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Abstract. In Eurocrypt 2010, Miccinacio initiated an investigation of cryptographically sound,
symbolic security analysis with respect to coinductive adversarial knowledge, and demonstrated
that under an adversarially passive model, certain security criteria (e.g. indistinguishability) may
be given a computationally sound symbolic characterization, without the assumption of key acyclic-
ity. Left open in his work was the fundamental question of “the viability of extending the coin-
ductive approach to prove computational soundness results in the presence of active adversaries.”
In this paper we make some initial steps toward answering this question in the affirmative with
respect to an extension of a trace-based security model (proposed by Micciancio and Warinschi in
TCC 2004) including asymmetric and symmetric encryption; in particular we prove that a random
computational trace can be soundly abstracted by a coinductive symbolic trace with overwhelming
probability, provided that both the underlying encryption schemes provide IND-CCA2 security
(plus ciphertext integrity for the symmetric scheme), and that the diameter of the underlying
coinductively-hidden subgraph is constant in every symbolic trace. This result holds even if the
protocol allows arbitrarily nested applications of symmetric/asymmetric encryption, unrestricted
transmission of symmetric keys, and adversaries who adaptively corrupt users, along with other
forms of active attack.
As part of our proof, we formulate a game-based definition of encryption security allowing adaptive
corruptions of keys and certain forms of adaptive key-dependent plaintext attack, along with other
common forms of CCA2 attack. We prove that (with assumptions similar to above,) security under
this game is implied by IND-CCA2 security. This also characterizes a provably benign form of cyclic
encryption which can be achieved under standard notions of encryption security, which may be of
independent interest.

Keywords: Computational soundness, adaptive corruptions, coinduction, key-cyclic security, trace-
based protocol security, active adversaries, standard security



1 Introduction

Provable security [32], since its introduction in the early 1980s, has provided a rigorous founda-
tion for the security analysis of cryptographic schemes.Typically, proving that a cryptographic
construction meets a given security goal within the provable security framework requires: (1)
formally defining the security goal in terms of what comprises a violation of the goal and what
is assumed about the computational power of the adversary, and (2) giving a feasible method
which transforms any attack against the construction to an attack against one of its underlying
primitives [15,16,50]. This methodology provides strong security assurances against resource-
bounded attackers, which is a fairly realistic assumption in real-world applications. However,
doing computational security analysis, even for small-sized protocols, can be a gruelingly te-
dious task, and normally a small change in the protocol necessitates a new security proof. On
the other hand, formal (logic-based) methods [30,18,1] greatly simplify security analysis by
using idealized abstractions of cryptographic primitives and limiting adversarial computation,
even allowing for automated verification (e.g. [43]). While formal methods may help designers
identify subtle flaws in their schemes, they do not necessarily provide guarantees of computa-
tional security. At the very least, a formally verified scheme may be computationally insecure
if realized under “insufficiently strong” primitives (e.g. using malleable encryption in the case
of active attacks). Motivated by the mismatch between these two approaches, a large body of
work, starting from [3], attempts to give computational justification for formal security proofs,
in the form of computational soundness theorems. Generally speaking, a formal system for se-
curity proofs is computationally sound if whenever a scheme is proved secure in the system, it
is guaranteed to also be secure in an appropriate computational security framework.

Background. Standard notions of secure encryption [32,48] ensure privacy of plaintexts chosen
independently from the underlying secret key(s). It has long been known that a key encrypted
under itself may no longer remain secret, and recent results [24,4] show that indeed for all k ≥ 1,
k-circular security is not implied by standard security. Moreover, currently known techniques
for standard security fall short when trying to prove non-trivial security statements against
more adaptive adversaries. As an example, assume in the standard multiple-key-based indis-
tinguishability game [12] over keys ck1, . . . , ckn, the adversary is additionally allowed to obtain
the (nested) encryption of any cki under {ck1, . . . , cki−1}, giving rise to an acyclic encryption
ordering between keys. One can use a standard hybrid argument to show that security in this
setting is no stronger than standard security. However, this simple hybrid argument fails in the
case that the (acyclic) encryption ordering is a priori unknown and formed adaptively by the
adversary. (The naive approach of guessing the underlying ordering also trivially yields an ex-
ponential reduction factor.) In contrast, conventional Dolev-Yao style security analysis models
adversarial knowledge inductively in an all-or-nothing fashion (i.e. the adversary either knows a
secret piece of data, or it does not have any information about it). As a result, adversarial power
is limited, essentially treating uniformly all symbolic ciphertexts whose encryption keys are un-
derivable under so-called Dolev-Yao deduction rules. Consequently, Dolev-Yao models typically
assume no difference between two symbolic encryptions {k}k and {k1}k. Also, the “adaptive
problem” described above seems to not be a challenge within these models. For these reasons,
most existing computational soundness results are restricted in their assumptions, which include
excluding key cycles altogether in the presence of passive adversaries [3,2,33], posing certain en-
cryption orderings in the presence of passive-but-adaptive adversaries [40,41], and disallowing
symmetric encryption in the presence of active adversaries [42,27,9,23].
As a resolution to the problems created by key cycles, Micciancio [39] proposes a coinductive
method for modeling symbolic security, and obtains computational soundness in the setting
of message indistinguishability for passive adversaries, while allowing key cycles and assuming
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only semantic security for the underlying encryption function. Coinductive symbolic security
corresponds to a greatest-fixedpoint-based definition of adversarial knowledge, as opposed to
the least-fixedpoint-based definition adopted by conventional inductive methods. From a cryp-
tographic perspective, [39] implicitly characterizes a provably benign form of circular encryp-
tion, in particular the equivalence of standard security to secure encryption under a variant
of the multiple-key-based game described above in which the adversary may obtain the (sin-
gle or nested) encryption of any cki under arbitrary keys, provided at least one of them is in
{ck1, . . . , cki−1}, resulting in a (possibly) cyclic encryption ordering. To obtain soundness, [39]
shows that for an a priori known sequence of exchanged symbolic messages (which is the case
in the passive setting), one may order all coinductively irrecoverable keys from this sequence as
k1, . . . , km, such that each occurrence of ki is encrypted under at least one of {k1, . . . , ki−1}.
Our Results. In this paper we investigate the question left open in [39]; namely, whether a
coinductive approach provides similar soundness guarantees when applied in the setting of active
adversaries. We consider a symbolic/computational trace-based execution model [42], including
asymmetric and symmetric encryption. In contrast to previous work, we allow symmetric keys to
be freely included in protocol messages, symmetric and asymmetric encryptions to be arbitrarily
nested, and adversaries to adaptively corrupt users, along with other forms of active attack.
We first pose the following central question: to what extent can any encryption scheme with
standard security withstand stronger types of attack including adaptive corruptions of keys
and key-dependent/circular encryption? To formalize this, consider the following game over
symmetric/asymmetric encryption schemes Es = (Gs, Es, Ds), Ea = (Ga, Ea, Da), {cki}1≤i≤n ←
Gs(1η), and {(pki, ski)}1≤i≤n ← Ga(1η), in which the adversary is allowed to adaptively corrupt
keys (symmetric and asymmetric), obtain decryption of permissible ciphertexts, and issue key-
dependent encryption queries of the form Es(f(ck1, . . . , ckn), ckj) or Ea(f(ck1, . . . , ckn), pkj),
where f is any arbitrary composition of constant, pairing, projection (Pi(ck1, . . . , ckn) = cki),
and encryption (Eapki(·) , Escki(·)) functions. We remark asymmetric decryption keys may not be
used to form key-dependent messages, reflecting our assumption that such keys are not sent as
plaintexts in protocol messages. This function family allows one to describe encryption queries
symbolically (e.g. Es(Es(ck1, ck2), ck1) is denoted {{k1}k2}k1), and hence symbolically keep
track of adversarial knowledge. Now we ask: if Ea and Es provide IND-CCA2 security only, can
we prove, at the end of the game, certain keys still maintain computational secrecy, in the sense
they can securely be used in an encryption-based indistinguishability game1? Several negative
results [24,4] show certain key cycles may compromise the secrecy of their component keys,
but on the positive side this problem (in a generic sense involving circular encryption) has not
been considered much. Motivating the discussion, the results of [39] in the context of the above
game (but where only symmetric encryption is used,) imply if all queries are made at once
(i.e. nonadaptively), then any cki, whose symbolic key ki remains coinductively irrecoverable
(irrecoverable for short), even if used in key cycles, maintains computational secrecy. Along
these lines, we call (Ea, Es) CI secure if after the adaptive execution of the above game all keys
whose symbolic keys remain irrecoverable maintain computational secrecy. We also consider ACI
security, an extension of CI security which adds ciphertext integrity and obtain the following

Theorem (informal). If (Ea, Es) is ACI secure, it provides soundness for coinductive traces.

Next we ask if CI security may be based on IND-CCA2 security. Note that the CI attack
model is ostensibly much stronger than the CCA2 one, allowing a CI adversary to adaptively
corrupt keys and obtain circularly-encrypted ciphertexts. A naive reduction attempt would be
to a priori guess all keys which remain irrecoverable during the game, together with their

1 Our definition of computational secrecy is close to the idea of key usability, developed in [29,49], for defining
alternate, composition-amenable security criteria for key-exchange protocols.
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underlying encryption ordering, and then use a hybrid argument in the style of [39] to do the
reduction. Such an idea clearly yields an infeasible reduction factor. Instead, we prove that if
the diameter of the coinductively-hidden subgraph of the resulting key graph is constant, then
CI security is implied by IND-CCA2 security. Here, the key graph is the (random) multigraph
Gk which has a node for every key in the game, and an edge vi → vj if vi’s associated key
encrypts vj ’s in an encryption query (e.g. the encryption query {{k1}k2}k1 creates one self-loop
and one normal edge,) and by “coinductively hidden subgraph” we mean the induced subgraph
of Gk on irrecoverable nodes (nodes whose associated keys remain irrecoverable). We remark
that as long as the above condition holds, the adversary may corrupt any number of keys, and
create arbitrary key cycles and arbitrarily-long paths in the whole key graph.

Theorem (informal). If Ea and Es are both IND-CCA2 secure, then for every adversary A
where the diameter of the coinductively hidden subgraph of Gk(A) is constant (i.e. independent
of the security parameter), A has a negligible advantage in the CI game for (Ea, Es). Moreover,
if Es is also INT-CTXT secure, A has a negligible advantage in the ACI game.

The starting point of our proof is [46]’s positive results on security against adaptive cor-
ruptions (in an authenticated channel setting), showing that security in a setting over Es and
{cki}1≤i≤n ← Gs(1η), in which A may adaptively corrupt keys, and obtain single encryptions
Es(cki, ckj), for 1 ≤ i, j ≤ n, subject to key acyclicity, is obtained via a reduction to the se-
mantic security of Es, with a factor of O(nl) where l is the diameter of the resulting key graph.
Although the results of [46] seem to extend, by its mere developed techniques, to an authen-
ticated setting with nested encryptions, they crucially rely on the acyclicity assumption and
break down if this latter is relaxed. Allowing cyclic nested encryptions, irrecoverable nodes may
have self-loops or oppositely-directed edges between themselves (encryption queries {{k1}k2}k3
and {k2}k1 create such edges, while k1, k2 remain irrecoverable), and we still need to prove their
computational secrecy. Central to our proof is a new notion of coinductive continuability, which
for every irrecoverable node characterizes a special set of paths ending in that node, satisfying
a property which enables a path-based reduction proof in the style of [46]. Also, allowing both
nested encryption and decryption queries creates a new complication; namely, to simulate a CI
adversary ACI by a CCA2 adversary Acca, nested encryption may make an Acca’s challenge
ciphertext a “legitimate” ciphertext for ACI (e.g. when the ciphertext corresponding to {k1}k2
in {{k1}k2}k3 is created under Acca’s left-or-right oracle and k3 remains irrecoverable), and
if ACI makes such a decryption query, our simulation fails. A large part of our proof, thus,
involves showing ACI may produce such ciphertexts only with negligible probability. Such a
complication does not arise if one only deals with single encryptions, and in fact, the results of
[46] immediately extend if decryption queries are also allowed.

Applications. Our reduction result implies that for a protocol Π (which may contain sym-
metric keys and nonces as atomic messages) and a trace-expressible security property P, if the
following two symbolic assertions hold, then the (CCA2, CCA2+CTXT)-based implementation
ofΠ provably achieves P (in an insecure channel setting) with strong security guarantees against
adaptive corruptions: (a) No symbolic coinductive adversary may create a trace containing an
arbitrarily-long encryption chain (in the sense described above), and (b) Π is coinductively se-
cure; namely, no co-inductive symbolic adversary may produce a trace not satisfying the under-
lying symbolic property. We observe that all protocols in the Clark-Jacob library [25], in which
the only primitives used are asymmetric/symmetric encryption, satisfy our soundness restriction
(item (a) above), making it applicable to them. A number of these protocols are asymmetric
encryption-based, and analyzable under previous soundness theorems (e.g. [42,27,9]). Using our
techniques, we show that the Wide-Mouthed Frog authentication protocol, which is not analyz-
able under the cryptographic library of [7] due to the classic commitment problem prevalent
in simulation-based approaches, satisfies our soundness restriction. This advocates for the use
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of coinduction as a strong tool in yielding provably-sound security proofs, while circumventing
issues involved with using induction-based methods.

Why not KDM security? It might be asked why we bother to investigate soundness of
coinductive methods, when there are constructions in the standard model for secure encryption
under key-dependent messaging [17,19]. We note that security against adaptive corruptions
is a necessary requirement for any encryption scheme used in a protocol which is run in an
environment with adversarially adaptive corruptions. In such situations, once a key is corrupted,
the security of the protocol will depend on the preservation of secrecy for keys which are not
trivially corrupted. Even in the idealized static corruption model, a key may dynamically be
revealed by the exploitation of potential weaknesses of a protocol (e.g., consider a situation
where the adversary gets to alter a communicated message by replacing an “honest” key with
his own key, making an honest party then encrypt a secret key under the adversarial key.) To
the best of our knowledge, there are no provable constructions of KDM-secure encryption in
the standard model which also provide security against adaptive corruptions. Backes et al. [8]
consider a limited case in which security is defined only in a left-or-right indistinguishability
sense, not addressing the above problem. In subsequent work, [6] considers the problem in its full
generality as described above, but their construction is in the random-oracle model. Moreover,
they do not consider the question of whether generic constructions from KDM-secure encryption
schemes exist (in the standard model) which also provide security against adaptive corruptions.

Related Work. Obtaining sound abstract security proofs for protocols involving symmetric
encryption has also been considered following the ideal/real simulation paradigms of [20,47].
[7] shows that secure realization of ideal symmetric encryption (in the sense of reactive sim-
ulatability) is possible in their cryptographic library [9] if the commitment problem does not
occur (i.e. any honest party’s key, after it is used for encryption, never becomes “known” to the
adversary), and the used-order property is satisfied. (i.e. Deployed keys admit an a priori en-
cryption ordering.) The authors of [36], by extending the framework of [23] to allow symmetric
encryption, show if a key-exchange protocol satisfies their symbolic criteria and if the above con-
ditions hold, the protocol securely realizes a key-exchange functionality in the sense of universal
composability. We comment the commitment problem may intrinsically occur as a direct result
of security formalizations; adaptive corruptions, for instance, trivially enable this possibility.
Also, the requirement that “a session-key loss in a key-exchange protocol should not affect the
secrecy of other session keys” is formalized by allowing the adversary to adaptively learn session
keys, leading, possibly, to the commitment problem. (See, e.g., [15,16] for related definitions.)
Thus the aforementioned frameworks do not consider the above two attack scenarios. (See, e.g.,
[5] for the analysis of the Otway-Rees protocol under [7].) We remark the commitment problem
was known long before in the setting of adaptively-secure multiparty computation, with initial
solutions given in [22,21]. (See also [45] for a limitation of non-committing encryption.)

The results of [26] are aimed at indistinguishability-based security properties (e.g., secrecy
requirements for key-exchange protocols), by showing that observational equivalence between
two processes implies computational indistinguishability under standard security assumptions.
Although [26] allows symmetric encryption, it imposes the same restrictions as [7,36]. Security
under adaptive corruptions is also discussed in [35,38], but only considering the restricted case
where the adversary may only see encryptions of his own generated messages.

