= Ωt . If this equation holds, then it outputs
1. Otherwise, it outputs 0.

Note that if the semi-functional verification algorithm verifies a semi-functional signature, then the left part
of the above verification equation contains an additional random element e( f , f̂ )sksc(zk−zc). If zk = zc, then
the semi-functional verification algorithm succeeds. In this case, we say that the signature is nominally
semi-functional.

The security proof uses a sequence of games G0,G1,G2,G3: The first game G0 will be the original
security game and the last game G3 will be a game such that an adversary A has no advantage. Formally,
the hybrid games are defined as follows:

Game G0. This game is the original security game. In this game, the signatures that are given to A are
normal and the challenger use the normal verification algorithm PKS.Verify to check the validity of
the forged signature of A.

Game G1. We first modify the original game to a new game G1. This game is almost identical to G0 except
that the challenger use the semi-functional verification algorithm PKS.VerifySF to check the validity
of the forged signature of A.

Game G2. Next, we change G1 to a new game G2. This game is the same as the G1 except that the
signatures that are given to A will be semi-functional. At this moment, the signatures are semi-
functional and the challenger use the semi-functional verification algorithm PKS.VerifySF to check
the validity of the forged signature. Suppose thatAmakes at most q signature queries. For the security
proof, we define a sequence of hybrid games G1,0, . . . ,G1,k, . . . ,G1,q where G1,0 = G1. In G1,k, a
normal signature is given to A for all j-th signature queries such that j > k and a semi-functional
signature is given to A for all j-th signature queries such that j ≤ k. It is obvious that G1,q is equal to
G2.

Game G3. Finally, we define a new game G3. This game differs from G2 in that the challenger always
rejects the forged signature of A. Therefore, the advantage of this game is zero since A cannot win
this game.

For the security proof, we show the indistinguishability of each hybrid games. We informally describe
the meaning of each indistinguishability as follows:

• Indistinguishability of G0 and G1: This property shows that A cannot forge a semi-functional signa-
ture if it is only given normal signatures. That is, if A forges a semi-functional signature, then it can
distinguish G0 from G1.
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• Indistinguishability of G1 and G2: This property shows that the probability of A to forge a normal
signature is almost the same when the signatures given to the adversary are changed from normal type
to semi-functional type. That is, if the probability of A to forge a normal signature is different in G1
and G2, then A can distinguish two games.

• Indistinguishability of G2 and G3: This property shows that A cannot forge a normal signature if it is
only given semi-functional signatures. That is, if A forges a normal signature, then it can distinguish
G2 from G3.

The security (unforgeability) of our PKS scheme follows from a hybrid argument. We first consider an
adversary A to attack our PKS scheme in the original security game G0. By the indistinguishability of G0
and G1, we have that A can forge a normal signature with a non-negligible ε probability, but it can forge a
semi-functional signature with only a negligible probability. Now we should show that the ε probability of
A to forge a normal signature is also negligible. By the indistinguishability of G1 and G2, we have that the ε

probability of A to forge a normal signature is almost the same when the signatures given to A are changed
from normal type to semi-functional type. Finally, by the indistinguishability of G2 and G3, we have that A
can forge a normal signature with only a negligible probability. Summing up, we obtain that the probability
of A to forge a semi-functional signature is negligible (from the indistinguishability of G0 and G1) and the
probability of A to forge a normal signature is also negligible (from the indistinguishability of G2 and G3).

Let AdvG j
A be the advantage of A in G j for j = 0, . . . ,3. Let AdvG1,k

A be the advantage of A in G1,k

for k = 0, . . . ,q. It is clear that AdvG0
A = AdvPKS

A (λ ), AdvG1,0
A = AdvG1

A , AdvG1,q
A = AdvG2

A , and AdvG3
A = 0.

From the following three Lemmas, we prove that it is hard forA to distinguish Gi−1 from Gi under the given
assumptions. Therefore, we have that

AdvPKS
A (λ ) = AdvG0

A +
2

∑
i=1

(
AdvGi

A −AdvGi
A
)
−AdvG3

A ≤
3

∑
i=1

∣∣AdvGi−1
A −AdvGi

A
∣∣

= AdvA1
B1
(λ )+

q

∑
k=1

AdvA2
B2
(λ )+AdvA3

B3
(λ ).

This completes our proof.

Lemma 4.1. If Assumption 1 holds, then no polynomial-time adversary can distinguish between G0 and
G1 with non-negligible advantage. That is, for any adversary A, there exists a PPT algorithm B1 such that∣∣AdvG0

A −AdvG1
A
∣∣= AdvA1

B1
(λ ).

Proof. Before proving this lemma, we introduce Assumption 1-A as follows: Let (p,G,Ĝ,GT ,e) be a
description of the asymmetric bilinear group of prime order p. Let k, k̂ be generators of G,Ĝ respec-
tively. Assumption 1-A is stated as following: given a challenge tuple D = ((p,G,Ĝ,GT ,e),k, k̂a, k̂d1 , k̂d2)
and T = (A1,A2), it is hard to decide whether T = (k̂ad1 , k̂ad2) or T = (k̂d3 , k̂d4) with random choices of
a,d1,d2,d3,d4 ∈ Zp. It is easy to prove by simple hybrid arguments that if there exists an adversary that
breaks Assumption 1-A, then it can break Assumption 1. Alternatively, we can tightly prove the reduction
using the random self-reducibility of the Decisional Diffie-Hellman assumption.

Suppose there exists an adversary A that distinguishes between G0 and G1 with non-negligible advan-
tage. Simulator B1 that solves Assumption 1-A using A is given: a challenge tuple D = ((p,G,Ĝ,GT ,e),
k, k̂, k̂a, k̂d1 , k̂d2) and T =(A1,A2) where T =T0 =(A0

1,A
0
2)= (k̂ad1 , k̂ad2) or T =T1 =(A1

1,A
1
2)= (k̂ad1+d3 , k̂ad2+d4).

Then B1 that interacts with A is described as follows: B1 first chooses random exponents ν1,ν2,φ1,φ2,φ3 ∈
Zp, then it sets τ = φ1+ν1φ2+ν2φ3. It selects random exponents α,x,y,yg,yv,yw ∈Zp and sets g = kyg ,u =
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gx,h = gy,w = kyw , ĝ = k̂yg , û = ĝx, ĥ = ĝy. It implicitly sets ν3 = a,π = φ2 +aφ3 and publishes a public key
as

g,u,h, w1 = wφ1 ,w2 = wφ2 ,w3 = wφ3 ,w, ĝ, ĝν1 , ĝν2 , ĝ−τ , û, ûν1 , ûν2 , û−τ ,

ĥ, ĥν1 , ĥν2 , ĥ−τ , v̂ = k̂yv , v̂ν3 = (k̂a)yv , v̂−π = k̂−yvφ2(k̂a)−yvφ3 , Ω = e(g, ĝ)α .

It sets a private key as (α,x,y). Additionally, it sets f = k, f̂ = k̂ for the semi-functional signature and
verification. A adaptively requests a signature for a message M. To response this sign query, B1 creates
a normal signature by calling PKS.Sign since it knows the private key. Note that it cannot create a semi-
functional signature since it does not know ka. Finally, A outputs a forged signature σ∗ = (W ∗1,1, . . . ,W

∗
2,4)

on a message M∗ from A. To verify the forged signature, B1 first chooses a random exponent t ∈ Zp and
computes verification components by implicitly setting s1 = d1, s2 = d2 as

V1,1 = ĝt , V1,2 = (ĝν1)t(k̂d1)yv , V1,3 = (ĝν2)t(A1)
yv , V1,4 = (ĝ−τ)t(k̂d1)−yvφ2(A1)

−yvφ3 ,

V2,1 = (ûM∗ ĥ)t , V2,2 = ((ûν1)M∗ ĥν1)t(k̂d2)yv , V2,3 = ((ûν2)M∗ ĥν2)t(A2)
yv ,

V2,4 = ((û−τ)M∗ ĥ−τ)t(k̂d2)−yvφ2(A2)
−yvφ3 .

Next, it verifies that ∏
4
i=1 e(W ∗1,i,V1,i) ·∏4

i=1 e(W ∗2,i,V2,i)
−1 ?

= Ωt . If this equation holds, then it outputs 0.
Otherwise, it outputs 1.

