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Abstract. In this paper we provide a corrected and generalized version
of the scheme presented at SOFSEM’2012 in our paper “Optimizing Seg-
ment Based Document Protection” (SOFSEM 2012: Theory and Practice
of Computer Science, LNCS 7147, pp. 566-575).
We develop techniques for protecting documents with restricted access
rights. In these documents so called segments are encrypted. Different
segments may be encrypted with different keys so that different user may
be given different access rights. Hierarchy of access rights is represented
by means of a directed acyclic access graph. The segments are encrypted
with keys - where each key corresponds to one node in the access graph.

The main feature of the access graph is that if there is an arch
−→
AB in

the graph, then all segments labelled with B can be decrypted with the
key corresponding to node A.
We show how to minimize the space overhead necessary for auxiliary
keying information stored in the document. We provide an algorithm
based on node disjoint paths in the access graph and key derivation based
on one-way functions. Our current solution, based on maximal weighted
matchings, provides an optimal solution for creating subdocuments, in
case when frequency of creating each subdocument is known.

Keywords: document protection, access rights, key management, key
hierarchy, directed acyclic graph

1 Introduction

We consider securing digital documents from unauthorized access. Since digital
documents can be copied and cryptographic mechanisms secure their integrity
the ease of creating the copies is not only an advantage, but also creates new
challenges: namely it is hard to protect the document from unauthorized access.

If the document has to be presented as a whole or not presented at all, then
protection via encryption is enough: the document becomes readable only for
a party that gets the decryption key (this approach is followed in particular in
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broadcast systems). The situation is different, if certain parts of a document
have to be disclosed selectively. In order to catch this situation the model of
segment based protection has been introduced.

Segment Based Document Protection Securing multiple parts of a docu-
ment in different ways is a concept that appeared many times the literature; for
recent application oriented work see [1],[2] and in particular the former version
of this paper [3]. The idea is the following:

– The document contents is encoded together with some auxiliary information
for management of access rights; in particular a standard XML-encoding can
be used.

– The documents contents is divided into segments, a segment is a part of
the document that is dedicated to the readers with exactly the same access
rights.

– Access to a segment is protected by encryption with a symmetric key that
is available only to the parties that are entitled to read this segment.

– Dependencies of access rights between segments are described by a directed
acyclic graph (dag) called access graph. Its nodes are segments of a document.
Access graph defines a partial ordering of segments: we say that A � B if
there is a directed path from node A to node B. The edges describe inherited
access rights. Namely, if A � B, then a user having the right to read segment
A should also be given possibility to decrypt and read segment B.

– A document stores public key information. A user having a key corresponding
to a segment A can use this meta-data to derive the key of any segment B
such that A � B.

Obviously, the access graph should be acyclic. The relation � need not to be
a linear ordering.

Our main goal is to minimize the size of auxiliary key information to be stored
in the document. However, computational complexity, flexibility, scalability and
simplicity of the solution are also important factors.

1.1 Preliminary Techniques

Linear schemes. Let the access graph define a linear ordering A1 � A2 �
. . . � Am. The keys may be derived using a one-way function F (see e.g. [4]):

– K1 is chosen at random,
– for i = 2, . . . ,m:

Ki := F (Ki−1) (1)

Then Ki is assigned to Ai, for i ≤ m.
Formula (1) can be used by a holder of Ki to derive the keys Ki+1, . . . , Km.

However, deriving K1, . . . , Ki−1 is infeasible due to one-wayness of F .
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Tree schemes. A similar solution can be applied if access graph is a tree ([5]):
if a node A has child nodes B1, . . .Bk, and K has been assigned to A, then for
i ≤ k the node Bi gets the key

Ki := Fi(K) (2)

where F1, . . . , Fk are distinct and unrelated one-way functions. For instance,

we can use a cryptographic hash function H and set: Fi(x)
def
= H(i, x). Another

solution would be that
Ki := H(K,A,Bi) (3)

In both cases we require strong cryptographic properties of H - immunity against
all kinds of related preimage attacks. For instance, given Ki and Kj , it should be
infeasible to derive K satisfying simultaneously Ki = Fi(K) and Kj = Fj(K),
as well as to derive Kt for t 6= i, j. Therefore the tree scheme requires stronger
functions than the linear scheme, where one-wayness seem to be sufficient.