A very different approach which in principle supports reasoning about situations which
include key-cyclic encryption and adaptive corruption for both symmetric and asymmetric en-
cryption as well as other primitives is the use of what might be called general-purpose security
logics. Here we include probabilistic process calculi [37,44], logics which axiomatize computa-
tional indistinguishability [34,11] and first-order logics augmented with axioms characterizing
specific security properties [10]. The tradeoff involved in taking a more generic approach is the
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loss of structure in proofs, potentially undermining some of the benefits of the formal approach.
Basic Notation: For a review of the standard notions of encryption security, we refer to [13,14].
If D is a probability distribution, then x ← D denotes choosing an element according to D,
and if S is a set, x ← S denotes choosing an element uniformly at random from S. For a
probability distribution D, sup[D] denotes the support set of D, and we write x ∈ D to mean
x ∈ sup [D]. We call (a real-valued) function negligible if it grows more slowly than the inverse of
any polynomial function. For ease of notation, we use negl(·) to refer to any negligible function.

2 Preliminaries

A Formal Language for Cryptographic Expressions. Expressions are built from four infi-
nite sets of basic symbols – identifiers, ID, public-key symbols, Kpub, private-key symbols Kpriv,
and nonces, X – using encryption, {�}◦, and concatenation, (·, ·), operators for building com-
pound messages. We further partition Kpriv into asymmetric private keys, Kprivasym, and sym-
metric private keys Kprivsym. We fix a bijective key-inverse operation (.)−1 : Kpub ∪Kprivsym →
Kpriv, which induces the identity function on subdomain Kprivsym.

Whenever it is essential to distinguish between the adversary’s and honest parties’ basic
symbols, we add a subscript A or H to basic symbols, and for every set S defined above, we
further define S = SH ∪ SA (e.g. KprivH and KprivA ). Moreover, whenever it is necessary to dis-
tinguish between symmetric and asymmetric private-key symbols, we add a superscript sym to
symmetric ones. (e.g. we have (ksym1 )−1 = ksym1 .) The set of formal expressions, Exp, is:

Exp ::= Kprivasym | Plain | Cipher | (Exp,Exp) (1)

Plain ::= ID | X | Kpub | Kprivsym | (Plain, P lain)

Cipher ::= {Plain}k∈Kpub∪Kprivsym | {Cipher}k∈Kpub∪Kprivsym | (Cipher, Cipher)

Coniductive Modeling of Adversarial Knowledge. We take a coinductive approach to
modeling adversarial attacks. To model coinductive adversarial knowledge [39], we define a key-
recovery function, F , which specifies given e ∈ Exp and T ⊆ KprivH , what keys can be deduced

by “single-round” applications of Dolev-Yao rules. Defined naturally, Fs(T ) = s ∩ KprivH for a

basic symbol s, F(e1,e2)(T ) = Fe1(T ) ∪ Fe2(T ), and F{e}k(T ) = Fe(T ) if k−1 ∈ T ∪ KprivA and
F{e}k(T ) = ∅, otherwise. T is a fixedpoint of Fe if Fe(T ) = T , and is the greatest (resp. least)
fixedpoint if T is the greatest (resp. least) solution of Fe(X) = X (according to ⊆ ordering). Now
T is coinductively (resp. inductively) defined by Fe if T is the greatest (resp. least) fixedpoint
of Fe. It is easy to see that Fe is a monotone function with respect to ⊆.

The Tarski-Knaster Theorem implies that for every monotone function F : ℘(D) → ℘(D),
where D is some set and ℘(D) is its powerset, the least fixedpoint, fix(F ), and greatest fixed-
point, FIX(F ), of F exist and are obtained as follows

fix(F ) =
⋂

S:F (S)⊆S

S (2) FIX(F ) =
⋃

S:S⊆F (S)

S (3)

Note that if T ⊆ Fe(T ), then cl(T )
4
= ∪i≥1F ie(T ) is a fixedpoint, for which T ⊆ cl(T ), where

F ie(T ) denotes i successive applications of Fe on T . The latter follows from monotonicity of
Fe, and the former follows observing that Fke (T ) = Fk+1

e (T ) for sufficiently large k’s. (This is
because the number of keys in e is finite.) Thus the following equivalent formulations follow:

fix(Fe) =
⋂

Fe(S)=S

S =
⋃
i≥1

F ie(∅) (4) FIX(Fe) =
⋃

S=Fe(S)

S =
⋂
i≥1

F ie(K
priv
H ) (5)

We show (5); the proof for (4) follows by a dual argument. The first equality for FIX(Fe) follows
from (3) and the argument presented above. The second equality follows from the following
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three observations: (a)
⋂
i≥1F ie(K

priv
H ) is a fixedpoint of Fe, (b) if T is a fixedpoint of Fe,

then T =
⋂
i≥1F ie(T ), and (c) by monotonicity,

⋂
i≥1F ie(T ) ⊆

⋂
i≥1F ie(K

priv
H ). Now the set

of coinductively recoverable keys of e is the set coinductively defined by Fe. For example for
e = k−1, {{ksym1 }ksym2

, {ksym2 }ksym1
}
k
, its coinductively recoverable keys are {k−1, ksym1 , ksym2 }.

(As a convention, we omit parentheses in expressions and write e1, e2 for (e1, e2).)
We define the coinductive closure set of e ∈ Exp, denoted closurec(e), to be the smallest set

satisfying: (i) closurec(e) contains e, FIX(Fe), ID, Kpub, and all the adversary’s basic symbols,
(ii) if (e1, e2) ∈ closurec(e) then e1, e2 ∈ closurec(e), (iii) if e′ and e′′ are both in closurec(e),
so is (e′, e′′), (iv) if {m}k ∈ closurec(e) and k−1 ∈ closurec(e) then m ∈ closurec(e), and (v) if
m ∈ closurec(e) and k ∈ closurec(e) then {m}k ∈ closurec(e). Although the above definition is
essentially inductive, an equivalent, coinductive definition is also possible; however, we adopt the
inductive one as it is more natural. Now e1 is coinductively recoverable from e if e1 ∈ closurec(e).
Note that, if e1 ∈ closurec(e) and ksym /∈ closurec(e), the last rule does not allow us to deduce
that {e1}ksym ∈ closurec(e). This models the idealized symbolic assumption that if the adversary
does not know an honest party’s symmetric key, he cannot produce a ciphertext which decrypts
to a meaningful plaintext under that key. To support this assumption in our computational
model, we will assume that the symmetric encryption scheme provides ciphertext integrity.

We say e′ is a subexp of (or occurs in) e, denoted e′ v e, if e = e′, or e = (e1, e2) and e′ v e1

or e′ v e2, or e = {e1}k and e′ v e1. We say k1 encrypts k−1
2 in e, denoted k1 →e k−1

2 , if for some
{e1}k1 which occurs in e, k−1

2 v e1. An expression is key cyclic if it contains a key cycle, that is
a sequence k0, k1, . . . ki−1 such that kj → k−1

(j+1 mod i) for all j ≥ 0, and is called key acyclic if it
is not key cyclic. It is known the inductive and coinductive definitions coincide for key-acyclic
expressions[39]. The converse of this, however, does not hold true (e.g. consider {{k−1

1 }k1}k2);
it is possible some keys occur in certain key cycles but remain coinductively irrecoverable. In
fact, we will prove it is exactly such keys that remain “secure” under concrete implementations.
Computational Interpretation of Cryptographic Expressions. Under a pair of symmet-
ric/asymmetric schemes Ep = (Esym, Easy) with parameters (ηsym, ηasy), an invertible pairing
function, and a concrete mapping τ(ηsym, ηasy, ◦), which gives a concrete value to every basic

symbol, every e ∈ Exp induces a natural probability distribution, denoted JeKEpτ , which we call

the computational image of e with respect to Ep and τ . If E ∈ JeKEpτ and e1 v e, given τ , one
may define the underlying value of e1 in E in a natural way; we omit the formal definition here.

3 Symbolic and Computational Trace-Based Protocol Security

We will now introduce a protocol specification language and consider an extension of the model
given in [42] for analyzing security protocols in the presence of active adversaries. For simplicity,
we consider two-party protocols, and assume that each protocol runs in a constant number
of rounds, and admits a symbolic specification. Under these assumptions, a protocol can be
described as a sequence Π = (M I

1 ,M
R
1 ,M

I
2 ,M

R
2 , . . .M

I
r ,M

R
r ) of messages being sent alternately

between two parties: initiator and responder. (Here having the responder send the last message
is arbitrary.) We assume that each party has an associated long-lived public key which the
other party may use to encrypt messages, and whose matching private key is never sent as a
plaintext. The parties, however, may generate fresh symmetric keys, send them (encrypted) to
each other, and later on use exchanged keys to encrypt future messages. Messages that we use
to specify protocols are built upon four disjoint sets Ids = {I,R}, nonces = {X1, X2, . . . },
pubkeys = {KI ,KR}, and symkeys = {Ksym

1 ,Ksym
2 , . . . }, using encryption and concatenation

for building compound messages, where KI and KR denote the parties’ respective public keys.
We further require protocols be computationally executable; in particular, a party should be
able to fully decrypt (all encrypted parts of) a message she receives. (Our results seem to
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easily extend by relaxing this restriction, allowing, e.g., ciphertext forwarding, which allows a
party to forward a message without decrypting it.) To summarize our assumptions, we call
Π valid if: (1) for all 1 ≤ i ≤ r and x ∈ {I,R}; K−1

I and K−1
R do not occur in Mx

i , and
(2) for all 1 ≤ i ≤ r, x ∈ {I,R}, and y = {I,R} − {x}; if Mx

i has a subexp {M}K , then
K is inductively recoverable from (Ky,M

x
1 , . . . ,M

x
i ). (We will use a coinductive approach for

modeling adversarial attacks, and this condition is solely meant to specify our class of protocols.
In particular, since we require parties be able to fully decrypt their received messages, and their
roles be computationally executable, such a condition seems necessary.)

So far we have only described the “syntax” of protocols; this should not be confused with the
formal execution semantics to be presented below. Treating protocol Π as a tuple of messages,
we denote its ith component (message) by Πi. We denote the set of protocol users (participants)
by U = {u1, u2, ..., un}, where any two of whom may initiate an instance of the protocol together,
in a manner controlled by an adversary. The adversary is not himself a protocol user, but may
dynamically subvert users during the protocol execution. We model adversarial power as an
oracle with which he is adaptively interacting, by making the following types of query:

– corrupt(i): Corrupts user ui. In response, the long-lived secret key of ui (and all other ui’s
internal information) is given to the adversary.

– new-session(i, j): Causes ui and uj to start a new session, with ui as the initiator. The
oracle assigns a unique session number, sn, to their session and gives the adversary this
number plus the first message that ui sends to uj in this session.

– send(sn,m1, I): Causes the oracle to send message m1 to the initiator of session sn and give
m2, the message that the user produces in response, to the adversary. Here m2 may be a
valid message, an error message ⊥ (indicating m1 was not of the right format), or a flag
message ∗ indicating that the user has received her last message, finishing her session.

– send(sn,m1, R): Similar to above, but the message is sent to the responder of session sn.

We now give formal and computational semantics for protocols. In the formal setting, we
denote the long-lived public key of ui by kui , and for each session sn that ui is a user of, we
denote ui’s generated symmetric keys and nonces in sn, respectively, by Ksym

i,sn = {ksymi,sn,j | j ∈
N} ⊆ KprivsymH , Xi,sn = {xi,sn,j | j ∈ N} ⊆ XH . The adversary may use his own basic symbols
to build new messages; we denote the adversary’s symmetric keys and nonces, respectively, by
Ksym
A = {ksymA,j | j ∈ N} ⊆ KprivsymA , XA = {xA,j | j ∈ N} ⊆ XA. We let Expbasic be the union

of all XA,K
sym
A , Ksym

i,sn ’s, Xi,sn’s.

The adversary initially knows only his own basic symbols and parties’ identities/public keys.
If he corrupts ui, he receives k−1

ui as well as Ksym
i,sn ∪Xi,sn, for every session sn that ui has engaged

in. A protocol state is characterized by the following four components:

f : {I,R} ×BS(Π)× SN → Expbasic ∪ {⊥} l : {I,R} × SN → Πi ∪ {
√
}

h : {I,R} × SN → U corr-users ⊆ {u1, . . . , un}

Here SN denotes the set of all session numbers, and, recall that, U is the set of all protocol
users. Function f represents the symbolic values that the initiator and responder of each session
of the protocol give to basic symbols in that session, and ⊥ means that the party does not yet
know the value of the corresponding basic message. Function l denotes the index of the next
message in the protocol that the initiator and responder of each session expect to receive, and√

indicates that the party has finished her respective session. Finally function h indicates that
what protocol users take the roles of “initiator” and “responder” in each session.

We denote the initial state of the system by FS0, where corr-users = ∅, and l, f, h map
all their inputs to null values. An execution of a formal adversary, AF , can be described
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as a sequence of queries E(AF ) = (q1, q2, . . . ), with corresponding replies (r1, r2, . . . ). We
then call AF coinductively legitimate if m ∈ closurec(r1, r2, . . . , ri−1) for all i such that qi =
send(sn,m, {I,R}). Under AF ’s execution, we denote the induced formal trace by FT (AF ) =
(FS0, FS1 . . . ), where state FSi is obtained from FSi−1 as a result of query qi.

Under the computational execution, elements of BS(Π) ⊆ Ids∪nonces∪pubkeys∪symkeys
are replaced with random bitstrings, sampled w.r.t. a pair of asymmetric/symmetric schemes
Ep = (Easy, Esym), with w.l.o.g. a shared security parameter η, and the coins tossed by both
protocol users and the adversary during the protocol execution. Each (initially honest) ui, before
engaging in the protocol execution, samples her long-lived key pair, (pki, ski)← Genasy(η), and
for each session sn that ui becomes a participant of, ui uses a (polynomially-long) uniformly-
selected random string Ri,sn to sample her nonces and symmetric keys in that session, where
symmetric keys are sampled according to Gensym, and nonces chosen uniformly at random from
a fixed nonce space, NS = {0, 1}poly(η). The adversary, using random string RA, may choose his
nonces and symmetric keys (to, e.g., replace those of corrupted parties, inject in messages on
the network, etc.) in any arbitrary efficient manner; he may also initially corrupt a party and
choose her public/private key pair in any arbitrary manner (not necessarily following Genasy).

Letting Cη = NS∪sup [Gensym(η)]∪sup
[
Genasy1(η)

]
, a computational state of the protocol

is characterized by (F,L,H,Corr-Users), where L,H,Corr-Users are defined analogously to
their formal counterparts, and F is also defined similarly to f by just replacing Expb with
Cη. The adversary interacts with a computational oracle by issuing the four types of queries
explained above, where the input/output of queries, and the evolved computational states are
probabilistic, depending on RA and RH . (Here RH is the concatenation of all random coins
used by honest parties.) Among oracle queries, we only explain the effect of a corruption query
(the others are fairly straightforward): if the adversary corrupts ui, he is given (pki, ski), and
for every session sn in which ui takes the role X ∈ {I,R}, the adversary is given F (X, bs, sn),
for every bs ∈ BS(Π). Finally, under fixed RH and RA, the induced computational trace is
deterministic and denoted by CT (A,RA,RH , ΠEp).
Let FT = 〈(f1, l1, h1, corr-users1), (f2, h2, l2, corr-users2), . . . 〉 be a formal trace and let τ :
Expbasic → Cη be a computational mapping. We say that a computational trace

CT = 〈(F1, L1, H1, Corr-Users1), (F2, L2, H2, Corr-Users2), . . . 〉

is an encoding of FT under τ , written FT ≺τ CT , if li = Li, hi = Hi, Corr-Users = corr-users
and Fi = τfi, for all i ≥ 1. We say CT is the computational image of FT , written FT ≺ CT , if
there exists a mapping τ such that FT ≺τ CT .

