
Computing endomorphism rings of
abelian varieties of dimension two

Gaetan Bisson

Abstract
Generalizing a method of Sutherland and the author for elliptic curves

[5, 1], we design a subexponential algorithm for computing the endomor-
phism ring structure of ordinary abelian varieties of dimension two over
finite fields. Although its correctness and complexity bound rely on sev-
eral assumptions, we report on practical computations showing that it
performs very well and can easily handle previously intractable cases.

Note. Certain results of this paper previously appeared in the author’s
thesis [2].

1 Introduction
Let A be an absolutely simple abelian variety of dimension g defined over

a field with q elements; its Frobenius endomorphism π admits a monic charac-
teristic polynomial χπ ∈ Z[t] of which the 2g complex roots have absolute value√
q. Pila [24] proved that this polynomial can be computed in time polynomial

in log(q). In the generic case where A is ordinary, χπ is irreducible and the en-
domorphisms of A form a discrete subring of maximal rank (an order) End(A)
of Q(π) that is unchanged by base field extensions.

Tate [28] showed that χπ not only encodes the cardinality of A over extension
fields but also uniquely identifies its isogeny class. The endomorphism ring
structure of an abelian variety is a finer invariant than χπ which is better suited
to isogeny-related problems such as those considered in [16] and has also found
constructive applications to cryptography, for instance in [27].

Kohel [17] first addressed the computation of this structure and obtained
an exponential method for ordinary elliptic curves. It was recently improved
by Sutherland and the author [5] yielding an algorithm with subexponential
complexity under heuristic assumptions that were later proved to hold under
the generalized Riemann hypothesis [1]. Although Kohel’s method does not
extend to dimensions g > 1 [7, Example 8.3], other exponential methods exist
for arbitrary g, namely those of Eisenträger and Lauter [13], and of Wagner [29].

This paper generalizes the techniques of [5, 1] to ordinary abelian varieties of
dimension g = 2 and obtains the first subexponential algorithm for computing
their endomorphism rings; its asymptotic complexity is

L(q)g
2
√
3/2+o(1) where L(q) = exp

√
log(q) · log log(q)

as q goes to infinity. We stress that both its correctness and complexity bound
rely on heuristic assumptions besides the generalized Riemann hypothesis, and
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require the exclusion of a zero-density set of worst-case varieties. In practice,
we find that our algorithm performs very well on examples of moderate size.
When relevant, we avoid specializing the variable g to 2 in our complexity
estimates, as they would also hold for g > 2 if certain tasks turned out to be
computationally feasible; see Section 6.

Section 2 discusses the relation between isogenies and endomorphism rings
on which our algorithm, outlined in Section 3, is based. Sections 4 and 5 then
explain how short relations are generated and corresponding isogenies evaluated.
Heuristic assumptions and worst cases are reviewed in Section 6, while practical
runtimes are reported in Section 7.

2 Isogenies and Endomorphism Rings
We assume some familiarity with abelian varieties, isogenies, and endomor-

phism rings; we refer to [10, Chapter V] for background material and to [25] for
complex multiplication.

Consider again an absolutely simple, ordinary abelian variety A of dimension
g defined over a field with q elements, and fix an isomorphism of its endomor-
phism algebra Q(π) = Q ⊗ End(A) with a number field K; this field is called
the complex multiplication field of A and is a totally imaginary quadratic exten-
sion of a totally real number field K0 of degree g. Waterhouse [30] showed that
the endomorphism rings of abelian varieties isogenous to A are exactly those
orders of K that contain Z[π, π], where π = q/π; they form a finite lattice (in
the set-theoretic sense of the word) with supremum the ring of integers OK .

Following Fouquet and Morain [14], we say that an isogeny φ : A → B is
horizontal when End(A) and End(B) are the same order in K, and vertical
otherwise. In a sense, horizontal isogenies are the prevalent case.

Lemma 2.1. If φ : A → B is an isogeny with kernel isomorphic to (Z/`Z)g,
the index [End(A) + End(B) : End(A) ∩ End(B)], which we call the distance
between the orders End(A) and End(B), is a divisor of `2g−1.