To finish this proof, we now show that the distribution of the simulation is correct. We first show that the
distribution using D,T0 = (A0

1,A
0
2) = (k̂ad1 , k̂ad2) is the same as G0. The public key is correctly distributed

since the random blinding values yg,yw,yv are used. The signatures is correctly distributed since it uses the
signing algorithm. The verification components are correctly distributed as

V1,3 = (ĝν2)t(v̂ν3)s1 = (ĝν2)t(k̂yva)d1 = (ĝν2)t(A0
1)

yv ,

V1,4 = (ĝ−τ)t(v̂−π)s1 = (ĝ−τ)t(k̂−yv(φ2+aφ3))d1 = (ĝ−τ)t(k̂d1)−yvφ2(A0
1)
−yvφ3 ,

V2,3 = ((ûν2)M∗ ĥν2)t(v̂ν3)s2 = ((ûν2)M∗ ĥν2)t(k̂yva)d2 = ((ûν2)M∗ ĥν2)t(A0
2)

yv

V2,4 = ((û−τ)M∗ ĥ−τ)t(v̂−π)s2 = ((û−τ)M∗ ĥ−τ)t(k̂−yv(φ2+aφ3))d2

= ((û−τ)M∗ ĥ−τ)t(k̂d2)−yvφ2(A0
2)
−yvφ3 .

We next show that the distribution of the simulation using D,T1 = (A1
1,A

1
2) = (k̂ad1+d3 , k̂ad2+d4) is the same

as G1. We only consider the distribution of the verification components since T is only used in the ver-
ification components. The difference between T0 = (A0

1,A
0
2) and T1 = (A1

1,A
1
2) is that T1 = (A1

1,A
1
2) addi-

tionally has (k̂d3 , k̂d4). Thus V1,3,V1,4,V2,3,V2,4 that have T = (A1,A2) in the simulation additionally have
(k̂d3)yv ,(k̂d3)−yvφ3 ,(k̂d4)yv ,(k̂d4)−yvφ3 respectively. If we implicitly set sc = yvd3, zc = d4/d3, then the verifi-
cation components for the forged signature are semi-functional since d3,d4 are randomly chosen. We obtain
Pr[B1(D,T0) = 0] = AdvG0

A and Pr[B1(D,T1) = 0] = AdvG1
A from the above analysis. Thus, we can easily

derive the advantage of B1 as

AdvA1
B1
(λ ) = AdvA1−A

B1
(λ ) =

∣∣Pr[B1(D,T0) = 0]−Pr[B1(D,T1) = 0]
∣∣= ∣∣AdvG0

A −AdvG1
A
∣∣.

This completes our proof.

Lemma 4.2. If Assumption 2 holds, then no polynomial-time adversary can distinguish between G1 and
G2 with non-negligible advantage. That is, for any adversary A, there exists a PPT algorithm B2 such that∣∣AdvG1,k−1

A −AdvG1,k
A

∣∣= AdvA2
B2
(λ ).
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Proof. Suppose there exists an adversary A that distinguishes between G1,k−1 and G1,k with non-negligible
advantage. A simulatorB2 that solves Assumption 2 usingA is given: a challenge tuple D=((p,G,Ĝ,GT ,e),
k,ka,kb,kc, k̂a, k̂a2

, k̂bx, k̂abx, k̂a2x) and T where T = T0 = kbc or T = T1 = kbc+d . Then B2 that interacts with
A is described as follows: B2 first selects random exponents ν1,ν2,ν3,yτ ,π,A,B,α,yu,yh,yw,yv ∈ Zp and
sets g = ka,u = (ka)Akyu ,h = (ka)Bkyh ,w = kyw , ĝ = k̂a, û = (k̂a)Ak̂yu , ĥ = (k̂a)Bk̂yh , v̂ = k̂yv . It implicitly sets
φ1 = (ν1ν3−ν2)b−ν1π +(a+ yτ),φ2 =−ν3b+π,φ3 = b,τ = a+ yτ and publishes a public key as

g,u,h, w1 = ((kb)ν1ν3−ν2k−ν1π(ka)kyτ )yw ,w2 = ((kb)−ν3kπ)yw ,w3 = (kb)yw ,w,

ĝ, ĝν1 , ĝν2 , ĝ−τ = (k̂a2
(k̂a)yτ )−1), û, ûν1 , ûν2 , û−τ = ((k̂a2

)A(k̂a)yu+Ayτ k̂yuyτ )−1,

ĥ, ĥν1 , ĥν2 , ĥ−τ = ((k̂a2
)B(k̂a)yh+Byτ k̂yhyτ )−1, v̂, v̂ν3 , v̂−π , Ω = e(ka, k̂a)α .

Additionally, it sets f = k, f̂ = k̂ for the semi-functional signature and verification. A adaptively requests a
signature for a message M. If this is a j-th signature query, then B2 handles this query as follows:

• Case j < k : It creates a semi-functional signature by calling PKS.SignSF since it knows the tuple
( f ν1ν3−ν2 , f−ν3 , f ,1) for the semi-functional signature.

• Case j = k : It selects random exponents r′,c′1,c
′
2 ∈ Zp and creates a signature by implicitly setting

r =−c+ r′, c1 = c(AM+B)/yw + c′1, c2 = c/yw + c′2 as

W1,1 = gα(kc)−(yuM+yh)(uMh)r′(T )(ν1ν3−ν2)(AM+B)(kc)(−ν1π+yτ )(AM+B)wc′1
1 ,

W1,2 = (T )−ν3(AM+B)(kc)π(AM+B)wc′1
2 , W1,3 = (T )(AM+B)wc′1

3 , W1,4 = (kc)(AM+B)wc′1 ,

W2,1 = gr′(T )(ν1ν3−ν2)(kc)(−ν1π+yτ )wc′2
1 , W2,2 = (T )−ν3(kc)ywπwc′2

2 , W2,3 = Twc′2
3 , W2,4 = (kc)ywwc′2 .

• Case j > k : It creates a normal signature by calling PKS.Sign since it knows α of the private key.
Note that x,y are not required.

Finally,A outputs a forged signature σ∗ = (W ∗1,1, . . . ,W
∗
2,4) on a message M∗. To verify the forged signature,

B2 first chooses random exponents t ′,s1,s2 ∈ Zp and computes semi-functional verification components by
implicitly setting t = bx+ t ′, sc =−a2x, zc = AM∗+B as

V1,1 = k̂abx(k̂a)t ′ , V1,2 = (k̂abx)ν1(k̂a)ν1t ′ v̂s1 ,

V1,3 = (k̂abx)ν2(k̂a)ν2t ′ v̂ν3s1(k̂a2x)−1, V1,4 = (k̂abx)−yτ (k̂a2
)−t ′(k̂a)−yτ t ′ v̂−πs1 ,

V2,1 = (k̂abx)AM∗+B(k̂bx)yuM∗+yh(ûM∗ ĥ)t ′ ,

V2,2 = (k̂abx)(AM∗+B)ν1(k̂bx)(yuM∗+yh)ν1(ûM∗ ĥ)ν1t ′ v̂s2 ,

V2,3 = (k̂abx)(AM∗+B)ν2(k̂bx)(yuM∗+yh)ν2(ûM∗ ĥ)ν2t ′ v̂ν3s2(k̂a2x)−(AM∗+B),

V2,4 = (k̂abx)−(AM∗+B)yτ−(yuM∗+yh)(k̂bx)−(yuM∗+yh)yτ (k̂a2
)−(AM∗+B)t ′(k̂a)−(yuM∗+yh)t ′(ûM∗ ĥ)−yτ t ′ v̂−πs2 .

Next, it verifies that ∏
4
i=1 e(W ∗1,i,V1,i) ·∏4

i=1 e(W ∗2,i,V2,i)
−1 ?

= e(ka, k̂abx)α · e(ka, k̂a)αt ′ . If this equation holds,
then it outputs 0. Otherwise, it outputs 1.

