
Secret Sharing and Secure Computing from Monotone Formulae

Ivan Bjerre Damg̊ard, Jonas Kölker, Peter Bro Miltersen∗

Department of Computer Science, Aarhus University

Abstract

We present a construction of log-depth formulae for various threshold functions based on
atomic threshold gates of constant size. From this, we build a new family of linear secret
sharing schemes that are multiplicative, scale well as the number of players increases and allows
to raise a shared value to the characteristic of the underlying field without interaction. Some
of these schemes are in addition strongly multiplicative. Our formulas can also be used to
construct multiparty protocols from protocols for a constant number of parties. In particular
we implement black-box multiparty computation over non-Abelian groups in a way that is much
simpler than previously known and we also show how to get a protocol in this setting that is
efficient and actively secure against a constant fraction of corrupted parties, a long standing
open problem. Finally, we show a negative result on usage of our scheme for pseudorandom
secret sharing as defined by Cramer, Damg̊ard and Ishai.

1 Introduction

1.1 A new Construction of Monotone Boolean Formulae

It is well known that there exist log-depth formulae using and and or gates that compute the
majority function, this was shown by Valiant [7] using a probabilistic method. In this paper we
first present a variant of of Valiant’s construction that produces log-depth formulae for the majority
function using T (2, 3) gates, where T (k,m) denotes the Boolean function that outputs 1 if and only
if at least k of its m inputs are 1. A slight extension of the argument shows that one can efficiently
construct such a formula using a procedure that succeeds with overwhelming probability1.

The formulae we construct can be used to construct new secret sharing schemes and protocols,
as we explain below. None of of these constructions would follow from Valiant’s original result.
This is because the type of gate(s) used in the formula is important for the properties of the secret-
sharing scheme or protocol we can build, and and/or gates do not gives us any of the properties
we are after. We also note that existence of some formula for majority using T (2, 3) gates follows
from the work of Hirt and Maurer [6], however that result leads to exponential size formulae.

∗An upcoming version of this paper will include Gil Cohen, Yuval Ishai, Ran Raz and Ron Rothblum as coauthors
and will contain several additional results.

1The construction appears in a set of lecture notes from 1992 by the third author and later appears to have been
discovered independently by several other researchers. We have not been able to find it in any published paper,
however.

1

In the standard model for computing with Boolean formulae, it is trivial that a formula for
computing majority can be used to compute other thresholds by setting some of the inputs to
constant values. However, to be useful in our context, a formula cannot use constants. To get the
more general results we describe below, we therefore need to extend the method for constructing
formulae to other basic gates than T (2, 3). This extension is new to the best of our knowledge.

1.2 New Secret-Sharing Schemes

A secret sharing scheme can be thought of as a probabilistic algorithm that takes a secret s chosen
from a finite set and outputs a set of n shares of s. The scheme typically has a threshold t < n
such that any subset of the shares of size at most t contains no information on s, whereas s can
be computed efficiently from any t + 1 or more shares. A subset from which the secret can be
computed is called qualified.

Secret sharing schemes are essential tools in multiparty computation (MPC) protocols. Here a
set of n players wish to compute an agreed function on some inputs they each hold. We want the
computation to be secure which roughly speaking means to ensure that the result is correct and
that the result is the only new information released, even if up to t players are corrupted by an
adversary. A standard approach to MPC is to secret share the inputs initially, give a share of each
input to each player, and compute on the shares rather than the inputs. This leads to protocols
secure against t corrupted players. The best known secret sharing schemes such as Shamir’s are
defined over finite fields, which leads to protocols that securely compute arithmetic circuits over
the field. For instance, most of the computation one needs to do AES encryption can be naturally
described by arithmetic over the field F28 .

In this paper, we construct a family of secret sharing schemes that have new useful properties.
We first present the construction mentioned above of log-depth monotone formulae for the majority
function, based on T (2, 3)-gates. The construction is generalized to other basic gates, such as
T (2, 4)-gates, where the function computed by the large formula is the T (0.232n, n) function. From
these formulae, families of linear secret sharing schemes over any finite ring follow immediately
from a variant of the construction of Benaloh and Leichter[2], and we can also get integer secret
sharing schemes by a simple variant of the construction. If the formula we use computes the T (k, n)
threshold function, then the qualified sets will be those that have at least k members. We also get
some additional useful properties:

Efficiency: The schemes are efficient, i.e., the number of field elements each player receives when
a secret is shared increases polynomially with n, the number of players.

Multiplicativity: The scheme based on T (2, 3)-gates is multiplicative, i.e., if two secrets a, b have
been shared, then players can locally compute c1, . . . , cn such that ab =

∑
i rici, where the

ri are fixed and public. When using T (2, 4)-gates, we get a strongly multiplicative scheme,
i.e., if t is the size of a maximal unqualified set, then the reconstruction of ab by linear
combination can be done by any set of n − t players, i.e., the corrupted players cannot stop
the computation.

Additive Reconstruction: The reconstruction of a secret takes place by simply adding the
shares, and moreover, the ri’s from the definition of the (strongly) multiplicative property
are all 1.

2

The multiplication property is necessary for use of a secret-sharing scheme in MPC. Note that
although we could also get secret sharing schemes from Valiant’s original formula construction,
these schemes would not be multiplicative.

The additive reconstruction property comes in handy in MPC, as follows: Since the secret
sharing schemes used are typically linear, secure addition and multiplication by constants can be
done with only local operations, whereas multiplications require interaction. However, the mapping
x 7→ xp where p is the characteristic of the field is special in that it is an additive homomorphism,
we have (x + y)p = xp + yp. This now immediately implies that if x has been secret shared using
one of our schemes, one can obtain shares in xp by only local operations, every player raises each
field element he holds to power p. Note that this does not work for schemes where reconstruction
requires a linear combination using arbitrary coefficients (except if we work over a prime field, but
here raising to power p is the identity).

In particular, the above means that using our schemes in characteristic 2, squaring is essentially
for free.

Some known linear secret sharing schemes also have additive reconstruction, for instance so
called replicated secret sharing (for details, see [3]). These are not efficient, however.

1.3 Black-Box Computation over Non-Abelian Groups

A related usage of monotone formulae in cryptography is to use them to build, not just secret
sharing schemes, but multiparty computation protocols. This was suggested by Hirt and Maurer
[6]. The idea is very similar to the way secret-sharing schemes are built: if the formula uses T (2, 3)-
gates, then one starts from a 3 party protocol, secure against one corrupted player. If the protocol
has certain nice properties (that we consider later in detail), then based on the formula, one can
construct an n-party protocol where n is the number of input bits to the formula. If we let subsets
of players correspond to n-bit strings where a bit is set if the corresponding player is in the subset,
then the protocol will be secure against corruption of those subsets that the formula rejects. If the
formula has logarithmic depth, the resulting protocol will typically be efficient, i.e., run in time
polynomial in n.

In [6], the goal was to compute Boolean or arithmetic circuits securely, and to have security,
not just for so-called threshold adversaries, but for general adversary structures, where the sets the
adversary may corrupt are not necessarily characterized by their size.

In this paper, we observe than even for the threshold case, the idea of using monotone formulae
can be very useful, namely for the case of black-box secure computing over non-abelian finite groups.
Here, the goal is to compute securely the product of some elements taken from a group G, and the
protocol must work by using only the group operation, taking inverses and random sampling from
G. This problem is complete for multiparty computation in general. This follows from a result by
Barrington [1].

The black-box computing problem was considered in [5], where a passively secure protocol was
obtained, secure against corruption of t < n/2 parties. The construction of the general protocol is
highly non-trivial and uses some rather deep results on coloring of planar graphs.

Here, we observe that from a protocol for three players and our monotone formulas computing
the majority function, we can obtain the same result using completely elementary methods. The
three-player solution from [5] can be used here as a building block. However, some additional work
is required because Hirt and Maurer’s approach is based on having certain sets of players emulate
the actions of “virtual” players in other instances of the protocol. Therefore, anything a player

3

does locally must be implemented by a secure protocol. The protocol from [5] only provides secure
multiplication of secret-shared group elements, so we must construct new protocols for sampling
random group elements and inverting a shared group element.

Our observation also opens the door to obtaining a protocol with active security, which was
a main open problem in [5]. Active security was also considered very recently in [4], where an
actively secure protocol for any so called Q3 adversary structure was presented. This is optimal
as far as resilience is concerned, but in general the protocol is very inefficient: the complexity
is polynomial in the size of the adversary structure which is usually exponential in the number
of players. Building a protocol with complexity polynomial in the number of players with active
security against a constant fraction of corrupted players was left as an open problem in [4].