Proof. Since φ splits the multiplication-by-` map, we have `End(A) ⊂ End(B)
and, the latter being an order, we further have Z+ `End(A) ⊂ End(B); we thus
obtain the lattice of Figure 1. As they are indices of the form [O : Z+ `O], the
products bcd, ace, and cde are all equal to `2g−1 which implies bcd · ace/cde =
`2g−1 and finally ab = `2g−1/c.

The distance between the endomorphism rings of isogenous abelian varieties
necessarily divides the index [OK : Z[π, π]]; vertical isogenies thus only exist
for finitely many primes `. On the other hand, horizontal isogenies occur for a
positive density of primes `, which follows from the following result.

Theorem 2.2 ([25, §7], [30, §7]). For every ideal a of End(A), denote by φa

the quotient isogeny
A −→ A/

⋂
α∈a

ker(α).

If a is invertible and coprime to the characteristic, φa is a horizontal isogeny of
degree NK/Q(a) and all such isogenies arise in that way; this induces a free and
transitive action of cl(End(A)) on the isogeny class of A up to isomorphisms.
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Z+ `End(A) + `End(B)
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Z+ `End(A)
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Z+ `End(B)

d

Z+ `End(A) ∩ `End(B)

Figure 1: Lattice of orders for an isogeny A → B of kernel (Z/`Z)g.

However, isogenies cannot be computed efficiently unless abelian varieties
are equipped with polarizations, which this theorem disregards. From now on,
we will therefore assume that A is endowed with a principal polarization, and
require that morphisms preserve this extra structure; this implies that End(A)
is stable under complex conjugation. To state an equivalent to Theorem 2.2 in
this setting, we need a slightly different type of class group:

Definition 2.3. For any order O in a complex multiplication field K, denote
by IO the group consisting of all pairs (a, ρ) satisfying aa = ρO, where a is an
invertible fractional ideal of O and ρ is a totally positive element of K0, endowed
with component-wise multiplication; also, let PO be its subgroup formed by pairs
of the form (µO, µµ) for µ ∈ K. The quotient group IO/PO is called the
polarized class group of O and is denoted by C(O).

Note that this group is unchanged if we additionally require that a (and µ)
be coprime to a fixed integer ν; from now on, it will be understood that we
exclusively consider class representatives of this type with ν = disc(Z[π, π]).
By the following theorem, such elements correspond to horizontal isogenies that
preserve the polarization.

Theorem 2.4 ([25, §14]). Provided that End(A) is maximal, one can associate
a horizontal isogeny of degree NK/Q(a) to every (a, ρ) ∈ IEnd(A), where a is
coprime to the characteristic, so as to induce a free action of C(End(A)) on the
isogeny class of A up to isomorphisms.

For elliptic curves, this result coincides with Theorem 2.2 due to the unique-
ness of principal polarizations, and thus holds for non-maximal endomorphism
rings as well. It is also believed to hold for general endomorphism rings in higher
dimension, and we will assume that it does; see Section 6 for details on the
extent of our assumptions.
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3 Locating Endomorphism Rings
Our main idea to compute the endomorphism ring of A originates from

[5] and consists in locating it in the lattice of orders of K containing Z[π, π]
by comparing the structure of the graph of horizontal isogenies with that of
polarized class groups of candidate rings. Sections 4 and 5 describe this and
obtain the result below under the assumptions of Section 6, namely g = 2,
certain heuristics, and the exclusion of a zero-density set of varieties.

Proposition 3.1. Subject to the restrictions listed in Section 6, Algorithm 5.4
determines whether End(A) contains a prescribed order O with negligible error
probability using an expected

L(|disc(O)|)g
√
3/2+o(1)

operations in the base field.

This enables us to test whether End(A) = OK in subexponential time,
a particular case that was deemed sufficient for early complex multiplication
methods in dimension two [15]. Nevertheless, to compute the endomorphism
ring entirely (as newer methods require [18]), we must first bound the number
of orders containing Z[π, π] and their discriminants.

Lemma 3.2. We have:

|disc(Z[π, π])| < 4g(2g−1)qg
2

,

[OK : Z[π, π]] < 2g(2g−1)qg
2/2.