To finish the proof, we should show that the distribution of the simulation is correct. We first show
that the distribution of the simulation using D,T0 = kbc is the same as G1,k−1. The public key is correctly
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distributed since the random blinding values yu,yh,yw,yv are used. The k-th signature is correctly distributed
as

W1,1 = gα(uMh)rwc1
1 = gα(k(aA+yu)MkaB+yh)−c+r′(kyw((ν1ν3−ν2)b−ν1π+(a+yτ )))c(AM+B)/yw+c′1

= gα(kc)−(yuM+yh)(uMh)r′(T )(ν1ν3−ν2)(AM+B)(kc)(−ν1π+yτ )(AM+B)wc′1
1 ,

W1,2 = wc1
2 = (kyw(−ν3b+π))c(AM+B)/yw+c′1 = (T )−ν3(AM+B)(kc)π(AM+B)wc′1

2 ,

W1,3 = wc1
3 = (kywb)c(AM+B)/yw+c′1 = (T )(AM+B)wc′1

3 ,

W1,4 = wc1 = (kyw)c(AM+B)/yw+c′1 = (kc)(AM+B)wc′1 .

The semi-functional verification components are correctly distributed as

V2,1 = (ûM∗ ĥ)t = (k̂(aA+yu)M∗ k̂aB+yh)bx+t ′ = (k̂abx)AM∗+B(k̂bx)yuM∗+yh(ûM∗ ĥ)t ′ ,

V2,2 = ((ûν1)M∗ ĥν1)t v̂s2 = (k̂(aA+yu)ν1M∗ k̂(aB+yh)ν1)bx+t ′ v̂s2

= (k̂abx)(AM∗+B)ν1(k̂bx)(yuM∗+yh)ν1(ûM∗ ĥ)ν1t ′ v̂s2 ,

V2,3 = ((ûν2)M∗ ĥν2)t(v̂ν3)s2 f̂ sczc = (k̂(aA+yu)ν2M∗ k̂(aB+yh)ν2)bx+t ′(v̂ν3)s2 k̂−a2x(AM∗+B)

= (k̂abx)(AM∗+B)ν2(k̂bx)(yuM∗+yh)ν2(ûM∗ ĥ)ν2t ′ v̂ν3s2(k̂a2x)−(AM∗+B),

V2,4 = ((û−τ)M∗ ĥ−τ)t(v̂−π)s2( f̂−φ3)sczc

= (k̂−(aA+yu)(a+yτ )M∗ k̂−(aB+yh)(a+yτ ))bx+t ′(v̂−π)s2 k̂−b(−a2x)(AM∗+B)

= (k̂abx)−(AM∗+B)yτ−(yuM∗+yh)(k̂bx)−(yuM∗+yh)yτ (k̂a2
)−(AM∗+B)t ′(k̂a)−(yuM∗+yh)t ′(ûM∗ ĥ)−yτ t ′ v̂−πs2 .

The simulator can create the semi-functional verification components with only fixed zc = AM∗+B since
sc,sc enable the cancellation of k̂a2bx. Even though the simulator uses the fixed zc, the distribution of zc

is correct since A,B are information theoretically hidden to A. We next show that the distribution of the
simulation using D,T1 = kbc+d is the same as G1,k. We only consider the distribution of the k-th signature
since T is only used in the k-th signature. The only difference between T0 and T1 is that T1 additionally
has kd . The signature components W1,1,W1,2,W1,3, W2,1,W2,2,W2,3 that have T in the simulation additionally
have (kd)(ν1ν3−ν2)(AM+B), (kd)−ν3(AM+B), (kd)(AM+B), (kd)(ν1ν3−ν2), (kd)−ν3 ,kd respectively. If we implicitly
set sk = d,zk = AM +B, then the distribution of the k-th signature is the same as G1,k except that the k-th
signature is nominally semi-functional.

Finally, we show that the adversary cannot distinguish the nominally semi-functional signature from
the semi-functional signature. The main idea of this is that the adversary cannot request a signature for
the forgery message M∗ in the security model. Suppose there exists an unbounded adversary, then the
adversary can gather the values zk = AM +B from the k-th signature and zc = AM∗+B from the forged
signature. It is easy to show that zk,zc look random to the unbounded adversary since f (M) = AM +B is
pair-wise independent function and A,B are information theoretically hidden to the adversary. We obtain
Pr[B2(D,T0) = 0] = AdvG1,k−1

A and Pr[B2(D,T1) = 0] = AdvG1,k
A from the above analysis. Thus, we can easily

derive the advantage of B2 as

AdvA2
B2
(λ ) =

∣∣Pr[B2(D,T0) = 0]−Pr[B2(D,T1) = 0]
∣∣= ∣∣AdvG1,k−1

A −AdvG1,k
A

∣∣.
This completes our proof.
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Lemma 4.3. If Assumption 3 holds, then no polynomial-time adversary can distinguish between G2 and
G3 with non-negligible advantage. That is, for any adversary A, there exists a PPT algorithm B3 such that∣∣AdvG2

A −AdvG3
A
∣∣= AdvA3

B3
(λ ).

Proof. Suppose there exists an adversary A that distinguish G2 from G3 with non-negligible advantage. A
simulator B3 that solves Assumption 3 usingA is given: a challenge tuple D = ((p,G,Ĝ,GT ,e),k,ka,kb,kc,
k̂, k̂a, k̂b, k̂c) and T where T = T0 = e(k, k̂)abc or T = T1 = e(k, k̂)d . Then B3 that interacts withA is described
as follows: B3 first chooses random exponents ν1,ν3, φ1,φ2,φ3 ∈ Zp and sets π = φ2 + ν3φ3. It selects
random exponents yg,x,y,yw,yv ∈Zp and sets g = kyg ,u = gx,h = gy,w = kyw , ĝ = k̂yg , û = ĝx, ĥ = ĝy, v̂ = k̂yv .
It implicitly sets ν2 = a,τ = φ1 +ν1φ2 +aφ3,α = ab and publishes a public key as

g,u,h, w1 = wφ1 ,w2 = wφ2 ,w3 = wφ3 ,w, ĝ, ĝν1 , ĝν2 = (k̂a)yg , ĝ−τ = k̂−yg(φ1+ν1φ2)(k̂a)−ygφ3 ,

û, ûν1 , ûν2 = (ĝν2)x, û−τ = (ĝ−τ)x, ĥ, ĥν1 , ĥν2 = (ĝν2)y, ĥ−τ = (ĝ−τ)y,

v̂, v̂ν3 , v̂−π , Ω = e(ka, k̂b)y2
g .

Additionally, it sets f = k, f̂ = k̂ for the semi-functional signature and semi-functional verification. A
adaptively requests a signature for a message M. To respond to this query, B3 selects random exponents
r,c1,c2,sk,z′k ∈ Zp and creates a semi-functional signature by implicitly setting zk = byg/sk + z′k as

W1,1 = (uMh)rwc1
1 (kb)ν1ν3ygkν1ν3skz′k(ka)−skz′k ,

W1,2 = wc1
2 (kb)−ν3ygk−ν3skz′k , W1,3 = wc1

3 (kb)ygkskz′k , W1,4 = wc1 ,

W2,1 = grwc2
1 kν1ν3sk(ka)−sk , W2,2 = wc2

2 k−ν3sk , W2,3 = wc2
3 ksk , W2,4 = wc2 .

The simulator can only create a semi-functional signature since sk,zk enables the cancellation of kab. Finally,
A outputs a forged signature σ∗ = (W ∗1,1, . . . ,W

∗
2,4) on a message M∗. To verify the forged signature, B3

first chooses random exponents s1,s2,s′c,z
′
c ∈ Zp and computes semi-functional verification components by

implicitly setting t = c, sc =−acyg + s′c, zc =−acyg(xM∗+ y)/sc + z′c/sc as

V1,1 = (k̂c)yg , V1,2 = (k̂c)ygν1 v̂s1 , V1,3 = v̂ν3s1 k̂s′c , V1,4 = (k̂c)−yg(φ1+ν1φ2)v̂−πs1 k̂−φ3s′c ,

V2,1 = (k̂c)yg(xM∗+y), V2,2 = (k̂c)yg(xM∗+y)ν1 v̂s2 , V2,3 = v̂ν3s2 k̂z′c ,

V2,4 = (k̂c)−yg(xM∗+y)(φ1+ν1φ2)v̂−πs2 k̂−φ3z′c .

Next, it verifies that ∏
4
i=1 e(W ∗1,i,V1,i) ·∏4

i=1 e(W ∗2,i,V2,i)
−1 ?

= (T )y2
g . If this equation holds, then it outputs 0.

Otherwise, it outputs 1.

