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Abstract. Physically Unclonable Functions (PUFs) are an emerging technology and have been pro-
posed as central building blocks in a variety of cryptographic protocols and security architectures.
However, the security features of PUFs are still under investigation: Evaluation results in the literature
are difficult to compare due to varying test conditions, different analysis methods and the fact that
representative data sets are publicly unavailable.
In this paper, we present the first large-scale security analysis of ASIC implementations of the five most
popular intrinsic electronic PUF types, including arbiter, ring oscillator, SRAM, flip-flop and latch
PUFs. Our analysis is based on PUF data obtained at different operating conditions from 96 ASICs
housing multiple PUF instances, which have been manufactured in TSMC 65 nm CMOS technology. In
this context, we present an evaluation methodology and quantify the robustness and unpredictability
properties of PUFs. Since all PUFs have been implemented in the same ASIC and analyzed with the
same evaluation methodology, our results allow for the first time a fair comparison of their properties.

Keywords: Physically Unclonable Functions (PUFs), ASIC implementation, evaluation framework,
unpredictability, robustness

1 Introduction

Physically Unclonable Functions (PUFs) are increasingly proposed as central building blocks in cryp-
tographic protocols and security architectures. Among other uses, PUFs enable device identification
and authentication [33,28], binding software to hardware platforms [7,14,4] and secure storage of
cryptographic secrets [37,17]. Furthermore, PUFs can be integrated into cryptographic algorithms [2]
and remote attestation protocols [29]. Today, PUF-based security products are already announced
for the market, mainly targeting IP-protection, anti-counterfeiting and RFID applications [36,11].

PUFs typically exhibit a challenge/response behavior: When queried with a challenge, the PUF
generates a random response that depends on the physical properties of the underlying PUF hard-
ware. Since these properties are sensitive to typically varying operating conditions, such as ambient
temperature and supply voltage, the PUF will always return a slightly different response each time
? A shorter version of this paper has been published at CHES 2012 [13].



it is stimulated. The most vital PUF properties for PUF-based security solutions are robustness and
unpredictability [1]. Robustness requires that, when queried with the same challenge multiple times,
the PUF should generate similar responses that differ only by a small error that can be corrected
by an appropriate error correction mechanism. This is an essential requirement in PUF-based appli-
cations that must rely on the availability of data generated by or bound to the PUF and should be
fulfilled under different operating conditions. Unpredictability guarantees that the adversary cannot
efficiently compute the response of a PUF to an unknown challenge, even if he can adaptively obtain
a certain number of other challenge/response pairs from the same and other PUF instances. With a
PUF instance we denote one particular hardware implementation of a PUF design. Unpredictability
is important in most PUF-based applications, such as authentication protocols, where the adversary
could forge the authentication if he could predict the PUF response. Existing PUF-based security
solutions typically rely on assumptions that have not been confirmed for all PUF types. For instance,
most delay-based PUFs have been shown to be emulatable in software [26], which contradicts the
unpredictability and unclonability properties. Hence, a systematic analysis of the security properties
of real PUF implementations in hardware is fundamental for PUF-based security solutions.

In contrast to most cryptographic primitives, whose security can be related to well established
(albeit unproven) assumptions, the security of PUFs relies on assumptions on physical properties and
is still under investigation. The security properties of PUFs can either be evaluated theoretically,
based on mathematical models of the underling physics [35,30], or experimentally by analyzing
PUF implementations [10,34,8,9,16]. However, mathematical models never capture physical reality
in its full extent, which means that the conclusions on PUF security drawn by this approach are
naturally debatable. The main drawback of the experimental approach is its limited reproducibility
and openness: Even though experimental results have been reported in literature for some PUF
implementations, it is difficult to compare them due to varying test conditions and different analysis
methods. Furthermore, raw PUF data is rarely available for subsequent research, which greatly
hinders a fair comparison.

Our Goal and Contribution. We present the first large-scale security analysis of ASIC implemen-
tations of the five most popular electronic PUF types, including different delay-based PUFs (arbiter
and ring oscillator PUFs) and different memory-based PUFs (SRAM, flip-flop and latch PUFs).
Hereby, we focus on robustness and unpredictability, which are the most vital PUF properties in
many security-critical applications. The ASICs have been manufactured in TSMC 65 nm CMOS
technology within a multi-project wafer run and contain multiple implementations of the same PUF
design. Our analysis is based on PUF data obtained from 96 ASICs at different temperatures, supply
voltages and noise levels that correspond to the corner values typically tested for consumer-grade
IT products. In this context, we developed an evaluation methodology for the empirical assessment
of the robustness and unpredictability properties of PUFs. Since all PUFs have been implemented
in the same ASIC and analyzed with the same methodology, our results allow for the first time a
fair comparison of the robustness and unpredictability of these PUFs.

