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Abstract

The performances of three major time memory tradeoff algorithms were com-
pared in a recent paper. The algorithms considered there were the classical Hell-
man tradeoff and the non-perfect table versions of the distinguished point method
and the rainbow table method. This paper adds the perfect table versions of the
distinguished point method and the rainbow table method to the list, so that all the
major tradeoff algorithms may now be compared against each other.

Even though there are existing claims as to the superiority of one tradeoff al-
gorithm over another algorithm, the algorithm performance comparisons provided
by the current work and the recent preceding paper are of more practical value.
Comparisons that take both the cost of pre-computation and the efficiency of the
online phase into account, at parameters that achieve a common success rate, can
now be carried out with ease. Comparisons can be based on the expected execu-
tion complexities rather than the worst case complexities, and details such as the
effects of false alarms and various storage optimization techniques need no longer
be ignored.

A significant portion of this paper is allocated to accurately analyzing the exe-
cution behavior of the perfect table distinguished point method. In particular, we
obtain a closed-form formula for the average length of chains associated with a
perfect distinguished point table.

Keywords: time memory tradeoff, distinguished point, rainbow table, perfect ta-
ble, algorithm complexity

1 Introduction
A cryptanalytic time memory tradeoff algorithm is a method for inverting one-way
functions with the help of pre-computed data. It is widely used today by hackers
and also during criminal investigations to recover passwords from the knowledge of
the password hash. In the pre-computation phase, massive amount of computations
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specific to the one-way function of interest is performed and a compact digest of the
obtained information is stored as tables. When the target image for inversion is given,
further computations that utilize the pre-computed tables is performed to recover the
pre-image with some probability, and this part is referred to as the online phase.

The execution behavior of any tradeoff algorithm can be manipulated through its
many parameters. Existing analyses show that most tradeoff algorithms satisfy the
tradeoff curve

T M2 = cN2, (1)

for some small constant c, where T is the online execution time, M is the size of
the memory space required to store the pre-computation tables, and N is the size of
the space the one-way function is acting on. This means that if a tradeoff algorithm
executes in time T using tables of combined size M under some set of its parameters,
then given any other T ′ and M′ such that T M2 = T ′M′2, there exists another set of
parameters under which the algorithm will execute in time T ′ using storage M′. Thus,
each algorithm allows tradeoffs to be made between the online execution time and the
storage requirement.

There are many time memory tradeoff algorithms available today, with most of
them having roots in the classical algorithm by Hellman [7]. The most widely known
algorithms are the distinguished point variant of the Hellman’s original algorithm [4,5]
and the rainbow table method [12], which we shall refer to in this paper as the DP
tradeoff and the rainbow tradeoff, respectively. Both of these algorithms have two
subversions that work with the non-perfect tables and the perfect tables.

Comparison of tradeoff algorithm performances has been a controversial subject,
with every newly announced algorithm claiming superiority over existing algorithms.
The difficulty in accurately analyzing the execution behavior of these algorithms is
clearly one reason for this confusion, but another source has been the absence of an
acceptable method for numerically presenting the performances of tradeoff algorithms
in a manner that closely reflects our intuition concerning their relative usefulness or
practicality.

Let us take a moment to explain a reasonable method of tradeoff algorithm compar-
ison that was recently suggested by [11]. Notice that the tradeoff curve (1) correspond-
ing to any specific tradeoff algorithm presents the complete list of (T,M)-pair options
that are made available by the algorithm. Thus the tradeoff curve expresses the required
online resources or the online execution behavior of an algorithm completely, and one
may accept the tradeoff coefficient c = T M2

N2 as a good measure of how efficiency an
algorithm is, with a smaller coefficient indicating a more efficient algorithm. Indeed,
many previous claims as to the superiority of one algorithm over another have focused
on this value.

However, the tradeoff coefficient alone cannot fully capture our intuition of how
good an algorithm is. Since it is obvious that the online time can always be reduced if
one is willing to accept a lower success rate of inversion, the tradeoff coefficient must
change with the requirement on the inversion success rate. Furthermore, even when
one is aiming for a fixed success rate, it is only reasonable to anticipate a more efficient
online phase, or, equivalently, a smaller tradeoff coefficient, after a larger investment
in the pre-computation phase.
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In short, the online efficiency of each algorithm can be expressed succinctly through
the tradeoff coefficient, but each algorithm allows further tradeoffs to be performed
between the online efficiency, pre-computation effort, and success rate, while what we
intuitively feel as the practicality or usefulness of an algorithm is directly connected
to the overall behavior of the algorithm concerning these upper level tradeoffs. The
difficulty of algorithm comparison lies in that, unlike the tradeoffs between time and
storage that may commonly be expressed in the form (1) for most tradeoff algorithms,
the equations that express the tradeoffs between the three aforementioned factors are
very different among the major tradeoff algorithms. Hence, no single numeric value
that can be computed for all algorithms in a common manner is likely to capture the
performances of the algorithms concerning the upper level tradeoffs.

The solution suggested by [11] is to let the algorithm implementers make the final
judgement and choice based on their requirements, available pre-computation and on-
line resources, and personal taste, and to only present the information necessary for this
decision in a coherent manner. Parameters for different algorithms are first restricted to
those that achieve the same success rate. Then the tradeoffs between pre-computation
cost and tradeoff coefficient are presented as curves for each algorithm. Each curve
represents the complete list of options provided by one algorithm as to what degree
of online efficiency can be obtained after a certain amount of pre-computation invest-
ment, at the specified success rate. Implementers that place different relative values
on the online efficiency and the pre-computation cost will choose to use different al-
gorithms. In fact, comparisons of the algorithms themselves are no longer meaningful,
and each implementer will choose an algorithm together with the online efficiency and
pre-computation cost pair made available by that algorithm, based on his or her favored
balance between the two factors, from among all the options made available by all the
algorithms.

The work [11] first computes the success rates, pre-computation costs, and accu-
rate tradeoff coefficients for the classical Hellman, non-perfect DP, and non-perfect
rainbow tradeoffs. These complexities and properties are presented as functions of the
algorithm parameters. Then, after fixing a small number of specific success rates of
interest, parameters are restricted to those achieving these success rates, and the upper
level tradeoffs between the pre-computation cost and tradeoff coefficient are presented
as curves, separately for each algorithm. After carefully adjusting the units expressing
the tradeoff coefficients for the three algorithms into one directly comparable unit, the
three curves were superimposed into one graph. This comprehensive and coherent dis-
play of information allows for someone considering the use of the tradeoff algorithms
to decide on the most desirable balance between pre-computation investment and on-
line efficiency from among the numerous options made available by the three tradeoff
algorithms, at any required success rate.

The current paper completes the task started in [11] by dealing with the two remain-
ing major tradeoff algorithms, namely, the perfect DP and perfect rainbow tradeoffs.
We compute the tradeoff coefficients for these two algorithms and present the upper
level tradeoffs between pre-computation cost and online efficiency as graphs at a small
number of fixed success rates. Similar graphs for any other success rate may easily be
obtained from our formulas. An overly simplified conclusion that may be drawn from
the graphs is that, under typical situations, the perfect rainbow tradeoff is likely to be
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preferred over the other four algorithms that have been mentioned. However, as we
have discussed, the final judgement is not ours to make, and may be different under
each specific situation.

Since this work is a direct extension of the work [11], we shall not repeat the con-
tents of [11] that advocate the subject of our study. The readers are strongly urged to
have at least a rough understanding of [11] before reading the current paper. In fact, it
should be possible for the impatient reader with a full understanding of [11] to jump
straight to Figure 3 and understand the core findings of this paper.

The rest of this paper is organized as follows. In the next section, we fix the ter-
minology, clarify the exact versions of the algorithms we are analyzing, and review
existing analyses of the perfect DP and perfect rainbow tradeoffs. Section 3 is devoted
to fully analyzing the execution behavior of the perfect DP tradeoff, and is the most
technical part of this paper. Analysis of the expected online time complexity that does
not ignore false alarms is given and the tradeoff coefficient is computed. The issue
of storage optimization is also discussed and tests that give strength to the correctness
of our theoretical developments are presented. The perfect rainbow tradeoff is treated
in Section 4. There are previous analyses we can utilize and obtaining the tradeoff
coefficient for the perfect rainbow tradeoff is much easier than with the perfect DP
tradeoff. The information we have prepared concerning the perfect DP and perfect
rainbow tradeoffs is presented in Section 5 as graphs that allow direct comparisons
between different algorithms and also between different parameter sets for the same al-
gorithm. Finally, the paper is summarized in Section 6. The appendices contain further
discussions that could be of interest. In particular, we explain in Appendix C that the
existing analyses of the perfect DP tradeoff were not accurate enough for the purpose
of algorithm comparisons.

2 Preliminaries
In this section, after setting the grounds of our discussion, we review some of the
existing related works. Only the theoretical developments concerning the accurate
time and storage analyses of the perfect DP and the perfect rainbow tradeoffs are
explained. Some of the contents we do not present would include other tradeoff al-
gorithms and implementation issues. There are also theories concerning asymptotic
complexity bounds [2] on a general class of tradeoff algorithms and analyses of the
full costs [17] of many cryptographic attack algorithms. We acknowledge that even the
papers we introduce contain much more content than what is explained here.

The reader is assumed to be familiar with the basics of the tradeoff technique. In
particular, the explicit tradeoff algorithms will not be explained. If the reader wishes
for a quick overview of the tradeoff techniques that includes brief descriptions of the
classical Hellman, distinguished point, and rainbow tradeoff algorithms, it will be con-
venient to refer to [11], since the notation used here is compatible with that of [11]. The
paper also clarifies many obscure technical details1 that are not discussed elsewhere in

1Let us mention just one example. The objective of any tradeoff algorithm discussed in this work will be
to recover the randomly chosen exact input that was used to create the given inversion target, rather than to
recover any pre-image corresponding to the inversion target. This detail, which the previous sentence has not



5

the related literature, and which should be of interest to the mathematically oriented
cryptographers.

2.1 Terminology, Notation, and Algorithm Clarification
Throughout this paper, the function F : N →N will always act on a set N of size N
and the k-times iterated composition F ◦ · · · ◦ F of function F is written as Fk. In
practical applications, the function F is the specific one-way function to be inverted,
but it is treated as a random function during any theoretical analysis.

To reduce confusion, in this work, the word efficiency is always associated with an
algorithm’s competitiveness in the use of the online resources, whereas the ability to
balance the online efficiency, the pre-computation cost, and sometimes also the success
rate, against each other, is referred to with the word performance.

The approximation (1− 1
b )

a ≈ e−
a
b , which is valid when a = O(b), is used fre-

quently throughout this paper without any explanation. A more precise statement of
this approximation may be found in [11, Appendix A]. Infinite sums are also frequently
approximated by appropriate definite integrals throughout this paper. Both kinds of ap-
proximations will be very accurate whenever we use them, as long as a reasonable
set of parameters is used with the tradeoff algorithm, and will be written as equalities
rather than as approximations.

Many parameters need to be fixed before any tradeoff algorithm can be put to use.
Some of these are the chain length t, the number of rows or chains m for each pre-
computation table, and the number of tables `. When working with the DP tradeoff,
we assume a distinguishing property which is satisfied by a random point of the search
space N with probability 1

t , so that the expected length of a random DP chain is t.
When dealing with perfect tables, m will denote the number of distinct ending points
or the number of rows after removal of merging chains, rather than the number of all
chains that were initially generated while preparing the pre-computation table.

In the DP tradeoff case, the parameters are usually chosen so that mt2 ≈ N and
`≈ t. In the rainbow tradeoff case, it is more usual to have mt ≈N and a small number
of tables `. We use notation D̄msc =

mt2

N for the perfect DP tradeoff and R̄msc =
mt
N for

the perfect rainbow tradeoff and refer to these values, which are assumed to be neither
large nor very close to zero, as the matrix stopping constants. The corresponding value
is written as Dmsc for the non-perfect DP tradeoff.

We distinguish between a pre-computation table, which consists of starting point
and ending point pairs, and a pre-computation matrix, which is the collection of all
chains associated with a pre-computation table.