To finish the proof, we first show that the distribution of the simulation using D,T = e(k, k̂)abc is the
same as G2. The public key is correctly distributed since the random blinding values yg,yw,yv are used. The
semi-functional signature is correctly distributed as

W1,1 = gα(uMh)rwc1
1 ( f ν1ν3−ν2)skzk = kygab(uMh)rwc1

1 (kν1ν3−a)sk(byg/sk+z′k)

= (uMh)rwc1
1 (kb)ν1ν3ygkν1ν3skz′k(ka)−skz′k .

The semi-functional verification components are correctly distributed as

V1,3 = (ĝν2)t(v̂ν3)s1 f̂ sc = (k̂yga)cv̂ν3s1 k̂−acyg+s′c = v̂ν3s1 k̂s′c ,

V1,4 = (ĝ−τ)t(v̂−π)s1( f̂−φ3)sc = (k̂−yg(φ1+ν1φ2+aφ3))cv̂−πs1 k̂−φ3(−acyg+s′c)

= (k̂c)−yg(φ1+ν1φ2)v̂−πs1 k̂−φ3s′c ,

16



V2,3 = (ûν2M∗ ĥν2)t(v̂ν3)s2 f̂ sczc = (k̂yga(xM∗+y))c(v̂ν3)s2 k̂−acyg(xM∗+y)+z′c = v̂ν3s2 k̂z′c ,

V2,4 = (û−τM∗ ĥ−τ)t(v̂−π)s2( f̂−φ3)sczc

= (k̂−yg(φ1+ν1φ2+aφ3)(xM∗+y))c(v̂−π)s2(k̂−φ3)−acyg(xM∗+y)+z′c

= (k̂c)−yg(xM∗+y)(φ1+ν1φ2)v̂−πs2 k̂−φ3z′c ,

Ω
t = e(g, ĝ)αt = e(k, k̂)y2

gabc = (T0)
y2

g .

We next show that the distribution of the simulation using D,T1 = e(k, k̂)d is almost the same as G3. It is
obvious that the signature verification for the forged signature always fails if T1 = e(k, k̂)d is used except with
1/p probability since d is a random value in Zp. We obtain Pr[B3(D,T0) = 0] = AdvG2

A and Pr[B3(D,T1) =

0] = AdvG3
A from the above analysis. Thus, we can easily derive the advantage of B3 as

AdvA3
B3
(λ ) =

∣∣Pr[B3(D,T0) = 0]−Pr[B3(D,T1) = 0]
∣∣= ∣∣AdvG2

A −AdvG3
A
∣∣.

This completes our proof.

4.2 Proof of Theorem 3.2

Our overall proof strategy for this part follows Lu et al. [22] and adapts it to our setting. The proof uses two
properties: the fact that the aggregated signature result is independent of the order of aggregation, and the
fact that the simulator of the SAS system possesses the private keys of all but the target PKS.

Suppose there exists an adversaryA that forges the above SAS scheme with non-negligible advantage ε .
A simulator B that forges the PKS scheme is first given: a challenge public key PKPKS = (g,u,h,w1, . . . ,w,
ĝ, . . . , ĝ−τ , û, . . . , û−τ , ĥ, . . . , ĥ−τ , v̂, v̂ν3 , v̂−π ,Ω). Then B that interacts with A is described as follows: B first
constructs PP = (g,w1, . . . ,w, ĝ, . . . , ĝ−τ , v̂, v̂ν3 , v̂−π) and PK∗ = (u,h, û, . . . , û−τ , ĥ, . . . , ĥ−τ ,Ω = e(g, ĝ)α)
from PKPKS. Next, it initializes a certification list CL as an empty one and gives PP and PK∗ to A. A may
adaptively requests certification queries or sequential aggregate signature queries. If A requests the certifi-
cation of a public key by providing a public key PKi = (ui,hi, . . . ,Ωi) and its private key SKi = (αi,xi,yi),
then B checks the private key and adds the key pair (PKi,SKi) to CL. If A requests a sequential aggre-
gate signature by providing an aggregate-so-far AS′ on messages M′ = (M1, . . . ,Ml−1) under public keys
PK′ = (PK1, . . . ,PKl−1), and a message M to sign under the challenge private key of PK∗, then B proceeds
the aggregate signature query as follows:

1. It first checks that the signature AS′ is valid and that each public key in PK′ exits in CL.

2. It queries its signing oracle that simulates PKS.Sign on the message M for the challenge public key
PK∗ and obtains a signature σ .

3. For each 1≤ i≤ l−1, it constructs an aggregate signature on message Mi using SAS.AggSign since it
knows the private key that corresponds to PKi. The result signature is an aggregate signature for mes-
sages M′||M under public keys PK′||PK∗ since this scheme does not check the order of aggregation.
It gives the result signature AS to A.

Finally,A outputs a forged aggregate signature AS∗ = (S∗1,1, . . . ,S
∗
2,4) on messages M∗ = (M1, . . . ,Ml) under

public keys PK∗ = (PK1, . . . ,PKl) for some l. Without loss of generality, we assume that PK1 = PK∗. B
proceeds as follows:
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1. B first checks the validity of AS∗ by calling SAS.AggVerify. Additionally, the forged signature should
not be trivial: the challenge public key PK∗ must be in PK∗, and the message M1 must not be queried
by A to the signature query oracle.

2. For each 2 ≤ i ≤ l, it parses PKi = (ui,hi, . . . ,Ωi) from PK∗, and it retrieves the private key SKi =
(αi,xi,yi) of PKi from CL. It then computes

W1,1 = S∗1,1 ·
l

∏
i=2

(
gα j(S∗2,1)

xiMi+yi
)−1

, W1,2 = S∗1,2 ·
l

∏
i=2

(
(S∗2,2)

xiMi+yi
)−1

,

W1,3 = S∗1,3 ·
l

∏
i=2

(
(S∗2,3)

xiMi+yi
)−1

, W1,4 = S∗1,4 ·
l

∏
i=2

(
(S∗2,4)

xiMi+yi
)−1

,

W2,1 = S∗2,1, W2,2 = S∗2,2, W2,3 = S∗2,3, W2,4 = S∗2,4.

3. It outputs σ = (W1,1, . . . ,W2,4) as a non-trivial forgery of the PKS scheme since it did not make a
signing query on M1.

To finish the proof, we first show that the distribution of the simulation is correct. It is obvious that
the public parameters and the public key are correctly distributed. The sequential aggregate signatures is
correctly distributed since this scheme does not check the order of aggregation. Finally, we can show that
the result signature σ = (W1,1, . . . ,W2,4) of the simulator is a valid signature for the PKS scheme on the
message M1 under the public key PK∗ since it satisfies the following equation:

4

∏
i=1

e(W1,i,V1,i) ·
4

∏
i=1

e(W2,i,V2,i)
−1

= e(S∗1,1, ĝ
t) · e(S∗1,2, ĝν1t v̂s1) · e(S∗1,3, ĝν2t v̂ν3s1) · e(S∗1,4, ĝ−τt v̂−πs1) · e(

l

∏
i=2

gαi , ĝt)−1·

e(S∗2,1,
l

∏
i=2

(ûMi
i ĥi)

t)−1 · e(S∗2,2,
l

∏
i=2

(ûMi
i ĥi)

ν1t v̂δis1)−1 · e(S∗2,3,
l

∏
i=2

(ûMi
i ĥi)

ν2t v̂δis1)−1·

e(S∗2,4,
l

∏
i=2

(ûMi
i ĥi)

−τt v̂−πδis1)−1 · e(S∗2,1,(ûM1 ĥ)t)−1 · e(S∗2,2,(ûM1 ĥ)ν1t v̂s2)−1·

e(S∗2,3,(û
M1 ĥ)ν2t v̂ν3s2)−1 · e(S∗2,4,(ûM1 ĥ)−τt v̂−πs2)−1

= e(S∗1,1,C1,1) · e(S∗1,2,C1,2) · e(S∗1,3,C1,3) · e(S∗1,4,C1,4) · e(
l

∏
i=2

gαi , ĝt)−1·

e(S∗2,1,
l

∏
i=1

(ûMi
i ĥi)

t)−1 · e(S∗2,2,
l

∏
i=1

(ûMi
i ĥi)

ν1t v̂s̃2)−1 · e(S∗2,3,
l

∏
i=1

(ûMi
i ĥi)

ν2t v̂s̃2)−1·

e(S∗2,4,
l

∏
i=1

(ûMi
i ĥi)

−τt v̂−π s̃2)−1·

=
4

∏
i=1

e(S∗1,i,C1,i) ·
4

∏
i=1

e(S∗2,i,C2,i)
−1 · e(

l

∏
i=2

gαi , ĝt)−1 =
l

∏
i=1

Ω
t
i ·

l

∏
i=2

Ω
−t
i = Ω

t
1

where δi = xiMi + yi and s̃2 = ∑
l
i=2(xiMi + yi)s1 + s2. This completes our proof.
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Figure 1: Performance of our SAS scheme

5 Implementation

In this section, we report on the implementation of our SAS scheme and analysis of its performance. Then,
we propose a method to improve the performance of our scheme in a typical applications scenario.