Our evaluation results show that all PUFs in the ASIC are sufficiently robust for practical appli-
cations. However, not all of them achieve the unpredictability property. In particular, the responses
of arbiter PUFs have very low entropy, while the entropy of flip-flop and latch PUF responses are
affected by temperature variations. In contrast, the ring oscillator and SRAM PUFs seem to achieve
all desired properties of a PUF: Their challenge/response behavior hardly changes under different
operating conditions and the entropy of their responses is quite high. Furthermore, the responses

2



generated by different ring oscillator and SRAM PUF instances seem to be independent, which
means that the adversary cannot predict the response of a PUF based the challenge/responses pairs
of another PUF. However, the min-entropy, i.e., the minimum number of random bits observed in
a response of the ring oscillator PUF is low, which means that some responses can be guessed with
high probability.

Outline. We provide background information on PUFs in Section 2 and give an overview of the
ASIC implementation of the analyzed PUFs in Section 3. We present our evaluation methodology
in Section 4 and our analysis results in Section 5. Finally, we conclude in Section 6.

2 Background on PUFs

A Physically Unclonable Function (PUF) is a function that is embedded into a physical object, such
as an integrated circuit [25,20]. When queried with a challenge x, the PUF generates a response y
that depends on both x and the unique device-specific physical properties of the object containing
the PUF. Since PUFs are subject to noise induced by environmental variations, they return slightly
different responses when queried with the same challenge multiple times.

PUFs are typically assumed to be robust, physically unclonable, unpredictable and tamper-evident,
and several approaches to quantify and formally define their properties have been proposed (see [1]
for an overview). Informally, robustness means that, when queried with the same challenge multiple
times, the PUF returns similar responses with high probability. Physical unclonability demands that
it is infeasible to produce two PUFs that are indistinguishable based on their challenge/response
behavior. Unpredictability requires that it is infeasible to predict the PUF response to an unknown
challenge, even if the PUF can be adaptively queried for a certain number of times. Finally, a PUF is
tamper-evident if any attempt to physically access the PUF changes its challenge/response behavior.
The properties required from a PUF strongly depend on the application. For instance, a PUF with
small challenge/response space can be easily emulated by reading out all its challenge/response
pairs and creating a look-up table. While such a PUF cannot be used directly in authentication
schemes (such as in [32]), it could still be used in a key storage scenario (such as in [17]), where the
adversary is typically assumed not being able to interact with the PUF.

There is a variety of PUF implementations (see [20] for an overview). The most appealing ones
for the integration into electronic circuits are electronic PUFs, which come in different flavors. Delay-
based PUFs are based on race conditions in integrated circuits and include arbiter PUFs [15,24,18]
and ring oscillator PUFs [6,32,21]. Memory-based PUFs exploit the instability of volatile memory
cells, such as SRAM [7,9], flip-flops [19,16] and latches [31,14].

Note that memory-based PUFs can be emulated in software since the limited number of memory
cells allows creating a look-up table. Further, most delay-based PUFs are subject to model building
attacks that allow emulating the PUF in software [15,24,18,26]. To counter this problem, additional
primitives must be used: Controlled PUFs [5] and Feed-Forward PUFs [22] use cryptographic func-
tions or XOR-networks in hardware, respectively, to hide the responses of the underlying PUF.
Furthermore, PUFs are inherently noisy and must be combined with error correction mechanisms,
such as fuzzy extractors [3] that remove the effects of noise before the PUF response can be pro-
cessed in a cryptographic algorithm. Typically, the cryptographic and error correcting components
as well as the link between them and the PUF must be protected against invasive and side channel
attacks.
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Table 1: Physically Unclonable Functions (PUFs) implemented in the 96 ASICs.