The coverage rate D̄cr of a perfect DP matrix is defined to be the expected num-
ber |D̄M| of distinct nodes in a perfect DP matrix, divided by mt. More precisely, only
the points that are used as inputs to the one-way function are counted, so that the ending
point DPs are excluded in the count |D̄M| and D̄cr

mt
N is the success probability associated

with a single perfect DP table. The coverage rate R̄cr =
|R̄M|
mt of a perfect rainbow matrix

is defined in exactly the same way.

explained in full, is important when attempting an analysis of the accuracy aimed for in this work. However,
even this most basic definition of a successful inversion is seldom made clear in the tradeoff literature.
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Since there are many variations to the DP tradeoff, let us clarify the exact version
of the DP tradeoff that will be analyzed in this work.

• The perfect table case is treated. If chain merges are discovered while computing
a DP matrix, all chains except for the longest one among any set of merging
chains are discarded [4, 5].

• Any implementation of the DP tradeoff will introduce an upper bound t̂ on the
length of pre-computation and online chains to deal with chains falling into
loops [4, 5]. A lower bound ť can also be used [13, 16] to discard short pre-
computation chains that contribute little to the search space coverage. In this
work, no lower bound and a sufficiently large upper bound on chain lengths are
assumed. This simplifies our theoretical developments by ensuring that the pos-
sibility of an online chain not meeting the chain length bound conditions will
be negligible, and also by allowing us to ignore the effects of discarding long
or short pre-computation chains. A brief justification as to why treating just this
case is sufficient is given in Appendix A.

• The work [4, 5] suggests that the chain lengths of each pre-computation chain
and the maximum pre-computation chain length for each table be recorded in
the DP table. However, the recording of individual chain lengths has a negative
effect on the physical amount of required storage, and we can argue heuristically
that the positive effect of the maximal chain length information is very limited.
Neither suggestion is followed in this work.

• Sequential starting points, rather than random ones, are used [1, 3, 4]. Then, if
m0 chains were generated per table before removal of merges, each starting point
can be recorded in logm0 bits, which should be much smaller than the logN bits
required to record a random point.

• Knowledge of the distinguishing property makes certain parts of the ending point
redundant. These parts are not recorded in the pre-computation table to save log t
bits of storage per ending point [3].

• The ending points are truncated to a certain length before being written to stor-
age [2, 3]. Since some ending point information is lost, this will increase the
frequency of false alarms. However, the side effects of truncation can be main-
tained at a manageable level by controlling the degree of truncation. Details are
discussed later in this work.

• The index file technique [3] is used in recording the pre-computation tables. This
allows reduction of nearly logm further bits of storage per truncated ending point
without any loss of ending point information.

• The online chain record [8, 15] technique is used. While generating an online
chain, one keeps track of not just the current foremost point of the chain, but
records all the generated intermediate points. When resolving an alarm, one
compares the current end of the regenerated pre-computation chain against the
complete online chain, rather than just the inversion target point, so that one may
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stop the pre-computation chain regeneration at the exact position of chain merge,
rather than at the common terminal DP.

• The work [8, 15] suggests that all the pre-computation tables be processed in
parallel, rather than sequentially, during the online phase. For the case of non-
perfect DP tradeoff, this idea was shown to have a small positive effect [10].
However, the parallel version of the perfect DP tradeoff will not be analyzed in
this work. Treatment of parallelization is outside the scope of this work, but we
expect our work to become an important stepping stone for anyone interested
in analyzing the parallel version. Some comments on this issue are given in
Appendix A.

There are also possible variations to the rainbow tradeoff, and the version treated
in this work is clarified below. All techniques that we mention below are analogs of
techniques we have already described for the DP tradeoff.

• The perfect table case is treated. Only one chain among any set of merging chains
is retained [12]. All chains are of identical length and the method of choosing
which chain to retain is irrelevant to our analysis and algorithm performance.

• Sequential starting points, rather than random ones, are used to reduce the stor-
age requirements of the starting points.

• The ending points are truncated to an appropriate length, to be discussed later,
before being written to storage.

• The index file technique is used to reduce logm further bits of storage per ending
point.

• The small number of multiple rainbow tables are processed in parallel [12] dur-
ing the online phase. This is not necessarily what is usually meant by the paral-
lelization of an algorithm, in which case even the processing of each table would
be shared by multiple processors. If the online phase must run on a single pro-
cessor, the multiple tables can be processed in a round-robin fashion to simulate
the parallel table processing.

Applications of the perfect table technique to the DP and rainbow tradeoffs are
expected to increase both the online efficiency and the pre-computation cost. Hence,
it is not clear if the benefit of using perfect tables outweighs its drawback. Providing
information that can be used to settle this question is one of the objectives of this paper.
Truncation of ending points must also be used carefully, since the storage reduction
is associated with an increase in online time. However, all other techniques we are
employing are only advantageous, when used appropriately in typical environments.

2.2 Existing Analyses of the Perfect DP Tradeoff
The book [6, p.100] gives credit to Rivest for first suggesting to apply the DP technique
to the classical Hellman tradeoff, but no corresponding formal article was published.
The first analysis of the DP tradeoff that attempts to take the non-uniform chain lengths
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of the DP matrix into account was given by [4, 5]. There, credit is given to the unpub-
lished work [13] for also having studied the DP tradeoff independently.

Many interesting variables were introduced by [4, 5] while analyzing the perfect
DP tradeoff. The first of these is the expected number of chains α after removal of
merging chains. The average of DP chain lengths β0 and β̄ , before and after removal
of merging chains, respectively, were also introduced. ( [4, 5] writes β̄ as β .) Note
that the variable α is equal to the parameter m used in this paper, but the work [4, 5]
treated the number of pre-computation chains to be computed before collision removal
as a given preset parameter and treated α as a function of the initial chain count. The
success probability and online time estimates for the perfect DP tradeoff were given
as equations involving α and β̄ . They also stated certain relations satisfied by α , β0,
β̄ , and some other variables. However, they were unable to derive formulas for com-
puting α and β̄ from the externally provided parameters. Furthermore, as was pointed
out by [16], some of their arguments treated the merges of pre-computation chains
inadequately and were problematic.

The subsequent work [16] gave a more advanced analysis of the perfect DP tradeoff.
They started by computing β0 for the case when the chain length bounds ť and t̂ are
both enforced. ( [16] writes β0 as β .) Then the number of distinct nodes expected
in a perfect DP matrix was expressed using the variable β0. Because ť and t̂ were
taken into consideration while computing the node count, the number of DP chains of
any specified length range appearing in a perfect DP matrix could be extracted from
the node counts by focusing on sub-matrices of the total DP matrix. The obtained
information on the chain length distribution was then used in an ad hoc manner to
compute β̄ . ( [16] writes β̄ as βmod .) Finally, the distinct ending point count α was
easily expressed as a function of the perfect matrix node count and β̄ .

Note that α and the node count for a perfect DP matrix are directly connected to
the storage complexity and the success rate of the tradeoff algorithm, respectively. The
paper also provides a simple argument concerning the pre-computation cost and an
upper bound on the time complexity of the online phase.

The analysis of the perfect DP tradeoff given by [16] may seem rather complete,
except that the effects of false alarms were disregarded during the time complexity
analysis. Since we are also claiming to have done the same analysis, a comparison of
results is given in Appendix C. Our observation is that the results of [16] are only valid
as first approximations, and that these are too rough for the purpose of this paper.

The later work [1] also discussed the perfect DP tradeoff, but they only considered
the special case when the DP matrix consists of the maximum number of non-merging
DP chains that may be collected for a specified DP probability. However, during their
analysis, they oddly assumed that the starting points for these chains are DPs. In any
case, their result concerning the success probability requires knowledge of the average
chain length associated with the maximal perfect DP matrix, but they were unable
to provide this value except through experiments. Furthermore, since increasing the
number of non-merging rows reduces the average chain length and possibly even the
search space coverage, it is unclear if maximal perfect DP tables can be associated with
being optimal in any sense.

The final work we mention is [14]. There, a lot of effort was invested in deriving
a formula for β0, but their end result is almost identical to what may be found in [16].
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( [14] writes β0 as β .) The formulas of [14] and [16] for β0 will exhibit noticeable dif-
ferences only when t̂ is close to N, which is unrealistically large. After reobtaining β0,
they derived a formula for α that depends on β0, but the argument was very terse and
their logics were not clear. Finally, the two variables α and β0 were combined to give
the success probability of the tradeoff algorithm, but they seem to have confused the
concepts of β0 and β̄ at this point.

2.3 Existing Analyses of the Perfect Rainbow Tradeoff
The introduction of the rainbow tradeoff [12] was accompanied with a rudimentary
analysis, which included the worst case online time complexity. The worst case refers
to when the online phase algorithm processes all the pre-computation tables without
returning the correct answer. However, the effects of false alarms were not accounted
for in this worst case complexity claim. They compared the worst case complexity
against the similarly rough worst case complexity of the DP tradeoff and claimed that
the rainbow tradeoff was more efficient by a factor of two. This was then combined
with heuristic arguments, mainly concerning false alarms, for a claim in much higher
advantage. Most of their arguments referred to the non-perfect rainbow tradeoff and
the perfect table version made an appearance only at the end of the paper, but the
complexity analyses provided were rough enough to be applicable to both versions.

A more serious analysis of the perfect rainbow tradeoff appeared in [1]. It treated
the expected online time complexity, rather than the worst case complexity, and took
the effects of false alarms into account. Their stated complexity results hold true only
in the case of maximal perfect tables, but a large part of these results and their proofs
can be adjusted to hold true for the general perfect rainbow tables.

The expected online time complexity of the perfect rainbow tradeoff that does not
ignore false alarms was also given by [9]. There the complexity results for the general
perfect rainbow tables were stated as closed-form formulas. These are easier to use and
manipulate than the formulas of [1], which were given as certain double summations
that further involved iterative computations if the general perfect rainbow tables were
to be considered. However, the results of [1] and [9] should agree accurately when
numerically evaluated on any specific set of reasonable parameters.2 Our theoretical
developments concerning the perfect rainbow tradeoff will rely heavily on these results.

Concerning the success rate of the rainbow tradeoff, note that this is trivial to write
down for the perfect table version [12]. A formula for the success rate of even the non-
perfect rainbow tradeoff already appeared in [12]. However, iterative computations
were required to evaluate the formula on any specific parameter set. A simple closed-
form formula that can replace this iterative part, for the special case of N starting points,
was presented in [1], while studying the success rate of the maximal perfect rainbow
tradeoff. The closed-form formula was slightly modified in [9] to work for any non-
perfect rainbow table and was used to study the online complexities of the rainbow
tradeoff. The success rate of the non-perfect rainbow tradeoff is not used directly in
this work, but plays a crucial role in studying the behavior of false alarms in the perfect

2The analyses of [1] and [9] extend further to the application of checkpoints [1] on the perfect rainbow
tradeoff, where the two do not seem to be in agreement.
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rainbow tradeoff, and the current work relies on previous results [1,9] that have worked
out these details.

Let us mention one more issue that is not necessarily specific to the perfect rainbow
tradeoff, but is closely related to this work. The work [2] claimed that each entry in
the pre-computation table for the DP tradeoff can be represented by half the number
of bits required for the rainbow tradeoff, but their explanation was rather brief. They
followed this claim with a short argument stating that, if the effects of false alarms
were to be ignored, one must conclude that the DP tradeoff is twice as efficient as
the rainbow tradeoff. An attempt to refute this was made by [1], which maintained
that the claim of [2] concerning the required storage bits per table entry was incorrect.
With neither [2] nor [1] providing any detail, the work [11] clarified that, in the case of
non-perfect tradeoffs, the storage requirement comparison of [2] was correct, but that
the rainbow tradeoff may still be seen as being advantageous over the DP tradeoff in
typical environments. However, the case of the perfect tradeoffs was left untreated.

3 Perfect DP Tradeoff
In this section, we deal with the perfect DP tradeoff that uses a sufficiently large upper
bound and no lower bound on the chain length. Before starting our main analysis, let
us check how often one can expect to see over-length chains when using a sufficiently
large chain length bound.