In this paper we solve the problem by first building protocols for 12 players that is secure against
1 actively corrupted player. This can then be combined with a formula built from T (2, 12) gates
to get a polynomial time n-player protocol secure against active corruption of a constant fraction
≈ 0.017 of players. The threshold could be improved significantly if we could build a (set of)
protocol(s) with the right properties for 4 players that is secure against 1 actively corrupted player,
but so far we were not able to do this. Note that while the result from [4] implies a 4-player protocol
for secure multiplication this is not enough by itself. In addition to the extra protocols for random
sampling and inversion that we needed for the passive case, we now also need comparison and this
must be all compatible with the secret sharing of group elements used by the multiplication. This
can be done for the 12-player protocol we mentioned, but at the time of writing we do not yet know
if can be done for the 4-player case.

1.4 A Negative Result for Share Conversion.

In the final part of the paper we consider the notion of pseudorandom secret sharing (PRSS)
introduced in [3], which is a tool that allows players to generate consistent shares from some
secret sharing scheme using only local computation, and where the secret is pseudorandom in the
view of the adversary. In [3] a PRSS construction was proposed and a lower bound was shown
demonstrating that PRSS cannot scale well with the number of players, if the target secret-sharing
scheme is in a certain class. Our scheme from this paper is not in this class, and furthermore, it
is based on so called replicated secret sharing which was the basis of the positive result on PRSS
from [3]. It is therefore very natural to speculate that our scheme could be used to circumvent the
lower bound. However, this turns out not to be the case, we show how to strengthen the bound
from [3] to cover any secret-sharing scheme.

2 Formulae for the Majority Function

A 2-out-of-3 threshold gate is a function on 3 bits that outputs 1 if at least 2 of input bits are 1,
and 0 otherwise. Now, the main result of this section is that first of all, formulas of 2-of-3 gates for
the majority function of low height exist, and secondly that for sufficiently large height they are
abundant. In both cases, the formulas have height O(log n), where n = 2m + 1 is the number of
input bits.

Consider full monotone formulas of height d, i.e. with
∑d−1

i=0 3i (inner) threshold gates and 3d

(leaf) input gates. We want to argue that if we pick a random such formula, i.e. given the height
we uniformly choose an input bit position 3d times, this randomly picked formula will compute the

4

majority function with good probability; from this, the two above results will follow.

Lemma 1. For some constants a and b and every d ≥ a+ b log2 k, consider full formulas of 2-of-3
gates of height d. For any bit string v, a randomly chosen such formula computes the majority
function on v with probability exceeding 1− (12)2

k
.

Proof. Let F be such a randomly picked formula of height d and let v ∈ {0, 1}n be a fixed bit vector.
Let pd be the probability over the choice of F that F doesn’t compute the majority function on
input v; that is, pd := Pr(F (v) 6= MAJ(v)).

We can express pd recursively:

p0 = Pr(vi 6= MAJ(v)) ≤ m

2m+ 1
=

1

2
− 1

2n

and
pd+1 = Pr(Th23(F1(v), F2(v), F3(v)) 6= MAJ(v)) = p3d − 3p2d(1− pd) = 3p2d − 2p3d,

for some formulas F1, F2 and F3, where Thab is the a-of-b threshold function.
Consider then the function f(x) = 3x2−2x3 and the sequence p0, f(p0), f(f(p0)), . . .; this is the

probability that F computes something wrong (i.e. not the majority function) and this probability
quickly becomes small. More precisely, we want to show that limi→∞ f

(i)(p0) = 0, with a precise
analysis of the depth required to go below 2−k.

Observe first that f(x) − x has roots in {0, 12 , 1} and so f has exactly that set of fixed points.
Note also that the sequence starts in p0 ∈ [0, 12 [, and that f(12 − ε) = 1

2 −
3
2ε+ 2ε3. Let 0 < γ < 3

2

and ε0 = (12(32 − γ))
1
2 . Then for all ε ∈]0, ε0[we have pd ≤ 1

2 − ε⇒ pd+1 = f(pd) <
1
2 − γε.

By induction, this means that after d iterations of f , f (d)(p0) <
1
2 − γ

d 1
2n whenever γd 1

2n < ε0
or equivalently d < logγ 2ε0 + logγ n, so let d0 := logγ 2ε0 + logγ n. Then f (dd0e)(p0) ≤ 1

2 − ε0.
This is when we bound f by the chord through (12 , f(12) = 1

2) with slope γ. Next, we want
to bound f by the chord through (16 , f(16) = 2

27) and (12 ,
1
2), which has slope 23

18 . Note that when
1
6 <

1
2 − ε <

1
2 , f(12 − ε) = 1

2 −
23
18ε, and so after d1 := log 23

18

1
6ε0

iterations, f (dd0+d1e)(p0) ≤ 1
6 . After

k further steps, f (dd0+d1+ke) < (3 · 16)2
k

= (12)2
k

since pd+1 < 3p2d.
So, choose a γ such that 1 < γ < 3

2 and compute ε0. Let a ≥ logγ 2ε0 + log 23
18

1
6ε0

and

b = 1 + logγ 2. Then for every d ≥ a + b log2 k the error probability is small, pd < (12)2
k
, and so

the probability that a formula of height d computes the majority function is 1− pd > 1− (12)2
k

as
claimed.

Corollary 1. For every n, there is a monotone formula of height d = da+b log2 ne which computes
the majority function, where a and b are as above.

Proof. A randomly chosen formula F of height d will compute the majority function on a fixed
input v except with probability strictly less than 2−n. But there are only 2n possible values of v,
so the wrong formulas are sparse, relative to the inputs. Formally speaking,

Pr(F = MAJn) ≥ 1−
∑
v

Pr(F (v) 6= MAJn(v)) = 1− 2npd > 1− 2n2−n = 0.

Since the probability of a random F computing the majority function is positive, there exists such
an F .

5

Corollary 2. There is a probabilistic polynomial-time algorithm for emitting a formula of depth
d = da+b log2 2ne which computes the majority function on n bits except with negligible probability.

Proof. The algorithm simply computes d and outputs a random formula F of height d. This
computes the majority function except with probability 2−2n. Then

Pr(F = MAJn) ≥ 1−
∑
v

Pr(F (v) 6= MAJn(v)) = 1− 2npd > 1− 2n2−2n = 1− 2−n,

and so the algorithm behaves as claimed.

For example, taking Th32(b1, b2, b3) to be the majority of three bits, one can straightforwardly
(somewhat laboriously) verify that the following formula computes the majority function on five
bits. We claim without proof that no formula of smaller height computes the same function.

Th32(x1, Th
3
2(x2, x3, x4), Th

3
2(x1, Th

3
2(x2, x3, x5), Th

3
2(x2, x4, x5)))

3 A Linear Secret-Sharing Scheme based on T (k,m) Formulae

A secret sharing scheme S is a probabilistic algorithm that takes as input a secret s (a bit string)
and a security parameter k, and outputs a set of shares S1, . . . , Sn. We require correctness, i.e., that
from certain subsets of the shares s is uniquely determined. Such sets are called qualified, and the
family of qualified sets is called the access structure. We will consider threshold-t access structures
that contain all sets of size larger than t. Finally, we require privacy: for any non-qualified set A of
players, let DA(s) be the joint distribution of shares given to A when s is the secret. Then privacy
simply means that DA(s) is that same for any s.

A linear secret sharing scheme (LSS) is a scheme where the secret s is chosen from a finite ring
R, and where each share Si is a tuple of ji elements in R, Si = (si,1, . . . , si,ti), the si,j ’s are called
share components. The shares are computed from the secret s and some some random elements
chosen from R. Furthermore, it must be the case that reconstruction of s can be done by taking
an integer linear combination of the share components. We say the scheme is multiplicative if the
following properties holds.

Definition 1. A LSS S is multiplicative if the following holds: suppose secrets a and b have been
shared using S. Consider the shares of a and b, Ai = (ai,1, ..., ai,ti), Bi = (bi,1, ..., bi,ti) held by the
i’th player and let ci,j = ai,jbi,j. The for a fixed set of integer coefficients αi,j we have:

ab =
n∑
i=1

ti∑
j=1

αi,jci,j (1)

Let C be the set of indices of players in the complement of any unqualified set. The scheme is said
to be strongly multiplicative if for any such C, there exists coefficients βi,j such that

ab =
∑
i∈C

ti∑
j=1

βi,jci,j

6

Put differently, once a and b have been shared, the shares can be locally converted to shares of ab
in a new LSS S ′, and the set of all players is qualified in S ′. If the scheme is strongly multiplicative,
the set of honest players is qualified in S ′.

A simple example of a multiplicative LSS is the following scheme S2/3, producing 3 shares where
any set of two shares is qualified: choose s1, s2 uniformly at random from R, and set s3 = s−s1−s2.
Then we set

S1 = (s2, s3), S2 = (s1, s3), S3 = (s1, s2).