Proof. All 2g complex roots of χπ have absolute value√q, so we have |disc(χπ)| <
(2
√
q)2g(2g−1). The bounds then follow from the classical relation [O : O′]2 =

disc(O′)/disc(O) and, for the first one, the identity [Z[π, π] : Z[π]] = qg(g−1)/2

and, for the second one, the triviality |disc(OK)| > 1.

These bounds are nearly tight so there might be exponentially many candi-
date endomorphism rings; to efficiently locate End(A) among them, we perform
an n-ary search in the lattice of orders using the following algorithm borrowed
from [1].

Algorithm 3.3.
Input: An absolutely simple, ordinary, principally polarized abelian variety A

of dimension g defined over a field with q elements.
Output: The endomorphism ring of A.

1. Compute the Frobenius polynomial χπ of A.
2. Factor its discriminant and construct the order O′ = Z[π, π].
3. For orders O directly above O′:
4. If O ⊂ End(A), set O′ ← O and go to Step 3.
5. Return O′.

By directly above, we mean that O contains O′ and no order lies strictly
between them; the distance between two such orders necessarily divides `2g−1

for some prime factor ` of [OK : Z[π, π]], since O′ must then contain Z+ `O.
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For Step 2, we use the unconditional factoring method of Lenstra and Pomer-
ance [20]; its complexity is L(|disc(χπ)|)1+o(1), that is, at most L(q)g

√
2+o(1).

Alternatively, one may rely on the number field sieve [19] which has a heuristi-
cally better runtime.

Theorem 3.4. Subject to the restrictions listed in Section 6, the expected run-
ning time of Algorithm 3.3 is bounded by

L(q)g
2
√
3/2+o(1).

Proof. Section 6.1 will show that enumerating the orders directly above a given
one can almost always be done in negligible time compared to the overall com-
plexity. The bottleneck of our algorithm is thus Step 4, which by Proposition 3.1
uses L(|disc(Z[π, π])|)g

√
3/2+o(1) operations. Using Lemma 3.2, we may there-

fore bound the total complexity by L(q)g
2
√
3/2+o(1).

4 Evaluating Isogenies
The next section will establish Proposition 3.1 by exploiting Theorem 2.4:

to compare O to End(A), we will compare the structures of their polarized class
groups by testing whether trivial products in C(O) yield isogeny chains mapping
A to isomorphic varieties. This only requires us to compute isogenous varieties
φα(A) for given elements α ∈ IO, not to actually evaluate the isogenies φα and
push points of A through them; however, there is currently no way of doing the
former more efficiently than the latter.

In fact, evaluating isogenies in dimension g > 1 became feasible only recently
due to the work of Lubicz and Robert [22] implemented in the AVIsogenies
library [3]. At the time of this writing, only isogenies with maximal isotropic
kernel of degree coprime to the characteristic may be evaluated [11]; more pre-
cisely, we have the following result (see [11, Theorem 1.2] for a more explicit
statement specialized to g = 2):

Proposition 4.1. Let H be a given isotropic subgroup isomorphic to (Z/`Z)g
of an abelian variety of dimension g. The separable isogeny with kernel H can
be evaluated with a worst-case complexity of `3g+o(1) operations in the base field.

Prior to evaluating an isogeny, we must identify its kernelH as corresponding
to a given element (a, `) of the polarized class group C(Z[π, π]). Assuming that
a is a prime above some ` ∈ Z, and writing it as `O + f(π)O for some factor f
of χπ mod `, we can take H to be the subgroup of A[`] on which the Frobenius
acts with characteristic polynomial f ; it is unique since we restrict to ideals a
coprime to ν = disc(Z[π, π]). In effect, this identification fixes an isomorphism
between Q⊗ End(A) and the complex multiplication field K (mapping a fixed
root of χπ to the Frobenius endomorphism) as was required in Section 2, and it
only matters that this be done consistently within a given isogeny class.