The probability for a chain generated from a given starting point to fall into an
infinite loop without reaching a DP within its first t̂ iterations is

1
N
+
(

1− 1
t
− 1

N

) 2
N
+
(

1− 1
t
− 1

N

)(
1− 1

t
− 2

N

) 3
N
+ · · · · · ·

· · · · · ·+
(

1− 1
t
− 1

N

)(
1− 1

t
− 2

N

)
· · ·
(

1− 1
t
− t̂−2

N

) t̂−1
N

,

(2)

and the probability for a chain not to reach a DP within its first t̂ iterations, without
falling into a loop, is(

1− 1
t
− 1

N

)(
1− 1

t
− 2

N

)
· · ·
(

1− 1
t
− t̂−2

N

)(
1− 1

t
− t̂−1

N

)
. (3)

The sum of these two terms is the probability for a chain not to reach a DP within its
first t̂ iterations, and may be approximated by

1
N
+
(

1− 1
t

) 2
N
+ · · ·+

(
1− 1

t

)t̂−2 t̂−1
N

+
(

1− 1
t

)t̂−1
, (4)

under the condition tt̂ � N. If we further assume that t̂
t is not too large, we may

approximate the above once more with

t2

N

∫ t̂
t

0
e−uu du+ e−

t̂
t =

t2

N

{
1−
(

1+
t̂
t

)
e−

t̂
t

}
+ e−

t̂
t . (5)
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This probability approaches t2

N = O
( 1

m

)
very quickly, as t̂

t is increased. For ex-
ample, even at the moderately large chain length bound of t̂ = 15 t, the probability for
a randomly generated chain to be discarded due to its length is t2

N 0.999995+ 3.05902
107 ,

which is small enough for our purposes. However, because of the first term, which cor-
responds to looping chains, the number of long chains expected during the generation
of a full DP matrix cannot be made arbitrarily close to zero by increasing the chain
length bound.

3.1 Online Efficiency
This is the most complicated part of this paper. We will present formulas describing
the success probability, pre-computation cost, and tradeoff coefficient of the perfect DP
tradeoff.3 The discussion will require previous results concerning the non-perfect DP
tradeoff.

Let us visualize a non-perfect DP matrix as having been aligned at the ending points
and use ←mk to denote the number of distinct points expected in its column that is k
iterations away from the ending points. In particular, ←m0 denotes the number of non-
merging rows in the DP matrix.

Lemma 1. We have ←m0 ≈
←m1. In other words, in a non-perfect DP matrix, the number

of distinct ending points may be approximated by the number of distinct points that are
a single iteration away from these ending point DPs.

Proof. Given a set of ←m1 points, which are known to be a single F-iteration away from
the DPs, the size of its F-image is expected to be

←m0 = (N/t)
{

1−
(

1− 1
N/t

)←m1
}
= (N/t)

{
1−1+

←m1 t
N
−
(←m1

2

)( t
N

)2
+ · · ·

}
=
←m1 +O

( (←m1)
2 t

N

)
=
←m1

{
1+O

(1
t

)}
.

Thus, we may approximate ←m0 with ←m1, unless t is very small.

More generally, it is possible to show ←mi+1 ≈
←mi, but it would be unwise to itera-

tively combine these approximations too many times to conclude ←m j ≈
←mi, for every j

and i. In fact, it is easy to argue as in [10] that

←mk = |DM|
(

1− 1
t

)k−1 1
t
, (6)

for k ≥ 1, so that ←m j =
(
1− 1

t

) j−i←mi. Here, the |DM| denotes the number of distinct
points expected in a non-perfect DP matrix. To be more precise, the |DM| used here
counts the points that were used as inputs to the iterating function during the non-
perfect DP table creation, so that the starting points are included and the ending points
are excluded.

3We thank Wenhao Wang of IIE CAS for bringing an error that was contained in a previous version of
this section to our attention.
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In passing, we caution the reader that one must be aware of the possibility of erring
when extending (6) to the k = 0 case and writing

←m0 = |DM|
(

1− 1
t

)−1 1
t
≈ |DM|1

t

(
1+

1
t

)
, (problematic!) (7)

since one can infer from the proof of Lemma 1 that the correct value is closer to

←m0 ≈
←m1

{
1− (

←m1−1) t
2N

}
≈ |DM|1

t

(
1− D̄msc

2t

)
. (8)

These two expressions for ←m0 are certainly close to each other and also to ←m1, so that the
use of (7) could be acceptable under many circumstances, but it would be inappropriate
to claim (7) by itself.

The core information missing from (6) is also already available. It is known [11]
that a single non-perfect DP matrix created with m0 starting points is expected to con-
tain

|DM|= 2m0 t
1+
√

1+2Dmsc
(9)

distinct points, where Dmsc =
m0t2

N is the matrix stopping constant for the non-perfect
DP matrix. The information we have gathered so far can be used to related the number
of starting points to the number of distinct ending points.

Lemma 2. A non-perfect DP matrix created with m0 starting points is expected to
contain 2m0

1+
√

1+2Dmsc
non-merging chains, where Dmsc = m0t2

N . Conversely, to create
a perfect DP matrix containing m non-merging chains, one must expect to generate
m0 =

(
1+ D̄msc

2

)
m chains.

Proof. Lemma 1 and (6) together imply that |DM|t is the number of non-merging chains.
Hence, the first claim follows from (9).

As for the second claim, it suffices to solve for m0 in

m =
|DM|

t
=

2m0

1+
√

1+2m0t2/N
.

After rewriting this in the form

1+
√

1+2D̄msc
m0

m
= 2

m0

m
,

one can solve for m0
m , so as to express m0 as a function of D̄msc multiplied by m.

Note that the first sentence of this lemma gives a simple formula for the number
of non-merging chains α , discussed in Section 2.2, which many previous works had
attempted to find.

For the remainder of this section,

m0 =
(

1+
D̄msc

2

)
m (10)
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will always denote the number of starting points that are required to create a perfect
DP table containing m non-merging chains. This equation is equivalent to

Dmsc =
(

1+
D̄msc

2

)
D̄msc, (11)

and again to
D̄msc =

√
1+2Dmsc−1, (12)

which can be used to convert any formula given in terms of D̄msc into one given in terms
of Dmsc.

Another interesting formula that follows from the notational convention (10) is

|DM|= mt, (13)

which is evident from the first equation in the proof to Lemma 2. That is, the non-
perfect DP matrix created from m0 starting points, as given by (10), is expected to
cover mt distinct points.

The pre-computation phase of a perfect DP tradeoff requires m0t` iterations of the
one-way function. We define the pre-computation coefficient for the perfect DP trade-
off to be D̄pc =

m0t`
N , so that the cost of pre-computation is D̄pcN. The following state-

ment is a direct consequence of Lemma 2.

Proposition 3. The pre-computation coefficient of the perfect DP tradeoff is

D̄pc =
(

1+
D̄msc

2

)mt`
N

.

By the definition of the coverage rate, the success probability of the perfect DP
tradeoff may be stated as

D̄ps = 1−
(

1− mt D̄cr

N

)`
= 1− exp

(
− mt`

N
D̄cr

)
, (14)

and we can combine this with Proposition 3 to claim the following.

Proposition 4. The success probability of the perfect DP tradeoff is

D̄ps = 1− exp
(
−

2 D̄pc D̄cr

2+ D̄msc

)
.

We have succeeded in obtaining expressions for D̄pc and D̄ps that do not involve m0.
Our next short term objective is to obtain such an expression for D̄cr. Some technical
lemmas need to be prepared first.

Given a function F : N →N and a nonnegative integer k, we define Dk(F) or Dk
to be the set of elements of N that are k-many F-iterations away from their closest
DPs. In particular, D0 is the set of DPs. It is clear that {Dk(F)}∞

k=0 is a partition of N ,
and that we can expect the sizes of these subsets to be

|Dk|= N
(

1− 1
t

)k 1
t
, (15)

for a random function.
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Lemma 5. Let F : N →N be chosen uniformly at random from the set of all functions
acting on N and let us fix a set D⊂Dk(F) for some k≥ 1. Then the expect sizes of its
iterated images under F will satisfy

|F i(D)|
N(1− 1

t )
k−i 1

t

= 1− exp

(
− |F i−1(D)|
N(1− 1

t )
k−i 1

t

)
,

for each i = 1, . . . ,k.

Proof. For a random function F : A →B defined on finite sets and a subset C of the
domain A , the image size is expected to be

|F(C )|= |B|
{

1−
(

1− 1
|B|

)|C |}
= |B|

{
1− exp

(
− |C |
|B|

)}
.

The claim is now a direct consequence of the set sizes given by (15). A more detailed
proof is provided in Appendix B, for those interested in the subtleties hidden behind
this short argument.

It is possible to work out the iterations expressed by this lemma and write down
each iterated image size as a closed-form formula.

Lemma 6. Let F : N →N be a random function and let D⊂Dk(F), for some k≥ 0.
When |D|= O(m), the size of the i-th iterated image under F is expected to be

|F i(D)|= 2|D|
2+ D̄msc

|D|
m e

k
t (1− e−

i
t )
,

for each 0≤ i≤ k.

Proof. Let us temporarily introduce the notation fi =
|F i(D)|

N(1− 1
t )

k−i 1
t

, and rewrite Lemma 5
as

fi = 1− exp
{
−
(

1− 1
t

)
fi−1

}
=
(

1− 1
t

)
fi−1−

1
2

(
1− 1

t

)2
f 2
i−1 + · · · .

The condition |D|= O(m) implies fi = O
( 1

t

)
so that we can state

fi− fi−1 =−
1
t

fi−1−
1
2

f 2
i−1 +O

( f 2
i−1

t

)
.

Noting that
f 2
i−1
t is of strictly smaller order than fi−1

t +
f 2
i−1
2 , one solves the correspond-

ing differential equation

f ′(x) =−1
t

f (x)− 1
2

f (x)2

with the initial condition f (0) = f0 =
|D| t
Ne−

k
t

, to obtain

fi =
2|D| t

2Ne
i−k

t +(e
i
t −1)|D| t2

,

as an application of the Euler method. It now suffices to combine this with the definition
of fi and approximate appropriately to arrive at the claim.
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The previous two lemmas were prepared to support the next lemma, which gives
the probability for a single chain to merge into a set of chains. This information will be
used to study the inner workings of how a perfect DP table is formed from a non-perfect
DP table.

Lemma 7. Let F : N →N be a random function and let D ⊂ Dk(F), for some k.
When |D| = O(m), the probability for a random point x ∈ Dk(F) to satisfy Fk(x) 6∈
Fk(D) is {

1+
D̄msc

2
|D|
m

(
e

k
t −1

)}−2
.

Proof. The probability in question is given by

k

∏
i=0

(
1− |F

i(D)|
|Dk−i|

)
=

k

∏
i=0

(
1− |F i(D)|

N(1− 1
t )

k−i 1
t

)
=
(

1− |D| t
Ne−

k
t

) k

∏
i=1

(
1− |F i(D)|

N(1− 1
t )

k−i 1
t

)
.

By applying Lemma 5 to the product of k terms, we can write

k

∏
i=1

(
1− |F i(D)|

N(1− 1
t )

k−i 1
t

)
=

k

∏
i=1

exp
(
− |F i−1(D)|

N(1− 1
t )

k−i 1
t

)
= exp

(
−
(

1− 1
t

) k−1

∑
i=0

|F i(D)|
N(1− 1

t )
k−i 1

t

)
.

Since we are given the condition |D| = O(m), we can apply Lemma 6, or the last
equation in its proof, and compute the sum inside the exponential function as

k−1

∑
i=0

|F i(D)|
N
(
1− 1

t

)k−i 1
t

=
k−1

∑
i=0

2|D| t
2Ne

i−k
t +(e

i
t −1)|D| t2

=
∫ k/t

0

2|D| t
2N
t e−

k
t eu +(eu−1)|D| t

du = 2ln
{

1+
|D| t2

2N
(
e

k
t −1

)}
.

By substituting the sum back into the exponential function, we get

k

∏
i=0

(
1− |F

i(D)|
|Dk−i|

)
=
(

1− |D| t
Ne−

k
t

){
1+

D̄msc

2
|D|
m

(
e

k
t −1

)}−2(1− 1
t )
.

The (1− 1
t ) term in the exponent is insignificant and the condition |D|= O(m) allows

us to ignore the first product term. Hence, we arrive at the claimed formula.