This scheme is clearly a multiplicative LSS. One way to argue privacy is by considering the distri-
bution seen by any non-qualified set, when the secret is 0, and show that this is the same as the
one you get when the secret is s. This is trivial for S3, and for the other shares, for instance S1, it
follows from the fact that we can change the secret from 0 to s leaving S1 the same by replacing
s1 by s1 + s. This new choice has the same probability as the original one.

Given a Boolean formula F consisting of 2-out-of-3 threshold gates, we can construct a LSS
F (S2/3), as follows: we identify the input bits (b1, . . . , bn) of F with the shares that are to be
produced, and the share corresponding to an input bit bi contains one share component for each
position where F refers to b. The construction then works as follows:

Secret Sharing Scheme F (S2/3).

• If F consists of a single gate we execute S2/3 on input secret s.

• Otherwise, we have that

F (b1, . . . , bn) = T2/3(F1(b1, . . . , bn), F2(b1, . . . , bn), F3(b1, . . . , bn)),

for formulas F1, F2, F3 and where T2/3 is the 2-out-of-3 Boolean threshold gate. Now first
execute S2/3 on input secret s, to get share components s1, s2, s3. Then execute F1(S2/3)
twice, on input secret s2 and s3. Similarly, execute F2(S2/3) on s1, s3 and F3(S2/3) on s1, s2.

Note also that we only define this secret sharing scheme for formulas that are full; that is,
we require that the number of gates in a formula of height h is

∑h−1
i=0 3h. This can of course be

generalized to non-full trees (formulas), but this more restricted definition is sufficient for the results
in this paper, and it makes the proofs simpler.

Theorem 1. F (S2/3) is multiplicative, with all αi,j = 1.

Proof. Let a and b be given. We want to argue by induction on the height of the formula tree that
the secret sharing scheme is multiplicative, with all αi,j = 1.

So let’s first consider what happens if F is a single gate. Then a = a1+a2+a3 and b = b1+b2+b3;
the first player receives share components (a2, a3, b2, b3), player 2 receives (a1, a3, b1, b3) and player
3 receives (a1, a2, b1, b2). Note that ab =

∑3
i=1

∑3
j=1 aibj ; we let (c1,1, c1,2, c1,3) = (a2b2, a2b3, a3b2).

Similarly, (c2,1, c2,2, c2,3) = (a3b3, a1b3, a3b1) and (c3,1, c3,2, c3,3) = (a1b1, a1b2, a2b1). Then clearly
each player i can compute ci,1...3, and they sum up as desired: ab =

∑
i,j(1 · ci,j).

Next, consider what happens if F consists of multiple gates. We still have a = a1 + a2 + a3
and b = b1 + b2 + b3, with the same share tuples being given to each player, but now the share
components are themselves shared recursively.

Consider the ci,j defined above, e.g. c1,1...3 = (a2b2, a2b3, a3b2). Since F1 is used to reshare a2
and a3, and F1(S2/3) is (by induction hypothesis) a multiplicative LISS with all αi,j = 1, from the

7

shares given to player i one can compute c′i,(2,2),1, . . . , c
′
i,(2,2),ti,(2,2)

such that a2b2 =
∑

i,j c
′
i,(2,2),j .

Similarly, one can write a2b3 =
∑

i,j c
′
i,(2,3),j and vice versa for a3b2, and for the remaining players

and the share components of both a and b.
But then we can let ti =

∑
k,m ti,(k,m), summing over all (k,m) where player i reshares ak,m and

bk,m. We also let c′′1,1...t1 be the concatenation of all the ci,(·,·),j-values summing up to a2b2, a2b3
and a3b2, respectively. Similarly for c′′2,1...t2 and c3,1...t3 .

Then for all i we have
∑

j ci,j =
∑

j c
′′
i,j , and thus ab =

∑n
i=1

∑ti
j=1(1 · c′′i,j), which was exactly

what we wanted to show.

Theorem 2. F (S2/3) is a correct and private LSS.

Proof. If F is just a single gate, then F (S2/3) is equivalent to S2/3.
Otherwise, F (S2/3) = T2/3(F1, F2, F3) for some formulae F1, F2 and F3. We want to argue by

induction in the height of the formula tree that the scheme is correct.
Given a secret s = s1 + s2 + s3, when we execute F1(S2/3) on s2 and s3 we get tuples S1,2 =

(s1,2,1, . . . , s1,2,n1,2) and S1,3 of share components; similarly, F2 and F3 yield Si,j for i = 2, 3 and
j = 1, 2, 3, j 6= i. Clearly the concatenation of these tuples is itself a tuple.

We know that s is a linear combination of the share components, s = λ1s1 + λ2s2 + λ3s3, since
F (S2/3) is a LISS—in fact, we know that λi = 1 for all i. Similarly, s2 is shared by a LISS, F1(S2/3),
so s2 = λ1,2,1s1,2,1 + . . .+ λ1,2,n1,2s1,2,n1,2 , where once again all the λ’s are = 1 (recall that F1(S) is
a LISS). Similarly for s1 and s3, so

s = λ1(λ2,1,1s2,1,1 + . . .+ λ2,1,n2,1s2,1,n2,1)

+ λ2(λ1,2,1s1,2,1 + . . .+ λ1,2,n1,2s1,2,n1,2)

+ λ3(λ1,3,1s1,3,1 + . . .+ λ1,3,n1,3s1,3,n1,3)

= (λ1λ2,1,1)s2,1,1 + . . .+ (λ1λ2,1,n2,1)s2,1,n2,1

+ (λ2λ1,2,1)s1,2,1 + . . .+ (λ2λ1,2,n1,2)s1,2,n1,2

+ (λ3λ1,3,1)s1,3,1 + . . .+ (λ3λ1,3,n1,3)s1,3,n1,3

= s2,1,1 + . . .+ s2,1,n2,1

+ s1,2,1 + . . .+ s1,2,n1,2

+ s1,3,1 + . . .+ s1,3,n1,3

and thus s is not just a linear combination of share components, but a sum—i.e. all λ’s are = 1.
(Note that we reconstruct s by taking s1 from F2 and s2 and s3 from F1. This choice is arbitrary,
and we could reassemble s in eight distinct ways.) Finally, for privacy we use the same as before
to rewrite F (S2/3) = T2/3(F1, F2, F3). Say F has height h, then the Fi have height h − 1. From
each of the Fi, we can get 3 formulae of height h − 2, etc. down to height 1. Let G be any of
these formulae, of height h′. We claim it holds that if numbers s, s + δ has been shared using
G(S2/3), where δ ∈ R, then any unqualified set will see the same distributions in the two cases.
applying this result with G = F clearly implies privacy. We show the claim by induction on h′,
where h′ = 1 is clear from the argument we gave above for S2/3. For the induction step, recall that
we are executing G(S2/3) = T2/3(G1, G2, G3) for formulae Gi of height h′ − 1, and this works by
choosing s1, s2 at random and setting s3 = s− s1 − s2. Then we share s2, s3 using G1, s1, s3 using

8

G2 and s1, s2 using G3. If set A is unqualified w.r.t. G, it can be qualified w.r.t to only one of
G1, G2, G3. If A is qualified w.r.t. G3, note that sharing s+ δ instead of s using the same choices
of s1, s2 will lead to the same shares being produced by G3 while the secrets being shared by G1

and G2 change, but A will still see the same distribution by induction hypothesis. If A is qualified
w.r.t. G2, the secret can changed to s+ δ, while keeping s1, s3 constant by changing s2 to s2 + δ.
Since A is unqualified w.r.t. G1 and G3, this change will again lead to the same distribution of
shares by induction hypothesis. The case where A is qualified w.r.t. G1 is similar.

This construction is a variant of the Benaloh-Leichter construction from [2], the difference is
they would have used additive secret sharing to handle each gate in the formula. This would have
given us shorter shares, but the scheme would not be multiplicative.

This construction generalizes trivially to any formula containing threshold gates and no con-
stants, and the qualified sets will be those corresponding to inputs that the formula accepts.

Note that reconstruction in the schemes we build indeed takes place by simply adding shares,
as promised in the introduction.

4 A strongly multiplicative secret sharing scheme

We have looked at a secret sharing scheme based on 2-out-of-3 threshold gates. We can think of
those as the smallest Q2 gate: where the string of all ones can’t be written as the bitwise OR of two
inputs which both produce 0 as the output. Equivalently, the access structure of the corresponding
secret sharing scheme is Q2.

We now want to study what happens when the primitive gates are Q3: when not even the OR of
three 0-yielding inputs is sufficient to cover all inputs. In particular, we look at (t+1)-out-of-(3t+1)
threshold gates, i.e. 2-out-of-4, 3-out-of-7 and so forth.

Our first theorem will show that these compose well:

Theorem 3. Suppose we have a formula F of gates, each of which are Q3. Then the formula itself
(over, say, k inputs) is also Q3.