PUF class PUF type Number of
instances per ASIC

Total number of
instances

Challenge space
size

Response space size

Delay-based Arbiter 256 24, 576 264 2
Ring oscillator 16 1, 536 32, 640 ≈ 215 2

Memory-based SRAM 4 (8 kB) 384 211 232

Flip-flop 4 (1 kB) 384 28 232

Latch 4 (1 kB) 384 28 232

3 The PUF ASIC

Our analysis is based on data obtained from 96 ASICs that have been manufactured in TSMC 65 nm
CMOS technology within a Europractice multi-project wafer run. The ASIC has been designed
within the UNIQUE4 research project. Each ASIC implements multiple instances of three different
memory-based PUFs (SRAM, flip-flop and latch PUFs) and two different delay-based PUFs (ring
oscillator and arbiter PUFs). The main characteristics and number of PUF instances in the ASICs
are shown in Table 1. Furthermore, the ASIC is equipped with an active core that emulates the
noisy working environment of a microprocessor. When enabled, this core performs AES encryption
during the PUF evaluation.

The implementation of the arbiter PUF follows the basic approach presented by Lee et al. [15] and
consists of 64 delay elements and an arbiter. The delay elements are connected in a line, forming two
delay paths with an arbiter placed at the end. Each challenge corresponds to a different configuration
of the delay paths. More detailed, each delay element has two inputs and two outputs and can
be configured to map inputs to outputs directly (challenge bit 0) or to switch them (challenge
bit 1). During the read-out of the PUF response, the input signal propagates along both paths and,
depending on which of the paths is faster, a single response bit is generated. To ensure that the delay
difference results from the manufacturing process variations rather than the routing of the metal
lines, a symmetric layout for the delay elements and full-custom layout blocks were used. Further,
to reduce any bias the capacitive loads of the connecting metal wires was balanced and a symmetric
NAND-latch was used as arbiter.

The ring oscillator PUF uses the design by Suh et al. [32]. Each ring oscillator PUF consists of
256 ring oscillators and a control logic, which compares the frequency of two different oscillators
selected by the PUF challenge. Depending on which of the oscillators is faster, a single response bit
is generated. The individual ring oscillators are implemented using layout macros to ensure that all
oscillators have exactly the same design, which is fundamental for the correct operation of the ring
oscillator PUF.

The memory-based PUFs are implemented as arrays of memory elements (SRAM cells, latches,
flip-flops). All these memory elements are bi-stable circuits with two stable states corresponding to
a logical 0 and 1. After power-up, each memory element enters either of the two states. The resulting
state depends on the manufacturing process variations and the noise in the circuit. When challenged
with a memory address, the PUF returns the 32 bit data word at that address. The implementations
of the memory-based PUFs follow the SRAM PUF design by Holcomb et al. [9], the flip-flop PUF
design by Maes et al. [19] and the latch PUF design by Su et al. [31]. Latch and flip-flop PUFs are

4 http://www.unique-project.eu/
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Fig. 1: Test setup with Xilinx Virtex 5 FPGA (left) and ASIC evaluation board with five PUF ASICs
(right).

implemented using the standard cells from TSMC’s 65 nm low-power library. The placement and
implementation of the SRAM cells of the SRAM PUF has been done by TSMC’s memory compiler.
The latch and flip-flop PUFs are based on standard cells using a clustered strategy, where all latches
or flip-flops of the same PUF instance are grouped together in single block.

The test setup consists of an ASIC evaluation board, a Xilinx Virtex 5 FPGA and a PC (Figure 1).
Each evaluation board can take five ASICs and allows controlling the ASIC supply voltage with an
external power supply. The interaction with the evaluation board and the ASICs is performed by
the FPGA, which is connected to a PC that controls the PUF evaluation process and stores the raw
PUF responses obtained from the ASICs. The tests at different temperatures have been performed
in a climate chamber.

4 Our Evaluation Methodology

Many PUF-based applications require PUF responses to be reliably reproducible while at the same
time being unpredictable (see, e.g., [20,1]). Hence, our empirical evaluation focuses on robustness
and unpredictability.

Notation. With |x| we denote the length of some bitstring x. Let E be some event, then Pr[E]
denotes the probability that E occurs. We denote with HW(x) the Hamming weight of a bitstring
x, i.e., the number of non-zero bits of x. With dist(x, y) we denote the Hamming distance between
two bit strings x and y, i.e., the number of bits that are different in x and y.

4.1 Robustness Analysis

Robustness is the property that a PUF always generates responses that are similar to the responses
generated during the enrolment of the PUF. Note that PUFs should fulfil this property under dif-
ferent operating conditions, such as different temperatures, supply voltages and noise levels. The
robustness of PUFs can be quantified by the bit error rate BER :=

dist(yEi
,yE5

)

|yE5
| , which indicates

the number of bits of a PUF response yEi that are different from the response yE5 observed during
enrolment. We determine the maximum BER of all PUF instances in all ASICs based on challenge/re-
sponse pairs collected at different ambient temperatures (−40 ◦C to +85 ◦C), supply voltages (±10%
of the nominal 1.2V) and noise levels (active core enabled and disabled), which correspond to the
corner values that are typically tested for consumer grade IT products. This shows the impact of
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Table 2: Robustness test cases.