Points of H are defined over an extension field whose degree is the multi-
plicative order of x in Z[x]/(f)/(`), that is, at most NK/Q(a) − 1. Over that
extension, assuming that points of A can be drawn uniformly at random in an
efficient manner, the `-torsion subgroup of A can be computed using an algo-
rithm of Couveignes [12, §8].
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Once the isogenous abelian variety has been computed, we must find a rep-
resentative of its isomorphism class over the base field, so that this process can
be iterated. When g = 2, abelian varieties can be represented as Jacobian vari-
eties of hyperelliptic curves, which allows us to efficiently draw points uniformly
at random as well as to exploit the theory of invariants and Mestre’s algorithm
[23] in order to find representatives of isomorphism classes defined over the
smallest possible field (that is, the field of definition of H).

In dimension g > 3, where only general representations of abelian varieties
are available (such as those given by theta functions), there is to the best of
our knowledge no efficient method to draw points uniformly at random or to
find representatives of isomorphism classes defined over minimal fields. When
g = 3, abelian varieties can still be represented as Jacobian varieties of algebraic
curves, which gives a solution to the first problem, and we note that recent work
such as [21] comes close to solving the second one.

5 Generating Short Relations
To determine whether a given order O is contained in the endomorphism

ring of A, we generalize the approach of [5, 1]. It rests on Theorem 2.4 and the
simple result below.

Lemma 5.1. For any two orders O ⊂ O′ containing Z[π, π], the map (a, ρ) ∈
IO → (aO′, ρ) ∈ IO′ induces a natural morphism of polarized class groups
C(O) → C(O′); this morphism is surjective when restricted and corestricted to
elements such that ρ ∈ Q.

Denote by C′(O) the subgroup of C(O) formed by elements whose ρ are ra-
tionals. Now, define a relation as a tuple (α1, . . . , αk) of elements of C′(Z[π, π]),
say that it holds in O if the product α1 · · ·αk is trivial in C(O) through the map
of the above lemma, and that it holds in A if the corresponding isogeny chain
φα1
◦ · · · ◦ φαk

maps A to an isomorphic abelian variety. By Theorem 2.4, if
every relation that holds in O also does in A, the group C′(End(A)) must be a
quotient of C′(O), which is almost always equivalent to O ⊂ End(A) as we will
see in Section 6.2.

The computation of class groups of algebraic orders is a classical topic that
has led to the development of fast algorithms for generating ideal relations.
However, our requirement that corresponding isogenies be efficiently computable
places two additional constraints:

• Elements (αi) of our relations must correspond to maximal isotropic iso-
genies.

• Their number k and norms (NK/Q(αi)) must be bounded.

The latter constraint is already addressed in [1, §6] whose results and proofs
carry directly over to arbitrary dimension; we now explain how to additionally
satisfy the former.

Let Φ be a type for K, that is, a set of representatives for embeddings of K
into its normal closure Kc up to complex conjugation. Its type norm

NΦ : x 7−→
∏
φ∈Φ

φ(x)
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Figure 2: The complex multiplication field, its reflex field, and type norm maps.

maps K to its reflex field Kr, the fixed field of {σ ∈ Gal(Kc/Q) : σΦ = Φ},
and induces a morphism taking ideals a of K to elements (NΦ(a),NK/Q(a))
of C′(Or) for any order Or of Kr with discriminant coprime to ν. Types of
absolutely simple abelian varieties are primitive, which implies that Krr = K;
hence the type norm of the reflex type Φr, the restriction to Kr of inverses of
automorphisms of Kc induced by Φ, or reflex type norm, maps ideals of Kr to
C′(O) for any order O containing Z[π, π]. See Figure 2.

The image of NΦr in C(O) only contains elements for which the correspond-
ing isogenies can be computed via Proposition 4.1. Therefore, to generate rela-
tions of O as efficiently as evaluating the corresponding isogeny chains, we first
generate tuples of ideals (ai) whose product is principal in O using the method
of Buchmann [8] as modified in [1, §6], and then use the relation (NΦr NΦ(ai)),
whose total norm is

∑
NK/Q(ai)

g2 . Formally, this gives:

Algorithm 5.2.
Input: An order O and a parameter γ > 0.

Output: A relation holding in O whose associated isogeny can be computed efficiently.
1. Form the set B of prime ideals p of O with norm less than N = L(∆)γ .
2. Draw a vector x ∈ ZB uniformly at random with coordinates

|xp| < log(∆)4+ε when NK/Q(p) < log(∆)2+ε and xp = 0 otherwise.
3. Compute the reduced ideal representative a of

∏
pxp .