We used the Pairing Based Cryptography (PBC) library of Ben Lynn [23] to implement our SAS scheme.
According to the NIST recommendations for the 80-bit security [26], the key size of elliptic curve systems
should be at least 160 bits and the key size of discrete logarithm systems should be at least 1024 bits. For 80-
bit security, we, therefore, selected the Miyaji-Nakabayashi-Takano (MNT) curve with embedding degree
6 since this embedding degree is close to the optimal value, i.e., 1024/160=6.4 for this level of security. In
the MNT curve with embedding degree 6, the group size of G should be at least 171 bits and the group
size of GT should be at least 1024 bits since the security of the GT group is related to the security of the
discrete logarithm [13]. Therefore, we used a 175-bit MNT curve that is generated by the MNT parameter
generation program in the PBC library.

5.1 Signature and Public Key Size

We compare the signature size and the public key size of Lu et al.’s SAS scheme (the earlier scheme with
non relaxed-model proof, based on a static assumption and standard model) with our SAS scheme. The
original SAS scheme of Lu et al. is described using symmetric bilinear groups, but it can also be described
using asymmetric bilinear groups. In the 175-bit MNT curve with point compression, the group size of G is
about 175 bits, the group size of Ĝ is about 525 bits, and the group size of GT is 1050 bits respectively.

In Lu et al. system, the size of an aggregate signature is about 350 bits and the size of a public key is
about 113,000 bits. Alternately, one may consider to use the method of Chatterjee and Sarkar [12] to reduce
the public key size of the SAS scheme of Lu et al. However, this method obtains shorter public key size by
sacrificing the security reduction of the scheme. Thus, it should use a larger size of prime for the order of
groups to support the same security level of the original scheme; with this optimally increased size groups,
our SAS scheme will still have 20 times shorter public key size.
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5.2 Performance Measurements

We implemented and measured the performance of our SAS scheme on a notebook computer with an Intel
Core i5-460M 2.53 GHz CPU. The PBC library on the test machine can compute a pairing operation in 14.0
ms, an exponentiation operation of G and Ĝ in 1.7 ms and 20.3 ms respectively. We assume that there are
100 users who participate in the sequential aggregate signature system (indexed 1 to 100).

At first, the setup algorithm takes about 0.159 seconds to generate the public parameters since it requires
three exponentiations in G and five exponentiations in Ĝ. The key generation algorithm for each user takes
about 0.185 seconds since it requires six exponentiations in Ĝ and one pairing. The aggregate signing
algorithm mainly consists of verifying the previous aggregate signature and adding its own signature into
the aggregate signature. The time to generate an aggregate signature is proportional to the index number of
the user who participates in the aggregate signing algorithm. Furthermore, this algorithm spends nearly 98
percent of its time on verifying the previous aggregate signature since it should compute 4l + 14 numbers
of exponentiation in Ĝ where l is the number of previous signers. For example, if a user’s index is 50
in the aggregate signing algorithm, then the algorithm verifies the previous aggregate signature in 2.421
seconds (this amount will double for our last user), and adds its signature into the aggregate signature in
0.065 seconds.

Optimization: We can improve the performance of the aggregate verification algorithm by preprocessing
the exponentiations in Ĝ. To use the preprocessing method, users should keep the public keys of the previous
users. If the set of users who participate in the aggregate signature system is not changed or changed a little
(as in the routing and the certification cases), then users can preprocess the public keys of previous users
after running the first aggregate signing algorithm. Additionally, we can preprocess the public parameters
and pre-compute elements for verification in an offline mode. If the preprocessing method is used, then the
time to verify an aggregate signature is reduced to 30 percent of the original time to verify.

6 Conclusion

In this paper, we proposed a sequential aggregate signature scheme with a proof of security in the standard
model and with no relaxation of assumptions (i.e., employing neither random oracles nor interactive assump-
tions). The proposed scheme is the first of this kind which has short (constant number of group elements)
size public keys and constant number of pairing operations per message in the verification algorithm. Also,
we provided an implementation and performance measurements of our scheme.
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A Lewko-Waters IBE

In this section, we first describe the IBE scheme in prime order (asymmetric) bilinear groups of Lewko and
Waters [21]. Next we describe the PKS scheme that is derived from the IBE scheme of Lewko and Waters.
We slightly change the notation of the IBE scheme.

A.1 The LW-IBE Scheme

The IBE scheme in prime order bilinear groups of Lewko and Waters is described as follows:

IBE.Setup(1λ ): This algorithm first generates the asymmetric bilinear groups G,Ĝ of prime order p of
bit size Θ(λ ). It chooses random elements g ∈ G and ĝ, ŵ ∈ Ĝ. Next, it chooses random ex-
ponents ν ,φ1,φ2 ∈ Zp and sets τ = φ1 + νφ2. It selects random exponents α,x,y ∈ Zp and sets
u = gx, û = ĝx,h = gy, ĥ = ĝy. It outputs a master key MK = (ĝ, û, ĥ, ĝα , ŵ1 = ŵφ1 , ŵ2 = ŵφ2 , ŵ) and
public parameters as

PP =
(

g,gν ,g−τ , u,uν ,u−τ , h,hν ,h−τ , Ω = e(g, ĝ)α
)
.

IBE.KeyGen(ID,MK): This algorithm takes as input an identity ID ∈ {0,1}k where k < λ and the master
key MK. It selects random exponents r,c1,c2 ∈ Zp and outputs a private key as

SKID =
(

K1,1 = ĝα(ûIDĥ)rŵc1
1 ,K1,2 = ŵc1

2 ,K1,3 = ŵc1 ,

K2,1 = ĝrŵc2
1 ,K2,2 = ŵc2

2 ,K2,3 = ŵc2
)
.

IBE.Encrypt(M, ID,PP): This algorithm takes as input a message M ∈GT , an identity ID, and the public
parameters PP. It first chooses a random exponent t ∈ Zp and outputs a ciphertext as

CT =
(

C = e(g, ĝ)αtM, C1,1 = gt ,C1,2 = (gν)t ,C1,3 = (g−τ)t ,

C2,1 = (uIDh)t ,C2,2 = ((uν)IDhν)t ,C2,3 = ((u−τ)IDh−τ)t ).
IBE.Decrypt(CT,SKID,PP): This algorithm takes as input a ciphertext CT , a private key SKID, and the

public parameters PP. If the identities of the ciphertext and the private key are equal, then it computes

M←C ·
3

∏
i=1

e(C1,i,K1,i)
−1 ·

3

∏
i=1

e(C2,i,K2,i).

A.2 The LW-PKS Scheme

To derive a PKS scheme from the IBE scheme of Lewko and Waters, we apply the transformation of Naor
[8]. Additionally, we represent the signature in G instead of Ĝ to reduce the size of signatures. The PKS
scheme in prime order bilinear groups of Lewko and Waters is described as follows:

PKS.KeyGen(1λ ): This algorithm first generates the asymmetric bilinear groups G,Ĝ of prime order p of
bit size Θ(λ ). It chooses random elements g,w ∈ G and ĝ ∈ Ĝ. Next, it chooses random exponents
ν ,φ1,φ2 ∈ Zp and sets τ = φ1 + νφ2. It selects random exponents α,x,y ∈ Zp and sets u = gx, û =
ĝx,h = gy, ĥ = ĝy. It outputs a private key SK = (g,u,h,gα) and a public key as

PK =
(

w1 = wφ1 ,w2 = wφ2 ,w, ĝ, ĝν , ĝ−τ , û, ûν , û−τ , ĥ, ĥν , ĥ−τ , Ω = e(g, ĝ)α
)
.
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PKS.Sign(M,SK): This algorithm takes as input a message M ∈ {0,1}k where k < λ and a private key
SK = (g,u,h,gα). It selects random exponents r,c1,c2 ∈ Zp and outputs a signature as

σ =
(

W1,1 = gα(uMh)rwc1
1 ,W1,2 = wc1

2 ,W1,3 = wc1 ,

W2,1 = grwc2
1 ,W2,2 = wc2

2 ,W2,3 = wc2
)
.