Proof. We will show by induction on the height of the formula that if a triple of inputs which
violate the Q3 condition exist for any formula of that height, then we arrive at a contradiction.

Suppose the formula has height 0, i.e. it takes a single input and outputs it. Then any three
inputs which all yield zero as the output must all be zero. But then their OR is 0, and if their OR
was also 1 (i.e. the inputs witness the Q3 violation) we would clearly have a contradiction.

Suppose next that the formula has height n + 1 for some n ≥ 0, and that (x1, x2, x3) is given
with F (x1) = F (x2) = F (x3) = 0 and x1 ∨ x2 ∨ x3 = 1k, i.e. the xi’s violate the Q3 property of F .

By assumption all gates in F , including the root gate G, are Q3. Consider its input gates Gj
for j = 1, . . . ,m. Let y1 be a string of bits of length m, where (yi)j = Gj(xi). That is, the j’th bit
of yi is 1 if and only if the input bits of xi cause the j’th gate to output 1.

Clearly G(yi) must be 0 for all i since F (xi) = 0. Since the top gate is Q3, the OR of all three
yi’s can’t be 1m. Let’s say the j’th bit of the OR is zero. That means that Gj(x1) = Gj(x2) =
Gj(x3) = 0, but since the OR of (x1, x2, x3) is all ones, the OR is one at all the bit positions which
(eventually) feed into Gj . That is, they witness that Gj is not Q3. But by induction that is a
contradiction. Thus, all formulae of Q3 gates are themselves Q3.

9

Not only is the Q3 property preserved across composition, so is strong multiplicativity. Recall
from definition 1 that strong multiplicativity means that the complement of an unqualified set of
players can compute the product of two secrets r · s as a linear combination of locally computable
products of share components.

Theorem 4. Suppose we have a formula F of gates, each of whose secret sharing schemes are
strongly multiplicative. Then the secret sharing scheme induced by F is strongly multiplicative.

Proof. We will prove this by induction in the height of F . If F has height one, it’s a single gate
which is strongly multiplicative by assumption. If F has height k + 1, let R be the complement
of a set of corruptible players. Given the set of shares of s and r held by the players in R we can
reconstruct s and r.

This means we can reconstruct a set of inputs to the root gate the complement of which is
corruptible. Let us say the root gate distributes shares r1 · · · rd and s1 · · · sd to those recipients
(players or subformulae). Then, since the root gate is strongly multiplicative, rs =

∑
i,j λijrisj for

(only) those pairs of i and j where ri and rj are sent to the same recipient (player or other gate),
for some constants λij .

Since each subformula has height at most k we know by induction that they’re strongly multi-
plicative, so risj =

∑
a,b κab(ri)a(sj)b, that is, we can write risj as a linear combination of the shares

of ri and sj , respectively, that are sent to the same subformula. Since we only look at inputs to the
root gate we can reconstruct, the sets of corrupted inputs to the subformulae are each contained in
the adversary structures of each of those formulae.2

Thus, we can write rs as a linear combination of linear combinations of shares held by the
players in R. But that’s a linear combination,

∑
i,j,a,b(λijκab)(ri)a(sj)b, of shares from R, which is

what we wanted to show the existence of.

Next, we want to show that similar to the 2-out-of-3 case, when we compose enough 2-out-of-4
gates, we approach computing a certain threshold function.

Lemma 2. Let t0 = 1
6(5 −

√
13) and let T be the threshold function Thndnt0e. For some integer `

which is O(log n) and every d ≥ `+k, consider full formulae of 2-of-4 gates of height d. For any bit
string v, a randomly chosen such formula computes the threshold function T on v with probability
exceeding 1− (12)2

k
.

Proof. Let pd be the probability that such a formula F of depth d doesn’t compute T (v). We can
express pd+1 recursively when d ≥ 1. If T (v) = 0 then pd+1 is the probability that F (v) = 1, which
happens when at least two inputs to the root gate are 1 6= T (v), i.e. when at least two inputs are
themselves wrong, which happens with probability

p(pd) =

(
2

4

)
p2d(1− pd)2 +

(
3

4

)
p3d(1− pd)1 +

(
4

4

)
p4d(1− pd)0 = p2d · (3p2d − 8pd + 6).

This polynomial p in pd has four fixed points: {0, t0, 1, 16(5 +
√

13)}. Note that 1
6(5 +

√
13) ≈

1.434 > 1 and t0 ≈ 0.2324.
Note that since t0 is irrational, bnt0c < nt0 < dnt0e = bnt0c+ 1. Let t = bnt0c, and recall that

the threshold is t + 1. In a formula of depth 0, the probability p0 of falsely outputting 1 is the

2That is, the adversary is allowed to corrupt the corrupted sets. In other words the corrupted sets are corruptible.

10

number of ones divided by the number of inputs, at most t
n . We want to bound this away from

t0 by the inverse of a polynomial in n. Then we want to show that by increasing the depth of the
formula, thus repeatedly applying p to the error probability, we can reduce the error probability
first linearly, then exponentially.

To bound t
n away from t0, we use continued fractions. Note that we have t0 = [0; 4, 3]. That is,

t0 has quotients a0 = 0, a1 = 4 and ai = 3 for i ≥ 2. We define two recursive series:

h−2 = 0 h−1 = 1 hn = anhn−1 + hn−2 (2)

k−2 = 1 k−1 = 0 kn = ankn−1 + kn−2 (3)

For instance, h0 = 0, h1 = 3 and h2 = 10 while k0 = 1, k1 = 4 and k2 = 13. Some well-known
facts about continued fractions are that the series hi

ki
approaches t0, that each such convergent is

a better approximation of t0 than any fraction with a smaller denominator, that the convergents
alternate between being greater and less than t0, and that

1

ki(ki + ki+1)
<

∣∣∣∣t0 − hi
ki

∣∣∣∣ .
So consider t

n . Note that 0 < ki < ki+1 ≤ 4ki for i ≥ 0: we directly observe it to hold for i = 0
and i = 1, and as ai = 3 for i ≥ 2 it holds by the recursive definition for those i as well. Let j be
minimal such that kj ≥ n, and note that kj ≤ 4n. Let i be j or j + 1, such that hi

ki
< t0, and note

that ki ≤ 16n. Also, ki(ki + ki+1) ≤ k2i + ki(4ki) = 5k2i ≤ 5(16n)2 = 1280n2, and so

t0 −
t

n
≥ t0 −

hi
ki

=

∣∣∣∣t0 − hi
ki

∣∣∣∣ > 1

ki(ki + ki+1)
≥ 1

1280n2
.

Next, we want to find a constant c such that p(x) < 1
2x for x ≤ c. Note that t0 <

1
4 , so if

0 < x ≤ t0 then x < 1
4 . In that case, p(x) = 3x4 − 8x3 + 6x2 < 6x2 + 3x2 · (14)2 = 99

16x
2. Let

c = 1
2 ·

16
99 < t0. If 0 < x ≤ c then p(x) < 99

16x
2 ≤ c9916x = 1

2
16
99

99
16x = 1

2x.

Consider the secant line through (c, p(c)) and (t0, p(t0)) = (t0, t0). This has slope m := t0−p(c)
t0−c ,

so let f(x) = t0 + m(x − t0) = t0 −m(t0 − x), such that the graph of f is the secant line. Note
that p(c) = (3 · 84 − 8 · 83 · 99 + 6 · 82 · 992)/994 < c so m > 1. Also, f(x) ≤ p(x) when c ≤ x ≤ t0;
f(x) < c when x < c; and f(t0 − ε) = t0 −m(t0 − (t0 − ε)) = t0 −mε when c ≤ t0 − ε ≤ t0.

Look at the series t
n , p(

t
n), p(p(tn)), . . . with xi = p(i)(tn). Recall that t0 − x0 >

1
1280n2 and

note that c ≤ xi ≤ t0 ⇒ t0 − xi = t0 − p(i)(tn) ≥ t0 − f (i)(tn) = mi(t0 − t
n) > mi

1280n2 . This
means that if mi ≥ 1280n2 · (t0 − c) then t0 − xi > t0 − c, that is, xi < c.3 This happens when
i ≥ logm(1280n2 ·(t0−c)) = 2 logm n+logm 1280(t0−c). Let j be minimal subject to xj < c, that is,
j = d2 logm n+ logm 1280(t0− c)e. Then p(xj+k+1) <

1
2xj+k for k ≥ 0 so pj+k = p(j+k)(p0) < 2−kc.

In the case of the majority function, negating the inputs negates the outputs (on an odd number
of bits), which means that the bound on the probability of false positives also bounds the probability
of false negatives. This is not the case for non-majority threshold functions, in particular not the
2-out-of-4 function, but we can reuse the overall ideas in the proof.

