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Abstract

In this paper the ID-based signcryption scheme of Li, Xin, and Hu is
extended to a compartmented scheme. If an organization is partitioned
into different compartments, this scheme allows any member of a specific
compartment to participate in the unsigncryption; moreover, each mem-
ber of a compartment has information unique to that individual. This
construction is the first (to the authors’ knowledge) to combine identity-
based encryption, Shamir’s threshold scheme, and signcryption into an
implementable compartmented sharing scheme.

1 Introduction

In [10], Li, Xin, and Hu describe an ID-based signcryption scheme that uses a bi-
linear map to accomplish (t, n) shared unsigncryption with the help of Shamir’s
secret sharing scheme. Here we describe a way to extend Li et. al.’s construc-
tion into a compartmented scheme. For our compartmented scheme, suppose
the organization O is split into several compartments Ci, i ∈ {1, . . . , t}. In order
to unsigncrypt a message sent to O, at least one member of each of the t com-
partments must participate; without cooperation from each compartment, the
message cannot be unsigncrypted. What’s more, each member Mij ∈ Ci gets
different information, so although any Mij can participate equally, we don’t
have all of Ci doing the exact same thing.

In what follows, we generally follow the terminology and notation of [10],
with a few exceptions. Most notably, uppercase letters usually denote elements
in an additive group G1, lowercase letters denote elements in a multiplicative
group G2, Greek letters are used for elements of Fq, and script letters generally
denote compartments or members thereof.
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2 Preliminaries

Here we briefly discuss the basic tools needed for our scheme, namely

1. Bilinear maps or pairings

2. Shamir’s threshold scheme

3. Signcryption

4. Baek & Zheng’s zero knowledge proof for the equality of two discrete
logarithms based on a bilinear map

We also cite relevant references for readers wishing more in-depth coverage of
these interesting topics.

2.1 Bilinear Maps

Here we will discuss bilinear maps in a somewhat general setting, though most
commonly authors focus on those taking as input rational points on an elliptic
curve over a finite field. Let G1 be a cyclic group written additively and G2

be a cyclic group written multiplicatively (with identity element 1) such that
both have the same prime order q. A bilinear map or pairing is a function
ê : G1 ×G1 → G2 that satisfies the following properties:

1. Bilinearity. For any P,Q ∈ G1 and α, β ∈ F∗q , we have ê(αP, βQ) =
ê(P,Q)αβ

2. Non-degeneracy. There exists P,Q ∈ G1 such that ê(P,Q) 6= 1; ergo if
〈P 〉 = G1 then 〈ê(P, P )〉 = G2.

3. Efficient Computability. For all P,Q ∈ G1, the pairing ê(P,Q) can be
computed efficiently (say, in polynomial time).

In the elliptic curve settings, two popular bilinear maps are the Weil pairing
and the Tate pairing; see [5, 13, 15] for details. The Weil pairing was used in
Boneh & Franklin’s scheme in [2] that gave a solution to the problem originally
posed by Shamir in [12].

2.2 Shamir’s Threshold Scheme

In [11], Shamir developed a simple and elegant method to share a secret piece
of information amongst n people such that no less than some threshold value
t of them must cooperate to recover that secret. This scheme uses polynomial
interpolation over a finite field; if we suppose that the secret piece of information
s is encoded as some element of the field, we then construct a random polynomial
f of degree t− 1 such that f(0) = s (so s is the constant term). If we give the
pair (i, f(i)) to the ith person in our scheme, for 1 ≤ i ≤ n, then via Lagrange
interpolation any group of t people can first reconstruct the polynomial f and

2



then evaluate f(0) to recover s. Furthermore, because no group of t − 1 or
less people will suffice to recover the polynomial, this scheme is information-
theoretically secure. For more, see the original paper [11]; [14] extends the idea
of secret sharing to multipartite and compartmented schemes, while [3, 7, 8] and
[9] discuss some ways to share secrets in various settings. To our knowledge,
however, none of these include identity-based encryption and the next topic:
signcryption.

2.3 Signcryption

In [16], the author put forth a new idea that combines the steps of digitally
signing and encrypting a message—traditionally two separate procedures—that
drastically reduces the computational and communication costs involved. Later
work extended this idea to include other cryptographically desirable features,
such as non-repudiation, public-verifiability, and forward security (see [10]). Re-
cently made into an international standard, signcryption has gained increasing
popularity with researchers and implementers alike. For more information, see
the original [16]; [17] demonstrates how to implement signcryption using ra-
tional points on elliptic curves over finite fields (important candidates for the
additive group G1 in our scheme). More information, including an extensive
bibliography, can be found online at signcryption.org.