Computational soundness theorems relate the random computational traces to (coinductive)
symbolic traces by characterizing cryptographic assumptions under which it is guaranteed that
a random computational trace is (almost always) an encoding of a (coinductive) symbolic trace.

Definition 1. A pair of encryption schemes Ep = (Easy, Esym) provides a cryptographically-
sound interpretation of symbolic encryption with respect to coinductive Dolev-Yao traces (shortly,
provides soundness) if for all valid protocols Π, PPT adversaries Ac, we have

Pr
RA,RH

[∃{coind-legit AF } : FT (AF ) ≺ CT (Ac,RA,RH , ΠEp)] ≥ 1− negl(η)

4 Active Adversaries and the Creation of Key Cycles

We present an example to show how a protocol run in an active setting may lead to creation of
key cycles, although the protocol does not produce them by itself. (i.e. when run in a passive
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setting.) Then we illustrate an inherent limitation of inductive methods in providing sound
security proofs, when encryption is realized under standard notions of encryption security.

Example 1. Consider the following protocol over A,B,C with public keys kA, kB, kC :

A→ B : ({k1, IC}kB , {k2, IC}kB , {IA}kB )

B → C : ({k1}kC , {k2}k1)

Suppose u1, u2, u3, and u4 are four protocol users with the respective public key kui for
ui. Suppose u1 starts a session of the protocol by sending ({k1, Iu3}ku2 , {k2, Iu3}ku2 , {Iu1}ku2 )
to u2. As a result, u2 sends ({k1}ku3 , {k2}k1) to u3. The adversary at this point, having re-
ceived all messages, can start a new session with u2, claiming himself to be u4, by sending
({k2, Iu3}ku2 , {k1, Iu3}ku2 , {Iu4}ku2 ). Subsequently, u2 sends ({k2}ku3 , {k1}k2) to u3. Now the
adversary has obtained both {k2}k1 and {k1}k2 , which form an encryption cycle.

Given the attack sketched above, if the underlying encryption scheme is not 2-circular secure,
the adversary may obtain significant information about the bitstring values of k1 and k2, leading
him to compute new messages, not otherwise computable, depending on them. Now let’s look
at an inductive, formal modeling of the attack: after the adversary receives {k2}k1 and {k1}k2 ,
it is assumed that he still cannot deduce k1 or k2, and as a result, he cannot use these keys
to construct new messages. Thus, it turns out that a set of “feasible” concrete traces (which
may lead to a successful attack) may not be matched with any abstract inductive formal trace.
In other words, inductive traces are not “expressive enough” to abstractly represent all actual
concrete traces which may occur in an actual, concrete execution of a protocol. In contrast, the
above attack scenario can abstractly be represented as a valid coinductive Dolev-Yao trace, and,
hence, the coinductive approach seems more justifiable for sound formal analysis of protocols.

We remark that although the above example may appear rather unrealistic, key cycles are
quite likely to arise in realistic situations, e.g., in key-distribution protocols where multiple keys
are sent during a single run of a protocol may enable this possibility. Of course, if a protocol
is shown to not produce key-cycles when run in the presence of an active adversary (e.g. if it
does not transmit secret keys at all), then the inductive and coinductive approaches essentially
give rise to the same abstract sets of formal traces, and there is semantically no difference
between these two approach. However, the problem of deciding whether a protocol produces
key cycles in the active-attack setting is known to be undecidable, and thus for a large class of
protocols we may not be able to decide whether the protocol leads to key-cycle creation. Even,
under a bounded number of sessions, the problem is still NP-complete [28]. Finally we note
that the used-order restriction imposed in [7] to allow symmetric encryption in the simulatable
cryptographic library of [9] is meant, as one purpose, to rule out key-cycle production.

5 Computational Realization of Coinductive Methods

We describe a joint notion of security for asymmetric/symmetric encryption schemes which
provably provides soundness for coinductive Dolev-Yao traces. We then explore how this notion
may be achieved under standard complexity-theoretic assumptions.

We begin with some motivation. Consider a single run of a protocol against a passive adver-
sary, in which the whole sequence of exchanged messages is known a priori. We would like to
formalize what it means for a piece of data (nonce or symmetric-key element) to remain secure
(i.e. unknown) in both the formal and computational settings. Under the formal approach, one
would typically say that the secrecy of a piece of data is retained if it cannot be deduced by
applying Dolev-Yao deduction rules. For a nonce element X, for instance, if X is not formally
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deducible, it means that all occurrences of X are encrypted under keys which cannot be ob-
tained by a Dolev-Yao adversary. Thus, under the concrete instantiation, after the adversary
has received the computational representations of the exchanged messages, the random nonce
value underlying X should still be as computationally random as a freshly-generated random
nonce, provided the encryption scheme is sufficiently strong. However, for the case of symmetric
keys the situation is quite different: even if the Dolev-Yao adversary is not able to deduce a
symmetric-key element, the key may leak significant information when it comes to a concrete
implementation. For instance, a symmetric-key value may lose its original randomness if used
for encryption. (i.e. The adversary will be able to tell it apart from a fixed key, causing it to
not be as “random” as a freshly generated key.) Thus the definition of secrecy for symmetric
keys in the computational model turns out to be more delicate.

Our ultimate goal is to establish a close correspondence between coinductive Dolev-Yao ad-
versaries and computational adversaries, by showing that a computational adversary essentially
cannot do anything (in terms of mounting successful attacks) which cannot already be performed
by a simple Dolev-Yao adversary. We capture the essence of active-attack scenario within a cryp-
tographic game, played between an adversary and a challenger, in which the adversary is faced
with a number of unknown keys (both asymmetric and symmetric) and nonces, generated by
the challenger, and his goal is to infer “non-trivial” information from the challenger’s secret
data, by exploiting active attacks such as corrupting arbitrary keys of the challenger, getting
her to encrypt messages which depend on her own secret data, and getting her to decrypt “per-
missible” ciphertexts. Our goal is to show that, under sufficiently strong security requirements,
the computational adversary cannot learn non-trivial information from a piece of data (nonce
or private key) that cannot already be obtained by a coinductive Dolev-Yao adversary. The key
point in our security definition is to formalize the idea of “computational secrecy” for private
keys. As it is probably clear from the above discussion, “requiring the adversary not be able to
distinguish the private key (used in the game) from a freshly generated key” would not work.
We formalize it in the following standard way: a private key retains its computational secrecy if
the adversary is unable to distinguish between the encryptions of real/random messages under
that key. We will be able to show that security in our game provides computational soundness.

Our security notion is formalized via the following game which we call the coinductive,
key-dependent indistinguishability game, or the CI game for short. As a notation, for S =

{(s1
1, s

2
1), (s1

2, s
2
2), . . . (s1

n, s
2
n)}, we define Si

4
= {si1, si2, . . . , sin} for i ∈ {1, 2}.

5.1 Coinductive, Key-Dependent Indistinguishability (CI) Game

Assume Easy = (Genasy, Encasy, Decasy) and Esym = (Gensym, Encsym, Decsym) are a pair of
asymmetric/symmetric encryption schemes whose joint security is to be defined, w.l.o.g., with
respect to the shared security parameter η. The game is played between an adversary, A, and a
challenger, B, and is parameterized over a publicly-known, poly-bounded integer function n(η)
(we will simply write n for n(η)). Suppose τB(·) and τA(·) are (dynamically growing) mappings
which give bitstring values to, respectively, the basic symbols of B and A (we will see shortly
what those symbols are), and think of τ as a mapping which is defined to be τB on the domain
of B’s symbols and τA on A’s. Here τA is publicly known, while access to τB and τ is restricted
to H. The game proceeds in three phases: setup, interaction, and guessing.

In the setup phase, B first picks b ← {0, 1}, generates {(pki, ski)}1≤i≤n ← Genasy(η),
symmetric keys {cki}1≤i≤n ← Gensym(η), and nonces {nci}1≤i≤n ← {0, 1}q(η) (for some poly
q), makes {pki}1≤i≤n public, and keeps the rest secret. We introduce public/secret key symbols

{(ki, k−1
i )}1≤i≤n ∈ KpubH ×K

privasym
H , symmetric-key symbols {ksymi }1≤i≤n ∈ KprivsymH , and nonce

symbols {xi}1≤i≤n ∈ XH , and assign τB(ki) = pki, τB(k−1
i ) = ski, τB(ksymi ) = cki and τB(xi) =
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nci, for 1 ≤ i ≤ n. We initialize eval-exp = ∅. During the interaction phase,Amay dynamically
update τA, mapping his newly-created basic symbols to arbitrary values. In the interaction
phase A adaptively interacts with B by issuing any number of queries of the following types:

1. Corruption: A may corrupt a B’s key by issuing corrupt(s), where s ∈ {k−1
1 , . . . , k−1

n ,
ksym1 , . . . , ksymn }. In response A receives τ(s), and (s, τ(s)) is added to eval-exp.

2. Encryption: A may issue a query encrypt(e, x), where x ∈ {k1, . . . , kn, k
sym
1 , . . . , ksymn }, and

e may not have any k−1
i ’s as a subexp. In response, A is given c← J{e}xKτ and ({e}x, c) is

added to eval-exp. Here e may contain both the challenger’s and adversary’s basic symbols.

3. Nonce revelation: A may issue a query reveal(xi), and in response receives nci, and (xi, nci)
is added to eval-exp.

4. Decryption: A may issue decrypt(c, s′), where s′ ∈ {k−1
1 , . . . , k−1

n , ksym1 , . . . , ksymn }. In re-
sponse A receives Decasy(c, ski) if s′ = k−1

i and Decsym(c, cki) if s′ = ksymi , unless there
exists ({e}kp , cp) ∈ eval-exp such that {e}kp has a subexp {e′}s (where s′ = s−1) which in
{e}kp is encrypted only under keys whose decryption keys are in closurec(eval-exp

1), and
that c corresponds to the computational image of {e′}s in cp. In this case the answer is ⊥.

After making a number of such queries, A proceeds to the final, guessing phase, in which
he claims he is able to infer “non-trivial” information about irrecoverable secret data of B.
He does so by issuing a challenge query, which is either of the form challenge(s), where s ∈
{x1, . . . , xn} (nonce challenge), or of the form challenge(s, bs), where bs ∈ {0, 1}∗ and s ∈
{k−1

1 , . . . , k−1
n , ksym1 , . . . , ksymn } (secret key challenge.) The response to the query is decided as

follows: if s ∈ closurec(eval-exp1), then he is given ⊥, otherwise:

– if b = 0, A is given ncj if s = xj , Encasy(bs, pkj) if s = k−1
j , and Encsym(bs, ckj) if s = ksymj .

– if b = 1, A is given nc′j ← {0, 1}q(η) if s = xj , Encasy(r, pkj) if s = k−1
j , and Encsym(r, ckj)

if s = ksymj , where r ← {0, 1}|bs|.

A finally outputs his guess for b. Denoting by ACI
Ep
b the random variable corresponding to A’s

output when the secret bit is b, his CI-advantage is (below Ep refers to the pair of schemes):

AdvCI
Ep,A(η) =

∣∣Pr[ACI
Ep
b (η) = 1 | b = 0]− Pr[ACI

Ep
b (η) = 1 | b = 1]

∣∣.
Definition 2. A pair of encryption schemes Ep = (Esym, Easy) provides joint security under the
CI game (shortly, is CI-secure) if for every adversary A, AdvCI

Ep,A(η) is negligible.

We now explain the restrictions on challenge and decryption queries. For our discussion, as-
sume that E = (Gen,Enc,Dec) is a symmetric encryption scheme wherein Enc(ck, ck) leads
to computation of ck. (This could happen although E is secure in any standard sense.) In
the absence of the condition for challenge queries, A could simply win the game as follows:
make two queries encrypt(ksym1 , ksym1 ) and encrypt(ksym2 , ksym1 ) to receive, respectively, c1 and
c2, and then issue the challenge query challenge(ksym2 , 0n); A may now obtain τ(ksym1 ) from
c1 and τ(ksym2 ) from c2, trivially winning the game. Also in the absence of the condition for
decryption queries, A could simply win as follows: (1) make two queries encrypt(ksym1 , ksym1 )
and encrypt({ksym2 }ksym3

, ksym1 ) to receive, respectively, c1 and c2, (2) after computing τ(ksym1 )

from c1, issue the decryption query decrypt(c3, k
sym
3 ), where c3 = Dec(c2, τ(ksym1 )), and (3)

after obtaining τ(ksym2 ) issue the challenge query challenge(ksym2 , 0n), trivially winning the
game. Finally we remark that the recent results of [24] show that there exists an IND-CCA2-
secure symmetric encryption scheme such that ciphertexts Enc(ck1, ck2), . . . , Enc(ckn−1, ckn),
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Enc(ckn, ck1), for randomly-generated cki’s, lead to revelation of all ck1, . . . , ckn (a weaker case
than k-circular security). Therefore, the above attack methods extend to longer key cycles.

Note thatAmay use an encrypt query to obtain the encryption of any bitstring. For example,
to encryptm under cki, he may introduce a new basic symbol xA, set τA(xA) = m, and then issue
encrypt(xA, k

sym
i ). Also it is possible to define and extend results we present about CI security to

a (seemingly) stronger notion in which A is allowed to make multiple challenge queries, possibly
making them interleave with the other types of queries. Right now for applications that we
consider, CI security suffices. CI security may be thought of as a variant of KDM security with
the underlying function family consisting of any arbitrary composition of constant, projection,
pairing and encryption functions. However, since we are trying to prove generic implication
results from standard notions of encryption security, we have to restrict the set of keys for
which we want to prove computational secrecy results (i.e. those which remain coinductively
irrecoverable). This differs from KDM security in which one wants to prove computational
secrecy for all keys, regardless of what encryption queries were made. Finally we stress that a
key that A challenges in the guessing phase may have previously participated in key cycles.

CI security is still insufficient for providing soundness as it does not provide integrity of
ciphertexts. To account for this, we strengthen it to additionally provide ciphertext integrity
and call the new notion authenticated CI (or ACI) security. We say (Easy, Esym) is ACI secure
if it is CI secure and further any A has a negligible chance of winning in the ACI game defined
as follows: the setup and interaction phases proceed exactly as in the CI game, while in the
guessing phase, A outputs (c, i) and wins if the following conditions hold: (1) Decsym(c, cki) 6=
⊥, and (2) there does not exist ({e}kj , c′) ∈ eval-exp such that {e}kj has a subexp {e′}ki
encrypted in {e}kj only under keys whose decryption keys are in closurec(eval-exp

1), and that
c is the corresponding image of {e′}ki in c′.

As a step toward proving soundness with respect to ACI security, we formulate a new notion
which characterizes security requirements capturing the basic Dolev-Yao assumptions made in
protocol analysis, and prove that it provides soundness. Our notion, which we call coinductive,
key-dependent non-malleability (shortly CNM ) notion, is a generalization of the Dolev-Yao non-
malleability notion of [33], which was defined for the passive setting.

5.2 Coinductive, Key-Dependent Non-Malleability (CNM) Game

The game is parameterized, again, over Ep = (Easy, Esym), a shared security parameter η, and a
computational mapping τ , and runs in three phases with the setup and interaction phases as in
the CI game (except that no b is sampled). However, in the guessing phase, A claims he is able
to construct the computational image of an expression which is not coinductively constructible
from eval-exp1. To this end, he outputs (e, E), where e is an expression (containing, possibly,
both the adversary’s and challenger’s symbols) and E ∈ {0, 1}∗. The output of the game is 1,
written as CNMEp,η(A) = 1, if the following two conditions hold:

1. e /∈ closurec(eval-exp1); and

2. E is a possible mapping of e under τ and Ep; namely, E ∈ JeKEpτ .

Note condition (2) is efficiently verifiable given access to τ . The adversary’s CNM-advantage is:

AdvCNM
Ep,η (A) = Pr[CNMEp,η(A) = 1]

Definition 3. A pair Ep = (Easy, Esym) provides joint security under the CNM game (shortly,
is CNM-secure) if for every adversary A, AdvCNM

Ep,η (A) is negligible.
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Theorem 1. 1. CNM security ⇒ soundness
2. ACI security ⇒ CNM security.