Test Active Core Ambient Temperature Supply Voltage Iter.
Case Off On −40 ◦C +25 ◦C +85 ◦C 1.08V 1.2V 1.32V k

E1 × × × 20
E2 × × × 40
E3 × × × 20

E4 × × × 30
E5 × × × 60
E6 × × × 30

E7 × × × 20
E8 × × × 40
E9 × × × 20

E11 × × × 60

the most common environmental factors on the BER of each PUF type. We did not test different
noise levels at different temperatures and supply voltages since most PUFs (except the arbiter PUF)
turned out to be hardly affected by even the maximum amount of noise the active core can generate.
An overview of all test cases considered for robustness is given in Table 2. We estimate the BER of
all PUFs in all ASICs using the following procedure:

Step 1: Sample challenge set generation. A sample challenge set X ′ is generated for each PUF type
(arbiter, ring oscillator, SRAM, flip-flop and latch PUF) and used in all subsequent steps. For all
but the arbiter PUF the complete challenge space is used as a sample set. Since the arbiter PUF
has an exponential challenge space, we tested it for 13, 000 randomly chosen challenges, which is a
statistically significant subset and representative for the whole challenge space.

Step 2: Enrolment. For each PUF instance, the response yi to each challenge xi ∈ X ′ is obtained
under nominal operating conditions (test case E5) and stored in a database DB0.

Step 3: Data acquisition. For all test cases Ep in Table 2, each PUF instance is evaluated k times
on each xi ∈ X ′ and its responses are stored in a database DBp for p = 1, . . . , 11.

Step 4: Analysis. For each PUF instance, the maximum BER between its responses in DB0 and its
responses in DB1,. . . ,DB11 over all xi ∈ X ′ is computed.

4.2 Unpredictability Analysis

Unpredictability ensures that the adversary cannot efficiently compute the response of a PUF to an
unknown challenge, even if he can adaptively obtain a certain number of other challenge/response
pairs from the same and other PUF instances [1]. This is important in most PUF-based applications,
such as authentication protocols, where the adversary can forge the authentication when he can pre-
dict a PUF response. Note that unpredictability should be independent of the operating conditions
of the PUF, which could be exploited by an adversary.

The unpredictability of a PUF implementation can be estimated empirically by applying statis-
tical tests to its responses and/or based on the complexity of the best known attack against the
PUF [20,1]. Statistical tests, such as the DIEHARD [23] or NIST [27] test suite, can in principle be
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Table 3: Unpredictability test cases.

Test Case Active Core Ambient Temperature Supply Voltage
Off On −40 ◦C +25 ◦C +85 ◦C 1.08V 1.2V 1.32V

E13 × × ×
E14 × × ×
E15 × × ×

E16 × × ×
E17 × × ×

used to assess the unpredictability of PUF responses. However, since these test suites are typically
based on a series of stochastic tests, they can only indicate whether the PUF responses are random
or not. Moreover, they require more input data than the memory-based PUFs and ring oscillator
PUFs in the ASIC provide. Similar as in symmetric cryptography, the unpredictability of a PUF
can be estimated based on the complexity of the best known attack. There are attacks [26] against
delay-based PUFs that emulate the PUF in software and allow predicting PUF responses to arbi-
trary challenges. These attacks are based on machine learning techniques that exploit statistical
deviations and/or dependencies of PUF responses. However, emulation attacks have been shown
only for simulated PUF data and it is currently unknown how these attacks perform against real
PUFs [26]. Another approach is estimating the entropy of the PUF responses based on experimental
data. In particular, min-entropy indicates how many bits of a PUF response are uniformly random.
The entropy of PUFs can be approximated using the context-tree weighting (CTW) method [39],
which is a data compression algorithm that allows assessing the redundancy of bitstrings [10,34,8,16].