With the help of the technical lemmas that have been prepared, we can finally
present something of more direct practical value.

Proposition 8. The coverage rate of a perfect DP matrix is

D̄cr =
2

D̄msc
ln
(

1+
D̄msc

2

)
.
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Proof. Consider a pre-computed non-perfect DP matrix and the process of removing
chains to obtain a perfect DP matrix. A chain survives through the collision removal
process if and only if it does not collide with another chain that is longer than (or equal
to) its length. Hence, according to Lemma 7, the probability for a chain of length k in
a non-perfect DP table to remain in the perfect table is{

1+
D̄msc

2

←mk

m

(
e

k
t −1

)}−2
.

This figure is a slight underestimate since the collisions among chains of the same
length were reflected too many times, but such collisions are rare and will not cause
noticeable inaccuracy.

Since the number of, possibly merging, chains of length k is m0
(
1− 1

t

)k−1 1
t and

the perfect table contains no overlapping of points, the number of distinct points in the
perfect DP table is

∞

∑
k=1

k ·m0

(
1− 1

t

)k−1 1
t
·
{

1+
D̄msc

2

←mk

m

(
e

k
t −1

)}−2
.

This formula does not count the ending points and only includes the points that were
used as inputs to the iterating function during the DP table computation.

The coverage rate of the perfect DP matrix is given by

D̄cr =
1

mt
m0

(
1− 1

t

)−1 ∞

∑
k=1

k
t
· e−

k
t ·
{

1+
D̄msc

2
e−

k
t

(
1− 1

t

)−1(
e

k
t −1

)}−2
,

where we have used (6) and (13) to remove the ←mk term. After ignoring the insignificant
(1− 1

t )
−1 terms, the coverage rate can be computed as

D̄cr =
m0

m

∫
∞

0
ue−u

{
1+

D̄msc

2
(
1− e−u)}−2

du =
m0

m
ln
(
1+ D̄msc

2

)
D̄msc

2

(
1+ D̄msc

2

) .
It now suffices to recall Lemma 2 to arrive at the claimed formula.

Let us briefly digress and recall the average chain length β̄ of a perfect DP matrix,
introduced in Section 2.2. By definition, it is the number of points in a perfect DP
matrix divided by the number of its ending points, and we can easily write it as

β̄ =
|D̄M|
m

=
mtD̄cr

m
= t

2
D̄msc

ln
(

1+
D̄msc

2

)
. (16)

Should it be required, we can use (12) to rewrite this in terms of the parameters m0
and t as

β̄ = t
1+
√

1+2Dmsc

Dmsc
ln
(1+

√
1+2Dmsc

2

)
, (17)

where Dmsc =
m0t2

N . It is easy to check that this β̄ value is always smaller than the
average chain length β0 = t before the removal of merging chains. Even though we are
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keeping the longest of any set of merging chains, the longer chains are more likely to
merge into one another and be discarded.

Unlike other results of this work, our next claim is mostly based on an experimental
evidence, rather than on purely theoretical arguments. Recall that the processing of a
perfect DP table can bring about at most one alarm, which requires the partial regen-
eration of a single pre-computation chain. We will later show in Section 3.3 that, for a
wide range of parameters m and t, which covers all parameter combinations of interest,
the value computed through the formula

t× 1+0.577 D̄msc

1+0.451 D̄msc
(18)

agrees accurately with the experimentally obtained average number of one-way func-
tion iterations required for this partial chain regeneration.

Let us clarify that we are not claiming formula (18) to be correct in any theoretical
sense. In fact, we know that the very different formula

t
(

1+0.340468
{

1− 1.32798
D̄msc

ln
(

1+
D̄msc

1.32798

)})
(19)

works equally well for parameters of interest. Our only claim here is that formula (18)
predicts the average cost of resolving each alarm with accuracy that is more than suffi-
cient for most practical purposes.

Proposition 9. The processing of a single perfect DP table is expected to require

t× 1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc
.

invocations of the one-way function in relation to the resolving of a possible alarm.

Proof. As the work factor (18) is already available, it only remains to find the proba-
bility of encountering an alarm.

An online chain will merge into a perfect pre-computation matrix D̄M if and only
if it merges into the corresponding non-perfect pre-computation matrix DM. Since (13)
states the number of elements contained in DM as mt, the probability of merge can be
stated as

∞

∑
i=0

(
1− 1

t
− mt

N

)i mt
N

=
D̄msc

1+ D̄msc
.

The claimed expected cost of dealing with a possible alarm is the product of this prob-
ability and the work factor (18).

Having obtained the cost of dealing with alarms, the online complexities of the
perfect DP tradeoff can be expressed as a single tradeoff curve.

Theorem 10. The time memory tradeoff curve for the perfect DP tradeoff is T M2 =
D̄tcN

2, where the tradeoff coefficient is given by

D̄tc =
(

1+
1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc

) D̄ps
{

ln(1− D̄ps)
}2

D̄msc D̄3
cr

.
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Proof. The probability for the i-th DP table to be processed during the online phase
executed for a single inversion target is

(
1− mtD̄cr

N

)i−1. The online processing of each
table is expected to requires t iterations of the one-way function for the online chain
creation and the expected number of iterations required to deal with the alarms that
could occur is given by Proposition 9. Hence, the number of one-way function itera-
tions expected during the online phase is

T =
`

∑
i=1

(
1− mtD̄cr

N

)i−1(
1+

1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc

)
t

=
D̄ps

D̄mscD̄cr

(
1+

1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc

)
t2,

where the second equality relies on (14) or Proposition 4. The tradeoff curve is obtained
by combining this time complexity T with the storage complexity M = m` as follows:

T M2 =
D̄ps

D̄mscD̄cr

(
1+

1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc

)
(mt`)2

=
D̄ps

D̄mscD̄cr

(
1+

1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc

){ ln(1− D̄ps)

D̄cr

}2
N2.

Once again, Proposition 4 is required to obtain the second equality.

3.2 Storage Optimization
An analysis of the perfect DP tradeoff would not be complete without a discussion
of the storage optimization techniques. Dealing with the storage size of the starting
points is quite straightforward. One requires logm0 bits of space for every starting
point, and (10) implies that this will be one or two bits more than logm for parameters
of interest. Hence, one may safely claim that the number of bits required to store a
single starting point for a perfect DP tradeoff is very close to that required for the
non-perfect DP tradeoff, when comparable parameters are used by the two algorithms.

To deal with the ending point storage, one needs to discuss the effects of truncating
ending points before storage. Consider an ending point truncation method for which
two random DPs, truncated in the specified manner, will have probability 1

r of matching
with each other. We shall express such a situation as having a 1

r probability of truncated
match. One specific way to do this would be to retain just logr bits of the ending point
that are unrelated to the DP definition. Note that we are considering truncations of DPs
only and not of the general points of N .

The effects of ending point truncation on the perfect DP tradeoff is slightly different
from that on the non-perfect DP tradeoff, which was treated in [11]. The truncation
may cause two non-merging pre-computation chains to become indistinguishable at the
ending points and cause more chains to be discarded. However, the following lemma
shows that these further collisions can mostly be avoided by recording slightly more
than logm bits.

Lemma 11. Assume the use of an ending point truncation method with a 1
r probability

of truncated match. If m distinct DPs are truncated, then we can expect to obtain



19

r
{

1− exp(−m
r )
}

distinct truncated points. Conversely, when r > m, one must expect
to truncate r ln

( r
r−m

)
DPs in order to collect m distinct truncated points.

This lemma is a trivial consequence of treating the truncation process as the random
selection of points from a pool of r-many points.

Let us consider a specific example. When r = 25m is used for truncation, it suffices
to truncate 32m ln

( 32
31

)
= 1.01596m DPs in order to obtain m distinct truncated ending

points. Combining this information with Proposition 3, one can state that, by recording
just 5 + logm bits of each ending point, one can control the extra pre-computation
necessitated by the ending point truncation to within approximately 2%. Note that this
is not 1.596% and only claimed approximately, because the variable m appears not
only in the mt`

N term of Proposition 3, but also inside the D̄msc
2 term. In any case, the

effects of ending point truncation on the collision of ending points can be maintained
at an ignorable level by retaining a little more than logm bits of information through
the truncation process. Note that by ignoring the ending point collisions induced by
truncations, we are also ignoring their effects on the pre-computation time and also on
the coverage rate, or, equivalently, the success probability.

We now need to discuss the effects of truncation on the online time. The terminating
DP of the online chain must be searched for among the truncated ending points, so
we have the possibility of falsely announcing a match and then regenerating the pre-
computation chain to resolve this alarm.

Lemma 12. Assume the use of an ending point truncation method with a 1
r probabil-

ity of truncated match. Further assume that r has been chosen to be large enough so
that the occurrences of indistinguishable ending points caused by truncations are suf-
ficiently limited to be ignored. Then the number of extra one-way function invocations
induced by truncation-related alarms is expected to be

t
m
r

2
D̄msc(1+ D̄msc)

ln
(

1+
D̄msc

2

)
,

for each fully processed perfect DP table.

Proof. Let us compute the probability for an online chain to become a DP chain of
length i and not merge into the perfect DP matrix, but have a truncated ending point
that coincides with a truncated ending point in the perfect DP table. For this event to
occur, the online chain must be created in the following manner: (1) Random choices
for the first i nodes of the online chain, starting from the correct pre-image of the
inversion target, must be made among the non-DPs that do not belonging to the non-
perfect DP matrix, which is seen before the removal of merging chains; (2) The final
point is chosen among DPs that is different from the m ending points; (3) Furthermore,
the final point must be chosen so that its truncation matches one of the m truncated
ending points. The process (2) and (3) are not quite independent, but since the number
of DPs is much greater than the number of points we know the final point not to be,
i.e., N

t � m, the dependence can be ignored. Thus, the probability we seek is(
1− 1

t
− |DM|

N

)i(1
t
− m

N

)m
r
≈
(

1− 1
t
− |DM|

N

)i 1
t

m
r
=
(

1− 1+ D̄msc

t

)i 1
t

m
r
,
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where we have used m
N = O( 1

mt ) = o( 1
t ) for the approximation and (13) for the final

equality. Thus, the probability for the online processing of a perfect DP table to cause
a truncation-related alarm, i.e., an alarm that does not involve the online chain merging
into the pre-computation matrix, is given by

∞

∑
i=1

(
1− 1+ D̄msc

t

)i 1
t

m
r
=

1− 1+D̄msc
t

1+D̄msc
t

1
t

m
r
≈ 1

1+ D̄msc

m
r
.

Notice that the length of a pre-computation chain is independent of how likely it is
to be involved in a truncation-related alarm. Hence, the number of iterations required
to regenerated the pre-computation chain involved with such a pseudo-collision is ex-
pected to be the average chain length of the perfect DP matrix, which is given by (16).
The cost of resolving alarms that are induced by truncation is

1
1+ D̄msc

m
r

t
2

D̄msc
ln
(

1+
D̄msc

2

)
,

for the full processing of a single perfect DP table.

The normal one-way function iterations required to generate the online chain and
deal with a possible alarm while processing a single perfect DP table was stated during
the proof of Theorem 10 to be(

1+
1+0.577 D̄msc

1+0.451 D̄msc

D̄msc

1+ D̄msc

)
t. (20)

If we assume that sufficient information is left after the ending point truncation so that
the number of indistinguishable ending points are kept ignorably small, then, at the typ-
ical parameter of D̄msc = 1, the expected numbers of normal iterations and truncation-
related iterations become (1 + 1.577

1.451
1
2 )t = 1.54342t and ln( 3

2 )
m
r t = 0.405465 m

r t, re-
spectively. For example, at logr = 5+ logm, the ending point truncation increases the

number of one-way function iterations by a mere 0.405465 1
32 t

1.54342 t ≈ 0.82%. The following
can be stated for the general situation.

Proposition 13. Suppose that the online phase of a perfect DP tradeoff implementa-
tion that stores each ending point in full requires T iterations of the one-way function to
complete. Consider the use of an ending point truncation method with a 1

r probability
of truncated match, where logr = ε + logm. If ε is large enough for the occurrences
of indistinguishable ending points caused by truncations to be ignored, then the imple-
mentation with the ending point truncation requires

2ln
(
1+ D̄msc

2

)
D̄msc(1+ D̄msc)

(
1+ 1+0.577 D̄msc

1+0.451 D̄msc
D̄msc

1+D̄msc

) T
2ε

additional iterations of the one-way function to complete.