Arbitrary posets. The interesting case is when the access graph is a poset
(see e.g. [6] and [2]). If we apply the same method as for trees, then we get into
troubles for each node B that have more than one incoming arcs. In this case
the key for B is derived in many conflicting ways. Designing F such that we get
the same values is generally hopeless, as this would mean creating conflicts of F
almost on demand.

A simple solution is to store an offset for the arcs of the access graph. Namely,
if a node C has two parent nodes A andB holding, respectively,KA andKB , then
the key KC is derived as KC := F (KA, A,C)⊕∆AC and KC := F (KB , B,C)⊕
∆BC , where ∆AC , ∆BC are the public offset stored for the arcs

−→
AC and

−−→
BC.

Obviously, ∆AC can be derived as KC ⊕ F (KA, A,C). If a node C has more
parent nodes, then we define nonzero offsets for all but one incoming arcs.

In order to save space, we can set (at most) one of the offsets to a string of
zeroes. Which offsets should be set to the zero string is the main topic of this
paper.

1.2 Document Encoding and Problem Statement

Let us restate our goals from [3]. We concern creating offsets in two cases:

linear scheme: in this case we use a number of node disjoint paths and assign
the keys along the paths according to Equation (1) – i.e. with the zero offsets.

tree scheme: in this case we embed a number of node disjoint trees and assign
the keys within each tree according to Equation (2) – i.e. with the zero
offsets.

In both cases the remaining offsets are determined as ⊕ of the keys on the ends
of the arch (if both are already determined).

If we decide to use a tree scheme or a linear scheme for key derivation in a
dag, we are faced with the following problems:
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Problem 1 ([3]). Given a dag G, embed some number of trees in G so that

– the embedded trees are node disjoint,
– the number of arcs that do not belong to any of embedded trees is minimal.

Problem 2 ([3]). Given a dag G, embed some number of paths in G so that

– the embedded paths are node disjoint,
– the number of arcs that do not belong to any of embedded paths is minimal.

2 Tree-Based Key Derivation

In [3] we have proposed the following greedy algorithm:

Algorithm 1

Input: dag G
Output: subgraph G′ of G that consists of a set of disjoint trees and contains the
maximal possible number of arcs

Algorithm:
Construct a reduced graph G′, a subgraph of G, in the following way:
for each node v ∈ G of indegree greater than 1 pick up an arbitrary arc with endpoint
v and remove all other arcs with endpoint v.

The construction has the following simple properties:

– G′ is a forest,
– the number of edges in G′ does not depend on the random choices,
– every forest which is a subgraph of G is a subgraph of some forest generated

by Algorithm 1.

For details see [3].

3 Sequential Key Derivation

The situation for node disjoint paths is more complicated. The example from
Fig. 1 shows that a greedy procedure may lead to suboptimal solutions.

Error in [3]. Unfortunately, Algorithms 2 (and Algorithm 3 as well) presented
in our paper [3] does not necessarily provide optimal solutions. The simplest
example is the access graph from Fig. 1. Algorithm 2 from [3] selects an arbitrary
node with indegree 0 and selects one of the outcoming edges for inclusion in the
final solution. In our case the algorithm must select v and then may choose either
arc −→vu or −→vw. Then the algorithm is called recursively for a reduced graph. In the
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Fig. 1. ([3]) Let us consider a dag consisting of arcs (v, u), (v, w) and (w, u) - a
triangle with source v and sink u. If during a greedy procedure we take the arc
(v, u) (or remove (v, w)), then the final solution will contain just one path with
a single arc. On the other hand, the optimal solution is the path (v, w), (w, u).

first case, no edge will be added in this stage and the final output will contain
only arc −→vu, which is not optimal.

This example also shows that Lemma 1 from [3] is false. The gap in the
proof is disregarding the case when an optimal solution already contains an arc
starting from a point v. In this case it might be impossible to remove this arc
from the solution and to include another arc starting from v.

New Algorithm. Below we present a simple Algorithm 2 that solves the prob-
lem of finding the maximal set of node disjoint paths. Execution of the algorithm
for an example dag is shown in Figure 2.