We assess the unpredictability of PUFs using Shannon entropy, which is a common metric in
cryptography and allows establishing relations to other publications that quantify the unpredictabil-
ity of PUFs using entropy (such as [35,32,9,1]). We estimate the entropy and min-entropy of the
responses of all available PUFs. Specifically, we first check whether PUF responses are biased by com-
puting their Hamming weight and estimate an upper bound of the entropy of PUF responses using
a compression test. Eventually, we approximate the entropy and min-entropy of the responses of all
available PUFs. Our entropy estimation is more precise than previous approaches since it considers
dependencies between the individual bits of the PUF responses. Furthermore, to get an indication of
whether responses of different PUF instances are independent, we compute the Hamming distance
between responses of different PUF instances.

We assess the unpredictability of all available PUFs at different temperatures and supply voltage
levels (Table 3) to determine the effects of environmental variations on the unpredictability using
the following procedure: We assess the unpredictability of all PUFs in the ASICs using the following
procedure:

Step 1: Sample challenge set generation. For each PUF type, a sample challenge set X ′ is generated
that is used in all subsequent steps. For all but the arbiter PUF, the complete challenge space is used
as a sample challenge set. Since the arbiter PUF has an exponential challenge space, we again test
it only for 13, 000 challenges. The subsequent analysis steps require X ′ := {x′ ∈ X ′′| dist(x, x′) ≤ k},
which includes a set X ′′ of randomly chosen challenges and all challenges that differ in at most k
bits from the challenges in X ′′ (that may be known to the adversary).
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Step 2: Data acquisition. For all test cases Eq in Table 3, each PUF instance is evaluated on each
xi ∈ X ′ and the responses y are stored in a database DBq.

Step 3: Analysis. For each test case Eq, the responses in DBq are analyzed as detailed in the following
items:

Step 3a: Hamming weight. For each PUF instance, the average Hamming weight of all its responses
yi in DBq is computed, which indicates whether the responses are biased towards 0 or 1.

Step 3b: CTW Compression. For each PUF instance, a binary file containing all its responses in DBq
is generated and compressed using the context-tree weighting (CTW) algorithm [38]. The resulting
compression rate is an estimate of the upper bound of the entropy of the PUF responses.

Step 3c: Entropy estimation. For each PUF instance, the entropy and min-entropy of all its responses
in DBq is estimated as detailed in the next paragraph.

Step 3d: Hamming distance. For each PUF type, the Hamming distance dist(y, y′) of all pairs of
responses (y, y′) in DBq generated by pairwise different PUF instances for the same challenge x is
computed. While all previous steps consider only responses of the same PUF instance, the Hamming
distances indicate whether responses of different PUF instances are independent. This is important
to prevent the adversary from predicting the responses of one PUF implementation based on the
challenge/response pairs of another (e.g., his own) PUF implementation, which would contradict
the unpredictability property.

Entropy Estimation. Let x be the PUF challenge for which the adversary should predict the
response y. Further, let Y (x) be the random variable representing y. Moreover, let W (x) be the
random variable representing the set of all responses of the PUF except y, i.e., W (x) = {y′|y′ ←
PUF(x′); x′ ∈ X \ {x}}. We are interested in the conditional entropy

H(Y |W ) = −
∑
x∈X

Pr
[
Y (x),W (x)

]
· log2 Pr

[
Y (x)|W (x)

]
(1)

and the conditional min-entropy

H∞(Y |W ) = − log2
(
max
x∈X

{
Pr
[
Y (x)|W (x)

]})
, (2)

which quantify the average and minimal number of bits of y, respectively, that cannot be predicted
by the adversary, even in case all other responses in W (x) are known.5 Hence, 2−H∞(Y |W ) is an
information-theoretic upper bound for the probability that an adversary guesses the PUF response
y to challenge x.

However, computing Equations 1 and 2 for W (x) is difficult since (1) the sizes of the underly-
ing probability distributions are exponential in the response space size, and (2) the complexity of
computing H(Y |W ) grows exponentially with the challenge space size of the PUF to be analyzed.
Hence, Equations 1 and 2 can at most be estimated by making assumptions on the physical proper-
ties of the PUFs that reduce the size of W (x). In the following, we explain how we estimated these
entropies for each PUF type and discuss the underlying assumptions.
5 Note that this corresponds to the game-based security definition of unpredictability by Armknecht et al. [1], which
formalizes the difficulty of predicting Y in case the PUF responses in W are known.
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Memory-based PUFs. A common assumption on memory-based PUFs is that spatially distant mem-
ory cells are independent [20,1]. A similar assumption has been used by Holcomb et al. [9], who
estimate the entropy of SRAM PUF responses based on the assumption that individual bytes of
SRAM are independent. However, physically neighboring memory cells can strongly influence each
other, in particular when they are physically connected.6 Hence, our entropy estimation considers
dependencies between neighboring memory cells (which could be exploited by an adversary) while
assuming that spatially distant memory cells are independent. More specifically, we compute the
entropy of the PUF response bit Yi,j of the memory cell at row i and column j of the under-
lying memory under the worst case assumption that the values of all neighboring memory cells
W ′(x) = (Yi−1,j , Yi,j+1, Yi+1,j , Yi,j−1) are known, i.e., we compute Equations 1 and 2 for W ′(x).