4. If a factors over B as
∏

pyp :
5. Return the relation containing NΦr (NΦ(p)) with multiplicity xp − yp for p ∈ B.
6. Go back to Step 2.

For details on Step 4 (and more generally on computing ideal relations in
number fields), we refer to [9]. From [8, Theorem 3.1], we obtain:

Proposition 5.3. Assuming that reduced ideals are as smooth as random inte-
gers, this algorithm generates a relation with total norm L(∆)g

2γ+o(1) in expected
time L(∆)γ+o(1) + L(∆)1/(4γ)+o(1).

The relations we so obtain form only a sublattice of all relations of C(O);
nevertheless, Section 6.2 will show that they suffice to uniquely characterize O
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from other orders containing Z[π, π] except locally at small primes and except
for a zero-density set of Weil numbers π. Similarly to [1, §6], one can prove that
those relations are quasi-uniformly distributed in this sublattice, so that log(q)
of them suffice to identify O with error probability at most 1/q.

To balance the cost of Algorithm 5.2 with that of evaluating corresponding
isogenies via Proposition 4.1, we set γ = 1/(2g

√
3). The proof of Proposition 3.1

can now be concluded with the following algorithm.

Algorithm 5.4.
Input: An absolutely simple, ordinary, principally polarized abelian variety A

of dimension g defined over Fq and an order O containing Z[π, π].
Output: Whether O ⊂ End(A).

1. Repeat log(q) times:
2. Find a relation (α1, . . . , αk) of C(O) using Algorithm 5.2.
3. If φα1

◦ · · · ◦ φαk
does not map A to an isomorphic variety, return false.

4. Return whether O ⊂ End(A) locally at small primes (see next section).

Note. Rather than generating independent relations for each order O of the
lattice to be tested, one might be tempted to first compute the full class group
structure of the maximal order OK and then deduce relations of smaller orders
O via the exact sequence:

1→ O× → O×
K → (OK/f)×/(O/f)× → Pic(O)→ Pic(OK)→ 1

where f is the conductor of O, that is, the largest ideal of both O and OK . This
has two disadvantages: first, computing class groups is much more expensive
than generating just log(q) relations; second, the relations of O given directly
by the exact sequence above grow linearly in the index [OK : O], and deriving
subexponential-size relations requires using an algorithm similar to 5.2 anyway.

6 Assumptions and Worst Cases
Throughout this paper, we have made the following assumptions:

(1) Theorem 2.4 holds for non-maximal orders. (Section 2)

(2) Orders directly above a given one can be enumerated in subexponential
time. (Section 3)

(3) Isogenies A → A/a can effectively be evaluated over the base field. (Sec-
tion 4)

(4) No two orders have the same polarized class group structure. (Section 5)

(5) Reduced ideals are as likely to be smooth as integers of comparable size.
(Section 5)

We have seen in Section 4 that Assumption (3) is satisfied when g = 2, and
we restrict to this case. Assumptions (1) and (5) are well-established heuristics
which we gladly accept. Assumptions (2) and (4) do not hold in general but
we will now show that they do outside of a zero-density set of abelian varieties
A/Fq of fixed genus g, as q goes to infinity.
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6.1 Enumerating orders
The lattice of orders containing Z[π, π] typically consists entirely of orders

that are either minimal or maximal locally at large primes `; indeed, integers
v = [OK : Z[π, π]] are not likely to be divisible by squares of large primes. More
precisely, for any τ > 0, we have

#
{
v ∈ {1, . . . , n} : ∃` ∈ P>L(n)τ , `

2|v
}
≤

∑
`∈P>L(n)τ

n

`2
≤ n

L(n)τ
,

which is negligible compared to n as it goes to infinity; therefore, assuming that v
has similar divisibility properties to random integers less than n = 2g(2g−1)qg

2/2

(as per Lemma 3.2), only a zero-density set of abelian varieties of dimension
g over Fq have lattices of orders that, locally at some prime ` > L(n)τ , have
height greater than 1.