PKS.Verify(σ ,M,PK): This algorithm takes as input a signature σ on a message M ∈{0,1}k under a public
key PK. It first chooses a random exponent t ∈ Zp and computes verification components as

V1,1 = ĝt ,V1,2 = (ĝν)t ,V1,3 = (ĝ−τ)t ,

V2,1 = (ûMĥ)t ,V2,2 = ((ûν)Mĥν)t ,V2,3 = ((û−τ)Mĥ−τ)t .

Next, it verifies that ∏
3
i=1 e(W1,i,V1,i) ·∏3

i=1 e(W2,i,V2,i)
−1 ?

= Ωt . If this equation holds, then it outputs
1. Otherwise, it outputs 0.

We can safely move the elements w1,w2,w from the private key to the public key since these elements
are always constructed in the security proof of the IBE scheme. However, this PKS scheme does not support
multi-user setting and public re-randomization since the elements g,u,h are not given in the public key.

B Multi-Signature

In this section, we construct a multi-signature (MS) scheme with short public parameters and prove its
existential unforgeability under a chosen message attack.

B.1 Definitions

A multi-signature (MS) scheme consists of six PPT algorithms Setup, KeyGen, Sign, Verify, Combine,
and MultVerify, which are defined as follows: The setup algorithm Setup(1λ ) takes as input a security
parameter λ , and outputs public parameters PP. The key generation algorithm KeyGen(PP) takes as in-
put the public parameters PP, and outputs a public key PK and a private key SK. The signing algorithm
Sign(M,SK) takes as input a message M, and a private key SK. It outputs a signature σ . The verification
algorithm Verify(σ ,M,PK) takes as input a signature σ on a message M under a public key PK, and out-
puts either 1 or 0 depending on the validity of the signature. The combining algorithm Combine(σ ,M,PK)
takes as input signatures σ on a message M under public keys PK = (PK1, . . . ,PKl), and outputs a multi-
signature MS. The multi-verification algorithm MultVerify(MS,M,PK) takes as input a multi-signature
MS on a message M under public keys PK = (PK1, . . . ,PKl), and outputs either 1 or 0 depending on the
validity of the multi-signature. The correctness requirement is that for each PP output by Setup(1λ ), for all
(PK,SK) output by KeyGen(PP), and any M, we have that Verify(Sign(M,SK),M,PK) = 1 and for each
σ on message M under public keys PK, MultVerify(Combine(σ ,M,PK),M,PK) = 1.

The security notion of existential unforgeability under a chosen message attack is defined in terms of
the following experiment between a challenger C and a PPT adversary A:

Setup: C first initialize the certification list CL as empty. Next, it runs Setup to obtain public parameters
PP and KeyGen to obtain a key pair (PK,SK), and gives PP,PK to A.

Certification Query: A adaptively requests the certification of a public key by providing a key pair
(PK,SK). C adds the key pair (PK,SK) to CL if the private key is a valid one.
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Signature Query: A adaptively requests a signature by providing a message M to sign under the challenge
public key PK, and receives a signature σ .

Output: Finally, A outputs a forged multi-signature MS∗ on a message M∗ under public keys PK∗. C
outputs 1 if the forged signature satisfies the following three conditions, or outputs 0 otherwise: 1)
MultVerify(MS∗,M∗,PK∗) = 1, 2) The challenge public key PK must exists in PK∗ and each public
key in PK∗ except the challenge public key must be in CL, and 3) The message M∗ must not have
been queried by A to the signing oracle.

The advantage of A is defined as AdvMS
A = Pr[C = 1] where the probability is taken over all the randomness

of the experiment. A MS scheme is existentially unforgeable under a chosen message attack if all PPT
adversaries have at most a negligible advantage in the above experiment.

B.2 Our MS Scheme

The MS scheme derived from the PKS scheme does not require to re-randomize the randomness of multi-
signatures in the combine algorithm since each signer uses a fresh random value. However, it requires all
signers to share the elements g,u,h in the public parameters. The MS scheme in prime order groups is
described as follows:

MS.Setup(1λ ): This algorithm first generates the asymmetric bilinear groups G,Ĝ of prime order p of bit
size Θ(λ ). It chooses random elements g,w ∈ G and ĝ, v̂ ∈ Ĝ. Next, it chooses random exponents
ν1,ν2,ν3,φ1,φ2,φ3 ∈ Zp and sets τ = φ1 +ν1φ2 +ν2φ3,π = φ2 +ν3φ3. It selects random exponents
x,y ∈ Zn and computes u = gx,h = gy, û = ĝx, ĥ = ĝy. It publishes public parameters as

PP =
(

g,u,h, w1 = wφ1 ,w2 = wφ2 ,w3 = wφ3 ,w, ĝ, ĝν1 , ĝν2 , ĝ−τ ,

û, ûν1 , ûν2 , û−τ , ĥ, ĥν1 , ĥν2 , ĥ−τ , v̂, v̂ν3 , v̂−π
)
.

MS.KeyGen(PP): This algorithm takes as input the public parameters PP. It selects a random exponent
α ∈Zp and computes Ω = e(g, ĝ)α . Then it outputs a private key SK = α and a public key as PK = Ω.

MS.Sign(M,SK): This algorithm takes as input a message M ∈ {0,1}k where k < λ and a private key
SK = α . It selects random exponents r,c1,c2 ∈ Zp and outputs a signature as

σ =
(

W1,1 = gα(uMh)rwc1
1 ,W1,2 = wc1

2 ,W1,3 = wc1
3 ,W1,4 = wc1 ,

W2,1 = grwc2
1 ,W2,2 = wc2

2 ,W2,3 = wc2
3 ,W2,4 = wc2

)
.

MS.Verify(σ ,M,PK): This algorithm takes as input a signature σ on a message M under a public key PK.
It first chooses random exponents t,s1,s2 ∈ Zp and computes

V1,1 = ĝt ,V1,2 = (ĝν1)t v̂s1 ,V1,3 = (ĝν2)t(v̂ν3)s1 ,V1,4 = (ĝ−τ)t(v̂−π)s1 ,

V2,1 = (ûMĥ)t ,V2,2 = ((ûν1)Mĥν1)t v̂s2 ,V2,3 = ((ûν2)Mĥν2)t(v̂ν3)s2 ,V2,4 = ((û−τ)Mĥ−τ)t(v̂−π)s2 .

Next, it verifies that ∏
4
i=1 e(W1,i,V1,i) ·∏4

i=1 e(W2,i,V2,i)
−1 ?

= Ωt . If this equation holds, then it outputs
1. Otherwise, it outputs 0.
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MS.Combine(σ ,M,PK): This algorithm takes as input signatures σ = (σ1, . . . ,σl) on a message M ∈ Zp

under public keys PK = (PK1, . . . ,PKl) where PKi = Ωi. It first checks the validity of each signature
σi by calling Verify(σi,M,PKi). If any signature is invalid, then it halts. It then outputs a multi-
signature for a message M as

MS =
(

S1,1 =
l

∏
i=1

W i
1,1, S1,2 =

l

∏
i=1

W i
1,2, S1,3 =

l

∏
i=1

W i
1,3, S1,4 =

l

∏
i=1

W i
1,4,

S2,1 =
l

∏
i=1

W i
2,1, S2,2 =

l

∏
i=1

W i
2,2, S2,3 =

l

∏
i=1

W i
2,3, S2,4 =

l

∏
i=1

W i
2,4

)
.

MS.MultVerify(MS,M,PK): This algorithm takes as input a multi-signature MS on a message M under
public keys PK = (PK1, . . . ,PKl) where PKi = Ωi. It first chooses random exponents t,s1,s2 ∈ Zp

and computes

V1,1 = ĝt ,V1,2 = (ĝν1)t v̂s1 ,V1,3 = (ĝν2)t(v̂ν3)s1 ,V1,4 = (ĝ−τ)t(v̂−π)s1 ,

V2,1 = (ûMĥ)t ,V2,2 = ((ûν1)Mĥν1)t v̂s2 ,V2,3 = ((ûν2)Mĥν2)t(v̂ν3)s2 ,V2,4 = ((û−τ)Mĥ−τ)t(v̂−π)s2 .