Ring Oscillator PUFs. The ring oscillator PUFs in the ASICs compare the oscillation frequency of
two ring oscillators Oi and Oj selected by the PUF challenge x = (i, j) and returns a response Y (i, j),
depending on which of the two oscillators was faster. Since neighboring ring oscillators may affect
each other (e.g., by electromagnetic induction), we consider the potential dependency between the
frequencies of neighboring oscillators and assume that the frequency of spatially distant oscillators
is independent. Thus, we compute Equations 1 and 2 for W ′(i, j) =

(
Yi−2,j , Yi−1,j , Yi+1,j , Yi+2

)
.

Arbiter PUFs. Arbiter PUFs measure the delay difference of two delay lines that are configured by
the PUF challenge. The individual delays caused by the switches and their connections are additive,
which implies that the PUF response y to a challenge x can be computed if a sufficient number
of responses to challenges that are close to x are known. Hence, we compute Equations 1 and 2
for W ′(x) = {y′ ← PUF(x′)|x′ ∈ X ′, dist(x, x′) ≤ k}, which corresponds to the worst case where
the adversary knows responses to challenges that differ in at most k bits from the challenge whose
response he must guess. Specifically, we use X consisting of 200 randomly chosen challenges and
k = 1.

Computing the Entropy. To compute the entropy and min-entropy (Equations 1 and 2) for each
test case Eq, we first estimate Pr

[
x = Y (x), w =W (x)

]
for each x ∈ X ′ by dividing the number of

observations of each tuple (x,w) in database DBq by the size of the sample challenge set X ′. Further,
to compute Pr

[
x = Y (x)

∣∣w = W (x)
]
= Pr

[
x = Y (x), w = W (x)

]
/Pr

[
w = W (x)

]
, we estimated

Pr
[
w =W (x)

]
by dividing the number of observations of each tuple

(
Y (x), w =W (x)

)
in database

DBi by the size of X ′. Eventually, we computed Equations 1 and 2.

5 Evaluation and Results

We applied the evaluation methodology in Section 4 to all PUF instances in all ASICs. Most of our
results are illustrated using bean plots [12] that allow an intuitive visualization of empirical proba-
bility distributions (Figures 2 to 5). Each bean shows two distributions, smoothed by a Gaussian
kernel to give the impression of a continuous distribution, together with their means indicated by
black bars. The distribution in black on the left side typically corresponds to data collected under
normal PUF operating conditions, while the one in gray on the right side corresponds to some other
test case in Table 2 and 3. This allows an easy visualization of the PUF behavior under changing
environmental conditions. Each plot contains several beans, which correspond to the different PUF
6 SRAM cells are typically arranged in a matrix, where all cells in a row are connected by a word line and all cells
in a column are connected by a bit line.
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types available on the ASICs, which allows an easy comparison of the results for different PUF
types.

5.1 Robustness Results

We computed the bit error rate (BER) under varying environmental conditions (Table 3). Our
results show that all arbiter, ring oscillator and SRAM PUF instances have a very similar BER,
while there is a big variability in the BERs of the flip-flop and latch PUF instances (Figure 2).
Further, the BER of the arbiter, ring oscillator and SRAM PUF instances is below 10% for all test
cases, which can be handled by common error correction schemes, such as fuzzy extractors [3]. The
BER of most PUFs depends on the operating temperature: Compared to +25 ◦C (test case E5),
at −40 ◦C (test case E2) the BER of the flip-flop and latch PUF increases significantly, while the
BER of the ring oscillator and SRAM PUF increases only slightly and the BER of the arbiter PUF
hardly changes (Figure 2a). A similar behavior of the BERs can be observed at +85 ◦C (test case
E8, Figure 2b). All PUFs in all ASICs turned out to be robust against variations of their supply
voltages. Compared to nominal operating conditions (test case E5), the distributions of the BERs
only slightly increase when varying the supply voltage by 10% (test case E4 and E6, Figure 2c). The
arbiter PUF exhibits a significantly increased BER when operated in a noisy working environment
(test case E11, Figure 2d) while there is no significant change of the BER of all other PUFs. Hereby,
we observed that the BER of those arbiter PUF instances that are spatially close to the active core
significantly changes, while those that are farther away are not directly affected.