Discarding that set, there is only one order directly above (resp. below) any
given one locally at large primes `, and they can be found using a Gröbner basis
algorithm [2, §iii.2.3] in time subexponential in log(q). Locally at primes ` ≤
L(n)τ , we resort to the much more direct method of enumerating all subgroups
of 1

`O/O and selecting those which are orders; this takes time polynomial in
`, that is, subexponential in log(q), and we select τ small enough so that this
complexity is negligible compared to our overall complexity bound.

6.2 Orders with identical class group structure
To compute endomorphism rings locally at small primes `, we rely on the

direct method of Eisenträger and Lauter [13, §6.5], which uses `2gv+o(1) opera-
tions in the base field, where v is the valuation of [OK : Z[π, π]] at `. As above,
to ensure that this cost is negligible relative to our overall complexity bound,
we make τ > 0 small enough and omit the zero-density set of abelian varieties
for which this index is divisible by a power greater than L(q)τ of a prime less
than L(q)τ .

Consequently, we only need to show that the set of relations generated by
Algorithm 5.2 (that is, the image through the map NΦr NΦ of the set pO of ideals
of Z[π, π] that are principal in O) discriminates O from other orders of the
lattice locally at every prime ` > L(q)τ , and we may assume that such primes
` only divide the index [OK : Z[π, π]] with multiplicity 1. To establish this, let
O′ be another order containing Z[π, π] such that NΦr NΦ(pO) ⊂ PO′ where PO′

is as in Definition 2.3. From [26, Lemma i.8.4], we have the identity

NΦr NΦ(a) = NK/Q(a)a/a

from which it follows that the square of any element (a, α) ∈ PO is principal if
and only if NΦr NΦ(a) is. Therefore, NΦr NΦ(pO) ⊂ PO′ implies P 2

O ⊂ PO′ and
hence

ker(C(O◦)→ C(O))2 ⊂ ker(C(O◦)→ C(O′))

where O◦ = O ∩ O′. Since, locally at all primes ` > L(q)τ , either O = O′ or
one of them is maximal, we may apply [4, Theorem 5.1] which establishes that
O ⊂ O′ except possibly if ` divides M · NK0/Q disc(K/K0) where M is a fixed
integer. We thus discard yet another zero-density set of abelian varieties, namely
those for which M ·NK0/Q disc(K/K0) and [OK : Z[π, π]] have a common prime
factor greater than L(q)τ . See [4] for details.
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6.3 Certifying the result
As an aside, let us describe how one may certify the output endomorphism

ring O under Assumption (1), using relations that discriminate O from other
orders of the lattice.

Definition 6.1. A certificate for an order O consists of:

• a family of orders Oi and relations ri that hold in Oi but not in O,

• a family of orders Oj and relations rj that hold in O but not in Oj,

such that O is the only order containing Z[π, π] satisfying Oi 6⊂ O and Oj 6⊃ O
for all i and j.

As a direct consequence of Theorem 2.4, the endomorphism ring of an abelian
variety A with Frobenius endomorphism π is O if and only if the isogenies corre-
sponding to the rj ’s map A to isomorphic varieties while those corresponding to
the ri’s do not. In practice, the Oi’s can be chosen to be all orders considered
in Step 3 of Algorithm 3.3 found not to be contained in O = End(A) and the
Oj ’s to be all orders directly below O.

When two orders O and O′ cannot be distinguished using relations, the same
technique can be used except locally at prime factors of [O + O′ : O ∩ O′];
the verification process then takes on the additional burden of verifying the
endomorphism ring locally at those primes. Since they are almost always small,
the associated cost is asymptotically negligible; therefore, by Propositions 4.1
and 5.3, it takes L(q)gγ+o(1)+L(q)g/(4γ)+o(1) time to generate a certificate that
can subsequently be verified in L(q)3g

3γ+o(1) operations, for any γ > 0.

7 Practical Computations
We give two examples illustrating different patterns for the index v = [OK :

Z[π, π]]. Previous algorithms [13, 29] compute endomorphism rings efficiently
when A[`n] remains defined over small extension fields as `n ranges through
prime-power factors of v, while ours performs well as soon as no order directly
above Z[π, π] has an overly large discriminant.