Proof (Outline): For (2) if Acnm is able to output a CNM-valid (e, E), then e /∈ T , where
T = closurec(eval-exp

1) implies e has a subexp s such that s is either a nonce/private key, or
s = {·}ksymj

, and that any subexp of e which contains s is not in T . This implies the underlying

value of s is recoverable from E (with the aid of the decryption oracle) through successive
decryptions down along the path leading to s, which will then enable an attack either against
CI security or ciphertext integrity depending on the type of s. The proof for (1) also follows
using ideas similar to those of [42]. We give a full proof in Appendix A. ut

For an adversary A in either of the above games, we define a labeled key graph, G(A) =
(VA, EA), as follows: VA = {vasy1 , . . . , vasyn , vsym1 , . . . , vsymn }, and vxi

a−→ vyj ∈ EA, for x, y ∈
{asy, sym} and a ∈ N, if kxi encrypts the ath occurrence of (kyj )−1 in the sequence of A’s encryp-
tion queries. Here ath occurrence refers to an increasing numbering given to each decryption key
as it appears in the sequence; for example, if e1 = {ksym1 , ksymp }k3 , k

sym
p and e2 = ksym2 , {ksymp }k4

and the first two encryption queries are encrypt(e1, k3) and encrypt (e2, k5); the set of keys that
encrypt the third occurrence of ksymp is {k4, k5}. We call a node vxi coinductively irrecoverable
(irrecoverable for short) if kxi

−1 /∈ closurec(eval-exp1), and we refer to the induced subgraph on
irrecoverable nodes as the hidden subgraph. The diameter of a graph is the length of the longest
path in the graph. For vi ∈ VA we define indeg(vi) to be the maximum a for which we have an
incoming edge with label a to vi; this specifies the number of times its associated key occurs in
A’s encryption queries. Note, indeg(vasyi ) = 0, for every 1 ≤ i ≤ n, and also both G(A) and
indeg(vi) are random variables depending on the coins tossed during the game.

If all encryption queries were of the form encrypt(ksymi , kxj ) (i.e. single encryption) with-
out key cycle creation, then all nodes from which there was a path to an irrecoverable node
would also be irrecoverable. However, in the case of nested encryptions with key cycles, the
above appealing property no longer holds; namely, an irrecoverable node may occur in certain
key cycles, and may have edges from nodes which are recoverable by the adversary. For ex-
ample, assuming e1 = {ksym1 }ksym2

and e2 = {ksym3 }ksym4
, if A makes queries encrypt(e1, k

sym
5 ),

encrypt(ksym2 , ksym1 ), encrypt(e2, k
sym
6 ), and corrupt(ksym4 ), all keys except ksym4 remain irrecov-

erable, and there exists, for instance, edges in both directions between vsym1 and vsym2 in G(A).
However, in the case of cyclic nested encryption, we will base our hybrid arguments on a

provable property, which we call coinductive continuability, of irrecoverable nodes. In G(A), we

say vxy1
a2−→ vsymy2

a3−→ . . .
ap−→ vsymyp , for x ∈ {sym, asy}, is a coinductively continuable path if the

following conditions hold: (below for better clarity we drop the superscripts x and sym.)

1. Path validity: For all 2 ≤ i ≤ p, vyi−1 →ai vyi ∈ EA, and if 1 ≤ w < h ≤ p then vyw 6= vyh ,
2. For all s ∈ {kxy1

−1, ksymy2 , . . . , ksymyp } it holds s /∈ closurec(eval-exp1), and
3. either indeg(vy1) = 0 or for every 1 ≤ a1 ≤ indeg(vy1) there exists vwi , with w ∈ {asy, sym},

such that vwi
a1−→ vy1

a2−→ . . .
ap−→ vyp is a coinductively continuable path.

We call a single node coinductively continuable if its associated path of length zero is so.

Lemma 1. At any point, any irrecoverable node in G(A) is coinductively continuable.

Proof (Outline): We prove this by an induction over the length of the longest path ending in
the irrecoverable node. A full proof is given in Appendix B. ut

Definition 4. We say that Ep = (Easy, Esym) provides l-CI security if AdvCI
E,A(η) is negligible

for every A for whom the diameter of the hidden subgraph of G(A) is always at most l. We say
Ep provides l-ACI security if it is l-CI secure and any A (under the ACI game) for which the
diameter of the resulting hidden subgraph is always at most l has a negligible advantage.
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Theorem 2. If Easy and Esym are both IND-CCA2 secure, then (Easy, Esym) provides l-CI se-
curity, for every constant l.

Proof (Outline): The central idea is to guess a “random”, coinductively continuable path,
with some associated parameters, which ends in the challenge key, give “fake” values to certain
private keys occurring as plaintexts, and prove the adversary’s advantage under this replying
strategy is negligibly different from that under the standard game. We will give a more detailed
outline of the proof in Appendix C.1, and a full proof in Appendix B. ut

Theorem 3. If Easy provides IND-CCA2 security, and Esym provides both IND-CCA2 and
INT-CTXT security, then (Easy, Esym) provides l-ACI security, for every constant l.

Proof (Outline): We first show that if Aaci is able to output an ACI-valid (c, i), then in a
world, Wi, in which occurrences of ksymi as a plaintext and its occurrences as an encryption
key are given two independent values, Aaci should have “the same” probability of producing a
valid (c, i), or otherwise a CI-attack can be made. Next, we show that if under Wi an adversary
A is able to produce an ACI-valid (c, i) and c is already a plaintext of a ciphertext obtained
under an encryption query (e.g. A has called encrypt({x1}ksymi

, ksym2 ) to obtain c2, ksym2 remains

coinductively irrecoverably, and c = Decsym(c2, ck2)), then a CI attack follows, and otherwise
an INT-CTXT attack follows. A full proof is given in Appendix D. ut

6 Applications of Soundness

In this section we show how our computational soundness theorem can be used to reason about
security of protocols, and exemplify the approach with a representative protocol. We first begin
with some background.

A large class of security requirements (e.g. authentication) can be expressed in terms of trace
properties, i.e., predicates over individual execution traces. To formalize this class of security
requirements, we first provide some standard definitions from [42]. We let Ftrace denote the set
of all symbolic traces and Ctrace denote the set of all computational traces. A formal (trace-
based) security property, Pf , is formalized by an associated set S(Pf ) ⊆ Ftrace, and we say
that protocol Π is coinductively secure with respect to Pf (or coinductively achieves Pf ) if for
all coinductively legitimate adversaries AF it holds that FT (AF, Π) ∈ S(Pf ). A computational
(trace-based) security property, Pc, is formalized again by an associated set S(Pc) ⊆ Ctrace,
and we say ΠEp computationally achieves Pc if for all PPT adversaries Ac it holds that: (Here
ΠEp represents the computational implementation of Π under the pair of encryption schemes
Ep.)

Pr
RA,RH

[
CT (Ac,RA,RH , ΠEp) ∈ S(Pc)

]
≥ 1− negl(η).

For Pf and Pc we say that Pc computationally realizes Pf if for all FT ∈ S(Pf ) and CT ∈
Ctrace, if FT ≺ CT , then CT ∈ S(Pc).

We provide some more definitions. For formal adversary AF = 〈(fq1, fr1), . . . , (fqn, frn)〉
and protocol Π we let Sym(AF) denote the set of honest symmetric-key symbols occurring
in {fr1, . . . , frn}. (We refer to any symbol in KprivsymH as an honest symmetric-key sym-

bol.) We define IrrecSym(AF)
4
= Sym(AF) − closurec(fr1, . . . , frn), and, using fr to denote

(fr1, . . . , frn), we define Depth(Π,AF) to be the maximum d for which we have an encryp-

tion chain ksymi1

fr−→ ksymi2

fr−→ . . .
fr−→ ksymid+1

for {ksymi1
, . . . , ksymid

} ⊆ IrrecSym(AF). We call any
encryption chain satisfying the above property an irrecoverable chain. Finally we say that Π
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is constantly depth-bounded (bounded, for short) if there exists a constant d such that for all
coinductive adversaries AF, it holds that Depth(Π,AF) ≤ d.

From Theorem 3 and by slightly modifying the proof of Theorem 1, we can arrive at the
following Theorem:

Theorem 4. Suppose Ep = (Easy, Esym), where Easy is IND-CCA2 secure, and Esym is both
IND-CCA2 and INT-CTXT secure. If Π is a bounded protocol which coinductively achieves Pf
and Pc is the computational realization of Pp, then ΠEp computationally achieves Pc.

Proof. First by slightly changing the proof of Theorem 1 one can show that (a) if Π is l-depth
bounded, then any l-CNM secure Ep provides soundness for Π, and (b) l-ACI security ⇒ l-
CNM security. Now from (a), (b) and Theorem 3, the result follows. ut

We now provide some general statements about bounded protocols. We first define two
more types of security protocols. The class of protocols described in Section (3) are two-party
protocols, involving both asymmetric and symmetric encryptions. We call this class of proto-
cols hybrid two-party protocols. Another class of two-party protocols, which we call symmetric
two-party protocols, consists of protocols which use symmetric encryption only, requiring that
the two participating parties have previously established a secret key between themselves. Be-
yond two-party protocols, another widely-used type of protocol (especially) for authentication
and key-exchange protocols is the three-party one, where two parties, I,R, with the aid of a
trusted, incorruptible server, S, with whom each I and R shares a long-term secret key, at-
tempt to accomplish a security task. We also call these protocols server-based protocols. (We
use both terms “server-based” and “three-party” interchangeably.) Analogously to hybrid two-
party protocols, one may define valid symmetric two-party and three-party protocols. Below,
we give the definition for the three-party case; the definition for the symmetric two-party case is
similar. Assuming IDs = {I,R, S}, nonces = {X1, X2, . . . }, shared-keys = {KIS ,KRS}, and
sym-keys = {K1,K2, . . . }, a server-based protocol isΠ = (〈M1, P1 → Q1〉, 〈M2, P2 → Q2〉, . . . ),
where Mi’s, again, are constructed from the above sets using concatenation and symmetric en-
cryption, and {P1, Q1, P2, Q2, . . . } ⊆ IDs. Here, {KIS ,KRS} represent the two long-term secret
keys that I and R share with S, and 〈Mi, Pi → Qi〉 states that Pi sends Qi message Mi. We
now define a valid server-based protocol to be the one in which KIS ,KRS are never sent as
plaintexts, and that every message received by each party is completely decipherable by the
party. To formalize the latter requirement, we first define K(S) = {KIS ,KRS}, K(I) = {KIS},
and K(R) = {KRS}; now for Π introduced above and all i ≥ 1, if Mi has a subexpression
{M}K , then K must be inductively recoverable from the expression formed by concatenating
all elements from the following set:

K(Qi) ∪ {Mj : j ≤ i ∧Qj = Qi}.

Similarly to hybrid protocols, one may also define boundedness for three-party and sym-
metric two-party protocols, and restate a theorem similar to Theorem 4 for them. (We note,
however, that since for these two latter types of protocols we assume the only primitive used
is symmetric encryption, the new theorems will only speak about an IND-CCA2+INT-CTXT-
secure symmetric encryption scheme.)

6.1 Boundedness for the Wide Mouthed-Frog Authentication Protocol

The Wide Mouthed-Frog authentication protocol (WMF protocol for short) [18] is a three-party
protocol described as follows:

Πwmf = (〈M1, I → S〉 , 〈M2, S → R〉)
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M1 = (I, {TI , R, ksym1 }KIS )

M2 = {TS , I, ksym1 }KRS

Here, TI and Ts denote timestamps generated, respectively, by I and R to ensure freshness of
messages. (Although our symbolic protocol model does not consider timestamps, this does not
affect what we are going to present below.)

Now suppose the WMF protocol is succeeded by I sending 0 (or any other fixed message)
encrypted under ksym1 to R. (i.e. ({0}ksym1

, I → R)); we call this new extension the extended
WMF (EWMF for short) protocol. For the EWMF protocol, as pointed out in [7], the so-called
used-order property (which is a necessary assumption for most simulation-based soundness
settings [7,36]) may be violated. The used-order property states that if a symmetric key ki is
used for encryption for the first time at some point T (and is unknown to the adversary at this
point), any subsequent occurrence of ki as a plaintext should only be encrypted under keys
which were first used for encryption before T . For the EWMF protocol the used-order property
may be violated as follows: (1) I sends S the message (I, {TI , R, ksym1 }KIS ) and before S sending
R the message {TS , I, ksym1 }KRS , I sends {0}ksym1

to R, violating the used-order property.

We now show that the EWMF protocol is a bounded protocol, satisfying our soundness
restriction. We should mention here that we are not claiming that the WMF protocol is secure
(as it is known to be not); rather we want to provide some general statements to show how
reasoning about our soundness restriction can be made, and to discuss its applicability.

We require the following definitions. We call a three-party protocol Π type-1 if KIS and
KRS are the only keys used for encryption in Π. (For example, the WMF protocol is type-
1.) We now show that every type-1 three party protocol is bounded, and that if any type-1
three party protocol Π1 is run concurrently with a bounded, symmetric two-party protocol Π2,
then the boundedness property is retained for their concurrent execution. (i.e. the length of the
longest irrecoverable chain that may be created when Π1 and Π2 are executed concurrently is
at most longer by a constant than the longest irrecoverable chain that may be produced when
any of Π1 and Π2 is run individually.) Denoting by Π1||Π2 the system that corresponds to
the concurrent execution of Π1 and Π2 and by u1, . . . , un the set of users, the setup model of
concurrent execution assumes the existence of a trusted server S who shares a unique long-term
secret key with each user (this is the setup inherited from Π1), and further requires that any
ui and uj who want to run an instance of Π2 together, should have already set up a secret key
between themselves. (This secret key can be provided by, possibly, a run of Π1, or the setup
model may additionally assume that every two users also have a private communication link
between themselves. Our proposition below holds under any of these two latter assumptions.)

Proposition 1. If Π1 is a type-1 three party protocol, and Π2 is a symmetric two-party protocol,
then

1. for any formal adversary AF , it holds Depth(Π1,AF ) ≤ 1, and

2. for any formal adversary AF , it holds that Depth(Π1||Π2,AF ) ≤ Depth(Π2) + 1.

Proof. Proof of (1): For any set of users {u1, . . . , un} of Π1 and any formal adversary AF , we
show that the length of the longest irrecoverable chain is at most one. For 1 ≤ i ≤ n we denote
ui’s shared long-term secret key with s, the server, by kuis. Assume AF ’s computation produces
the following sequence of queries/replies: AF = 〈(q1, r1), . . . , (qm, rm)〉, and, letting r denote
(r1, . . . , rm), assume, to the contrary, that k1

r−→ k2
r−→ k3, for some k1, k2, k3 /∈ closurec(r).

We define Ku = {kuis : 1 ≤ i ≤ n} and Kirr
u = Ku − closurec(r). First note that since AF is

coinductively legitimate, for every 1 ≤ i ≤ n, we have qi ∈ closurec(r1, . . . , ri−1). Now we show
that (a) k1

r−→ k2 and k1, k2 /∈ closurec(r) imply that k1 ∈ Kirr
u (i.e. k1 cannot be a symmetric
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key outside Kirr
u ; for example it is not a fresh symmetric key that may have been generated

during the protocol execution.), (b) similarly to (a), k2
r−→ k3 and k2, k3 /∈ closurec(r) imply

that k2 ∈ Kirr
u , and (c) For no ki, kj ∈ Kirr

u it holds that ki
r−→ kj . Note that (a), (b), and (c)

conclude the proof of this part of the proposition. The proofs of (a) and (b) are entirely similar,
and the proof for (c) follows using the same ideas used for (a) and (b); so we only show (a). Since
k1

r−→ k2, for some 1 ≤ w ≤ m, we have k1
rw−→ k2, implying that either qw = new-session(i, j), or

qw = send(snw, ew, Rw), for Rw ∈ {I,R, S}. Now when AF makes query qw = new-session(i, j),
if ui is already corrupted, then it must be that all encryption keys used to form rw are already
known by the adversary, contradicting the fact that k1, k2 /∈ closurec(r). On the other hand,
if ui is not corrupted, then ui follows the specification of the protocol, implying that the only
encryption key used in rw must be kuis (this follows from the fact that Π1 is type-1 and ui is
honest), implying that k1 ∈ Kirr

u . With the same reasoning one can also conclude that for the
case qw = send(snw, ew, Rw) it should also hold that all encryptions used in rw are under a key
which is in Kirr

u . This completes the proof of part (1).