Next, it verifies that ∏
4
i=1 e(S1,i,V1,i) ·∏4

i=1 e(S2,i,V2,i)
−1 ?

= ∏
l
i=1 Ωt

i . If this equation holds, then it
outputs 1. Otherwise, it outputs 0.

The multi-signature MS = (S1,1, . . . ,S2,4) is a valid multi-signature on a message M under public keys
PK with randomness r̃ = ∑

l
i=1 ri, c̃1 = ∑

l
i=1 ci,1, c̃2 = ∑

l
i=1 ci,2 where ri,ci,1,ci,2 are random values in σi. The

multi-signature on a message M under public keys PK = (PK1, . . . ,PKl) has the following form

S1,1 = g∑
l
i=1 αi(uMi

i hi)
r̃wc̃1

1 , S1,2 = wc̃1
2 , S1,3 = wc̃1

3 , S1,4 = wc̃1 ,

S2,1 = gr̃wc̃2
1 , S2,2 = wc̃2

2 , S2,3 = wc̃2
3 , S2,4 = wc̃2 .

B.3 Security Analysis

Theorem B.1. The above MS scheme is existentially unforgeable under a chosen message attack if the PKS
scheme is existentially unforgeable under a chosen message attack. That is, for any PPT adversaryA for the
above MS scheme, there exists a PPT algorithm B for the PKS scheme such that AdvMS

A (λ )≤ AdvPKS
B (λ ).

Proof. Suppose there exists an adversary A that forges the above MS scheme with a non-negligible advan-
tage ε . A simulator B that forges the PKS scheme is given: a challenge public key PKPKS = (g,u,h,w1, . . . ,
v̂−π ,Ω). Then B that interacts with A is described as follows: B first constructs PP = (g,u,h,w1, . . . , v̂−π)
and PK∗ = Ω from PKPKS. Next, it initialize a certification list CL as an empty one and gives PP and PK∗

to A. A may adaptively request certification queries or signature queries. If A requests the certification
of a public key by providing a public key PKi = Ωi and its private key SKi = αi, then B checks the key
pair and adds (PKi,SKi) to CL. If A requests a signature by providing a message M to sign under the chal-
lenge private key of PK∗, then B queries its signing oracle that simulates PKS.Sign on the message M for
the challenge public key PK∗, and gives the signature to A. Finally, A outputs a forged multi-signature
MS∗ = (S∗1,1, . . . ,S

∗
2,4) on a message M∗ under public keys PK∗ = (PK1, . . . ,PKl) for some l. Without loss

of generality, we assume that PK1 = PK∗. B proceeds as follows:
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1. B first check the validity of MS∗ by calling MultVerify. Additionally, the forged signature should not
be trivial: the challenge public key PK∗ must be in PK∗, and the message M must not be queried by
A to the signing oracle.

2. For each 2≤ i≤ l, it parses PKi = Ωi from PK∗, and it retrieves the private key SKi = αi of PKi from
CL. It then computes

W1,1 = S∗1,1 ·
l

∏
i=2

(
gαi

)−1
, W1,2 = S∗1,2, W1,3 = S∗1,3, W1,4 = S∗1,4,

W2,1 = S∗2,1, W2,2 = S∗2,2, W2,3 = S∗2,3, W2,4 = S∗2,4.

3. It outputs σ = (W1,1, . . . ,W2,4) as a non-trivial forgery of the PKS scheme since it did not make a
signing query on M1.

To finish the proof, we first show that the distribution of the simulation is correct. It is obvious that the
public parameters, the public key, and the signatures are correctly distributed. Next we show that the output
signature σ = (W1,1, . . . ,W2,4) of the simulator is a valid signature for the PKS scheme on the message M1
under the public key PK∗ since it satisfies the following equation

4

∏
i=1

e(W1,i,V1,i) ·
4

∏
i=1

e(W2,i,V2,i)
−1 =

4

∏
i=1

e(S∗1,i,V1,i) ·
4

∏
i=1

e(S∗2,i,V2,i)
−1 · e(

l

∏
i=2

gαi , ĝt)−1

=
l

∏
i=1

Ω
t
i ·

l

∏
i=2

Ω
−t
i = Ω

t
1 = Ω

t .

This completes our proof.

C Aggregate Signature in Composite Order Groups

We construct a SAS scheme in composite order groups and prove its existential unforgeability under a
chosen message attack.

C.1 Bilinear Groups of Composite Order

Let N = p1 p2 p3 where p1, p2, and p3 are distinct prime numbers. Let G and GT be two multiplicative cyclic
groups of same composite order n and g be a generator of G. The bilinear map e : G×G→ GT has the
following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zn, e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order N, that is, e(g,g) is a generator of GT .

We say that G is a bilinear group if the group operations in G and GT as well as the bilinear map e are
all efficiently computable. Furthermore, we assume that the description of G and GT includes generators
of G and GT respectively. We use the notation Gpi to denote the subgroups of order pi of G respectively.
Similarly, we use the notation GT,pi to denote the subgroups of order pi of GT respectively.
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C.2 Complexity Assumptions

We introduce three static assumptions under composite order bilinear groups. These three assumptions were
used by Lewko and Waters [21].

Assumption C.1 (Subgroup Decision) Let (N,G,GT ,e) be a description of the bilinear group of composite
order N = p1 p2 p3. Let gp1 ,gp2 ,gp3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The assumption
is that if the challenge tuple

D = ((N,G,GT ,e),gp1 ,gp3) and T,

are given, no PPT algorithm B can distinguish T = T0 = X1 from T = T1 = X1R1 with more than a negligible
advantage. The advantage of B is defined as AdvA1

B (λ ) =
∣∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]

∣∣ where the
probability is taken over random choices of X1 ∈Gp1 and R1 ∈Gp2 .

Assumption C.2 (Generalized Subgroup Decision) Let (N,G,GT ,e) be a description of the bilinear group
of composite order N = p1 p2 p3. Let gp1 ,gp2 ,gp3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The
assumption is that if the challenge tuple

D = ((N,G,GT ,e),gp1 ,gp3 ,X1R1,R2Y1) and T,

are given, no PPT algorithm B can distinguish T = T0 = X2Y2 from T = T1 = X2R3Y2 with more than a
negligible advantage. The advantage of B is defined as AdvA2

B (λ ) =
∣∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]

∣∣
where the probability is taken over random choices of X1,X2 ∈Gp1 , R1,R2,R3 ∈Gp2 , and Y1,Y2 ∈Gp3 .

Assumption C.3 (Composite Diffie-Hellman) Let (N,G,GT ,e) be a description of the bilinear group of
composite order N = p1 p2 p3. Let gp1 ,gp2 ,gp3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The
assumption is that if the challenge tuple

D = ((N,G,GT ,e),gp1 ,gp2 ,gp3 ,g
a
p1

R1,gb
p1

R2) and T,

are given, no PPT algorithm B can distinguish T = T0 = e(gp1 ,gp1)
ab from T = T1 = e(gp1 ,gp1)

c with more
than a negligible advantage. The advantage ofB is defined as AdvA3

B (λ )=
∣∣Pr[B(D,T0)= 0]−Pr[B(D,T1)=

0]
∣∣ where the probability is taken over random choices of a,b,c ∈ ZN , and R1,R2 ∈Gp2 .

C.3 Our PKS Scheme

We describe our composite order PKS scheme derived from the composite order IBE scheme of Lewko and
Waters [21]. This PKS scheme follows the transformation of Naor [8] that the private key of an IBE scheme
can be the signature of a PKS scheme. Compared to the direct PKS scheme of Lewko and Waters, this PKS
scheme has x,y in the private key to support signature aggregation and Y in the public key. Note that this
scheme supports multi-user setting and public re-randomization since g,u,h are given in the public key. The
PKS scheme is described as follows:

PKS.KeyGen(1λ ): This algorithm first generates the bilinear group G of composite order N = p1 p2 p3
where p1, p2 and p3 are random primes of bit size Θ(λ ). It chooses random elements g∈Gp1 ,Y ∈Gp3

and random exponents x,y,α ∈ ZN . Then it outputs a private key SK = (α,x,y) and a public key as

PK =
(

g,u = gx,h = gy,Y,Ω = e(g,g)α
)
.
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PKS.Sign(M,SK): This algorithm takes as input a message M ∈ {0,1}k where k < λ and a private key
SK = (α,x,y). It selects a random exponent r ∈ ZN and random elements Y1,Y2 ∈Gp3 . It then outputs
a signature as

σ =
(

W1 = gα(uMh)rY1, W2 = grY2
)
.