3At the smallest such i we go from c ≤ t0 − ε ≤ t0 via f(t0 − ε) = t0 −mε to ¬(c ≤ t0 − ε ≤ t0), i.e. t0 − ε < c,
and at any greater i we exploit the fact that p(x) ≤ x when 0 ≤ x ≤ t0.

11

So, if T (v) = 1 then pd+1 is the probability that F (v) = 0, which happens when at most one
root gate input is 1, or equivalently at least three inputs are 0 6= T (v), i.e. wrong, which happens
with probability

q(pd) =

(
3

4

)
p3d(1− pd)1 +

(
4

4

)
p4d(1− pd)0 = p3d(−3pd + 4)

This polynomial in pd has four fixed points, {0, 1, t1, 16(1 −
√

13)}, where t1 = 1
6(1 +

√
13). Note

that t0 + t1 = 1, that t1 ≈ 0.7676 and that 1
6(1−

√
13) < 0. Note that p(x) = 1− q(1− x).

Once again, we first want to bound the error probability of a depth 0 formula, then amplify this
bound by increasing the depth, which corresponds to repeatedly applying q to the error probability.

If F has depth 0, the probability of falsely outputting zero on v is the number of zeroes divided
by the number of bits. Recall that the threshold is dnt0e = t + 1, thus v has at least this many
ones and at most n − dnt0e zeroes. Note that since t0 + t1 = 1, this equals n − dn(1 − t1)e =
n− (n− bnt1c) = bnt1c.

Similar to earlier, we want to bound bnt1cn away from t1. As a continued fraction, t1 = [0; 1, 3],
having quotients a0 = 0, a1 = 1 and ai = 3 for i ≥ 2. We define hi and ki recursively like before, but
of course with respect to this new series of quotients. Once again we see that 0 ≤ ki ≤ ki+1 ≤ 4ki
and in fact ki < ki+1 for i ≥ 1. By the same argument as above, we get that nt1 − bnt1c > 1

1280n2 .

Note that q(x) = x3(−3x + 4) < 4x3 whenever x > 0. Let b =
√

1
8 . If 0 < x ≤ b then

q(x) < 4 · x2 · x = 4
8x = 1

2x.

Consider the secant line through (b, q(b)) and (t1, q(t1)). This has slope s = q(t1)−q(B)
t1−B and goes

through the point (t1, t1); recall that t1 is a fixed point of q. Let g(x) = t1+s(x−t1) = t1−s(t1−x)
and note that the graph of g is this secant line, and that g(t1 − ε) = t1 − s(t1 − (t1 − ε)) = t1 − sε.

Note that q(12) = 5
16 <

1
2 , and that q(x) − x doesn’t change sign between two roots (two fixed

points of q), thus q(x) < x when 0 < x < t1. In particular, q(b) < b and thus s > 1. Also,
q(x) ≤ g(x) whenever b ≤ x ≤ t1 and q(x) < b whenever 0 ≤ x ≤ b.

Let r = bnt1c and consider, similar to before, the series r, g(r), g(g(r)), . . . , g(i)(r). Note that
r < nt1−1/1280n2 and thus g(i)(r) < si/1280n2. Let j′ be the smallest value such that g(j)(r) ≤ b,
that is, j′ = d2 logs n+ logs 1280(t1 − b)e. For any k ≥ 0 we have pj′+k ≤ 2−kb.

It’s obvious that F (v) can be unequal to T (v) iff F yields either a false negative or a false
positive. The error probability is thus the sum of the probability of those two events. When the
depth d of F exceeds both j and j′, both error probabilities drop off by a factor two for each increase
of d by 1; thus the sum error probability does the same. Note that j and j′ are both O(log n), and
that in a constant number of depth increments we can diminish the error probability sufficiently
to drown out any constants. Thus, there exists a number ` which is O(log n) such that the error
probability of a formula of depth d ≥ ` is at most (12)d−`, which is what we wanted to show.

5 Black-Box Computing over Finite Groups

5.1 The problem and a Solution for Three Players

The problem we want to solve is as follows: n players P1, ..., Pn hold as private input elements
h1, ..., hm in a finite group G, more precisely, each hj is held by exactly one player Pi. The goal

12

is to compute the product h = h1h2 · · ·hm securely, even if t < n/2 players are corrupted by an
adversary.

We will first consider semi-honest security where even corrupted players are assumed to follow
the protocol. Therefore, a very simple definition of security suffices: we require correctness: all
honest players output the correct value of h, and privacy: there exists an efficient simulator which,
when given the input elements of players in corrupted set C as well as the output h, outputs a
view that has the same distribution as the joint view of players in C when the actual protocol is
executed.

The protocol and simulator must work by only black-box access to G, i.e., the only available
operations are the group operation, computing the inverse and random sampling from G.

A main ingredient in the solution is a protocol from [5] for three players which takes two group
elements, each secret-shared in a suitable form, and outputs a secret-sharing of their product, which
we describe shortly. Our idea is to use this protocol in the player emulation approach of Hirt and
Maurer [6]. To do this, we will need some additional 3-player protocols which we return to below.
From this, and our formulas for computing the majority function, we can build an n-player protocol
that securely computes the product of two secret-shared group elements and returns the product
in shared form.

Before describing our n-player protocol, we need to take a closer look at the 3-player protocol
from [5] for multiplying two shared group elements: This protocol makes a distinction between left
and right hand inputs and output, springing from the fact that the operation of the group might
do so. To accommodate this, we need to share secrets in either left or right sharings.

To create a left sharing of x, choose x1 uniformly in G and let x2 := x ·x−11 , such that x1 ·x2 = x;
then send x1 to player 2 and x2 to player 1. To make a right sharing of x, generate x1 and x2 the
same way, but send xi to player i. Note that in neither case does player 3 have any share.

Also, “protocol”, in the singular, is a simplification: we actually need two protocols. They will
take two sharings as their input—a left and a right—and output one sharing, either a left or a
right.

We now look at the structure of these protocols. See figure 1 for the protocol which yields a left
output. We’ll explain in detail how it works and leave it to the reader to apply the same principles
to the protocol yielding a right output. This is essentially an informal restatement of algorithm 2
from [5].

Each node is labeled with a player ID, the node’s owner. At each node, that node’s owner
receives a sequence of inputs, g1, . . . , gm. That player computes g = g1 ·· · ··gm and sets g′1 ·· · ··g′k = g
where k is the node’s outdegree and g′1, · · · , g′k−1 are sampled uniformly. Then, the owner sends g′i
to the owner of the i’th neighbour node, going from left (i = 1) to right (i = k). The inputs to the
topmost nodes are the inputs to the protocol. All other inputs to nodes are group elements sent in
this way. The outputs at the bottom row are the protocol outputs of the indicated players.

Thus, if a player owns both a node of outdegree one and its neighbour, that player multiplies the
received values, then sends the product to himself. Sending to oneself can of course be optimized
away, but the seemingly redundant nodes make the graph satisfy the formal structural precondition
of the algorithm 2 referred to earlier.

For instance, at the topmost node of the central column of figure 1, player 1 receives x2 and y1,
computes g := x2y1, samples (g1, g2), sets g3 = g−12 g−11 g, then sends g1 to player 2, g2 to himself and
g3 to player 2. Observe that if x = x1x2 and y = y1y2 then xy = x1 ·(x2y1) ·y2 = (x1g1) ·(g2) ·(g3y2),
that is, the left-to-right product of all numbers sent from one layer to the next is always x · y.

13

2 (x1)

��

1 (x2)

!!CC
CC

CC
CC

1 (y1)

}}||
||

||
||

2 (y2)

��
2

""DD
DD

DD
DD

D 1

}}zz
zz

zz
zz

z

�� !!DD
DD

DD
DD

D 2

}}zz
zz

zz
zz

z

2

!!DD
DD

DD
DD

D 1

��

2

}}zz
zz

zz
zz

z

��
3

}}zz
zz

zz
zz

z

��

2

��
2

�� !!CC
CC

CC
CC 3

��

2

}}||
||

||
||

2 (z1) 1 (z2)

Figure 1: Multiplication protocol (left
output)

2 (x1)

��

1 (x2)

!!CC
CC

CC
CC

1 (y1)

}}||
||

||
||

2 (y2)

��
2

""DD
DD

DD
DD

D 1

}}zz
zz

zz
zz

z

�� !!DD
DD

DD
DD

D 2

}}zz
zz

zz
zz

z

2

!!DD
DD

DD
DD

D 1

��

2

}}zz
zz

zz
zz

z

��
3

��

2

}}||
||

||
||

��
1 (z1) 2 (z2)

Figure 2: Multiplication protocol (right
output)

Correctness, that is, equality at the top and bottom layers, follows as a direct corollary of this
invariant. It also relates to security, in the following way: let c be any corrupt player. On every
layer of the graph there’s a node not owned by c, i.e. there’s a uniformly random factor not known
by c, so what c knows appears uniformly random. Moreover, one can draw a path in the reflexive
closure of the graph that is the tree of two-element multiplication protocols from any top-most
input to some bottom-most output, stepping only on nodes hiding these uniformly random factors
from c. This means not only are the random factors hidden on their own layers, the adversary can’t
pick them up indirectly. This is the intuition; a formal proof that this translates into a simulator
is to be found in [5], see in particular definition 2 and 3 and lemma 1 and 2. The lemmas assume
the two-element multiplication protocols to have certain properties, which we’ll establish here.