Proof of (2): The proof of this part also uses the same ideas discussed above, so we just give a
proof outline. Suppose AF = 〈(q1, r1), . . . , (qm, rm)〉 (Here each qi is a query made to either Π1

or Π2.) To prove this part, one needs to first show that no key in Kirr
u appear as a plaintext in

any ri’s (or otherwise, AF is not coinductively valid); and then deduce that for any irrecoverable
chain P = ki1

r−→ ki2
r−→ . . .

r−→ kip , either P or ki2
r−→ . . .

r−→ kip can be created by an adversary
A′F who is only run in an environment with only Π2 executing.The proof then follows. ut

Now from the above proposition it follows that the the depth of the EWMF protocol is one.
This is because, every execution under the EWMF protocol may already be created under a
concurrent execution of the WMF protocol (which is a type-1 three party protocol) and the
simple symmetric two party protocol Π2 = ({0}KIR , I → R).

7 Conclusion

We investigated soundness of coinductive methods in a protocol model allowing arbitrary compo-
sition of symmetric/asymmetric encryption, as well as unrestricted transmission of secret keys.
In such situations, an active adversary may selectively influence the encryption ordering be-
tween deployed keys, dynamically compromise them (naturally or under his corruption power),
and potentially obtain encryption cycles. Any weakness in the underlying encryption schemes
in the face of such an adversary may lead to insecure instantiations of protocols. Most previous
work on computationally sound symbolic analysis of protocols either does not allow symmetric
encryption, or imposes restrictions aimed at avoiding the above possibilities. Our soundness
theorem, founded on coinduction, does not assume any such restrictions, while providing strong
computational security guarantees against adaptive corruptions. Our results, however, rely on
a property of protocols we called boundedness (Appendix 6), which requires that no symbolic
execution of the underlying protocol produce a coinductively-irrecoverable encryption chain of
nonconstant length. We observed that almost all protocols from [25] (when run in isolation)
admit (at most) 2-boundedness. (All of them are bounded.) We also provided statements on
how one can reason about boundedness of a protocol, and whether the boundedness property
is retained when two (individually bounded) protocols are run concurrently.

While the main focus of this paper is on trace-based security, we believe similar results
can also be proved for key-exchange (KE) security tasks. A central security requirement for
key exchange is the secrecy condition, requiring a secret key exchanged by a KE protocol
be indistinguishable from a freshly generated key. Our CI game is rich enough to encompass
common features of a KE attack model, including adaptive corruptions of users and session keys,

17



while guaranteeing that (under stated complexity assumptions) coinducitve symbolic secrecy
under the game implies computational secrecy (real-or-random indistinguishability in the case
of nonces and key usability [29] in the case of secret keys).

For simplicity, we have assumed that if a user is corrupted, the adversary receives only her
long-lived key and her past generated secret keys/nonces, but not her past random coins. In
Appendix E we give some partial results about this more general case.

As briefly explained in the introduction, current results about KDM security do not seem
sufficient for (unrestricted) secure realization of protocols with inductive, symbolic security
proofs. It would be interesting to extend (and realize) KDM security definitions to support
adaptive corruptions. As pointed out in the introduction, defining the extension in an entirely
left-or-right indistinguishability sense, as in [8], would entail inherent limitations; for example,
if a left-or-right encryption query is made under ck, then ck may not be corrupted afterward.

Finally it would be interesting to improve the bounds imposed by our soundness theorem
(and those of [46]), and investigate its extension to more general cryptographic frameworks
supporting compositional reasoning [9,23].
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A Proof of Theorem 1

Proof of Theorem 1 (Part 1): Suppose Acs is an adversary attacking Ep = (Easy, Esym) in
the sense of “soundness” and winning with non-negligible probability; namely, for whom there
exists a protocol Π such that Definition 1 does not hold. From Acs we construct Acnm, who
attacks the scheme in the sense of CNM and wins, again, with non-negligible probability.

First we make an assumption about our protocol execution models. We assume that in
reply to a query new-session(i, j), in which party ui is already corrupted, only a session (with
its uniquely assigned number) is opened between ui and uj , but no message is given to the
adversary. This is without loss of generality since ui is already corrupted and the adversary can
generate the opening message by himself. Similarly we assume that no reply is given to a query
send(sn,m,X), for X ∈ {I,R}, if the user taking role X in session sn is already corrupted.

Our proof proceeds in two parts. The first part of the proof is similar to that of [42]. Namely,

for every Acs and associated random coins RA and RH , if CT
4
= CT (Acs,RA,RH , ΠEp) =

〈(cq1, cr1), (cq2, cr2), . . . 〉 (recall the corresponding notation from Section 3) we show that there

exists a symbolic adversary Af and a computational mapping τ such that FT
4
= FT (Af ) =

〈(fq1, fr1), (fq2, fr2), . . . 〉 is mapped to CT under τ . We should remark that the constructed
Af may or may not be coinductively-valid; for this part we just want to show the existence of
Af and τ , and for this we assume that we are already given RA and RH .

In the second part of the proof, we show that if the constructed Af is indeed coinductively
invalid with a non-negligible probability (note that if Af is coinductively invalid only with a
negligible probability then Acs is “soundness-respecting”), then from Acs we can build Acnm in
such a way that he first guesses s, the point in which soundness is violated (i.e. the first point in
which fqs /∈ closurec(fr1, . . . , frs−1)), and for every query cqj (for j < s) of Acs, Acnm properly
constructs crj by first building fqj , then frj and finally constructing crj from frj with the aid
of his CNM-encryption oracle (and his decryption oracle). Finally when Acs outputs cqs, Acnm
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properly builds fqs (the underlying expression) and outputs (fqs, cqs). We provide the details
below.

First Part. We show how to construct Af from Acs under RA and RH . The construction is
summarized as follows: for every cqi we first fully decrypt cqi (using RA and RH and previously
sent messages); accordingly update F (., ., .); from that we update f(., ., .); and finally from the
updated f we construct fqi. (Recall that F (., ., .) and f(., ., .) are the components of, respectively,
a computational and a formal protocol state.) Once fqi is built, fri is obtained uniquely. Now
we describe the details.

First, for every cqi = corrupt(·), we will have fqi = cqi. Next for cqi = new-session(j, k), we
will have fqi = cqi, and if uj is already corrupted then no reply should be given to the adversary
(as described above); otherwise, cri will only have basic values generated by an honest party
which can uniquely be determined by RH , and so we can update F accordingly. After F is
updated and assuming that the new session is given number sn, if, for Q ∈ BS(Π), F (I,Q, sn)
is updated to value c, we also update f(I,Q, sn) to a fresh honest party’s symbol sH (of the
appropriate type) and set τ(sH) = c. For the final case, if cqi = send(sni, cmi, X), where
X ∈ {I,R}, we will set fqi = send(sni, fmi, X), where fmi is an expression constructed by
first parsing cmi according to the syntax given in the protocol (note that here cmi may have
injected adversary values as well, but since we assumed that all encrypted parts of a party’s
received message should be decipherable using the party’s current knowledge, cmi has to be
fully and uniquely decipherable using the partially constructed F (·, ·, ·) and cmi itself), and
then updating F accordingly. Now if, for Q ∈ BS(Π), F (X,Q, sn) is updated to value c, c may
possibly be an adversarially-generated value, and, hence, to update f(X,Q, sn) we proceed as
follows: if for some s we already have τ(s) = c we set f(X,Q, sn) = s, otherwise, we introduce a
fresh adversary symbol qA (of the proper type) and set f(X,Q, sn) = qA, τ(qA) = c. (Note that
if c is not in the range of τ , this means that c is not a basic value of any reply the adversary has
received from previous new-session and send queries, implying that c should be a value that
the adversary has injected in.) From the updated f we construct fmi, fqi, and fri. Now it can
easily be verified that CT is a computational interpretation of FT under τ .

Second Part. Now suppose the probability that Af formed above is coinductively invalid is
non-negligible; namely, there exists a smallest s (which we assume is a priori known as it can
be guessed with a non-negligible probability) where fqs /∈ closurec(fr1, . . . , frs−1)2. Now Acnm
is going to simulate Acs as follows: for every query cqi of Acs, Acnm is going to construct its
symbolic query fqi (possibly with the aid of his decryption oracle), compute fri the symbolic
reply to fqi (note that this is possible given fqi, the protocol specification, and the past symbolic
execution), call his oracles to receive the computational evaluation of fri, and return it to Acs.
Now when Acs outputs cqs = send(sns, cms, is) (note that cqs has to be in this form if it’s the
first query invalidating the coinductive closure assumption), Acnm constructs fms the symbolic
counterpart of cms, and outputs (fms, cms) in his CNM game. More details come below.

First some simplifying assumptions. We represent any CNM adversary’s corruption and
encryption queries using a single type of query Eval(e), which requests the computational
interpretation of e. For example, corrupt(k−1

i ) is like asking Eval(k−1
i ), or encrypt(e, kj) is like

Eval({e}kj ). Also, we let the input of Eval be any arbitrary expression. Although the encryption
query in CNM does not (explicitly) give us the computational image of, say, a paired expression
e = (e1, e2), any adversary can manually do this by completely un-pairing e, requesting the
computational images of all produced encrypted expressions, and successively pairing them all
back.
2 Here we are actually abusing notation since fqs is a query not an expression. We define fqs ∈
closurec(fr1, . . . , frs−1) if fqs is either a new-session or corrupt query, or fqs = send(sns, fms, X) and
fms ∈ closurec(fr1, . . . , frs−1).
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Proceeding with the proof of the claim, we assume for Acs, without loss of generality, that
the set of protocol users is {u1, . . . , un}, where n = poly1(η), and the number of to-be-created
sessions is upper-bounded by p = poly2(η), where the first created session is assigned number
1, the second 2, and so on. To construct Acnm, first we explain how the setup phase of the
CNM game is initialized (i.e. what challenger’s basic symbols are): the set S of challenger’s
basic symbols contains (ki, k

−1
i ), for every 1 ≤ i ≤ n, where (ki, k

−1
i ) is going to serve as a

symbolic counterpart of ui’s pair of long-lived public/private keys. Also for every 1 ≤ i ≤ n
and 1 ≤ sn ≤ p, S contains Si,sn = {xi,sn,1, . . . , ksymi,sn,1, . . . }, whose elements are going to serve
as symbolic counterparts of nonces and symmetric keys that ui is going to use in session sn, if
she becomes a participant in that session. (Since this latter is a priori unknown, we designated
a larger set of challenger’s basic symbols at the beginning.) Now we explain below how Acnm
simulates Acs, as informally sketched above:

– For a query cqi = new-session(i, j) of Acs, we set fqi = cqi, and if this newly opened session
receives number sn, Acnm asks his oracle the query Eval(fri) (and gives the result as cri
to Acs), where fri is built from Si,sn, following the “syntax” specified in the protocol.

– For cqi = corrupt(i), we again set fqi = cqi and Acnm will reply to cqi by issuing a sequence
of Eval queries. (We have a sequence because, as we mentioned earlier, when the adversary
corrupts a party during the protocol execution, the adversary receives the whole internal
state of that party, including, especially, all symmetric keys/nonces that party has generated
in each session. So here, fri will be an expression consisting of all of the parties basic symbols
generated so far, and cri, the reply to cqi will be the computational interpretation of fri.)

– For cqi = send(sni, cmi, R), first note that cmi may have Acs’s injected values as well. In
order for Acnm to be able to build fmi (and consequently fqi), Acnm has to be able to (i)
obtain all the basic values that were injected by Acs (and for every such value Acnm will
introduce, if he has not already introduced, a new basic symbol along with the extracted
value as the computational image of the symbol in his CNM game), and (ii) for every
other constitutuent basic value of cmi, Acnm has to be able to determine the basic symbol
corresponding to that value. (For example, if Acnm encounters a ciphertext c that he knows
is encrypted under public key pki, but whose private key is unknown, if he has already
obtained c under an encrypt query encrypt(e, ki), he knows the expression corresponding to
c and can use this to build up fmi accordingly.)

First we show (i); namely, how Acnm extracts all Acs’s injected values (i.e. those whose
symbolic counterparts would be adversarial symbols in the process of constructing Af ; see
Part (1) of the proof). For this assume that Acnm has extracted all Acs’s inserted values
up to this query; now to acquire all Acs’s newly inserted values (symmetric keys or nonces)
in cmi, since by assumption fmi ∈ closurec(fr1, . . . , fri−1)—Note that Acnm still does not
know fmi; this latter is a condition which will hold if Acnm’s guessing was correct— it must
be the case that any newly-inserted adversarial symbol s in fmi is encrypted only under
public keys or under keys whose decryption keys fall into the coinductive knowledge set
of the adversary. Any other case implies that fmi /∈ closurec(fr1, . . . , fri−1). As a result
Acnm can acquire c, the computational value of s in cmi through a sequence of decryption
operations, each of which is either performed under a key already known by Acnm (in case
the encountered encryption key is an adversarial key), or through calling the decryption
oracle (in case the encountered encryption key is the public key of a user)3. Now for every

3 We remark that here we are implicitly assuming that, under a given τ and two e1 and e2 with different
underlying parse trees (here, for example we consider {0}k1 and {0}k2 to have different parse tress), we have
sup [Je1Kτ ] ∩ sup [Je2Kτ ] = ∅; this ensures that whenever the decryption oracle is called down along the path
toward s, it will decrypt for Acnm. This assumption can easily be guaranteed by “tagging” each bitstring with
its type (e.g. basic, pair, encryption), and moreover by having each party tag each of its produced ciphertexts
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newly recovered value c injected byAcs, Acnm will introduce a new basic symbol and assign
its computational image to c in his CNM game. Next, we show how (ii) can be done. After
all of Acs’s injected values are recovered (i.e. after (i) is done), Acnm parses cmi according to
the syntax prescribed by the protocol, unpairs concatenated strings, and for every obtained
ciphertext ct, if ct is encrypted under an adversarial key (note that Acnm is able to tell if the
obtained ciphertext was encrypted under an Acs’s injected key, since he already knows the
position of all those keys in the expression), Acnm already knows its decryption key and can
decipher ct by himself. If, otherwise, ct is encrypted under an honest key (whose decryption
key is not known to Acnm), Acnm asks his oracle to decrypt ct (under the appropriate
decryption key whose symbolic key can be determined by the syntax of the protocol); now if
the oracle decrypts successfully, Acnm continues the above process with the resulting string,
otherwise, if the decryption fails, this means that ct is coinductively visible in a ciphertext
he has obtained from his Eval queries and, hence, Acnm already knows its corresponding
symbolic expression.