Let us summarize the situation concerning the storage of each perfect DP table
entry. The starting point can be stored using slightly more than logm bits. Ending point
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Table 1: The number of DP chains before and after removal of chain merges and the
coverage rate of the perfect DP matrix. (N= 240; t̂ = 15 t).

m t D̄msc m0 used test m theoretical D̄cr test D̄cr

2000 214 0.48828 2488 2000.88 0.89475 0.89302
4000 214 0.97656 5953 3996.01 0.81433 0.81412
6000 214 1.46484 10394 5996.79 0.75028 0.74934

10000 213 0.61035 13051 10005.45 0.87274 0.87319
20000 213 1.22070 32207 20001.52 0.78062 0.78079
30000 213 1.83105 57465 30003.72 0.70997 0.71020

DPs can be truncated so that a little more than logm bits of information is retained with
very little negative effect on the success probability, pre-computation cost, and online
time. The index file technique can be used to remove almost logm further bits per
ending point without any loss of information. In conclusion, storage of each starting
point and ending point pair requires a little more than logm bits. This was also the
conclusion obtained for the non-perfect DP tradeoff in [11].

3.3 Experimental Results
We have verified the correctness of major parts of our complexity analysis with experi-
ments. For the first two sets of our experiments, the one-way function was instantiated
with the key to ciphertext mapping, under a randomly fixed plaintext, of the block-
cipher AES-128. Freshly generated random plaintexts were used to create different
one-way functions that were required for repetitions of the same test. Bit-masking of
ciphertexts to 40 bits and its zero-extension to 128-bit keys were used to restrict the
search space to a manageable size of N= 240.

The first experiment was designed to verify Lemma 2 and Proposition 8 simulta-
neously. Recall that Lemma 2 related the number of starting points to the number of
non-merging chains in a DP matrix and that Proposition 8 presented the coverage rate
of the perfect DP matrix.

After fixing suitable parameters m and t, we first computed the m0 value, as spec-
ified by (10). We generated chains from m0 distinct starting points and recorded their
terminating DPs, together with their respective chain lengths. A small number of chains
that extended beyond the moderately large chain length bound of t̂ = 15 t were dis-
carded during this process. After dealing with chain merges by retaining only the
information corresponding to the longest chain among any set of merging chains, the
number of remaining DPs were counted. Next, the lengths of the surviving chains were
added together and taken as the number of distinct entries in the perfect DP matrix. The
obtained count of matrix entries, divided by mt, is our test D̄cr value. The whole process
was repeated 200 times for each choice of parameter set and the obtained values were
averaged.

The test results are summarized in Table 1, together with the integer m0 values we
have used and the theoretically computed coverage rates. In each row, the reported
number of distinct ending points that resulted from our theoretically computed m0
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starting points is very close to the targeted m value, in spite of the small number of
test repetitions. It can also be seen that our theory was able to predict the coverage
rates accurately.

Even though this test gives some confidence as to the correctness of our theory, let
us present another test that makes sure that our accurate predictions of the coverage
rate did not result from some lucky averaging effect that conveniently hid logical errors
in our lower level arguments.

Recall that the proof of Proposition 8 relied heavily on our ability to write the
probability for a random chain of length k not to merge into any of the chains in a non-
perfect DP matrix that are longer than k. More specifically, this probability was taken
to be {

1+
D̄msc

2
(
1− e−

k
t
)}−2

(21)

and was interpreted as the probability for a chain in a non-perfect DP matrix to survive
through the process of removing chain merges.

To test this core logic, we first generated multiple non-perfect DP matrices, discard-
ing the small number of chains reaching the length bound of t̂ = 15 t. Then, for each
1≤ k < t̂, we counted and recorded the total number of chains of length k found among
these matrices. Next, we removed merges from each of the DP matrices to create multi-
ple perfect DP matrices and, once again, recorded the number of chains of each length.
We took the ratio of the two chain counts, for each length k, as our test value of the
probability for chains of length k to survive through the chain merge removal process.
Note that this ratio of counts cannot be computed separately for each DP matrix and
then later averaged over multiple DP matrices, since the number of chains of any given
length is likely to be very small and often zero for any single DP matrix.

The test results are provided by Figure 1. The probability (y-axis) for chain survival
through the chain merge removal process is given for each chain length (x-axis). The
lines correspond to our theory, as given by (21), and the dots represent the count ratios
obtained through tests. Even though our chain length bound was t̂ = 15 t, we have
displayed the data only for chain lengths less than approximately 5t. Furthermore, in
each box, we only plotted approximately 500 dots that are equally spaced in terms of
chain length values, since densely packing all 5t dots into each box made the graphs
harder to comprehend.

The experimental data agrees well with our theory in all the boxes. Notice that the
test results are less reliable at the large chain lengths. This is because longer DP chains
appear less frequently and these large chain length data were obtained from a smaller
number of chains. A much larger number of DP matrices would need to be generated
to obtain meaningful test values at lengths much larger than 5t.

Our final experiment measured the cost of regenerating the pre-computation chain
for each online chain that produces an alarm. For this purpose, a slightly modified
version of the MD5 hash function that accepts inputs of fixed 48-bit length was used
as the one-way function. Recall that MD5 operates iteratively on 512-bit segments of
its input. Since the length of our inputs was fixed, rather than conforming precisely
to the length-related padding scheme specified for MD5, we placed the 48-bit input at
the least significant end of a 512-bit block and filled the remaining 464 bits with zeros,
before applying the usual 4-round/64-step operations of the MD5. Likewise, the least
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Figure 1: The probability (y-axis) for DP chains of each length (x-axis) to survive
through the treatment of merging chains in a DP matrix. (test: dots; theory: line;
N= 240; t̂ = 15 t).

significant 48 bits of the 128-bit MD5 output was taken as the output of our one-way
function.

For each choice of m0 and t, we created multiple perfect DP tables from m0 starting
points. For each pre-computation table, we generated as many online chains as was
required to observe a sufficiently large number of alarms. For each merge, the associ-
ated pre-computation chain was generated, up to the point of merge, and the length of
this chain segment was recorded. That is, the online chain record method, previously
explained in Section 2.1, was used to terminate the chain regeneration at the point of
chain merge, rather than at the ending point DP.

The results of our experiments, together with the predictions given by formula (18),
are summarized in Table 2. We have also plotted the experiment data of Table 2 and the
curve given by formula (18) in Figure 2. The test value given in each row of the table is
an average obtained after creating “#(tbl)”-many tables and generating, for each table,
as many online chains as was required to obtain “#(alarm)/tbl”-many alarms. Each
value computed through formula (18) is very close to the average number of one-way
function iterations required per alarm that was obtained experimentally. Also, after
viewing Figure 2, one can be confident that formula (18) will be quite accurate, at least
for all parameter choices satisfying 0 < D̄msc < 2.3.
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Table 2: The number one-way function iterations required to resolve each alarm for
various parameters. (N= 248; t̂ = 15 t).

parameters test formula test
formula

m0 m t
D̄msc

1
t ×#(itr) 1

t ×Eq.(18)#(tbl) #(alarm) / tbl
3000 2766 131072 0.16882 1.02002 1.01977 1.000251280 10000

231000 209976 16384 0.20025 1.02354 1.02314 1.00039128 30000
17000 15230 65536 0.23239 1.02616 1.02650 0.99967640 10000
48000 37354 65536 0.56998 1.05758 1.05713 1.00042128 10000
12775 9843 131072 0.60077 1.05889 1.05956 0.99937640 5000

870000 661405 16384 0.63077 1.06202 1.06187 1.00014128 20000
1504000 1013856 16384 0.96689 1.08460 1.08483 0.99978128 20000
99000 65884 65536 1.00531 1.08758 1.08715 1.00039128 10000
6400 4223 262144 1.03101 1.08824 1.08867 0.999611280 10000
9400 5588 262144 1.36426 1.10606 1.10642 0.999671280 10000

156000 91761 65536 1.40016 1.10806 1.10814 0.99993128 20000
2576000 1501280 16384 1.43173 1.10999 1.10962 1.00033128 20000
217500 115580 65536 1.76361 1.12370 1.12377 0.99994128 20000
3587000 1887750 16384 1.80030 1.12553 1.12519 1.00030128 20000
14400 7512 262144 1.83398 1.12610 1.12647 0.999671280 10000
74000 35512 131072 2.16748 1.13818 1.13810 1.00007128 10000

4845000 2307050 16384 2.20017 1.13976 1.13915 1.00054128 20000
310000 146425 65536 2.23427 1.14000 1.14022 0.99981128 20000
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Figure 2: The number of one-way function iterations (y-axis) required to resolve each
alarm, in multiples of t, plotted in relation to the D̄msc value (x-axis) for the parameter
set. (test: dots; theory: line; N= 248; t̂ = 15 t).

4 Perfect Rainbow Tradeoff
This section gathers facts concerning the perfect rainbow tradeoff that are required
for our later comparison of tradeoff algorithms. Even though much of the material
given here have not appeared before in the form presented here, the technical core of
our complexity analyses were developed by previous works, and the arguments and
proofs of this section contain no new ideas. Given enough time, anyone with a full
understanding of the works [12], [9], and [11] should be able to reproduce the claims
of this section.

4.1 Online Efficiency
Unlike the perfect DP tradeoff case, the difficult parts of the complexity analysis for
the perfect rainbow tradeoff have already been done by previous works, and it only
remains to combine these in an appropriate manner.

Lemma 14. A non-perfect rainbow matrix created with m0 starting points is expected
to contain 2m0

2+Rmsc
non-merging chains, where Rmsc =

m0t
N . Conversely, to create a per-

fect rainbow matrix that contains m non-merging chains, one must expect to generate
m0 =

2
2−R̄msc

m chains.

Proof. Consider a non-perfect rainbow matrix created with m0 starting points. It is
known [1,9] that number of distinct points mi expected in the i-th column of this matrix,
satisfies

mi

N
≈ 1

N
m0

+ i
2

,

for each 0 ≤ i ≤ t. Setting i = t gives the number of distinct ending points mt , which
is the first claim of this lemma. To obtain the second claim, it suffices to solve for m0
after substituting i = t and mt = m.

For the remainder of this section,

m0 =
2

2− R̄msc
m (22)
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will always denote the number of starting points that are required to create a perfect
rainbow table containing m non-merging chains.

An interesting situation is when m0 = N, which is commonly referred to as the
maximal perfect rainbow tradeoff [1]. Since a larger number of starting points m0
brings about a larger number of non-merging ending point m, this is also the case for
which R̄msc =

mt
N is at its largest. With an easy manipulation of (22) after substitution

of m0 = N, one finds that there is an upper bound

R̄msc ≤
2t

t +2
< 2 (23)

on the possible range of R̄msc.
The pre-computation phase of a perfect rainbow tradeoff requires m0t` iterations of

the one-way function. As in the DP case, we define the pre-computation coefficient for
the perfect rainbow tradeoff to be R̄pc =

m0t`
N , so that the number of one-way function

iterations required for pre-computation becomes R̄pcN. The following statement is a
direct consequence of Lemma 14.

Proposition 15. The pre-computation coefficient of the perfect rainbow tradeoff is

R̄pc =
2

2− R̄msc

mt`
N

=
2 R̄msc

2− R̄msc
`.

The success probability of a perfect rainbow tradeoff may easily be stated [1] as

R̄ps = 1−
(

1− m
N

)t`
= 1− exp

(
− mt`

N

)
= 1− exp

(
− R̄msc`

)
, (24)

and this shows that the choice of ` determines the matrix stopping constant

R̄msc =−
ln(1− R̄ps)

`
(25)

one must adhere to, when selecting parameters that achieve a prescribed probability of
success. However, one must keep in mind that (23) requires for the number of tables to
satisfy

` >−1
2

ln(1− R̄ps). (26)

That is, to achieve a given success probability R̄ps, the number of tables one must use
is lower bound by (26). No set of parameters that uses a smaller number of tables can
achieve the desired success probability.