Let L and R be the protocol graphs, and let L↔ and R↔ be their undirected counterparts, i.e.
their reflexive closures. Observe that that for any one corrupted player c there exists two indices
ix, iy ∈ {1, 2} such that there is a path from xix to zix and from yiy to zix in L↔, and from xix to
ziy and from yiy to ziy in R↔, such that none of these four paths contain any nodes owned by c.

The existence of a path from xi to zi (rather than zj , j 6= i) mean that L is x-preserving.
Similarly, the existence of a path from yi to zi in R (for any c) means that R is y-preserving. The
fact that for any c, L and R use the same ix (though in different ways) and the same iy (ditto) is
what [5] refers to as compatibility. These three properties are the ones from which the existence of
a simulator ultimately follows.

5.2 Construction of a Protocol for n Players

Following [6], we will build an n-party protocol for computing the product h1 · · ·hm, where each hi
is an input from one of the n players. We build the protocol based on a formula F of T (2, 3)-gates,
computing the majority function on n input bits. We know from the previous sections that such a
formula of logarithmic depth exists.

Before we describe the n player protocol, we specify a few simple protocols for groups of 3

14

players. The protocols allow 3 players p1, p2, p3 to receive input in secret shared form, do operations
on shared values, send shared values securely to another group of 3 players, receive values from
another group, and finally to make a shared value public. We maintain as invariant that every
shared value held by the three players is stored in the form of a left sharing.

Input: To give an input x ∈ G to (p1, p2, p3), one creates a random left sharing x1, x2 of x and
sends x1 to p2 and x2 to p1.

Multiplication: the multiplication protocol takes two left sharings (x1, x2) and (y1, y2) as input.
It runs the right-output multiplication protocol4 on (y1, y2) and a default right sharing of e
(e.g. e1 = e2 = e), yielding a right sharing (y′1, y

′
2) of y1 · y2. It then runs the left-output

multiplication protocol on (x1, x2) and (y′1, y
′
2), and gives the output of this as its own output.

Inversion: the inversion protocol takes a single left sharing (x1, x2) of x as its input; then each
player inverts their own element, so player 2 holds x−11 and player 1 holds x−12 . Since x−1 =
(x1x2)

−1 = x−12 x−11 , what the players hold is a right sharing of the inverse: player 1 holds the
left part and player 2 the right part. So, the inversion protocol multiplies this right sharing
with a default left sharing of e (e.g. e1 = e2 = e), and gives the output of the left-output
multiplication protocol as its own output.

Sample: to sample a uniformly random group element, players 1 and 2 each sample a group
element (x2 and x1, respectively) uniformly at random, and output the left sharing (x1, x2).

Send/Receive: If virtual player p is to send a value x to virtual Suppose p1, p2, p3 want to send
a shared value x to q1, q2, q3. Then p1 holds x2 and p2 holds x1 such that x1 · x2 = x. To
emulate the send operation, p1 creates a left-sharing of x2 and p2 of x1; they each send the
shares to q1 and q2 as appropriate; then q1, q2, q3 execute the Multiplication protocol to get a
left-sharing of x.

Output: To make a shared value public, p1, p2 broadcast their shares, and all players can locally
multiply shares to get the result.

To keep track in the following of the values the players hold, each such value is assigned a
variable name. The value stored in variable X is usually called x – to keep the description simple
we will usually not change the value in a variable once it is created, instead we create a new variable.
A variable X stored by player Pi will be referred to as Pi.X, though if it is clear which player we
are referring to we sometime only write X. Likewise when Pi executes a multiplication, we will
write Pi.multiply.

A very important fact to note for later is the following: for each of the subprotocols above, we
can describe the operations each player has to do as a straight-line program consisting of a constant
number of operations. Furthermore, the only operations needed are: multiply in G, invert in G,
sample from G, and send/receive.

We now show how these protocols can be used together with our formula F to construct an
n-player protocol for computing h1 · ... · hm.

Consider the formula F and the T (2, 3)-gate g0 computing the output of F . We think of g0 as
the top-most gate and then number the gates consecutively starting from the top level. We assign

4Depicted in Fig. 2

15

to the output wire of each gate gi a virtual player Pi, and we also assign each input wire to a real
player in the natural way according to the construction of the formula. Real players are assigned
separate numbers.

Formally speaking, we will now execute the desired computation by giving the inputs h1, ..., hm
to P0, have him execute P0.multiply m− 1 times and the output the result.

However, each virtual player will not do actually computation himself, instead he will be emu-
lated by three other (virtual or real) players, using the protocols we described above.

Concretely, the virtual player Pi will be emulated by players Pj , Pk, Pl where these are the
players assigned to the input wires of gi. Note that this means that the virtual players assigned to
input gates will be emulated by real players.

This leads naturally to a recursive specification of the operations we ask a virtual or real players
to do, and procedures for giving input and getting results out. These are syntactically defined as
follows:

• Pi.Input(Y, y), executed when another player or an external party wants to give input value
y to player Pi, to be stored in variable Y .

• Pi.Output(X), returns the value in X.

• Pi.Sample(X), Pi samples a random group element and stores it in X;

• Pi.Invert(X,X−1), Pi inverts the value in X and stores it in X−1; and

• Pi.Multiply(X,Y, Z), Pi multiplies values in X and Y and stores the result in Z.

We show what the Input and Send operations would look like as examples.

Pi.Input(Y, y)

1. If Pi is a real player, store y in variable Y .

2. Otherwise, let Pj , Pk, Pl be the players emulating Pi. Then do the following:

(a) Create a random left sharing y1, y2 of y.

(b) Execute Pj .Input(Pj .Y, y2) and Pk.Input(Pj .Y, y1).

Note the way of naming values above means that variable name Y refers to shares of the same
actual values on all levels of the tree. The next procedure Pi.Send(Pu, Pi.X, Pu.Y) shows how to
send the value in variable X from player Pi to player Pv and place result in variable Y . Note that
sender and receiver are always on the same level in the formula so they are both virtual or both
real.

Pi.Send(Pu, Pi.X, Pu.Y)

1. If Pi, Pu are real players, Pi sends the value of Pi.X to Pu who stores it in variable Pu.Y .

2. Otherwise, let PjPk, Pl be the players emulating Pi, and let Pv, Pw, Pt be the players emulating
Pu. Then do the following:

(a) Pj creates a left sharing of his value in X:

Pj .Sample(Xj,1), Pj .Invert(Xj,1, X
−1
j,1), Pj .Multiply(X−1j,1 , X,Xj,2).

16

(b) Send shares to Pv and Pw: Pj .Send(Pv, Pj .Xj,2, Pv.Xj), Pj .Send(Pw, Pj .Xj,1, Pw.Xj).

(c) Pk creates a left sharing of his value in X:

Pk.Sample(Xk,1), Pk.Invert(Xk,1, X
−1
k,1), Pk.Multiply(X−1k,1 , X,Xk,2).

(d) Send shares to Pv and Pw: Pk.Send(Pv, Pk.Xk,2, Pv.Xk), Pk.Send(Pw, Pk.Xk,1, Pw.Xk).

(e) Note that we now have a situation equivalent to Pu holding variables Xj , Xk, and these
contain the shares inX that Pj and Pk hold. We therefore execute: Pu.Multiply(Xk, Xj , Y).

The sample, inverse and multiply operations can be specified in exactly the same fashion. This
is straightforward to derive from the specification of the three player protocols above, but very long
and tedious, so the reader will be spared the details.

We can now finally define the n-player protocol which we call πF to emphasize that it is built
from the formula F :

Protocol πF

1. For i = 1..m, the real player holding hi executes P0.Input(Hi, hi).

2. Do P0.Multiply(H1, H2, T2). Then, for j = 3..m, do P0.Multiply(Tj−1, Hj , Tj).

3. Do P0.Output(Tm), this causes real players to broadcast all their shares in Tm. Each real
player multiplies shares as appropriate and returns the result.

We now have

Theorem 5. Assume the formula F has logarithmic depth and computes the majority function on
n inputs. Then the protocol πF runs in time polynomial in n and m, it always computes correct
results and there exists an efficient simulator S, such that if t < n/2 players are corrupted, then
when given the corrupted players’ inputs and the output, S produces a transcript with the same
distribution as seen by the adversary by running the protocol.