Now finally when Acs makes the query cqs = send(sns, cms, is), if all guesses made so far
have been correct (which is the case with a non-negligible probability) and if Acnm successfully
manages to construct fms from cms, then (fms, cms) will allow Acnm to win in his game. But
how Acnm can construct fms from cms? Here we present the simplest way (and arguably the
most inefficient way) which will work with a non-negligible probability: since Acnm knows the
syntactic structure of cms (as provided in the protocol) and since fms will have at most a
constant number of symbols, Acnm can guess all constituent elements of fms and build it up
this way. This completes the proof. ut

Proof of Theorem 1 (Part 2): Suppose Acnm attacks Ep = (Esym, Easy) under the CNM
game and wins with a non-negligible probability; from Acnm we construct Aaci who attacks
the ACI security of Ep. Without loss of generality, we assume that when Acnm outputs (e, E),
it holds that e = {e1}k, for some e1, where k−1 /∈ closurec(eval-exp

1). (This is without loss
of generality because for every k−1 ∈ closurec(eval-exp1), even if the adversary does not have
the computational value of k−1—for example if he has obtained a computational image of
{k−1}k, which does not necessarily give out the underlying value of k−1—he can obtain the
computational value of k−1 by corrupting k−1; note that this corruption does not change the
symbolic knowledge of the adversary.) Now, Aaci simulates Acnm, answering Acnm’s oracle
queries using his oracle, and waits forAcnm to output his “guess”. It is clear that the interaction
phase of Acnm can be perfectly simulated by Aaci since they both make exactly the same queries.
Now when Acnm outputs his guess ({e}ki , E), since {e}ki /∈ closurec(eval-exp1), there exists s v
{e}ki , such that s is either a symmetric-key/nonce, or an encrypted expression {ej}ksymj

(where

ksymj /∈ closurec(eval-exp1)), and that the following conditions hold: (a) s /∈ closurec(eval-exp1),

and (b) for any subexp {e′}k′ of {e}ki in which s occurs, {e′}k′ /∈ closurec(eval-exp1). Informally,
Condition (b) ensures that Aaci can extract the corresponding computational value of s (from E)

by a label, in such a way that ciphertexts encrypted under the same key receive the same label. This, now,
rules out the possibility that Acnm, at some point during his simulation, call his encryption oracle to obtain
c, an image of {{x}k1}k2 (to give it to Aci), and later on Aci inject c in a context where a value of {{x1}k3}k2
is expected. (If this happens, the simulating Acnm will then have to to call his decryption oracle to decrypt
c successively under k2 and k3’s decryption values to obtain the underlying value of x, which here will be
an adversarial value.) This issue, which makes our simulation fail (because Acnm is not permitted to make
decrypt(c, k−1

2 )), is resolved by the use of tagging described above. (i.e. c will be immediately rejected by the
respective user if it is used in the context described above.) We note that this tagging assumption is common
to almost all computational soundness results, and the reason is that symbolic models are typically assumed
to be free, meaning that every expression has a unique parse tree. (i.e. Injecting {{x}k1}k2 in a context where
something like {{x1}k3}k2 is expected would produce an error.)
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through successive decryption operations, down along the path leading to s, while the condition
s /∈ closurec(eval-exp1) allows Aaci to attack the CI security of Ep in case s is a symmetric key
or a nonce, and ciphertext integrity in case s is an encrypted expression. Below we formally
show how Aaci will attack the CI security of Ep if s is a symmetric key or a nonce; the attack
against ciphertext integrity in case that s is an encrypted expression follows similarly. At first,
Aaci issues the decryption query decrypt(E, k−1

i ) to decrypt E; this works because {e}ki /∈
closurec(eval-exp

1)4. After receiving the decrypted string, Aaci proceeds to move toward s,
separating emerging “pairs” as he goes down along the path, and if he encounters a ciphertext Eh
being the computational image of, say, {eh}kh , in case he already does not know the decryption-
key value of kh, he again invokes his decryption oracle to obtain Dec(Eh, k

−1
h ), which according

to item (b) above will be decrypted by the oracle because {eh}kh /∈ closurec(eval-exp1). If at any
point Aaci fails during this computation (e.g. receiving a plaintext from the decryption oracle
which is not of expected format, meaning that the original “guess” of Acnm was incorrect),
he outputs a random guess and terminates. (In more detail, we assume Aaci has designated a
special nonce symbol x of the challenger from the beginning—where x does not participate in
any query—and here he simply chooses x as his “challenge symbol” and chooses his output bit
uniformly at random.) Finally, if Aaci succeeded in obtaining the computational value of s, he
can easily win in the game by choosing s as the challenge symbol; we omit the details. This
completes the proof. ut

B Proof of Lemma 1 and Theorem 2

B.1 Proof of Lemma 1

First note that if an asymmetric decryption key k−1
p is coinductively irrecoverable (irrecover-

able for short), then vasyp is, trivially, coinductively continuable (continuable for short) in the
key graph (this is because indeg(vasyp ) = 0). Thus we just need to show that if a symmetric
decryption key, ksymp , is irrecoverable (i.e. ksymp /∈ closurec(eval-exp1)), then vsymp is continuable.

We first give some definitions. For the key graph G(A) = (V,E), we let Vrec ⊆ V de-
note the set of recoverable nodes of V , and Vcorr denote the set of corrupt nodes of V . (A
node is called corrupt if its associated decryption key has been input to a corruption query.)

We define prev-nodes(vk, dk) to be the set containing all vj ’s where vj
dk−→ vk ∈ E. We call

S ⊆ V coinductively closed (closed for short) if for every vi ∈ S, there exists di such that
prev-nodes(vi, di) ⊆ S ∪ Vcorr. If S1 ⊆ S2, we say that S1 is closed under S2, if if for every
vi ∈ S1, there exists di such that prev-nodes(vi, di) ⊆ S2 ∪ Vcorr.

Next, we present some easily verifiable statements about the key graph.

1. If vi ∈ Vrec and vi /∈ Vcorr, then it must be that indeg(vi) > 0.

2. If for vi ∈ V and label di we have prev-nodes(vi, di) ⊆ Vrec, then it must be that vi ∈ Vrec.
3. If S is closed, then S ⊆ Vrec. The reason for this is that, if we denote by Sk the set of

decryption keys associated to S and define fs = (eval-exp1), then we have Sk ⊆ Ffs(Sk),
and hence by Equation (3), we have Sk ⊆ FIX(Ffs).

4. The converse of Item (3): If S ⊆ Vrec then there exists S1 such that S ⊆ S1 and that S1 is
closed. This follows from the basic coinductive properties described in Section 2.

5. If vi /∈ Vrec, then vi is not the member of any closed set. This is a trivial implication of Item
(3).

6. If S3 = S1 ∪ S2 and both S1 and S2 are closed under S3, then S3 is a closed set. (We call
this property the union property.)

4 It should be noted for this to hold, we require the tagging mechanism as explained above.
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We now show that if vsymp is not coinductively continuable, then there exists a closed set
Sp such that vsymp ∈ Sp, concluding from Item (3) that vsymp is recoverable. It suffices to prove
this for the case indeg(vsymp ) > 0 (because, otherwise, non-continuability of vsymp immediately
implies that vsymp ∈ Vrec).
Statement: If indeg(vsymp ) > 0 and vsymp is non-continuable, then there exists a closed set Sp
such that vsymp ∈ Sp.

We prove the above statement by induction over the length of the longest path ending at
vsymp , which is denoted by lendpath(vsymp ).

Base case: If lendpath(vsymp ) = 1, non-continuability of vsymp implies that there exists dp such
that for all vi ∈ prev-nodes(vsymp , dp), it holds that either indeg(vi) = 0 and vi ∈ Vcorr, or
indeg(vi) > 1 and vi has only incoming edges from vsymp . Thus if we define Sp = {vsymp } ∪
prev-nodes(vsymp , dp), we have that Sp is closed and vsymp ∈ Sp.

Now suppose for some l > 0 and all vi where lendpath(vi) ≤ l the above statement holds;
we prove it for when lendpath(vsymp ) = l + 1. Assume vsymp /∈ Vrec(G) (because otherwise by
Item 4 we are done). To construct Sp, we first add vsymp to Sp. Next we build graph G′ as
follows: G′ is obtained from G by removing vsymp (and, hence, all edges incident on it). Also the
recoverable nodes of G′ are obtained as follows: We label every node labeled with recoverable
in G as recoverable in G′ as well, and if for vh ∈ V (G′) (which has not received “recoverable”
label yet), it holds that for some dh, all nodes which have dh-labeled edges to vh in G′ are
labeled recoverable, we label vh recoverable too. (Note that this last operation may create new
recoverable nodes, since vsymp is removed from G′.) Intuitively G′ corresponds to the key graph
created when all adversary’s encryption queries where ksymp appears as an encryption key is
replaced with a new query which uses an adversarial key instead of ksymp .

Now, to perform the inductive step, since vsymp is non-continuable, there exists dp such that

for all vi ∈ prev-nodesG(vsymp , dp), vi
dp−→ vsymp is non-continuable. Now for vi

dp−→ vsymp , if
vi ∈ Vrec(G), then, by Item (4), vi is an element of a closed set Si and we add all elements of
Si to Sp. Otherwise, if vi /∈ Vrec(G), it should be either: (a) vi /∈ Vrec(G′) and vi /∈ Vrec(G), or
(b) vi /∈ Vrec(G) and vi ∈ Vrec(G′).

We first show that (a) is a contradiction to the assumption that vi
dp−→ vsymp is non-

continuable. Since lendpathG′(vi) ≤ l and vi /∈ Vrec(G
′), by the induction hypothesis, vi is

coinductively continuable in G′. This implies that vi
dp−→ vsymp is also coinductively continu-

able in G. (For this we just need to verify that for every coinductively continuable path
vr1 →a2 vr2 →a3 · · · →am vrm in G′, there does not exist vri , for 1 ≤ i ≤ m, such that
prev-nodes(vri , h) = {vp}, for h ≤ indeg(vri). This is the case because otherwise vri ∈ Vrec(G′).)
For (b) (from item (4)), we obtain that vi is a member of a closed set Si in G′; we add all el-
ements of Si to Sp. Now we can easily see that in this case, Si is closed under the (thus-far)
constructed Sp in G; this is because we already have vsymp ∈ Sp. Finally it holds that vsymp is also
closed under Sp; this is because all elements of prev-nodesG(vsymp , dp) have already been added
to Sp. Now from the union property we conclude that Sp is closed in G and this completes the
proof. ut

B.2 Proof of Theorem 2

We first give some definitions. Under a fixed computational encoding τ and a pair of schemes
Ep, if c ∈ JeKEpτ and e1 v e and c1 is the corresponding computational image of e1 in e, we call c1

a constituent (or a constituting bitstring) of c with respect to e, τ and Ep. When e, τ and Ep are
clear from the context, we simply say that c1 is a constituent of c. Also when Ep is clear from

the context, we simply write JeKτ instead of JeKEpτ . Note that again, given e, τ , and Ep, one can
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efficiently decide if a given bitstring is a constituent of c. We call e ∈ Exp type-1 if there exists
a subexp {e′}k of e such that k is an honest encryption key (i.e. k ∈ KpubH ∪ KprivsymH ) and that
k−1 does not occur in e.

For simplicity, we slightly modify the CI game and prove Theorem 2 first for this modified
version of the game. Then we show that the proof for this modified game easily extends for
the original CI game (Subsection C.11). The modified game is defined only over an asymmet-
ric encryption scheme E (there is no symmetric encryption scheme involved) and, hence, in
the setup phase, only {(pki, ski}1≤i≤n and {nci}1≤i≤n are sampled (and their corresponding
symbols {(k1, k

−1
1 )}1≤i≤n and {xi}1≤i≤n are introduced), while in the interaction phase, in a

query encrypt(e, ki), e may now contain k−1
i ’s as well (as opposed to the the original definition

wherein decryption asymmetric keys cannot be part of plaintexts). Henceforth, unless otherwise
stated, when we say CI security we mean security under this modified version of the game.

We now define a variant of this modified CI game, by introducing changes to the interaction
phase, as follows:

– Restricting adversary’s decryption queries: We add the following extra condition: a decryp-
tion query (c, s), for a private-key symbol s, is invalid (and hence answered by ⊥) if there

exists ({ej}kj , bsj) ∈ eval-exp such that {ej}kj has a type-1 subexp {ep}kp , for kp ∈ KpubH

(i.e. an honest public key), where c is the corresponding computational image of {ep}kp in
bsj .

– Allowing a new type of query: We supply a new type of oracle query, called a subexp-
testing query, which allows the adversary to test whether his queried bitstring is a “certain”
constituent of a ciphertext he has received under an encryption query. The subexp-testing
query takes as input four arguments, ({e}ki , bsi, {e′}kj , bsj), where ({e}ki , bsi) ∈ eval-exp,
kj ∈ KpubH and {e′}kj is a type-1 subexp of {e}ki . (Wlog, we assume that all the adversary’s
subexp-testing queries satisfy these two conditions.) The output of this query is 1 if bsj is
the constituting bitstring of bsi corresponding to {e′}kj , and 0 otherwise.

The rest of the game is as in the CI game. We call this new variant the weak, subexp-testing, or
WSTCI game. As for the CI game, we may define the advantage of an adversary A, denoted
by AdvWSTCI

E,A (η), when run under the WSTCI game, and give the following definition.

Definition 5. An asymmetric encryption scheme E provides l-WSTCI security if for every
A for whom the diameter of the hidden subgraph of G(A) is upperbounded by l it holds that
AdvWSTCI

E,A (η) is negligible.

To prove Theorem 2 we first show that IND-CCA2 security implies l-WSTCI security, and
then prove that l-WSTCI+IND-CCA2 security implies l-CI security. It will become clear later
why we imposed an additional decryption restriction to the WSTCI game. The proof of Theorem
2 follows from the following two lemmas:

Lemma 2. If E = (Gen,Enc,Dec) provides IND-CCA2 security, then it is l-WSTCI secure
for every constant l.

Lemma 3. For every IND-CCA2 secure encryption scheme E, if E provides l-WSTCI security,
it also provides l-CI security.

Informally speaking, for Lemma 3 it suffices to prove that the probability that any adversary
ever produces a ciphertext which is legitimate under the CI game but illegitimate under the
WSTCI game (due to the added decryption restriction) is negligible. We show this with the aid
of the supplied subexp-testing oracle in the WSTCI game. It will become clear later why we
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need to do the proof first for WSTCI security. (Informally speaking, this is, in part, due to the
issue related to decryption queries, which we briefly alluded to in the introduction.) In the next
two sections, we give the proofs of the above two lemmas.

C Proof of Lemma 2

C.0.1 Notation We introduce some notation and terminology that will be used in the re-
mainder of the paper. Given L = {(e1, E1), . . . , (en, En)}, where e1, . . . , en are expressions and
Ei ← JeiKEτ , for 1 ≤ i ≤ n (and arbitrary τ and E), we say that e is coinductively visible in
L (more precisely, e is coinductively visible in (e1, . . . , en),) if e v ej for some 1 ≤ j ≤ n and
k−1 ∈ closurec(e1, . . . , en) for every k which encrypts e in ej . Also we call E ∈ {0, 1}∗ coin-
ductively visible in L if for some j, E is a constituent of Ej (with respect to ej , τ and E) and
its corresponding expression is coinductively visible in L. Finally, we call (E, i) a coinductively
visible pair in L if for some j, E is a constituent of Ej (with respect to ej , τ and E) and its
corresponding expression is of the form {.}ki and is coinductively visible in L. For example, un-
der this terminology, one may restate the decryption condition of the CI game (Subsection 5.1)
as follows: decrypt(c, k−1

i ) is a valid decryption query if (c, i) is not coinductively visible in
eval-exp.

As explained earlier, under the CI (and other related) games we associate an increasing
number to each occurrence of each challenger’s private key in the sequence of the adversary’s
encryption queries. For convenience, we make the following notational convention about the
format of the adversary’s inputs to encryption queries: the oth occurrence of a challenger ’s key
k−1
j in the sequence of encryption queries is represented by k−1

j,o . (Recall that, according to the
assumption made earlier, the challenger’s private keys are now asymmetric decryption keys,
k−1

1 , . . . , k−1
n .) For example, if the two first encryption queries involve encrypting k−1

j under,

respectively, ki1 and ki2 , under the new representation they are denoted encrypt(k−1
j,1 , ki1) and

encrypt(k−1
j,2 , ki2). This convention will greatly simplify our presentation later.

We continue with some more notations. We call e1 a proper subexp of e2 if e1 v e2 and
e1 6= e2. If e1 v e and e2 v e we call e1 and e2 disjoint if it holds that e1 6v e2 and that
e2 6v e1. For e ∈ Exp and symbol s occurring in e only once, if s is encrypted under k1, . . . , kr in

e, pictorially being of the form

{{
{(s, . . . )}k1 , . . .

}
k2 . . .