2.4 Baek & Zheng’s zero knowledge proof for the equality
of two discrete logarithms based on a bilinear map

Per [1] and [10], the zero knowledge proof of membership for the language

L
EDLog

G2
P, eP

def= {(x, x̃) ∈ G2 ×G2 | logg x = logeg x̃}
(where g = ê(P, P ) and g̃ = ê

(
P̃ , P̃

)
for generators P and P̃ of the additive

cyclic group G1) ensure the robustness of our threshold decryption. Provided
that the Decisional Diffie-Hellman problem is hard in G2 and the Computational
and Decisional Bilinear Diffie-Hellman Problems are difficult in (G1, G2, ê), the
basic idea is as follows: suppose both the Prover and the Verifier receive the
tuple

(
P, P̃ , g, g̃

)
and the pair (k, k̃) ∈ L

EDLog
G2
P, eP . Moreover, suppose the Prover

knows a secret S ∈ G∗1 such that k = ê(S, P ) and k̃ = ê(S, P̃ ); then

1. The Prover chooses at random an element R ∈ G∗1, computes a = ê(R,P )
and ã = ê(R, P̃ ), and sends a and ã to the Verifier.

2. The verifier picks γ ∈ F∗q at random and sends it to the Prover.

3. The Prover computes T = R + γS and sends it to the Verifier. If (and
only if) the two equalities

akγ = ê(T, P ) ãk̃γ = ê(T, P̃ )
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hold, the Verifier believes that the Prover knows the secret S since

ê(T, P ) = ê(R+ γS, P ) = ê(R,P )ê(S, P )γ = akγ

and
ê(T, P̃ ) = ê(R+ γS, P̃ ) = ê(R, P̃ )ê(S, P̃ )γ = ãk̃γ

For more, including how to adapt the above into a non-interactive zero
knowledge proof, see [1].

3 The Proposed Compartmented Scheme

Suppose we have an organization O consisting of n people split into t compart-
ments Ci, each consisting of members Mij . In addition, we have a Private Key
Generator (P) who acts as the trusted authority and a sender Alice (A) who
wishes to send a message to the compartments Ci ⊂ O. There are four stages:
Setup, Extraction, Signcryption, and Unsigncryption.

3.1 Setup

P first chooses two groups of large prime order q: an additive group G1 and
a multiplicative group G2. P also picks a generator P of G1, a bilinear map
ê : G1 ×G1 → G2, and four hash functions

H1 : {0, 1}∗ → G1

H2 : G2 → {0, 1}∗

H3 : {0, 1}∗ ×G2 → F∗q
H4 : G2 ×G2 ×G2 → F∗q

Finally, P chooses a secret master key s ∈ F∗q , computes Ppub = sP , and
publishes the tuple

(G1, G2, n, ê, P, Ppub, H1, H2, H3, H4, E,D)

where E and D are the encryption and decryption steps of some fast symmetric
key cipher (like AES; see [6]).

3.2 Extraction

In what follows, given an ID (identifying information considered as a bit string),
the public key P generates for that ID is QID = H1(ID), the private signcryp-
tion key is SID = s−1QID, and the private decryption key is DID = sQID.

Since P uses IDO to compute QO, SO, and DO and wishes to pass infor-
mation to each Ci in such a way that some cooperation is required to put DO
back together, she randomly picks Rk ∈ G∗1, k ∈ {1, . . . , t−1}, and constructs a
function f : {0, 1}∗ → G1 via f(u) = DO +

∑t−1
1 ukRk (treating u as a binary

expansion of some positive integer). Then, for each Ci ⊂ O, P:
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1. Computes Di = f(IDi), the private decryption key for Ci

2. Computes yi = ê(Di, P ), the public verification key for Ci

3. For each Mij ∈ Ci, P:

(a) Chooses a random µij ∈ F∗q
(b) Privately sendsMij the triple (Di, Pij , yij) =

(
Di, (1 + µij)Di, y

µij

i

)
4. Finally, P publishes the table

{(IDi, yi, {(IDij , yij)}} = (ID1, y1, (ID1,1, y1,1), (ID1,2, y1,2), . . .
(ID2, y2, (ID2,1, y2,1), (ID2,2, y2,2), . . .
...

3.3 Signcryption

To send the message m to O, Alice computes the signcrypted text (c, r, S) as
follows:

1. She chooses a random x ∈ F∗q

2. k1 = ê(P,QA)x

3. k2 = H2(ê(QA, QO)x)

4. c = Ek2(m)

5. r = H3(c, k1)

6. S = (x− r)SA

3.4 Unsigncryption

After members Mij from each of the t compartments Ci assemble, they first
verify Alice’s signature; then each Mij individually:

1. Computes k′1 = ê(S, Ppub)ê(QA, P )r

2. Accepts Alice’s signature if and only if r = H3(c, k′1)

Next, each Mij picks two random points Bij and Tij ∈ G1 and uses Bij to
certify that they belong to Ci and Tij to certify their decryption share. While
the latter is accomplished in exactly the same manner as in [10], Mij does the
former as follows:

3. Construct credentials κij using Bij , where

κij = (P̃ij , zij) = (Pij +Bij , yij ê(Bij , P ))
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4. Send credentials κij to each of the other Mk`

5. Check each of Mk`’s credentials by testing whether

yk =
ê(P̃k`, P )

zk`

Once everyone’s credentials are established, the rest of unsigncryption con-
tinues as in [10].