Proof. The running time is clear from the fact that F has logarithmic depth and that in each
subprotocol we use for player emulation, each emulating player only executes a constant number
of basic instructions. This means that the total number of operations done is m · cO(logn) for some
constant c.

Correctness is clear from correctness of the subprotocols we use for player emulation.
We therefore turn to describing the simulator S:
If at most one honest player provides input to the protocol, the adversary and simulator can

know all the inputs. In this case the simulator computes the input of the honest player (if any),
runs the protocol on all inputs, and outputs a trace of this protocol run. Clearly this has the same
distribution as a normal protocol execution. Informally, the adversary already knew everything so
the protocol messages don’t reveal any extra information.

Otherwise, the simulator works as follows: choose the neutral element as input for each honest
player and run the protocol. Concretely, this means that the adversary plays for the corrupt players
and the simulator plays for the honest ones following the protocol (but on dummy inputs). We
stop this when we reach the output stage. In the output stage we construct and broadcast shares
for the honest players leading to the correct result; below we describe how this is done.

To see that this simulator works as desired, we first argue that the simulation up to the output
stage is perfect.

17

Consider first the input phase. In it, the simulator generates a sharing of the neutral element
for each honest player and sends the appropriate shares to the adversary. If the underlying formula
has height one and a player receiving a share is corrupt, that share is uniformly random. If the
formula is taller, at most one virtual player who gets a share is corrupt; that player sees a uniformly
random value, and by induction the corrupt physical players who participate in emulating the honest
virtual players see only uniformly random values. This doesn’t depend on the fact that element
we’re sharing is the neutral element; in other words, both in the simulated case and the real case,
the adversary sees uniformly random elements in the input phase.

To analyse the computation phase, we first need some terminology: Let strA be the characteris-
tic vector for the corrupted set A of real players, i.e., strA is an n-bit string with 1’s corresponding
to players in A and 0’s elsewhere. We say that a virtual player Pi is corrupt if the sub-formula of
F below gate gi accepts strA. So P0 is always honest, and at most 1 of the players immediately
below (namely P1, P2, P3) is corrupt.

We now want to say that if Pi is corrupt, then the adversary knows the values of all variables held
by Pi. This will be the case if he knows enough shares held by real corrupt players to reconstruct
those values. But since our sharing among the three players emulating Pi only gives shares to the
first two players, the adversary does not necessarily learn the value (namely if the last two players
are corrupt). For the sake of this argument, however, we will give those values to the adversary
for free. It is clear that this does not give the adversary more information about any of the values
shared initially. We want to show that his view is independent of the honest players’ inputs. We
will show this even given the extra information, so the same is also true without it.

Now back to the computation phase. By inspection of the protocol, we see that the only
time we execute a physical send operation between real players is in the (virtual) send and multiply
operations. In both cases, a sender creates a fresh random multiplicative sharing of a group element
and sends shares to two or three other players. If the sender is corrupt, the adversary already knows
the value, so we will assume the sender is honest.

If at most one of the receivers is corrupt, the adversary sees nothing or a uniformly distributed
group element.

Otherwise, if the send occurs as part of emulating a multiplication, the sender is one of the
receivers, so the two other players may be corrupt. But then the virtual player we are emulating is
corrupt, so the adversary already knows the values we are multiplying. Since the values sent only
depends on those values, shares of them and fresh randomness, they are independent of the honest
inputs.

The remaining case is if the send occurs to emulate one virtual player sending to another. In
this case there are always two receivers, and if both are corrupt, the adversary learns the value sent,
and we also know that the receiving virtual player is corrupt. Of course, if also the sending virtual
player is corrupt, the adversary already knows the value sent, so we only need to consider the case
where a virtual honest player sends to a corrupt one. This we can handle by reusing exactly the
same argument as we just gave on the next higher level of the formula. This argument will stop
when we reach the top-most group of three players since here there is no communication on a higher
level between two different virtual players.

We conclude that everything the adversary sees in the input and computation phases is inde-
pendent of the honest players’ input, so the simulation of those phases is perfect. In particular, the
distribution of the adversary’s shares in the output is the same in simulation as in real life.

Only the output phase is left. We’re to describe what the simulator does and why that works.

18

In the output phase, the players hold a sharing of the product h1 · . . . ·hm and reconstruct this value
by each player broadcasting their share. The simulator is to output messages which have the same
distribution, given the global output and the shares the adversary already knows. This is sufficient
by what we argued above.

Let us first analyse what the distribution is in the real world. Consider the root level: if a
shareholder (player 1 or 2) is corrupt, then since the output is known, the adversary can compute
the value of the other share. Inductively, the same happens to the players who implement the honest
shareholder: their “output” (share value) is now externally specified, and so if one is corrupt the
other’s value is uniquely determined. If at any level both shareholders are honest, one share is
chosen uniformly at random and the other is computed to match the output value (this is readily
seen by examining the protocol).

What the simulator does is simply generate a sharing which has this distribution, by executing
the algorithm which immediately follows from the above recursive description of the distribution.
This is possible because the simulator knows the shares of corrupt players and the output.

6 An Approach to Obtaining Active Security

As mentioned earlier, an actively secure protocol for 4 players tolerating 1 actively corrupted player
could be used together with our formulas built from T (2, 4)-gates to get an n-player protocol with
active security against 1

6(5 −
√

13)n players. At time of writing, however, we do not have such a
4-player protocol. On the other hand, we do know how to use the passive 3-player protocols as
a “black-box” towards obtaining a 12-player protocol with security against 1 actively corrupted
player.

Combining this with formulae built from T (2, 12)-gates will lead to an n-player polynomial-time
protocol with security against a constant fraction of actively corrupted players, and this was not
known to be possible before, for any constant fraction. Applying a similar analysis to formulas
with T (2, 12)-gates as we did earlier for T (2, 4)-gates, we find that such formulas of logarithmic
depth exist that compute a threshold function with threshold approximately 0.017n, so this is the
number of actively corrupt players we can tolerate with this construction.

6.1 An Actively Secure Protocol for 12 Players

We now sketch the idea for building the 12-player protocol: we will call the players P1, .., P12.
We will let π denote the collection of 3-player protocols we have seen in the previous section, for
multiplication, inverse, sampling etc.. on shared values.

In essence, we will execute 4 instances of π. These instances will be executed by the subsets
T1 = {P1, P2, P3}, T2 = {P4, P5, P6}, T3 = {P7, P8, P9} and T3 = {P10, P11, P12}, respectively. All 4
instances of π will be executed on the same input and with the same randomness. We obtain this
by also dividing the players in sets in a different way, S0 = {P1, P4, P7, P10}, S1 = {P2, P5, P8, P11}
and S2 = {P3, P6, P9, P12}, and have players in each Si coordinate their actions. Note that this
makes sense because all players in S1, for instance, play the role of the first player in π.

Note also that there is at most 1 actively corrupted player in a set and since each set has 4
players, we can do broadcast and Byzantine agreement inside each set using standard protocols.
This can be used to make sure that the inputs are shared consistently, i.e., that all players in a
set Si hold the same share of each input. To select random group elements, we simply let the first

19

player in each set Si do the selection and broadcast his choice inside the set. Of course, this player
may be corrupt and may not do a random choice. The net effect of this is that π is executed in
such a way that the one corrupt player it tolerates may not select his randomness with the correct
distribution (but otherwise follows the protocol). However, the important observation is that π is
secure even in this case, and in fact the same simulation will work to prove this.

We now execute all 4 instances of π in parallel. Since all inputs and randomness is the same,
whenever π instructs a player to send a message, what we expect actually happens is that all players
in some set Si sends the same message to a corresponding player in Sj . Of course, this may not
actually be true since a corrupt player is acting in one of the instances. Therefore the players in Sj
compare what they have received and take majority decision. This ensures that all honest players
are in a consistent state throughout, and we will therefore get correct results in the end.

6.2 Construction of a Protocol for n Players.

Finally, we need to consider whether the above 12-player protocol can be used with the player emu-
lation approach we described earlier. More specifically, we need to check that the local computation
a player is supposed to do can be emulated efficiently by a set of players (12 in our case).

First, we fix a way to represent values held by the player we are emulating. We derive this
directly from the emulation of π, described in the previous subsection: to represent an element x
we make a left sharing (x1, x2) and give x1 to all players in S1 and x2 to all players in S2.

Now, to execute the 12-player protocol, a player needs to do multiplication, inversion, sampling
and sending (to execute π), and the only additional operation is to compare group elements.

To emulate the first 4 operations, we use the same idea as we used for constructing the 12-player
protocol from π: the 12 emulating players run 4 instances of the emulated command from π, inside
sets T1, ..., T4, and whenever something is sent (from set Si to Sj), we compare the received values
inside the receiving set as described above.