}
kr

, then we call ki the ith-innermost

(also ith-closest) key encrypting s in e. (We required s to occur only once in e to avoid confusion
regarding to what occurrence of s we are referring.) Note that k1, . . . , kr above are not necessarily
distinct, so we always speak about the multiset of keys which encrypt a symbol s in e. Recalling
the definition of the key graph G(A), sometimes it is helpful to work with a more elaborate key
graph, denoted by Gelab(A), whose set of nodes is the same as that of G(A) (except that we do
not have any vsymi nodes, and vasyj nodes are now denoted vj), and whose edges are of the form

vi
o,d−−→ vj , indicating that ki is the dth-closest key encrypting k−1

j,o in the sequence of encryption
queries. For e ∈ Exp, we define the (maximum) encryption depth of e as follows: enc-depth(s) =
0 for every basic symbol s, and enc-depth((e1, e2)) = max(enc-depth(e1), enc-depth(e2)), and
finally enc-depth ({e}k) = enc-depth(e) + 1. Suppose k−1 occurs in e only once and is encrypted
in e under (possibly) multiple instances of encryption under k1 (as a result of nested encryption);
Then the statement, “{e1}k1 is the smallest subexp of e with e1 containing k−1”, means that
k−1 v {e1}k1 v e, and that e1 does not contain a proper subexp {e2}k1 with k−1 occurring in

e2. We say that vr
ar+1−−−→ vr+1

ar+2−−−→ . . .
ap−→ vp is strongly, coinductively continuable 5 if for all i’s,

5 Here the nodes having consecutive indices (i.e. being vr, vr+1, . . . , vp) is coincident and is not a requirement
of the definition.
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where r ≤ i ≤ p, it holds that vi
ai+1−−−→ vi+1

ai+2−−−→ . . .
ap−→ vp is a coinductively continuable path.

If P = vi
ai+1−−−→ vi+1

ai+2−−−→ . . .
ai+k−−−→ vi+k is a coinductively continuable path in G(A), where

indeg(vi) > 0 and ai ≤ indeg(vi), then we define <cont.(
ai−→ P) to be the multiset containing

all nodes vr such that (a) kr encrypts k−1
i,ai

(i.e. kr encrypts the aith occurrence of k−1
i in the

sequence of encryption queries), and (b) vr
ai−→ P is coinductively continuable. Defined formally,

for all d ≥ 1, if vr
ai,d−−→ vi is an edge in Gelab(A) and vr

ai−→ P is coinductively continuable,

then we add vr to <cont.(
ai−→ P). For simplicity, in the last definition, we also associate d as

a tag to vr in <cont.(
ai−→ P), and this way, we define the ith-lowest node among <cont.(

ai−→ P)

to be the node with the ith-smallest tag in this multiset. We stress here that <cont.(
ai−→ P) is

a multiset, containing possibly multiple instances of a single key but with different associated
tags. Moreover, by abusing the notation, we call kh the ith-lowest key among <cont.(

ai−→ P) if vh
is the ith-lowest node among <cont.(

ai−→ P). Finally if P is not a coinductively continuable path

in G(A) we define <cont.(
ai−→ P) = ∅, for all ai ≥ 1.

Proceeding with the Proof of Lemma 2. Suppose Awstci is an adversary attacking the
asymmetric encryption scheme E = (Gen,Enc,Dec) in the sense of l-WSTCI. From Awstci, we
will construct another adversary, Acca, who attacks the scheme in the sense of IND-CCA2, and
whose CCA2 advantage is polynomially related to WSTCI-advantage of Awstci. First, since Acca
works under an IND-CCA2 game, we assume that he is provided with a left-or-right encryption
oracle, OEpk,b, which on input (bs0, bs1) returns c ← Encpk(bsb), and with a decryption oracle,

OEsk, which on input c′ returns Dec(c′, sk), provided that c′ has not been previously produced
by the encryption oracle. We fix l and E as well as Acca’s associated CCA2 oracles, OEpk,b and

OEsk, throughout this section.

We present a general picture of how our reduction is developed. For an adversary A playing
in the WSTCI game against a challenger B, we refer to the strategy prescribed under the
standard WSTCI game for B to reply to A’s oracle queries when the challenge bit is b as wstcib.
The difference between wstci0 and estci1 lies only in the way they respond to a challenge query,
under one of which B outputs the real reply and under the other he outputs the random reply.
Under wstcib (for both b = 0 and b = 1), for every private-key symbol k−1

i of the challenger,
B uses a fixed bitstring value ski (in constructing her replies to A), whose public-key value is
known to A, and whose value, ski, is given to A should it be corrupted. During our reduction
procedure, we will work with different strategies that may be employed by the challenger to
answer to adversary’s queries. Broadly speaking, under these strategies, replies given to some of
the adversary’s encryption queries may be faked, in the sense that in computing the ciphertexts
to be returned, certain private keys (of the challenger) may be evaluated under fake values. For
example, for a private key symbol k−1

i of the challenger, the challenger may replace certain (or
all) occurrences of k−1

i under a fake value fski, which may be completely independent of pki,
the value that the adversary has for ki. Thus in the discussion below, by strategy we mean a
procedure adopted by a challenger to play against an adversary in the game.

Now, turning into Awstci introduced above, “Awstci breaking E in the sense of WSTCI”
indeed means that Awstci is effectively able to tell the two strategies, WSTCI0 and WSTCI1,
of a challenger apart. Now to do the reduction, our to-be-constructed Acca will simulate Awstci
by responding to Awstci’s oracle queries under a (to be explained) feasible strategy (which may
create fake replies sometimes as well) in such a way that at the end, Awstci’s output somehow
helps Acca to determine (with a polynomially close advantage) that under what CCA2-world
he was operating. More technically, Acca develops an strategy, Strgy0, for replying to Awstci’s
oracle queries, and Strgy0, in turn, depending upon under what CCA2-world Acca is running,
results in one of the two induced strategies Strgy0

0 and Strgy1
0, for which it provably holds that,
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if an event Bad does not occur (which will be the case with a non-negligible probability), then
the advantage of Awstci of differentiating between Strgy0

0 and Strgy1
0 is polynomially close to

that of differentiating between WSTCI0 and WSTCI1. Now since, by assumption, Awstci is
able to effectively tell WSTCI0 and WSTCI1 apart, so is he able to tell Strgy0

0 and Strgy1
0

effectively apart, giving Acca a way to tell effectively under what CCA2 world he was operating.
To complete the simulation, in case event Bad occurs (which is a failed situation), Acca will
simply flip a coin to guess his CCA2 challenge bit. Otherwise, he will determine his CCA2
challenge bit with the aid of Awstci.

After developing Strgy0, to show that the simulation is fulfilled correctly, we have to verify
the following requirements: (a) Efficiency : Strgy0 is efficiently implementable (e.g. showing
that at no point of the simulation Acca will need to query his CCA2 decryption oracle on
invalid ciphertexts6; the whole simulation works in polynomial time; etc.), and (b) Correctness:
Rigorously showing that the two advantage functions described above are polynomially related.

In Subsection C.2 we will formalize Strgy0, the strategy used by Acca to simulate and reply
to Awstci’s queries during the l-WSTCI game. In the developed algorithm (and throughout
this section), we assume that P (η) is a polynomial upperbounding the running time of Awstci.
Actually, P suffices to only upperbound the following two parameters: the maximum number
of times that a challenger’s private-key symbol occurs in Awstci’s encryption queries, and the
maximum encryption-depth of an expression given to the encryption oracle. For the sake of
readability we adopt the following convention in the remainder of the proof.

Convention 1 We will write P and n instead of P (η) and n(η). (Recall that n is the number
of public/private key pairs sampled by the challenger.)

We first provide an informal overview of the reduction in the next subsection.

C.1 Overview of the Reduction

We first try to explain the idea of the reduction for a simple case. The case where l = 1 (i.e.
the diameter of the coinductively-hidden subgraph is 1) is not a good representative example,
since for l = 1 one can easily show that no cycle can exist in the underlying hidden subgraph,
and so this case may easily be handled only using the techniques of [46]. To demonstrate our
techniques, we explain the idea for a simple case l′ = 1, where l′ is a new parameter denoting
the length of the longest path which ends in the challenge key. To simplify the discussion even
further, let’s first consider a simplified version of the WSTCI game; the one in which (i) there is
no decryption query (and we are interested in making our reduction to the IND-CPA security
of the scheme), (ii) the adversary may only challenge a key in the guessing phase (i.e. no
nonce challenge), and (iii) l′ = 1: the length of the longest path ending in the challenge key
is at most one. (The diameter of the whole hidden subgraph could be any large number, even
non-constant.)7 We will try to first make our arguments for the simpler setting of acyclic single
encryptions (as in the setting of [46]), and then show what challenges arise if we want to extend
them to the nested cyclic encryption setting, and how we can resolve them.

Assume that A is an adversary able to win under the restricted version of the WSTCI
game described above. That is, A is able to distinguish between encryptions of real/random
messages under τ(kch) (after observing eval-exp), where kch is the (a priori unknown) challenge

6 Actually this is one reason why we needed to prove the simulation first for the more “decryption-limited”
WSTCI security.

7 This actually shows that our result holds for a stronger setting in which no restriction is placed on the diameter
of the hidden subgraph, only assuming that the length of the longest path ending in the challenge key is at
most constant.
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key (specified by A himself in the guessing phase), and τ is the underlying computational
mapping. We wish to reduce A’s described ability to a CPA attack. First the immediately
arisen difficultly toward this is clear: since k−1

ch may have previously occurred as a plaintext
(i.e. in an expression in eval-exp), it is not immediate to translate A’s ability to distinguish
between encryptions under τ(kch) into a CPA attack. But now imagine a new world w′ under
which all instances of k−1

ch occurring in encryption queries (i.e. k−1
ch,o for every o ≥ 1, notationally

describing) are replaced with a fake random value instead of the actual value τ(k−1
ch ). That is,

w′ is the world in which first kch, the key which is going to be challenged in the guessing
phase is guessed, and subsequently all instances of k−1

ch in A’s encryption queries are replaced
with a fake value. (Note that w′ may not be successfully constructed, because our guessing
may fail; but to simplify the analysis, let’s for a moment assume that we a priori know what
key is going to be challenged in the guessing phase.) First it is easy to see that the ability of
any adversary to distinguish between encryptions of real/random messages under τ(kch) in w′

would now easily translate into a feasible CPA attack. Now, denoting by w the actual world
under which all queries of the adversary are supposed to be replied to (i.e. no fake value for
k−1
ch ), we consider two possibilities:

(a) The two worlds w and w′ are computationally indistinguishable.
(b) There exists an adversary, A′, who can distinguish between w and w′.

Now if (a) is the case, this means that A, in particular, is not able to tell the two worlds w
and w′ apart. This in turn implies that A’s advantage of distinguishing between encryptions
under τ(kch) in w should be negligibly close to that in w′. (If this does not hold—i.e., the
advantage of A (in the sense of WSTCI) induced under w is non-negligibly different from that
under w′—it is easy to see how one can modify A to obtain B who can differentiate between w
and w′.) Therefore, from our earlier assumption that A has a non-negligible advantage under w,
we obtain that A has a non-negligible advantage under w′ as well, giving rise to a CPA attack
as described above. Now what if (b) holds; namely, there exists A′ who has a non-negligible
chance of telling w and w′ apart? If this is the case, then A′ should have a non-negligible chance
of telling wi and wi+1, for some i, apart, where wk denotes a world in which all the first k
occurrences of k−1

ch are “faked” and the rest are replaced with real values.
Now here is the part that the allowance of both nested encryptions and key cycles makes the

situation somewhat onerous. If we were only dealing with single encryptions without key cycles
as the Panjwani’s framework [46] (i.e. each encryption query is of the form encrypt(ki, kj) with
no cycle creation), one would simply reduce A′’s ability to distinguish between wi and wi+1 to a
CPA-attack as follows. Suppose the CPA-encryption oracle is parameterized over (pk, sk) where
pk is publicly known and sk is secret. Now the reduction is as follows: guess kgi+1 , the single key
which encrypts the i+ 1st occurrence of k−1

ch , associate sk with k−1
gi+1

, generate two values skch

and fskch for k−1
ch , replace the first ith occurrences of k−1

ch with fskch (a fake value), and for the
i+1’st occurrence, return the output of the left-or-right CPA encryption oracle on (skch, fskch),
and finally replace any subsequent occurrences of k−1

ch with skch. Now the assumptions of key
acyclicity and single encryption, together, ensure that the reduction is fulfilled correctly; namely,
k−1
gi+1

, to which sk is associated, does not itself occur as a plaintext in any encryption query.

The reason is, otherwise, k−1
gi+1

should be encrypted either under itself, or under kch, or under
some key other than these two; now, the two former cases imply the existence of a cycle in the
graph (a contradiction to the acyclicity assumption), and the latter implies that l′ > 1, reaching
a contradiction again.

In the case of cyclic, nested encryptions (as in our setting), however, the above appealing
reduction may fail for the following reason: there may legitimately be a self-loop on k−1

gi+1
(more

precisely, on vgi+1 in the underlying key graph), or there may be an edge from vch back to vgi+1 .
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(i.e. k−1
gi+1

may be encrypted under kch at some point.) Note that any of these possibilities may

happen while k−1
gi+1

(as well as k−1
ch ) remains coinductively irrecoverable and l′ does not exceed 1—

for example, the encryption query containing the i+1st occurrence of k−1
ch might be encrypt (e, t),

for e =

{
. . . {k−1

ch }kgi+1 . . .

}
kp

, and the adversary might at some other point (earlier or later)

ask the query encrypt (e′, t′), for e′ =

{{
k−1
gi+1

}
kch

}
kgi+1

. Note that in this example, l′ does not

necessarily change by the latter query, and also k−1
gi+1

may still be coinductively irrecoverable.

(For example, if k−1
p is coinductively irrecoverable.) Now obviously, in such a case, the reduction

described above (which works for the single encryption case) fails. (This is because the reduction
requires k−1

gi+1
not to occur as a plaintext itself.) In summary, the above discussion shows that

the mere assumption that the guessed k−1
gi+1

be coinductively irrecoverable does not suffice, and
one has to add extra conditions to resolve the above obstacle.

To remedy the above complication, we have to, inescapably, further assume that k−1
gi+1

does
not occur as a plaintext, in addition to being coinductively irrecoverable. But, how can we
guarantee that for the i + 1’st occurrence of k−1

ch (for any i) such a choice for k−1
gi+1

indeed
exists? Now this is the point we resort to our developed notion of coinductive continuability :
Since k−1

ch is coinductively irrecoverable, by Lemma 1, its associated node vch in the underlying
key graph is coinductively continuable, where for the case l′ = 1, this means that, for every

1 ≤ j ≤ indeg(vch), there exists an edge vgj
j−→ vch such that indeg(vgj ) = 0. (Put differently,

for every j, there exists a coinductively irrecoverable k−1
gj such that k−1

gj does not occur as a

plaintext and that kgj encrypts k−1
ch,j .) This solves the complication arisen above: namely, to

reason about the indistinguishability of wi and wi+1 by reduction, one suffices to guess k−1
gi+1

in

such a way that it satisfies the condition that vgi+1 ∈ <cont.(
i+1−−→ vch), and then proceed as in

the single encryption case.

Note that the above lines of reasoning consists of applying reduction in two phases: (1) the
adversary has no significant advantage of distinguishing between encryptions of real/random
messages (under key τ(kch)) when his view is set according to w′, and (2) no adversary is able
to differentiate between w and w′ with a non-negligible probability. In trying to extend the
described idea to the case l′ > 1, we can again similarly define worlds w and w′, and work out
Step (1) above as easily as for the case l = 1. However, for Part (2), once trying to, using a
left-or-right CPA-encryption oracle, create one of the wi or wi+1 worlds, the guessed k−1

gi+1
, may

now in turn be encrypted under some other keys (and those keys may again be encrypted under
some other keys, depending on the value of l′), and, hence, Part (2) may not be accomplished
in “one-shot” as before. Informally speaking, what more is involved for this general case is that,
after k−1

gi+1
is guessed, toward reasoning that wi and wi+1 are indistinguishable, we first prove

the indistinguishability of two new intermediate worlds w0
i and w0

i+1 defined as follows:

Under both w0
i and w0

i+1 we replace all occurrences of k−1
gi+1

with a fake value, the first ith

occurrences of k−1
ch also with a fake value, the i + 1’st occurrence of k−1

ch with the real value
for w0

i and the fake value for w0
i+1, and finally any subsequent occurrence of k−1

ch with the real
value.