4 Analysis of Scheme

We discuss the effects to correctness, security, and efficiency of the changes we
have made to [10]’s original scheme. As such, our analysis is based on that of
[10], especially where it makes use of [1]’s zero knowledge proof of membership.

4.1 Correctness

Observe that

ê(P̃k`, P )
zk`

=
ê(Pk`, P )Ê(Bk`, P )

yk`ê(Bk`, P )

=
ê ((1 + µk`)Dk, P )

yµk`

k

=
ê(Dk, P )ê(Dk, P )µk`

yµk`

k

= ê(Dk, P )
= yk

So κk` does indeed certify that Mk` belongs to and can speak for the com-
partment Ck. The correctness of the rest of our scheme can be proven in exactly
the same manner as [10].

4.2 Security

Because the signcryption process in our scheme is the same as in [10] (which in
turn is the same as in [4]), our scheme has the same existential unforgeability
against chosen plaintext attacks in the random oracle model as those schemes,
provided that the Computational Bilinear Diffie-Hellman Problem is difficult in
the groups and pairing underlying an implementation of our scheme.

What’s more, our scheme doesn’t change the level of confidentiality either;
assuming the Decisional Bilinear Diffie-Hellman Problem is hard in (G1, G2, ê),
our scheme enjoys the same indistinguishability against adaptive chosen cipher-
text attacks in the random oracle model. During unsigncryption, no less than
t cooperating members of different compartments suffice to recover the key k2

6



(and hence the message). Giving different randomly obfuscated versions of the
same information to members of the same compartment does nothing to lessen
this fact. Recovery of DO is also computationally infeasible due to the difficulty
of inverting the pairing ê. Finally, the use of Baek and Zheng’s zero knowledge
proof ensures that each member participating in unsigncryption is protected
against the possibility of dishonesty from any of the others.

The public verifiability of our extended scheme remains intact, since any
third party can verify the signature via the first two steps of the Unsigncryp-
tion stage.

We also still keep forward security, since it remains difficult to compute k′2
without DO, even if SA is leaked.

4.3 Efficiency

With a slight modification to [10]’s notation, let Tp, Tm, and Te be the computing
time required for calculating a pairing, point multiplication, and exponentiation,
respectively. Note that our scheme still requires 2Tp+Tm+2Te for signcryption
and (2t + 4)Tp + Tm + (3t − 1)Te for Mij , just like the original scheme. The
main bottleneck in this scheme is the random point choices performed by P; if
we assume that P has a fast pseudorandom number generator, then the time
this takes is essentially (2n+ 1)Tm, just like in [10].

The efficiency picture can be improved, though; instead of having P choose
eachMij ’s point, it could instead choose t points and send them to t secondary
generators Pi, one for each compartment. These secondary generators can then
randomize those points and distribute the relevant information to the members
of their respective compartments. Though this doesn’t reduce the work involved
(and it requires having more trusted authorities, or rather semi-trusted author-
ities), it does allow our scheme to parallelize one of its major, one-time steps.
Hence our scheme lends itself better to implementation using modern computing
methods (i.e. parallel computation) than does [10].

5 Conclusion

In this paper we demonstrated how a small modification to Li, Xin, and Hu’s
scheme ([10]) extends it into a compartmented scheme, allowing a sender to
address a message to an organization O and requiring different compartments
Ci ⊂ O to cooperate for the message’s recovery. In doing so, we do not lose
any of the security or efficiency features of [10]’s scheme—in fact, we can even
parallelize one of the main stages. To the authors’ knowledge, our scheme is
the first that combines identity-based encryption, Shamir’s secret sharing, and
signcryption into a compartmented sharing scheme that can be implemented
with available algorithms and software.

This scheme incorporates a naturally parallelizable step, and is likewise nat-
urally applicable to modern situations. For instance, this scheme could very
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easily be used in cloud computing to synchronize information passed to dif-
ferent groups or clusters from a single host. As another example, one could
use this scheme for authenticated and signcrypted communication in a business
setting; for example, the shared secret could be an expected return message
to acknowledge receipt of an important document or the scheduling of an im-
portant meeting. In future work, we hope to investigate deeper into questions
such as increasing the efficiency of our scheme or reducing the reliance upon the
trusted private key generator P.
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