To emulate the comparison, we assume that the two elements to compare, g1, g2 are secret shared
among the 12 players in the way we just described. We now compute and open g−11 g2 which can
be done by the operations we already have, and return “equal” if the result is the neutral element
e and “not equal” otherwise. Note that this is not actually a secure comparison: the result of the
comparison is leaked and if the values are not equal, information about g1, g2 is leaked. However,
by the way in which comparisons are used in the 12-player protocol, this is actually sufficient: recall
that whenever something is sent as part of the 4 instances of π that we execute, a player in the
receiving set Si will compare what he received to what the others got. If all senders and receivers
were honest all comparisons will return equality (the adversary already knows this), and no further
information is leaked. If the actively corrupted player was involved in sending or receiving, the
adversary knows what the correct message is and how he (may have) modified it. Therefore again
he knows when the comparison will return unequal and also knows both group elements that are
compared.

The only other place where comparison is used is as part of the broadcast protocol that is used
inside each set Si. This can be done a simple deterministic protocol, and it is easy to construct it
such that if all players are honest, then all comparisons return “equal”. If one player is corrupt, the
adversary learns in any case what the broadcasted value is and can predict the result of all local
comparisons.

As a result, we can use the 12-player protocol together with a formula built from T (2, 12) gates
to get a protocol for n players that is secure against active corruption of a constant fraction of

20

players.

7 Local Conversion

A secret sharing scheme S is locally convertible to secret sharing scheme S ′ if for any set of
shares (S1, . . . , Sn) of a secret s computed according to S, there exist functions f1, . . . , fn such that
(f1(S1), . . . , fn(Sn)) is a set of shares that consistently determine s according to S ′. This notion was
introduced in [3]. We expand this definition to also cover conversion between sharings of members
of different sets. If S is a scheme for sharing secret values from a set A, and S ′ from B, we say there
is a local coversion with respect to f : A→ B if there exists functions f1, . . . , fn such that for any
set of values S1, . . . , Sn forming a sharing of s ∈ A according to S, the values (f1(S1), . . . , fn(Sn))
form a sharing of f(s) ∈ B. We can think of the narrower concept of local conversion as the special
case where A = B and f is the identity function.

Consider now the scheme we defined earlier: F (S2/3) for a formula F . Consider also the secret

sharing scheme SR2/3 defined over a ring R, as follows: given the secret s ∈ R, choose s1, s2 uniformly

at random in R and set s3 = s − s1 − s2. Finally, give (s2, s3), (s1, s3), (s1, s2) to players 1, 2 and
3, respectively. When R = Zp this scheme is clearly a perfect secret sharing scheme where sets of
2 or more players are qualified.

On local conversion in general, it is known that shares in the replicated secret sharing scheme
(RSS) over any field K can be locally converted to any linear scheme over K. SZp

2/3 is actually RSS
for three players. RSS, however, is not efficient for a large number of players. It is also known that
the Shamir scheme cannot be locally converted to RSS, but other than this, virtually nothing is
known on local conversion. For our scheme, we have

Theorem 6. For any monotone formula F built from threshold gates and any two rings R and R′

between which there exists a ring homomorphism f : R → R′, the players can locally convert from
the secret sharing scheme induced by F over R, to the scheme induced by F over R′ with respect
to f . If F is multiplicative or strongly multiplicative, this is preserved through the conversion.

Proof. The local conversion consists of applying f to each individual share component. Recon-
structing the secret is done by doing several additions. Since f is a homomorphism, f applied to
each sum equals the sum of f applied to the parts. Multiplicativity rests on a property of products
which is similarly preserved by ring homomorphisms.

7.1 A more general lower bound

In [3], the concept of a generic conversion scheme for n players is defined, as follows:

Definition 2. A generic conversion scheme for secret sharing scheme S with access structure Γ
consists of a set of random variables R1, . . . , Rm, an assignment of a subset Bj of these to each
player Pj, and local conversion functions gj such that if each Pj applies gj to the variables in Bj,
we obtain values (s1, . . . , sn) forming consistent S-shares of some secret s. Furthermore, given the
information accessible to any unqualified set of Γ, the uncertainty of s is non-zero. Finally, for
every Ri, there exists some qualified set A, such that the value of the secret s determined by shares
of players in A depends on the value of Ri. More precisely: the uncertainty of s, given all variables
known to A, except Ri, is non-zero.

21

The last condition in the definition was not specified in the definition in [3], but was assumed in
their proofs. It is clearly necessary to avoid redundant schemes: if a variable Ri makes no difference
to any qualified set, it can be eliminated.

The interesting point about this concept is that a generic conversion scheme can be used to build
so called pseudorandom secret sharing: by predistributing m keys to a pseudorandom function,
players can locally generate values that are indistingusihable from the Ri’s, and then convert
these values to shares in a secret sharing scheme without communicating. Thus we have a way
to generate random shared secrets with no communication. This is of course a very useful tool.
Concrete constructions of this were given in [3], but they do not scale well with the number of
players. Unfortunately, this cannot be avoided, due to a lower bound that was shown in [3] and
which we strengthen here.

Note that neither S nor the conversion functions gj are assumed to be linear. Also note that
the convertibility requirement formulated above is weaker than the default requirement defined in
[3]. However, we are about to look at negative results which are only made stronger this way. The
following result is shown in [3]:

Proposition 1. For any generic conversion scheme for S where R1, . . . , Rm are independent and
S has the property that a qualified set of players can reconstruct not only the secret, but also the
shares of all players, it holds that m is at least the number of maximal unqualified sets.

For a threshold secret sharing scheme where the threshold is a constant fraction of n, the number
of qualified sets grows exponentially with n, so this result rules out efficient generic conversion
schemes in many cases. If we want to somehow circumvent this lower bound, it is clear that we
should either consider cases where the Ri are not independent, or cases where S does not have the
property specified in the proposition. Since indeed our secret sharing schemes F (S2/3) do not have
that property, one might hope that these schemes could lead to pseudorandom secret sharing with
better complexity. This will not work, however. We show that the lower bound holds without the
assumption on S:

Theorem 7. For any generic conversion scheme for S where R1, . . . , Rm are independent, it holds
that m is at least the number of maximal unqualified sets.

Proof. First, we claim that for any qualified set A, it must be the case that all variables Ri are
known to players in A.

Namely, assume this is not the case for some A, and consider some variable Rk which is not
given to any player in A. However, there must be some other qualified set A′ that does know Rk,
and where Rk is needed for A′ to determine the secret. Let RA

′
−k be the set of Ri’s known to A′,

except for Rk, and let R−k be the set of all Ri except Rk. Finally for each qualified A we define a
random variable SA taking the value of the secret determined by players in A. The condition that
Rk is necessary for players in A′ means H(SA′ | RA

′
−k} > 0. Since the Ri are independent, we even

have H(SA′ | R−k} > 0.
On the other hand, the sharing computed by the players must consistently determine one secret

s. More precisely, the demand is that SA = SA′ always, and for any A,A′. Obviously, we have
H(SA| R−k} = 0, but then we have a contradiction: since SA′ is not fixed given R−k, we cannot
have SA = SA′ with probability 1.

To finalize the proof, we will construct a secret sharing scheme S ′ as follows: shares are defined
to be any set of values that players can obtain in the generic conversion scheme we are given.

22

Reconstruction of the secret is done by converting these values to shares in S using the functions gj ,
and doing reconstruction in S. Clearly, there is a trivial generic conversion scheme from R1, .., Rm
to S ′, namely where all local conversion functions are the identity. Moreover, we have just shown
that S ′ has the property that any qualified set can reconstruct all other player’s shares. Hence, by
Proposition 1, m must be at least the number of maximal unqualified sets.

References

[1] David A Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in nc1. Journal of Computer and System Sciences, 38(1):150–164, 1989.

[2] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone functions. In
Shafi Goldwasser, editor, CRYPTO, volume 403 of Lecture Notes in Computer Science, pages
27–35. Springer, 1988.

[3] Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom secret-sharing
and applications to secure computation. In Joe Kilian, editor, TCC, volume 3378 of Lecture
Notes in Computer Science, pages 342–362. Springer, 2005.

[4] Yvo Desmedt, Josef Pieprzyk, and Ron Steinfeld. Active security in multiparty computation
over black-box groups. In Ivan Visconti and Roberto De Prisco, editors, SCN, volume 7485 of
Lecture Notes in Computer Science, pages 503–521. Springer, 2012.

[5] Yvo Desmedt, Josef Pieprzyk, Ron Steinfeld, Xiaming Sun, Christophe Tartary, and Andrew
Chi-Chih Yao. Graph coloring applied to secure computation in non-abelian groups. J. Cryp-
tology, 13(1):31–60, 2011.

[6] Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures in perfect
multiparty computation. J. Cryptology, 13(1):31–60, 2000.

[7] Leslie G. Valiant. Short monotone formulae for the majority function. J. Algorithms, 5(3):363–
366, 1984.

23