Using Proposition 15, we can restate the probability of success (24) as follows.

Proposition 16. The success probability of the perfect rainbow tradeoff is

R̄ps = 1− exp
(
− 2− R̄msc

2
R̄pc

)
.

Acquiring the online efficiency of the perfect rainbow tradeoff from existing works
is also straightforward.
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Theorem 17. The time memory tradeoff curve for the perfect rainbow tradeoff is
T M2 = R̄tcN

2, where the tradeoff coefficient is

R̄tc =
(
R̄msc`−

R̄msc

2
+ `−2+

3
2`

)
−
( R̄2

msc`

4
+ R̄msc`

2− R̄msc`+ R̄msc + `−2+
3
2`

)
e−R̄msc`.

Proof. According to [9], the expected number of one-way function iterations required
to generate the online chain is

`
{

1− (1+ R̄msc`)e−R̄msc`
}( t

R̄msc`

)2
,

and that required to resolve alarms is4

{R̄msc

(
`− 1

2

)
−
(

2− 3
2`

)}
+
{(

2− 3
2`

)
+ R̄msc(`−1)− R̄2

msc`

4

}
e−R̄msc`

( t
R̄msc`

)2
.

These expected values take the possibility of premature exit from the online phase after
discovery of the correct answer into account. The sum of these two terms is the time
complexity T . We can combine this with the storage complexity M = m` and then
simplify to arrive at the claim.

4.2 Storage Optimization
As with the perfect DP tradeoff, storage of a single starting point for the perfect rainbow
tradeoff requires logm0 bits, and (22) shows how this compares with logm. However,
unlike the DP case, since R̄msc may take values that are very close to 2, there remains
the possibility of logm0 being much larger than logm.

A hint for resolving this problem comes from the derivation process of (23), which
shows that R̄msc being close to 2 is associated with an unrealistically large amount
of pre-computation. In any real-world situation, there will be a bound on the pre-
computation cost one is willing to accept. So, let us combine Proposition 15 and (25),
and consider a somewhat arbitrary bound of

R̄pc =
2

2− R̄msc

{
− ln(1− R̄ps)

}
≤ 20, (27)

on the pre-computation coefficient. Unless the requirement on the success rate is un-
realistically small, this will place a reasonably small bound on the coefficient 2

2−R̄msc
of (22), so that logm will be similar to logm0. This shows that, for any practical sit-
uation, it suffices to allocate slightly more than logm bits of storage to each starting
point.

One side effect of (27) is that it implies the bound R̄ps ≤ 1− 1
e20 on the suc-

cess probability one can consider. However, the appearance of a success probability

4The single ecR appearing in [9, p.312] should be corrected to ecR`.
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bound is only natural, since a success probability that is arbitrarily close to 1 can-
not be achieved without enormous amount of pre-computation. Furthermore, since
99.999999% < 1− 1

e20 , the implied bound on the success probability is essentially
meaningless for even a moderately large bound on the pre-computation cost.

The ending point truncation technique is the subject of our next discussion. In the
case of the perfect DP tradeoff, truncation was defined only for the DPs, but ending
points may take any form with the rainbow tradeoff, so we now consider truncation of
any point from N . Consider a truncation method for which two random points of N ,
truncated in the specified manner, will have probability 1

r of matching with each other.
As before, we express such a situation as having 1

r probability of truncated match. One
specific way to do this would be to truncate to logr most significant bits.

As in the DP case, truncation may cause two ending points of a perfect rainbow
table to become indistinguishable. Concerning this matter, Lemma 11 remains valid
for the rainbow tradeoff.

Lemma 18. Assume the use of a truncation method with the truncated match proba-
bility set to 1

r . If m distinct ending points of a perfect rainbow matrix are truncated,
then we can expect to find r

{
1−exp(−m

r )
}

distinct truncated points. Conversely, when
r >m, one must expect to truncate r ln

( r
r−m

)
ending points in order to collect m distinct

truncated points.

The example values that were given below Lemma 11 remain valid for the perfect
rainbow tradeoff. That is, truncation of 1.01596m ending points will give m distinct
truncated points, when r = 25m. Hence, the effects of ending point truncation on pre-
computation cost and success probability can be suppressed to an ignorable degree by
the use of an 1

r such that logr = ε + logm for some small positive integer ε .
Analogous to the DP case, if required, one can work with (22) to find the correct

m0 value one must use in order to collect the slightly larger number of non-merging
pre-computation chains. Note that our previous discussion of how R̄msc is sufficiently
bounded away from 2, in practice, implies that the non-linearity hidden within R̄msc
will not cause too much disturbance. In particular, our claim of each starting point
requiring logm0 ≈ logm bits of storage remains valid even if one wants to account for
the small loss of pre-computation chains experienced through the truncation of ending
points.

The effect of truncation on the online time is considered next.

Lemma 19. Assume the use of ending point truncation with the truncated match prob-
ability set to 1

r . Further assume that r has been chosen to be large enough so that the
occurrences of indistinguishable ending points from truncations are sufficiently limited
to be ignored. Then, during the online phase of the perfect rainbow tradeoff, one can
expected to observe

(
R̄msc`

2− R̄msc`+
R̄msc

2
− `+2− 3

2`

)
+
( R̄2

msc`

4
− R̄msc`+ R̄msc + `−2+

3
2`

)
e−R̄msc`

 m
r

( t
R̄msc`

)2

extra one-way function invocations induced by truncation-related alarms.
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Proof. Consider the non-perfect rainbow matrix created with m0 = 2m
2−R̄msc

starting
points and let mi (0 ≤ i ≤ t) denote the number of distinct points expected in the i-th
column of this matrix. The probability for the online chain created at the i-th iteration,
i.e., the online chain of length i, starting from the correct inversion target pre-image,
not to merge into the perfect rainbow matrix, but have an ending point that truncates to
a truncated matrix ending point is

m
r

i

∏
j=0

(
1−

mt− j

N

)
≈ m

r

N
m0

+ t−i−1
2

N
m0

+ t
2

N
m0

+ t−i−2
2

N
m0

+ t−1
2

≈ m
r

( N
m0

+ t−i
2

N
m0

+ t
2

)2
=

m
r

(
1− R̄msc

2
i
t

)2
.

Here, the first approximation relies on mi
N ≈

(
N
m0

+ i
2

)−1, which may be found in [1,9].
The expected number of extra one-way function iterations induced by truncation-

related alarms is given by

`
t

∑
i=0

(t− i)
m
r

(
1− R̄msc

2
i
t

)2(
1− m

N

)`(i−1)
,

for the (expected) processing of the ` rainbow tables. Here, the `(i−1)-th powered term
gives the probability for the i-th iteration of the online phase algorithm to be executed.
Unless t is very small, this can be approximated by

t2`
m
r

∫ 1

0
(1−u)

(
1− R̄msc

2
u
)2

exp
(
− R̄msc`u

)
du.

Explicit computation of this definite integral results in our claim.

Recall that the total online time, without ending point truncation, was given during
the proof of Theorem 17. It is straightforward to express the effects of ending point
truncation on the total online time.

Proposition 20. Suppose that the online phase of a perfect rainbow tradeoff implemen-
tation that stores each ending point in full requires T iterations of the one-way function
to complete. Consider the use of the ending point truncation with the truncated match
probability set to 1

r , where logr = ε + logm. If ε is large enough for the effects of
truncation on pre-computation chain collision to be ignored, then the implementation
with the ending point truncation requires

−
( 3

2` −2− R̄msc
2 + `+ R̄msc`− R̄msc`

2
)
+
( 3

2` −2+ R̄msc + `− R̄msc`+
R̄2

msc`
4

)
e−R̄msc`( 3

2` −2− R̄msc
2 + `+ R̄msc`

)
−
( 3

2` −2+ R̄msc + `− R̄msc`+
R̄2

msc`
4 + R̄msc`2

)
e−R̄msc`

T
2ε

additional iterations of the one-way function to complete.

For the typical parameters of R̄msc = 1 and ` = 1, the claim is that 0.774568 T
2ε

additional one-way function iterations are expected due to truncation-related alarms.
At ε = 5, this is 0.0242052T , which implies a 2.42% increase in online time due to
ending point truncation.

Let us summarize the issue of storage optimization for the perfect rainbow tradeoff.
Each starting point can be stored in slightly more than logm bits. Each ending point
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can be truncated to slightly more than logm bits with little effect on the success prob-
ability, pre-computation cost, and online time. The index file technique can be used to
remove almost logm further bits per ending point without any loss of information. In
all, storage of each starting point and ending point pair requires a little more than logm
bits. Even though this is identical to the conclusion obtained in [11] for the non-perfect
rainbow tradeoff, the analysis had to be repeated here for the perfect rainbow tradeoff.

5 Tradeoff Algorithm Performance Comparisons
Formulas for the success rates, online efficiencies, and pre-computation costs of the
perfect DP and perfect rainbow tradeoffs were obtained in the previous two sections.
This information is used in this section to understand the performances of the two
algorithms.

5.1 Method of Comparison
Let us briefly summarize the arguments of [11, Section 8.1] that suggest how to com-
pare different tradeoff algorithms.

• Different algorithms should be compared at parameters that achieve the same
probability of success.

• The tradeoff coefficient is a measure of the online efficiency of an algorithm.
However, one must keep in mind that the unit of storage used while computing
the tradeoff curve was the number of entries written to the pre-computation ta-
ble, rather than the physical amount of required storage space. Hence, one must
account for the number of bits required to store each entry, which may be dif-
ferent among algorithms, when comparing the tradeoff coefficients of different
algorithms against each other. In the case of the classical Hellman, non-perfect
DP, and non-perfect rainbow tradeoffs under typical environments, it is reason-
able to compare the adjusted tradeoff coefficients Htc, 1

4Dtc, and Rtc against each
other.

• For any one tradeoff algorithm, a parameter set that achieves better online ef-
ficiency usually calls for a larger amount of pre-computation. The appropriate
balance between these two factors will be different for every user and situation,
and the comparison of algorithm performances can only be a subjective matter in
this respect. What can be done objectively is to present the pre-computation cost
versus online efficiency relation for each algorithm as graphs. The final decision
as to which algorithm is most suitable can be made by the user, for the specific
situation in hand, based on this information.

We will follow this approach in comparing the perfect DP and perfect rainbow
tradeoff algorithms against each other. Recall that the classical Hellman, non-perfect
DP, and non-perfect rainbow tradeoffs were compared in [11], and that the rainbow
tradeoff could be seen as outperforming the other two in typical situations. All our
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graphs given below include the information for the non-perfect rainbow tradeoff, so
that the two perfect table tradeoff algorithms analyzed in this work may also be roughly
compared against the three non-perfect table tradeoff algorithms.

5.2 Comparisons
Since we are going to compare the tradeoff algorithms at a common fixed probability
of success, the parameters D̄ps and R̄ps will now be treated as fixed constants. The
discussions of Section 3.2 and Section 4.2 show that perfect versions of the DP and
rainbow tradeoffs require approximately the same number of bits per table entry as their
non-perfect counterparts running under comparable resources. One can conclude that a
fair comparison of online efficiencies would compare the adjusted tradeoff coefficients
1
4 D̄tc and R̄tc against each other, and that these two adjusted tradeoff coefficients may
also be directly compared against the non-perfect rainbow tradeoff coefficient Rtc.

Let us explain how one may plot the pre-computation coefficient versus tradeoff
coefficient curves for the two perfect tradeoff algorithms. One can derive

D̄pc =
2+ D̄msc

2 D̄cr

{
− ln(1− D̄ps)

}
(28)

from Proposition 4, and since Proposition 8 expresses D̄cr as a function of D̄msc, the
pre-computation coefficient can be seen as a function of the single parameter D̄msc, as
long as D̄ps is treated as a constant. Similarly, Theorem 10 and Proposition 8 express
the tradeoff coefficient D̄tc as a function of the single parameter D̄msc. Thus the relation
between D̄pc and D̄tc may be drawn as a curve parameterized by D̄msc.