PKS.Verify(σ ,M,PK): This algorithm takes as input a signature σ on a message M under a public key PK.
It first chooses a random exponent t ∈ ZN and verifies that

e(W1,gt) · e(W2,(uMh)t)−1 ?
= Ω

t .

If this equation holds, then it outputs 1. Otherwise, it outputs 0.

Theorem C.1. The above PKS scheme is existentially unforgeable under a chosen message attack if the
Assumptions C.1, C.2, and C.3 hold.

Proof. By the transformation of Naor, the security (indistinguishability under a chosen plaintext attacks) of
a slightly modified Lewko-Waters IBE scheme that has the Y ∈Gp3 in the public parameters instead of the
master key is reduced to the security (unforgeability under a chosen message attack) of this PKS scheme.
The security of the slightly modified Lewko-Waters IBE scheme is still secure under the Assumptions C.1,
C.2, and C.3 since an element gp3 is always given in the assumptions. This completes our proof.

C.4 Our SAS Scheme

The basic idea of our SAS scheme is that it uses the randomness reuse technique of Lu et al. [22] for
aggregation and then publicly re-randomizes the aggregate signature. The SAS scheme in composite order
groups is described as follows:

SAS.Setup(1λ ): This algorithm first generates the bilinear group G of composite order N = p1 p2 p3 where
p1, p2 and p3 are random primes of bit size Θ(λ ). Next, it chooses random elements g ∈ Gp1 and
Y ∈Gp3 . It publishes public parameters as PP = (g,Y ).

SAS.KeyGen(PP): This algorithm takes as input the public parameters PP. It selects random exponents
x,y,α ∈ ZN and sets u = gx,h = gy. Then it outputs a private key SK = (α,x,y) and a public key as
PK = (u,h,Ω = e(g,g)α).

SAS.AggSign(AS′,M′,PK′,M,SK): This algorithm takes as input an aggregate-so-far AS′ = (S′1,S
′
2) on

messages M′ = (M1, . . . ,Ml−1) under public keys PK′ = (PK1, . . . ,PKl−1) where PKi = (ui,hi,Ωi), a
message M ∈ {0,1}k where k < λ , a private key SK = (α,x,y) with PK = (u,h,Ω) and PP. It first
checks the validity of AS′ by calling SAS.AggVerify(AS′,M′,PK′). If AS′ is not valid, then it halts.
If the public key PK of SK does already exist in PK′, then it halts. Next, it selects a random exponent
r ∈ ZN and random elements Y1,Y2 ∈Gp3 , and outputs an aggregate signature as

AS =
(

S1 = S′1gα(S′2)
xM+y ·

l−1

∏
i=1

(uMi
i hi)

r(uMh)rY1, S2 = S′2 ·grY2
)
.
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SAS.AggVerify(AS,M,PK): This algorithm takes as input a sequential aggregate signature AS = (S1,S2)
on messages M = (M1, . . . ,Ml) under public keys PK = (PK1, . . . ,PKl) where PKi = (ui,hi,Ωi). It
first checks that any public key does not appear twice in PK and that any public key in PK has been
certified. If these checks fail, then it outputs 0. If l = 0, then it outputs 1 if S1 = S2 = 1, 0 otherwise.
It chooses a random exponent t ∈ ZN and verifies that

e(S1,gt) · e(S2,
l

∏
i=1

(uMi
i hi)

t)−1 ?
=

l

∏
i=1

Ω
t
i.

If this equation holds, then it outputs 1. Otherwise, it outputs 0.

The aggregate signature AS = (S1,S2) is a valid sequential aggregate signature on messages M′||M under
public keys PK′||PK with randomness r̃ = r′+ r where S′2 = gr′Y ′2. The sequential aggregate signature has
the following form

S1 =
l

∏
i=1

gαi
l

∏
i=1

(uMi
i hi)

r̃Ỹ1, S2 = gr̃Ỹ2.

C.5 Security Analysis

Theorem C.2. The above SAS scheme is existentially unforgeable under a chosen message attack if the PKS
scheme is existentially unforgeable under a chosen message attack.

Proof. Suppose there exists an adversaryA that forges the above SAS scheme with a non-negligible advan-
tage ε . A simulator B that forges the PKS scheme is given: a challenge public key PKPKS = (g,u,h,Y,Ω =
e(g,g)α). Then B that interacts with A is described as follows: B first constructs PP = (g,Y ) and PK∗ =
(u,h,Ω = e(g,g)α) from PKPKS. Next, it initialize a certification list CL as an empty one and gives PP
and PK∗ to A. A may adaptively request certification queries or sequential aggregate signature queries. If
A requests the certification of a public key by providing a public key PKi = (ui,hi,Ωi) and its private key
SKi = (αi,xi,yi), then B checks the private key and adds the key pair (PKi,SKi) to CL. If A requests a se-
quential aggregate signature by providing an aggregate-so-far AS′ on messages M′ = (M1, . . . ,Ml−1) under
public keys PK′ = (PK1, . . . ,PKl−1), and a message M to sign under the challenge private key of PK∗, then
B proceeds the aggregate signature query as follows:

1. It first checks that the signature AS′ is valid and that each public key in PK′ exits in CL.

2. It queries its signing oracle that simulates PKS.Sign on the message M for the challenge public key
PK∗ and obtains a signature σ .

3. For each 1≤ i≤ l−1, it constructs an aggregate signature on message Mi using SAS.AggSign since it
knows the private key that corresponds to PKi. The result signature is an aggregate signature for mes-
sages M′||M under public keys PK′||PK∗ since this scheme does not check the order of aggregation.
It gives the result signature AS to A.

Finally,A outputs a forged aggregate signature AS∗ = (S∗1,S
∗
2) on messages M∗ = (M1, . . . ,Ml) under public

keys PK∗ = (PK1, . . . ,PKl) for some l. Without loss of generality, we assume that PK1 = PK∗. B proceeds
as follows:

30



1. B first checks the validity of σ∗ by calling SAS.AggVerify. Additionally, the forged signature should
not be trivial: the challenge public key PK∗ must be in PK∗, and each message M1 must not be queried
by A to the signature query oracle.

2. For each 2≤ i≤ l, it parses PKi =(ui,hi,Ωi) from PK∗, and it retrieves the private key SKi =(αi,xi,yi)

of PKi from CL. It then computes W1 = S∗1 ·∏l
i=2

(
gα j(S∗2)

xiMi+yi
)−1 and W2 = S∗2.

3. It outputs σ = (W1,W2) as a non-trivial forgery of the PKS scheme since it did not make a signing
query on M1.

To finish the proof, we first show that the distribution of the simulation is correct. It is obvious that
the public parameters and the public key are correctly distributed. The sequential aggregate signatures is
correctly distributed since this scheme does not check the order of aggregation. Finally, we can show that
the result signature σ = (W1,W2) of the simulator is a valid signature for the PKS scheme on the message
M1 under the public key PK∗ since it satisfies the following equation

e(W1,gt) · e(W2,(uM1h)t)−1

= e(S∗1,g
t) · e(S∗2,(uM1h)t)−1 ·

l

∏
i=2

e(gαi ,gt)−1
l

∏
i=2

e((S∗2)
xiMi+yi ,gt)−1

= e(S∗1,g
t) · e(S∗2,(uM1h)t)−1 ·

l

∏
i=2

(Ωt
i)
−1

l

∏
i=2

e(S∗2,(u
Mi
i hi)

t)−1

= e(S∗1,g
t) · e(S∗2,

l

∏
i=1

(uMi
i hi)

t)−1 ·
l

∏
i=2

(Ωt
i)
−1 =

l

∏
i=1

Ω
t
i ·

l

∏
i=2

(Ωt
j)
−1 = Ω

t
1.

This completes our proof.
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