5.2 Unpredictability Results

In this section, we present the results of our unpredictability analysis. Due to the time-limited access
to the climate chamber, the data required to analyze the unpredictability of the arbiter PUF at
−40 ◦C and at +85 ◦C is not available. However, we show the results for normal operating conditions
and different supply voltages.

Hamming Weights. To get a first indication of randomness in the PUFs, we computed the Ham-
ming weight of their responses as described in Section 4.2. Our results show that ring oscillator and
SRAM PUF responses are close to the ideal Hamming weight of 0.5, independent of the operating
conditions (Figure 3), which indicates that their responses may be random. The Hamming weight
of the flip-flop PUF and latch PUF responses strongly depends on the ambient temperature (Fig-
ures 3a and 3b) and is clearly biased. Supply voltage variations (test cases E16 and E17) have no
significant impact on the Hamming weight of the responses of any of the PUF instances in the ASIC
(Figures 3c and 3d).

CTW Compression. The context-tree weighting (CTW) compression test gives a good indication
of the upper bound of the entropy of PUF responses. The higher the compression rate, the lower
the entropy of the PUF. The results of this test (Table 4) confirm the Hamming weight test results:
The compression rate of the ring oscillator and SRAM PUF responses is invariant for all test cases;
the compression rates of the flip-flop and latch PUF responses do not change for different supply
voltages (test case E16 and E17), but vary with the ambient temperature (test cases E13, E14 and
E15). The compression rate of the SRAM PUF responses strongly indicates that these responses
are uniformly random, while there seem to be some dependencies in the responses generated by all
other PUFs.
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Fig. 2: Distribution of the bit error rate (BER) in percent over all PUF instances at different ambient
temperatures, supply voltages and noise levels. The two peaks of the BER distribution of the arbiter
PUF in Figure 2d show that those arbiter PUFs that are spatially close to the active core are more
affected by noise than those farther away.
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Fig. 3: Distribution of the Hamming weight over all PUF instances at different ambient temperatures
and supply voltages. The two peaks of the Hamming weight distribution of the latch PUF may come
from the fact that one of the four latch PUF instances on each ASIC is implemented in a separate
power domain.
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Table 4: CTW compression results.

Test Size of PUF response after CTW compression in percent
Case Arbiter Ring-Oscillator Flip-Flop Latch SRAM

E13 — 0.77 0.77 0.84 1.00
E14 0.51 0.77 0.87 0.70 1.00
E15 — 0.77 0.98 0.53 1.00

E16 0.53 0.77 0.88 0.69 1.00
E17 0.49 0.77 0.87 0.71 1.00

Entropy Estimation. The results of the entropy estimation described in Section 4.2 confirm the
results of all previous tests and provide more insights into the entropy and min-entropy of the
PUF responses (Figure 4). The entropy of responses corresponding to neighboring arbiter PUF
challenges is remarkably low, which confirms the high prediction rate of emulation attacks against
arbiter PUFs reported in literature [26]. The entropy and min-entropy of the ring oscillator and
SRAM PUF responses is invariant to temperature (test cases E13, E14 and E15, Figures 4a–4c)
and supply voltage (test case E16 and E17, Figure 4d) variations. Moreover, the entropy and min-
entropy of flip-flop and latch PUFs vary with the operating temperature (test cases E13, E14 and
E15, Figures 4a–4c) and are constant for different supply voltages (test case E16 and E17, Figure 4d).

Hamming Distances. The Hamming distance test (Section 4.2) gives an indication of whether the
responses generated by different PUF instances to the same challenge are independent. Our results
show that, independent of the ambient temperature (test cases E13, E14 and E15) and supply voltage
(test cases E16 and E17), the responses of different ring oscillator and SRAM PUF instances have the
ideal Hamming distance of 0.5, while there seem to be dependencies between the responses generated
by different arbiter PUF instances to the same challenge (Figure 5). The Hamming distance of the
responses of the flip-flop PUFs changes for different temperatures and supply voltages. At +85 ◦C
(test case E15, Figure 5b) the Hamming distance of the flip-flop PUF is ideal, while it is biased
towards zero at −40 ◦C (test case E13, Figure 5a). Moreover, at 1.08V (−10% undervoltage, test
case E16, Figure 5c) we observed a bias of the Hamming distance towards one, while the Hamming
distance at 1.32V (+10% overvoltage, test case E17, Figure 5d) is similar to the distribution at
nominal operating conditions (test case E14). The Hamming distance of the responses of the latch
PUFs are biased towards zero and invariant for different supply voltages.