Computations reported here were performed by a straightforward Magma
[6] implementation using the AVIsogenies library [3] and running on one Intel
i7-2620M core.

7.1 Example with nearly prime v
Let us first consider a very favorable case where v is both large and nearly

prime, that of the Jacobian variety A of the hyperelliptic curve with equation

y2 = x5 + 523747x4 + 306186x3 + 744660x2 + 415524x+ 261884

over the field with q = 1250407 elements; its Frobenius endomorphism π admits
the characteristic polynomial z4+1251z3+1772074z2+1251qz+q2 from which
one can derive that Z[π, π] is an order of index v = 2 · 538259 in the ring of
integers of K = Q(π).
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We start by computing End(A) locally at 2, that is, determining whether it
contains the order in which Z[π, π] has index 2; this order is generated by π and
α/(2q) where

α = 417q + 1346084914086π + 497115559392π2 + π3.

To determine whether α/(2q) belongs to End(A) or, equivalently, whether α/2
does (as q is coprime to v), we use the method of Eisenträger and Lauter [13]: it
takes 102ms to determine that α kills the full 2-torsion of A, which establishes
that End(A) is locally maximal at 2.

Now denote by pp the factorization of 7 in Z[π, π] and observe that p is
principal in OK . We evaluate the corresponding isogeny, spending 10.9s to find
its kernel and 1.37s to identify the isogenous variety; since it is not isomorphic
to A we have established, in just 12.3s, that

End(A) ' Z[π, α/(2q)].

This computation is clearly intractable using previous algorithms: the full
538259-torsion of A is defined over an extension of degree e = 869166638466, so
it would require a rough minimum of log(qe) log(qeg) ≈ 290 operations just to
find a random 538259-torsion point.

7.2 Example with composite v
For a less degenerate case, let A be the Jacobian variety of the curve with

equation
y2 = x5 + 800x4 + 2471x3 + 6695x2 + 1082x+ 7062

over the field with q = 7681 elements. It takes just 60ms to compute that the
characteristic polynomial of its Frobenius endomorphism is z4+114z3+7566z2+
114qz + q2 from which it takes negligible time to derive that Z[π, π] has index
22 · 472 · 379 in OK .

Again, we start by computing the endomorphism ring locally at 2 using the
method of Eisenträger and Lauter [13]. Only 75ms are needed to find a basis
for the full 2-torsion (the 4-torsion is not needed) and evaluate the relevant
endomorphism on it; this determined that End(A) contains the order O2 =
Z[π, π] + 472 · 379 · OK . Having established that, we may start Algorithm 3.3
from the order O2 instead of Z[π, π]; the two orders directly above O2 have
index 379 and 472 in OK .

First consider that of index 472: in just 100ms we find that ideals of norm
32 have order 92 in its class group. Computing the 92 corresponding isogenies
takes 37s, that is, 400ms on average. As the isogenous variety is not isomorphic
to A, we deduce that End(A) is minimal locally at 47.

Next we consider the order with index 379; after 150ms, we find that the
ideal p62(rs)2 is principal in it, where the primes appear in the splittings 3 = pp
and 19 = rsrs. We therefore proceed to test whether the corresponding relation
holds in A: it takes 67s on average to compute each of the two 19-isogenies, and
400ms for each of the 3-isogenies. The isogenous variety, which is determined
after a total of 157s, is not found to be isomorphic to A, hence we deduce that
End(A) is the order containing Z[π, π] with index 4.
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Note that the full 47-torsion and full 379-torsion live over extensions of
degree 34592 and 13609890 respectively, which again makes computing End(A)
using previous methods quite expensive.

This illustrates that, even when the orders in which we look for relations have
moderate class numbers, the bottleneck of our algorithm remains the evaluation
of isogenies. Accordingly, in both computations above, we have used a simple
baby-step giant-step method in place of Algorithm 5.2, which allowed us to find
much smaller relations and therefore to better balance the cost of evaluating
isogenies with that of searching for relations.

Overall, we find that our algorithm clearly outperforms previous methods
as soon as the index [OK : Z[π, π]] has prime power factors `n for which the
torsion points live over significant extensions of the base field, although those
methods are still very useful to compute the endomorphism ring locally at small
primes.
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