Algorithm 2

Input: dag G = (V,E)
Output: subgraph S of G that consists of node disjoint paths and contains the maximal
possible number of arcs

Algorithm:

1. construct bipartite graph H = (V ′, E′) where
V ′ = { xi : ∀ i ∈ V } ∪ { yi : ∀ i ∈ V } and
E′ = { 〈xi, yj〉 : ∀ (i, j) ∈ E }

2. find maximal matching for graph H
3. for each edge 〈xi, yj〉 that belongs to the maximal matching, add arc (i, j) to S

Now we argue that Algorithm 2 outputs an optimal solution.

Lemma 1. Output S of Algorithm 2 defines a family of disjoint paths in G that
contains the maximal possible number of arcs.

Proof. Consider a node i. Since at most one edge of the form 〈xi, yj〉 belongs to
the matching, there is at most one arc in S starting in i. So the outdegree of
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Fig. 2. Execution of the Algorithm 2 for an example dag.

each node in S is at most 1. Similarly, the matching contains at most one edge
of the form 〈xk, yi〉. Therefore, there is at most one arc in S with the endpoint
i. It follows that the indegree of each node in S is at most 1. As both indegree
and outdegree of each node in S is at most 1, it defines a set of node disjoint
paths.

On the other hand, it is easy to see that a set of node disjoint paths in
G defines a matching consisting of the same number of edges in the graph H
defined by Algorithm 2. Therefore any set of node disjoint paths in G does not
have more arcs than the number of edges in the maximal matching in G. ut

Let us observe that Algorithm 2 not only derives the optimal solution, but
it is also efficient – its time complexity is O(

√
|V ||E|) (see [7]).

4 Weighted Graphs

In this section we show that Algorithm 2 can be generalized to solve the open
problems formulated in [3]. Namely, in some application areas it might be useful
to generate subdocuments of a given document truncated to those segments that
are readable by some specific group of users. In this case we consider a subgraph
Ḡ of access right graph G with the following property: if v is a vertex in Ḡ, then
all arcs of the form (v, u) from G are also arcs of Ḡ. Therefore, a node v from Ḡ
has the same ancestors in Ḡ as in G. If D is an encoded document with access
graph G, we construct a new document D′ such that:

– D′ contains only those segments that correspond to the nodes of Ḡ, all
remaining segments are removed,

– D′ contains only those key information fields that correspond to the arcs of
Ḡ.

When truncated versions of a document D are concerned, then optimization
of key derivation scheme has to be reconsidered. We assume that for each sub-
document D′ of D we know fraction fr(D′) of users that obtain D′. Therefore
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the goal is to maximize the number of arcs in all documents, for which the offsets
need not to be stored: ∑

D′ subdocument of D

fr(D′) · gain(D′) (4)

where gain(D′) denotes the number of arcs in the access graph corresponding to
D′, for which there is no offset information.

Tree-based scheme. Given a node v in G of indegree higher than 1, Algo-
rithm 1 selects one of arcs with endpoint v. For the generalized scheme we need
to optimize the choice taking into account frequency data about access rights.
Namely, to each node w in G we associate frequency parameter fr(w) which
describes the fraction of users that are given the access rights corresponding to
w. We can easily see that the arc (u, v) is contained in the fraction fr(u) of all
documents assigned to the users. Therefore in order to minimize the value (4)
the modified Algorithm 1 for a node v selects an arc (u, v) such that

fr(u) = max{fr(u′)|(u′, v) is an arc in G} .

This minimizes the number of offset information regarding the arcs pointing to
v in all documents given to the users. As the choices done by the algorithm
at different nodes are not dependent, these leads to an optimal solution when
regarding the whole access graph.

Sequential scheme. For the sequential scheme we modify Algorithm 2 to solve
Maximum Weighted Bipartite Matching Problem instead of Maximum Bipartite
Matching Problem. The weight of an edge 〈xi, yj〉 is defined as fr(i). It is easy
to see that weight of the of a matching equals to the gain defined by (4).

As the time complexity of solving Maximum Weighted Bipartite Matching
Problem is O(|V ||E| log |V |) [8], finding the optimal solution is possible for access
graphs of realistic sizes.
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