It is important to understand that, even when the success rate D̄ps and curve param-
eter D̄msc are fixed to specific values, there still remains a single degree of freedom in
the tradeoff algorithm parameters m, t, and `, with which one can realize the tradeoff
between the online time T and the storage requirement M. That is, the ability of the DP
algorithm to provide tradeoffs between online time and storage requirement is unim-
paired by restrictions on the success rate and the matrix stopping constant, and the D̄tc
value appearing with each (D̄pc, D̄tc)-pair represents an online efficiency with a fully
operational time memory tradeoff opportunity.

To be more concrete, suppose one is given specific D̄ps and D̄msc values, together
with any T and M that satisfy the tradeoff curve of Theorem 10, where the tradeoff
coefficient D̄tc is computed from the given D̄ps and D̄msc values. Then it is easy to check
that the sequentially defined parameter set

t =
{ D̄mscD̄cr

D̄ps

(
1+

1+0.577D̄msc

1+0.451D̄msc

D̄msc

1+ D̄msc

)−1
T
} 1

2
, (29)

m =
D̄mscN

t2 , (30)

`=
N

mtD̄cr

{
− ln(1− D̄ps)

}
(31)

satisfies the four requests or restrictions on D̄ps, D̄msc, T , and M. The equivalence
of (31) and (14) implies that the success rate D̄ps will be achieved with these parameters,
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Figure 3: The tradeoff coefficients 1
4 D̄tc (line), R̄tc (dots), and Rtc (circles), with adjust-

ments suitable for direct comparison, in relation to their respective pre-computation
costs, at various success rates (x-axis: D̄pc, R̄pc, and Rpc; y-axis: 1

4 D̄tc, R̄tc, and Rtc).

while (30) ensures that the given D̄msc value is adhered to. Furthermore, since (29) and
the first equation in the proof of Theorem 10 are equivalent, the online phase is expected
to terminate in the requested time T . Finally, since both the storage requirement under
the above parameter set and the requested M value satisfy the same tradeoff curve,
i.e., with common values of the online time and tradeoff coefficient, adherence to M is
guaranteed.

Let us now explain how the performance curve for the the perfect rainbow trade-
off may be plotted. One can combine (25) and Proposition 15 to express the pre-
computation coefficient

R̄pc =
2

2− R̄msc

{
− ln(1− R̄ps)

}
=−

2` ln(1− R̄ps)

2`+ ln(1− R̄ps)
(32)

as a function of the single variable `. Similarly, the substitution of (25) into the formula
of Theorem 17 results in an expression for R̄tc that is given in terms of the single vari-
able `. Thus, the relation between R̄pc and R̄tc may be drawn as a curve parameterized
by `. As with the DP tradeoff, possibility of tradeoffs between online time and storage
requirement remains unaffected by the restrictions on R̄ps and `.

The curves for the two perfect tradeoffs and the non-perfect rainbow tradeoff are
given in Figure 3 for some specific success rates. Within each box, being lower is to
have better online efficiency and being closer to the left edge is to require less pre-
computation. Hence, one may roughly interpret being situated closer to the lower left
corner as displaying better performance.



33

•
•

•
•

•
•

•
•

•
•

•
•

ééé
é

é
é

é
é

é
é
é

99%

5.0 5.2 5.4 5.6 5.8 6.0
0

5

10

15

20

Figure 4: Tradeoff coefficient for perfect (dots) and non-perfect (circles) rainbow trade-
offs in relation to their pre-computation costs at 99% success rate (x-axis: R̄pc and Rpc;
y-axis: R̄tc and Rtc).

In each box, the filled dots represent the choice of (R̄pc, R̄tc)-pairs made available
by the perfect rainbow tradeoff, and the empty circles represent data for the non-perfect
rainbow tradeoff. Each dot for the perfect rainbow tradeoff corresponds to an integer `
value, with the rightmost dot corresponding to `= d− 1

2 ln(1− R̄ps)e, as determined by
the bound (26). Since the table count ` must be an integer, the available choices appear
as a discrete set of points. Similar statements may be made for the circles that represent
data for the non-perfect rainbow tradeoff. The single continuous curve in each box
represents data for the perfect DP tradeoff. Unless N is small, it is reasonable to treat
the parameter D̄msc =

mt2

N that was used to draw these graphs as a continuous variable,
even though it originates from integers. One can numerically verify that the tradeoff
coefficient D̄tc attains its minimum at D̄msc = 1.97255, regardless of the D̄ps value. The
lowest point, or the right end, of the curve in each box corresponds to D̄msc = 1.97255
and the curve is drawn only for the parameter in the range D̄msc≤ 1.97255. Curve points
corresponding to larger D̄msc values would be associated with worse online efficiencies
at higher pre-computation costs, which would not be used.

It is quite clear from Figure 3 that the perfect DP tradeoff is less desirable than
the perfect rainbow tradeoff, regardless of how one wants to balance online efficiency
against pre-computation cost. When these normal to high success rates are required,
the perfect DP tradeoff is no match for the perfect rainbow tradeoff. It also seems fair to
claim that the perfect rainbow tradeoff is at an advantage over the non-perfect rainbow
tradeoff, since it can approximately provide every option made available by the non-
perfect rainbow, while providing many more options that cannot be approximated by
the non-perfect rainbow tradeoff. Furthermore, the perfect rainbow tradeoff presents
the possibility of obtaining much better online efficiencies, although these must be
paid for with higher pre-computation costs. At the 90% success rate, and possibly
also at the 95% success rate, the perfect DP tradeoff is likely to be more useful than
the non-perfect rainbow tradeoff, unless one is extremely restrained in the amount of
pre-computation possible.

The success rates covered by Figure 3 are those that would be of practical interest.
We acknowledge that for success rate requirements that are much lower, such as 25% or
50%, the situation is somewhat different. One can easily verify through curves similar
to those of Figure 3 that the use of the perfect DP tradeoff can be advisable at these less
interesting low sucess rates.

The comments given so far should generally be acceptible, but when lowering the
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pre-computation cost is immensely important, there remains a small possibility that
the non-perfect rainbow tradeoff could be preferred over the perfect rainbow tradeoff.
This is illustrated by Figure 4, which is an enlarged view of a narrow vertical strip
from the 99% box of Figure 3. We have intentionally stretched the vertical strip in
the horizontal direction and have reduced the height, so that even a small difference
in the pre-computation coefficient is felt as being significant. Even though some sac-
rifice in the online efficiency is inevitable, the options provided by the non-perfect
rainbow tradeoff now seem much more reasonable than previously felt when viewed
from within Figure 3.

To summarize, when the online efficiency and pre-computation cost are both taken
into account, the perfect rainbow tradeoff is very likely to be advantageous over perfect
DP, non-perfect rainbow, non-perfect DP, and classical Hellman tradeoffs, in typical
situations. However, there may be special circumstances under which the preferences
could be different. For example, importance of lowering the pre-computation cost may
shift the preference towards the non-perfect rainbow tradeoff, and the need for fine-
tuned parameter choices may make the perfect DP tradeoff, or even the non-perfect DP
and classical Hellman tradeoffs, favorable at low success rate requirements.

Before ending this section, let us briefly add two remarks concerning the D̄msc =
1.97255 value that minimizes the tradeoff coefficient D̄tc. Even though our derivation
of the formula for D̄tc relied on the approximation (18), since the range in which (18) is
accurate contains the minimizing D̄msc value, one can be confident that D̄msc = 1.97255
indeed provides a (local) minimum for D̄tc. In the opposite direction, as was already
discussed, since D̄msc values greater than 1.97255 will not be used, it suffices to restrict
our attention to parameters in the 0 < D̄msc ≤ 1.97255 range.

6 Conclusion
In this work, we analyzed the execution complexity of the perfect DP tradeoff and com-
puted its tradeoff coefficient. We also combined the existing results on the execution
complexity of the perfect rainbow tradeoff to present its online efficiency. Using this
information, the performances of the perfect DP tradeoff and perfect rainbow tradeoff
were compared against each other. We also added the non-perfect rainbow tradeoff,
which was shown to outperform the classical Hellman and non-perfect DP tradeoffs in
a previous work [11], to our comparison. Our conclusion, in overly simplified terms,
is that the perfect rainbow tradeoff is advantageous over the other four tradeoff algo-
rithms.

On the surface, our conclusion may seem to be a repetition of the claim given by the
article [12] that first introduced the rainbow tradeoff, but the two claims differ funda-
mentally in their contents. The previous work [12] measured the storage size in terms
of the number of table entries, but the physical storage size was considered in our com-
parisons. Our comparison was based on the expected execution complexities, rather
than the worst case complexities, which were used by [12]. Finally, our comparison
considered both the online efficiency and the cost of pre-computation, whereas only
the optimal online behavior was considered by [12]. In other words, different concepts
of one algorithm being better than another algorithm were employed by [12] and this
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work in comparing tradeoff algorithms.
In addition to the conceptual differences which make our comparisons more mean-

ingful in practice than the previous claims of [12], there was also a difference in the ac-
curacy of the two comparisons. The claim of [12] relied on parameter sets for different
algorithms that were heuristically shown to bring about roughly corresponding success
rates, but the parameter sets for different algorithms were conditioned to achieve ex-
actly the same success rate in our comparison. In addition, our comparison, unlike that
of [12], fully accounted for the complexity of resolving false alarms, which constitutes
a significant portion of the online time.

Despite our simplified conclusion of the perfect rainbow tradeoff outperforming
the other four algorithms, we do not rule out the possibility of encountering situa-
tions where the conclusions could be different. One example would be when lowering
the pre-computation cost is immensely important. There may also be issues we have
ignored, such as the possibility of loading a pre-computation table into fast memory
or table lookup characteristics, which could make the two DP tradeoffs, with smaller
individual tables, preferable over the two rainbow tradeoffs. Furthermore, recent im-
plementation platforms such as GPUs, where the scheduling of the online computation
needs to be totally different from most computation platforms and accesses to large
storage are inconvenient, could call for a new analysis of the execution complexities.

It remains to verify whether any of the recent tradeoff algorithm variants that claim
superiority over existing algorithms are truly advantageous over the perfect rainbow
tradeoff.

A Chain Length Bounds and Parallelization of the DP
Tradeoff

Let us briefly comment on the two techniques for the DP tradeoff that were not con-
sidered during our complexity analyses. Specifically, these were the upper and lower
bounds on the chain lengths and the parallel processing of tables during the online
phase.

The use of chain length bounds will increase the number of pre-computation chains
that are discarded, so that the amount of pre-computation must be increased in order to
maintain the success rate. The effect of chain length bounds on the online efficiency
is unclear, but making the pre-computation chain lengths shorter has the tendency to
reduce chain merges and false alarms, so this could have a positive effect. However,
a quick review of Figure 3 shows that no small enhancement in the online efficiency
is likely to make the perfect DP tradeoff more preferable over the perfect rainbow
tradeoff, even if no penalty on the pre-computation cost was involved. Hence, there
seems to be little reason to consider the perfect DP tradeoff variant that utilizes chain
length bounds, except possibly at low success rates.

The work [8, 15] suggests that all the pre-computation tables be processed in par-
allel, rather than sequentially, during the online phase. Parallel processing causes the
shorter online chains to be treated before the longer ones, and since the online phase
is likely to terminate with the correct answer before any of the pre-computation tables
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are fully processed, this leads to a larger portion of the online computation being spent
on processing the shorter chains. Since shorter chains are less likely to induce false
alarms, this has a positive effect of reducing the cost of dealing with alarms. How-
ever, the recent analysis on the non-perfect parallel DP tradeoff [10] indicates that one
cannot hope to see any drastic improvement of the perfect DP tradeoff performance
through parallelization. For now, there seems to be no reason to expect the parallel per-
fect DP tradeoff to perform better than the perfect rainbow tradeoff, especially under
the high success rate requirements which are of interest.

B Detailed Proof of Lemma 5
The very short proof of Lemma 5 given in the main body of this paper will seem suffi-
cient to most cryptographers. However, there are subtle issues involving random func-
tions that were ignored in the proof. This section is an attempt at resolving these issues.
We strongly urge any interested reader to review [11, Appendix B] before reading this
section.

Recall that we are using Dk(F) to denote the set of elements of N that are k-many
F-iterations away from their closest DPs, and suppose that D0, D1, . . . , Dk are any
collection of mutually disjoint subsets of N , with D0 denoting the set of all DPs. Let
us consider any function F : N →N and discuss when the series of conditions

C1: Di = Di(F), for i = 1, . . . ,k

would be satisfied by the function. Note that the omitted condition D0 = D0(F) is
always satisfied.