5.3 Discussion

Our results show that arbiter, ring oscillator and SRAM PUFs are more robust to temperature
variations than the latch and flip-flop PUFs. This could be due to the dual nature of these PUFs,
i.e., the two delay paths, two ring oscillators, and the symmetrical structure of the SRAM cells,
respectively. As discussed in Section 3, we do not have access to the internal circuit diagrams and
layout of the standard cells provided by TSMC and thus can only speculate about the transistor
schematics of the flip-flops and latches. Standard cell libraries typically use implementations based
on transmission gates, which are more compact than static latches or flip-flops with a dual structure
and there is no duality or symmetry in these transistor schematics. Further, the results of the
Hamming weight and Hamming distance tests indicate that the unpredictability of PUFs with a
dual structure are less affected by temperature variations.
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Fig. 4: Distribution of the entropy (black) and min-entropy (gray) over all PUF instances at different
ambient temperatures and supply voltages.
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The entropy of the arbiter PUF is remarkably low, which can be explained by the linear structure
of this PUF. Note that in the arbiter PUF implementation, two signals travel along two delay paths
and finally arrive at an arbiter (Section 3). In case the delay difference δt of the two paths is greater
than the setup-time tsetup plus the hold time thold of the arbiter, the PUF response will be correctly
generated according to which signal arrives first. However, in case δt < tsetup+ thold, the arbiter will
be in the metastable state and the PUF response will depend on the bias of the arbiter caused by
manufacturing process and/or layout variations of the arbiter and the noise in the circuit. A limited
number of simulations (with 20 PUFs for 3 challenges) including extracted post layout parasitics
were performed before the tape-out of the ASIC to estimate this effect.

Since the arbiter PUF design is based on delay accumulation, it is very susceptible to emulation
attacks [26]. An example illustrating this fact is the case where two challenges differ in only the last
bit. In this case, signals will travel along the same paths through 63 delay elements, and only in the
last element the paths will be different. If the attacker knows the outcome for one challenge, he can
guess the outcome of the other one with high probability, which might explain the low entropy and
min-entropy of the arbiter PUFs.

5.4 Summary

The arbiter PUF responses have a very low entropy and their use in applications with strict unclon-
ability and unpredictability requirements should be carefully considered. Further, the arbiter PUFs
are susceptible to changes of their supply voltage and to environmental noise, which significantly
increases the bit error rate of the PUF. However, the bit error rate stays within acceptable bounds
and can be compensated by existing error correction mechanisms.

The flip-flop and latch PUFs are susceptible to temperature variations, which have a significant
effect on the bit error rate and the unpredictability of the PUF responses. Hence, flip-flop and latch
PUFs should not be used in an environment, where the adversary can lower the ambient temperature
of the PUF, reducing the entropy of the PUF responses.

The SRAM and ring oscillator PUFs achieve almost all desired properties of a PUF: The bit
error rate does not change significantly under different operating conditions, the entropy of the
PUF responses is high and the responses generated by different PUF instances seem to be indepen-
dent. However, the ring oscillator exhibits a low min-entropy, which might be problematic in some
applications.

6 Conclusion

We performed the first large-scale analysis of the five most popular PUF types (arbiter, ring oscillator,
SRAM, flip-flop and latch PUFs) implemented in ASIC. Our analysis is based on PUF data obtained
from 96 ASICs, each housing several PUF instances. Our results allow for the first time a fair
comparison of these PUFs. In this context, we presented an evaluation methodology for the empirical
assessment of the robustness and unpredictability properties of PUFs that are fundamental in most
applications of PUFs.

Our results show that the SRAM and ring oscillator PUFs seem to achieve all desired properties
of a PUF. However, the arbiter PUFs have a very low entropy and the entropy of the flip-flop
and latch PUFs is susceptible to temperature variations. Hence, the suitability of these PUFs for
security-critical applications, such as authentication or key generation must be carefully considered.
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Future work includes the analysis of stronger PUF constructions and the development of entropy
estimation methodologies that also include potential dependencies between different PUF instances.
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