The series of conditions C1 is satisfied by the function F if and only if the following
three items are all satisfied:

C2: Di = Di(F), for i = 1, . . . ,k−1.

C3: F(Dk)⊂ Dk−1.

C4: F(N \Dk)∩Dk−1 = /0.

Repeating this argument, we see that the satisfaction of Condition-C1 by an F is equiv-
alent to the satisfaction of the following two series of conditions.

C5: F(Dk)⊂ Dk−1, . . . , F(D2)⊂ D1, and F(D1)⊂ D0.

C6: F(N \Dk)∩Dk−1 = /0, . . . , F(N \D2)∩D1 = /0, and F(N \D1)∩D0 = /0.

Suppose that we were trying to construct a function that satisfies these conditions.
Then the condition F(Dk)⊂ Dk−1 would certainly places a restriction on how we may
define F on Dk. However, since the set Dk does not overlap with any of the other
sets D0, . . . ,Dk−1, none of the other sub-conditions of C5 places any restriction on the
definition of F on Dk. Next, the sub-condition F(N \Dk)∩Dk−1 = /0 of C6 is certainly
irrelevant to the definition of F on Dk. The other sub-conditions of C6 are not quite so
irrelevant, but since Dk−1 does not overlap with any of the sets D0, . . . ,Dk−2, as long
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as the condition F(Dk) ⊂ Dk−1 is adhered to, they are automatically satisfied and do
not places any additional restriction of how we may define F on Dk. More generally,
for each i = 1, . . . ,k, the condition F(Di) ⊂ Di−1 is the only restriction placed on the
definition of F on Di by C5 and C6. In other words, asking for C1 to be satisfied by
a function F places no restriction on the definition of F on Di other than that F(Di)⊂
Di−1 be satisfied.

The discussion given so far can be reinterpreted as follows. Let D0,D1, . . . ,Dk
be any collection of mutually disjoint subsets of N , with D0 denoting the set of all
DPs. By choosing a function F : N →N satisfying Condition-C1, one determines
functions Fi : Di → Di−1 for each i = 1, . . . ,k. Let us fix any i. If the choice of F is
made uniformly at random from the set of all function satisfying Condition-C1, the
distribution of the corresponding Fi : Di → Di−1, defined on the set of all functions
having domain Di and codomain Di−1, also becomes the uniform distribution.

We are now ready to prove the lemma. Choose any explicit family of disjoint
sets D0, . . . , Dk such that D0 is the set of all DPs. For a random function satisfying
Condition-C1, since each Fi : Di→ Di−1 is a random function, we can expect to see

|F(D′)|
|Di−1|

= 1− exp
(
− |D′|
|Di−1|

)
(33)

for every set D′ ⊂ Di and i = 1, . . . ,k. So far, we have fixed D0, . . . , Dk first and have
claimed information on iterated image sizes only for functions F satisfying Condition-
C1, which is associated with the sets D0, . . . , Dk. However, observe that this iterative
equation depends only on the set sizes |D′|, |D0|, . . . , |Dk| and not on the specific sets
D′,D0, . . . ,Dk. Also recall that (15) is expected of a random function. Interpreting this
as (15) holding accurately for the vast majority of functions F , the truth of Lemma 5
follows. A review of [11, Appendix B] is required to fully understand this final state-
ment.

C Comments on a Previous Analysis of the perfect DP
Tradeoff

Since there is a large overlap between what the previous work [16] and the current
work claim to have obtained, let us compare some of the results from the two works.

The paper [16] provides a method for computing the number of distinct ending DPs
expected from a given number of starting points. This value, which is the number of
chains remaining after removal of merging chains, was referred to as α in Section 2.2.
In Table 3, we have copied some of the related data appearing in [16, Table 2] and
have appended our corresponding theoretical values, computed with Lemma 2. The
parameters associated with this table are N = 256 and t = 218, and all figures in the
table are given as log2 values. Recall that Lemma 2 is valid for the case when no chain
length bounds are set. The data from [16] are for when there is no lower bound on the
chain length and the chain length upper bound is set to 230, which is sufficiently large
for the t = 218 being used.
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Table 3: Number of DP chains before and after removal of chain merges (N = 256,
t = 218). All values are given in log2 scale.

# of starting
points

# of ending points
test of [16] theory of [16] Lemma 2

20 19.5497 19.4712 19.5500
21 20.3048 20.1357 20.3058
22 20.9990 20.6866 21.0000
23 21.6425 21.1357 21.6430

One can verify, in every row of the table, that our theory provides estimates that are
closer to the test results of [16] than their own theory. Some might dismiss the differ-
ences between the two theoretical values as being too small to be of any significance,
but one must consider the fact that these are log2 values. For example, referencing
the last row of the table, we can see that the (in)accuracy of Lemma 2 in predicting
the test value is by a factor of 221.6425

221.6430 ≈ 0.999653, but that the theoretical prediction

of [16] is further away at a factor of 221.6425

221.1357 ≈ 1.42. The error factor of 1.42 in the es-
timated number of ending points is directly reflected in the pre-computation table size
estimate and presents itself as a 1.422 ≈ 2.02 error factor in the estimate for the trade-
off coefficient. Hence, for the purpose of comparing the online efficiencies of tradeoff
algorithms, which usually differ only by factors of such small magnitude, the theory
of [16] was not accurate enough.

Recall from Section 2.2 that the expression for α given in [16] involved the average
chain length β̄ and that their derivation of β̄ involved an ad hoc procedure. So, let us
consider the possibility that this ad hoc procedure was the cause of the inaccuracy we
have witnessed in Table 3 and that their arguments were correct up to that point. For
this purpose, we focus on one major intermediate result of [16] which they refered to
as the storage function s( j).

The exact definition of s( j) is slightly complicated and will not be explained here
in full, but when no bounds are placed on the chain lengths, function s( j) is suppose
to give the expected number of distinct nodes in a perfect DP matrix that was created
with j starting points. The formula they gave was

s( j) = 2k
{

1−
( 2k

−β j+β 2 j+K

) 1
β−1
}

with K = 2k
(

1− s(0)
2k

)1−β

, (34)

where the β they used was the average chain length before the removal of chain merges
and 2k was the size of the search space. The presence of s(0) may seem strange, but
this is because we have not explained the meaning of s( j) in full, and we may simply
take s(0) = 0 for this discussion. In the absence of chain length bounds, we may take
β = t and approximate their formula into

s( j) = N
{

1−
( N

t2 j+N

) 1
t
}
, (35)

written in the notation of this paper. Hence, according to the theory of [16], if one
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Figure 5: The value t
N |D̄M|= D̄mscD̄cr as predicted by [16] (solid) and the current work

(dashed). (x-axis: Dmsc; y-axis: t
N |D̄M|)

creates a perfect DP matrix using m0 starting points, there will be

|D̄M|= s(m0) = N
{

1−
( 1

1+Dmsc

) 1
t
}

(36)

distinct points in the matrix, where Dmsc =
m0t2

N . To allow for direct comparison with
our result, we rewrite this in the form

t
N
|D̄M|= t

{
1−
( 1

1+Dmsc

) 1
t
}
≈ ln(1+Dmsc). (37)

The approximation here is accurate for all sufficiently large t. For example, at Dmsc = 1
the right-hand value is ln(1+Dmsc)= 1.09861, and even at the moderately sized t = 210,
the formula in the middle involving t evaluates to 1.09802.

Our corresponding result is contained in Proposition 8. Using (12), we can claim

t
N
|D̄M|= D̄mscD̄cr = 2ln

(
1+

D̄msc

2

)
= 2ln

(1+
√

1+2Dmsc

2

)
, (38)

which is clearly different from (37).
The numeric values given by the two formulas (37) and (38) are compared in Fig-

ure 5. The two are visibly different, except when Dmsc is very small, in which case
chain merges are rare and both theories reduce to something trivial. For example, even
at Dmsc = 1, the two theories give clearly different values of 0.69315 and 0.62381.
Since the testing of Section 3.3 has shown our estimate of coverage rate to be much
more accurate than the general order of these differences, the storage function s( j), as
given by (35), must not be as accurate.

Let us explain the source of their inaccuracy. The core logic of [16] rests in their
Equation (22), which we approximate and state as

s( j+1) = s( j)+ t
(

1− s( j)
N

)t
, (39)

for the case when there are no chain length bounds. This equation can be interpreted
as follows. One expects to add t new points to the perfect matrix by considering one
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more pre-computation chain, but this addition should only be done when the chain of t
points do not merge with the points within the existing matrix. The t-th powered term
on the right is the probability for none of the t additionally generated points to be in
the existing matrix of s( j) points. This high-level view of (39) may seem plausible.

The first source of inaccuracy hiding in (39) is the assumption that the new chain
added is always of length t. In reality, chains of varying lengths will be created and
these all have different probabilities of merging with the existing matrix. The simplified
view of [16] could have been justified to a certain degree if the chain lengths were
mostly close to t, but the actual distribution of chain lengths is not even centered at
the average value t. The authors of [16] seem to have been aware of this problem. In
later parts of their paper, they divide the range of possible chain lengths into a small
number of segments and treat each length range separately, using different average
chain lengths within each segment.

The second source of inaccuracy is in the t-th powered term that was suppose to
give the probability for the additional chain not to merge with the existing matrix. Since
we are dealing with a DP chain of a predetermined length at this point, a more accu-
rate expression would somehow involve the set sizes |Dk|, that appeared in the main
body of this work, in the denominator, rather than N. Furthermore, the numerator s( j)
should be replaced with values that are associated in some way with the non-perfect
matrix created up to that point. This is because the newly created chain is destined to
merge with the perfect matrix whenever it merges with a previously generated chain,
regardless of whether the chain has been discarded due to merging.

We conclude that while the analyses of [16] are base on plausible arguments, their
results are valuable only as first approximations and are not accurate enough for the
purpose of this paper, which is to compare the performances of different tradeoff algo-
rithms.

D Optimal Rainbow Tradeoff Parameters
In this section we discuss the parameter set for the perfect rainbow tradeoff that the
previous analysis [1] suggested and claimed to be optimal. Let us explain the steps
they take to fix the parameters, in the language of this work. The required success
rate R̄ps and the total number of table entries M are treated as the externally supplied
parameters. First (26) is used to fix the number of tables ` = d− 1

2 ln(1− R̄ps)e. This
forces the number of starting points per table to m = M

` and we know from (24) that
the remaining parameter t must be fixed to

t =− N

m`
ln(1− R̄ps) =−

N

M
ln(1− R̄ps), (40)

if the requested success rate is to be achieved. In short, the number of tables is chosen
to be as small as possible, subject to the condition (26), and the rest of the parameters
are set to what they must be in order to satisfy the externally given requirements.

It is not hard to show that the tradeoff coefficient R̄tc of Theorem 17, when com-
bined with (25), is an increasing function of ` in the range `≥ 1 and 0≤ R̄ps < 1. This
implies that the parameters suggested by [1] are optimal in the sense that it gives the
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Figure 6: Pre-computation cost versus tradeoff coefficient for the perfect rainbow trade-
off at success rates slightly lower than 1− 1

e2 = 86.466% (x-axis: R̄pc; y-axis: R̄tc).

smallest possible tradeoff coefficient among those achieving the intended success rate.
An easier approach would be to state that, the optimal parameter set of [1] corresponds
to the rightmost filled dot in each box of Figure 3, which is clearly the lowest dot in
each box.

However, we want to emphasize that the rightmost dot of each box is just one of
the many options that are available to the tradeoff algorithm implementer, and that
this specific option is not likely to be favored over others when the pre-computation
cost is taken into account, except possibly at low success rates. Furthermore, Figure 6
demonstrates that there are success rates for which using parameters corresponding to
the rightmost dot is certainly impractical.

The parameter set that is most efficient in terms of online resource requirements is
very often not the most practical or reasonable parameter set option among those made
available by a tradeoff algorithm. The current work provides the information which
enables the tradeoff algorithm implementer to decide on the most sensible, rather than
the most online-efficient, parameter to use.
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