Now from the formalizations of w0
i and w0

i+1 it is clear they can be simulated and produced by
a left-or-right encryption oracle. (And hence the ability of any adversary to distinguish between
w0
i and w0

i+1 will reduce to a CPA attack.) Now having shown w0
i and w0

i+1 are indistinguishable,
we move a step backward, and reason about the indistinguishability of w0

i (resp. w0
i+1) from

a new world w1
i (resp. w1

i+1), defined similarly to w0
i (resp. w0

i+1) except that all occurrences
of k−1

gi+1
receive the real value. Comparing w0

i to w1
i (analogously w0

i+1 to w1
i+1), they both

31



“behave” identically with respect to k−1
ch (i.e. they both agree on the occurrences of k−1

ch that
they give a fake value to), while for k−1

gi+1
, one replaces all its occurrences with a fake value,

and the other with the real value. Now to argue about the indistinguishability of w0
i and w1

i ,
we have to proceed as we did for w and w′, with the difference that the “focused” key (the key
whose all occurrences receive the fake value under one world and the real value under the other
world) is now k−1

gi+1
(instead of k−1

ch which was for w/w′), and with the replying strategy for k−1
ch

being identical for both w0
i /w

1
i . (i.e., They both give a fake value to the exact same occurrences

of k−1
ch .)

The above successive world-creation approach will be very difficult to handle when l′ > 1,
as it involves “manually” introducing many intermediate worlds. Therefore, as in [46], we carry
out the whole simulation within a single algorithmic procedure, with letting the intermediate
worlds be created as the result of the random coins used in the procedure. We again first
describe the idea for the case of single, acyclic encryption when l′ = 1, and for the absence of
decryption queries. (i.e., We focus on “reducing the adversary’s ability to distinguish between
w and w′ to a CPA attack”.) Then we describe some of the challenges that occur when trying
to extend it to the case of nested, cyclic encryption, and show how to circumvent them. Here
is how the general reduction works: we pick ku1 , ku2 ← {k1, . . . , kn}, on2 ← {1, . . . , P}, and call
our guessing successful (or event success occurs) if ku2 = kch (i.e. the challenge key) and ku1
encrypts k−1

u2,on2
. (We again remark that in the case of single encryption, any occurrence of any

decryption key is encrypted under a single key.) Proceeding with the reduction, we associate
the public key value parameterizing the LOR CPA-encryption oracle with ku1 , replace k−1

u2,o1
with fsku2 (a fake value), and k−1

u2,o2 with sku2 (a real value), for all o1 < on2 and o2 > on2.
Finally, for k−1

u2,on2
, which should be encrypted under ku1 according to our guessing, we reply to

its associated encryption query with the output of the LOR encryption oracle on (sku2 , fsku2).
As usual, we return the outcome of a fair coin flip if our guessing fails. Now we can verify the
following:

(a) for all i > 1, the view of the adversary when (b = 0 ∧ on2 = i ∧ success) is identically
distributed to that when (b = 1 ∧ on2 = i− 1 ∧ success),

(b) the view of the adversary when (b = 0 ∧ on2 = 1 ∧ success) (resp. (b = 1 ∧ on2 = indeg(vu2) ∧ success))
is identically distributed to that under w (resp. w′), and

(c) the probability that (on2 = i ∧ success) occurs is 1/Pn2 (and hence independent of i).

The last item may be less trivial to see why holds true; it derives from the fact that ku1 , ku2 ,
and on2 are all picked independently and uniformly at random. If we refer to any distribution
other than those two appearing in Item (b) (i.e., the two which correspond to w and w′) as an
intermediate distribution, now (a) and (c) together imply that all intermediate distributions
created under b = 0 will, informally speaking, cancel out all those created under b = 1, and
(b) yields that the resulting reduction factor is 1/Pn2 (in reducing an adversary’s ability to
distinguish w/w′ to a CPA attack).

If we want to extend the above idea to the case of nested, cyclic encryptions, from the
earlier discussion, we know that the additional condition vu1 ∈ <cont.(

on2−−→ vch) should also be
satisfied. Now we can easily verify that assertions (a) and (b) above still hold true; however,
assertion (c) may fail to hold because of the reason described next. In order for event success

to occur, it should hold vu1 ∈ <cont.(
on2−−→ vch), whose occurrence depends on the size of multiset

<cont.(
on2−−→ vch), and hence is dependent on the particular value of on2. As a result, we cannot

argue anymore that all intermediate distributions will “cancel out” each other, as was the case
for the single encryption case. Put differently, the probability that vu1 ∈ <cont.(

on2−−→ vch), is not
uniform over the possible choices of on2. To make it uniform, we guess two more parameters
ed2 ← {1, . . . , P} and ed′2 ← {1, . . . , ed2}, and now call (vu1 , on2, ed2, ed

′
2, vu2) a successful guess,
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if vch = vu2 , ed2 =
∣∣∣<cont.(

on2−−→ vch)
∣∣∣, and vu1 is the ed′2th-lowest node among <cont.(

on2−−→ vch).

(We refer the reader to the related definitions given earlier.) Now it is easy to verify that the
probability that (on2 = i ∧ success) holds is

1

P
· 1

P
· 1

n
·


ed2 factors︷ ︸︸ ︷

(
1

n
· 1

ed2
) + · · ·+ (

1

n
· 1

ed2
)

 =
1

P 2n2
,

and hence is independent of i now. Now all assertions (a), (b), and (c) above hold true, as
desired.

C.1.1 WSTCI and Restricted Decryption Queries. Now we explain why we added a
new decryption condition to the WSTCI game. Suppose one wants to extend the idea presented
above (for the cyclic nested encryptions) to the case where decryption queries are also allowed.
Assume, for the chosen parameters described above, it holds that event success occurs, ed′2 <
ed2, and the query containing the on2th occurrence of k−1

u2 is encrypt(e, kh). Now since event
success occurs and ed′2 is strictly less than ed2, it must be the case that {e}kh has a subexp

e1 =

{{
k−1
u2,on2

}
. . .

}
ku1

, which is encrypted in {e}kh under at least one kp such that k−1
p is

coinductively irrecoverable. Our simulation above is such that E, the computational image of
e1 is produced by the LOR encryption oracle, and from that, E1, a computational image of
{e}kh is constructed and given to the adversary. Now in the absence of the new decryption
condition added to the WSTCI game, E would be a valid decryption query for Aci (i.e. the
adversary who plays under the CI game which does not have the decryption restriction), while
it is invalid for the simulating CCA2-adversary, causing our simulation to go wrong. That is,
Aci would legitimately be allowed to ask for decryption of E under any key, while E would
be the challenge ciphertext for the CCA2-adversary. Thus, to eliminate this issue from our
simulation, we first do the reduction for the more decryption-restricted WSTCI game, and then
we will prove that the probability that any adversary can indeed produce such a ciphertext for
decryption is negligible (Lemma 3).

Now for the general case l > 1, we randomly guess, a priori, a “strongly, coinductively
continuable path” vus → vus+1 → · · · → vul , with associated parameters

{(ons+1, eds+1, ed
′
s+1), . . . , (onl, edl, ed

′
l)},

and, for every s+ 1 ≤ i ≤ l, expect to have

(a) kui−1 encrypts k−1
ui,oni ,

(b) edi =
∣∣∣<cont.(

oni−−→ vui
oni+1−−−→ . . .

onl−−→ vul)
∣∣∣,

(c) vui−1 is the ed′ith lowest node among <cont.(
oni−−→ vui

oni+1−−−→ . . .
onl−−→ vul).

Note that item (c) automatically derives from item (a).

C.2 Algorithm (Strgy0 strategy)

We now formalize Strgy0, the strategy used by the simulating adversary Acca to reply to Awstci’s
queries. To make the presentation simpler, we first show how the proof works for a special case
of the WSTCI game where only a secret-key challenge is allowed. Then we will explain how
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the proof works for the case where only a nonce challenge is allowed. (The proof of this latter
case proceeds very similarly to that of the first case with a few slight modifications.) Note
that security with respect to both of these two sub-games implies security with respect to the
original WSTCI game. (This is because, if Awstci wins in the WSTCI game with a non-negligible
probability, then one can construct another adversary who wins in one of these two sub-games.)

Assumption 1 Awstci makes only a secret key challenge in his guessing phase. Moreover, if
k−1
i is challenged by Awstci, then it holds indeg(vi) > 0. (We call k−1

i the challenge key.)

For the second assumption above note that if with a non-negligible probability it holds that
indeg(vi) = 0, then an IND-CCA2 attack readily follows.

We recall some of the assumptions made earlier. We assume Acca’s LOR-encryption oracle
is parameterized over pk, and its decryption oracle is parameterized over sk, where (pk, sk)←
Gen(1η). First we make some without-loss-of-generality assumptions. We assume that Awstci
does not make any nonce-revelation query (i.e. a query of the form reveal(xi)); For any WSTCI-
adversary who makes such a query there exists another adversary, who at the beginning of
the interaction phase corrupts a specially-selected decryption key k−1

h of the challenger, and
for any reveal(xi) query, instead makes an encryption query encrypt(xi, kh). Also we assume
that if Awstci makes a subexp-testing query subexp-testing({e}ki , bsi, {e′}kj , bsj) it holds that
({e}ki , bsi) ∈ eval-exp and that {e′}kj is a type-1 subexp of {e}ki . Next, we assume that if

the adversary makes a query decrypt(c, k−1
i ), then k−1

i /∈ closurec(eval-exp
1); note that for

k−1
j ∈ closurec(eval-exp1), even if the adversary does not know the underlying bitstring value

of k−1
j (for example if he has obtained a computational image of {k−1

j }kj , which does not

necessarily reveal the value of k−1
i ,) he can obtain it by issuing a query corrupt(k−1

j ), which is
easy to see that does not change the adversarial symbolic knowledge. Also whenever we write
ki, kj , kp, . . . we mean honest party’s public keys. Finally for simplicity we write an encryption
query encrypt(e, ki) as encrypt(e, i) (and use a similar convention for corrupt and decryption
queries).
Acca is organized in two parts: the SETUP phase (the first phase) and the SIMULATION

phase (the second phase). (We used capital letters for SETUP so that it is not confused with
the setup phase of the CI (and the other related) game.)

SIMULATION PHASE

1: We introduce two computational mappings, τ0
H and τ1

H , and two corresponding key-renaming
symbolic operators, R0 and R1, as follows:

2: For 1 ≤ i ≤ n, assign τ0
H(xi) = nci, and if i 6= us, then τ0

H(ki) = pki. Finally τ0
H(kus) = pk.

3: For all t ≥ 1, assign τ0
H(k−1

us,t) = fskus , and τ0
H(k−1

h,t ) = skh, where k−1
h /∈ {k−1

us , k
−1
us+1

. . . k−1
ul
}.

For i ∈ {s+ 1, s+ 2, . . . , l}, assign τ0
H(k−1

ui,t1
) = fskui and τ0

H(k−1
ui,t2

) = skui for all t1 < oni
and t2 > oni.

4: For i ∈ {s+ 2, . . . , l}, if bi−1 = bi, assign τ0
H(k−1

ui,oni) = skui ; otherwise assign τ0
H(k−1

ui,oni) =
fskui . Finally let τ0

H(k−1
us+1,ons+1

) = skus+1 . Now we define τ1
H(s) = τ0

H(s) if s 6= k−1
us+1,ons+1

,

and τ1
H(k−1

us+1,ons+1
) = fskus+1

5: For all i 6= us, o ≥ 1 and q ∈ {0, 1}, set Rq[k
−1
i,o ] = k−1

i if τ qH(k−1
i,o ) = ski, and Rq(k

−1
i,o ) = k′−1

i ,

if τ qH(k−1
i,o ) = fski. Also for all q ∈ {0, 1} and o ≥ 1 set Rq[k

−1
us,o] = k′−1

us .

6: Run Awstci; if Awstci makes a query encrypt(e, i), answer it as follows:
7: if s = l or k−1

us+1,ons+1
does not occur in e then
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Algorithm 1 SETUP PHASE
1: Choose l numbers u0, . . . , ul−1 from {0, 1, . . . , n} according to the following probability distribution:

Pr[ui = 0] = 1
1+2nP2

Pr[ui = k] = 2P2

1+2nP2

for all 1 ≤ k ≤ n and 0 ≤ i ≤ l − 1.

2: Choose ul ← {1, . . . , n}.
3: Let s be the smallest index for which us is non-zero in the sequence (u0, . . . , ul). \\ In the simulation phase,
pk, the public key parameterizing the LOR encryption oracle, will be associated with kus , and all instances
of k−1

us
will be faked.

4: Sample l − s bit values bs+1, . . . , bl ← {0, 1}, and also set bl+1 = 1.

5: For each ui ∈ {us+1, us+2, . . . , ul}, sample three parameters (oni, edi, ed
′
i) as follows:

oni, edi ← {1, . . . , P}
ed′i ← {1, . . . , edi}.

6: Generate n− 1 pairs of public/private keys (pk1, sk1), . . . , (pkus−1, skus−1), (pkus+1, skus+1), . . . , (pkn, skn),
and l− s+ 1 private-key values fskus , fskus+1 . . . fskul by running the key-generation algorithm (here fskur

is going to be used a fake value for k−1
ur

in answering to some queries of the adversary).

7: Sample n nonce values nc1, . . . , ncn independently and uniformly at random from the nonce space.

8: return E ← J{e}kiKτ0H and add ({e}ki , E) to eval-exp. (or, equivalently, sample E as

E ← J{e}kiKτ1H ; the underlying distributions are identical.)

9: else if kus does not encrypt k−1
us+1,ons+1

in {e}ki then
10: output a random bit (chosen uniformly) and HALT. (In this situation, our guessing has

failed.)
11: else
12: Let {e1}kus be the smallest subexp of {e}ki in which e1 contains k−1

us+1,ons+1
. Now sample

Ereal ← Je1Kτ0H and Efake ← Je1Kτ1H , and let echal
4
= e1. Construct E′ as follows:

13: if bs+1 = 0 then
14: E′ = OEpk,b(Ereal, Efake).
15: else
16: E′ = OEpk,b(Efake, Ereal)
17: end if
18: Using E′ as the computational value of {e1}kus , construct, E, a computational value for

{e}ki based on τ0
H -evaluation (or τ1

H -evaluation, equivalently), and return E to Awstci and
add ({e}ki , E) to eval-exp.

19: end if

20: If Awstci makes a corruption query corrupt(i) do the following:
21: if i ∈ {us, us+1, . . . ul} then
22: output a uniformly-chosen random bit and HALT. (This is again a situation in which

the guessing fails. The guessing requires that all k−1
us , . . . , k

−1
ul

remain coinductively ir-
recoverable.)

23: else
24: return ski and add (k−1

i , ski) to eval-exp.
25: end if

26: if Awstci makes the challenge query challenge(k−1
j , bs) then

27: if k−1
j 6= k−1

ul
then

28: output a uniformly-chosen random bit and HALT. (This is again a failing situation;
the guessing requires that k−1

ul
be the challenge key.)
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29: else if s < l then
30: if bl = bl+1 then
31: Return C ← Enc(bs, pkj)
32: else
33: Choose r ← {0, 1}|bs| and return C ← Enc(r, pkj).
34: end if
35: else
36: Return OEpk,b(r, bs), where r ← {0, 1}|bs|
37: end if
38: end if

39: if Awstci makes a decryption query decrypt(c, i) then
40: if any of the following events occur
41: (i) (c, i) is coinductively visible in eval-exp (See the corresponding definition in Para-

graph C.0.1);

(ii) for some ({e}kj , bs) ∈ eval-exp, where k−1
us+1,ons+1

does not occur in {e}kj , it holds
that {e}kj has a subexp {e′}kp where R0[{e′}kp ] (or equivalently R1[{e′}kp ]) is type-
1, and that c is the corresponding image of {e′}kp in bs (see Subsection C.3 for the
notation R0[{e′}kp ]);

(iii) there exists ({e}kj , bs) ∈ eval-exp, such that k−1
us+1,ons+1

occurs in {e}kj (i.e. {echal}kus
is a subexp of {e}kj ), and that for some subexp {e′}kp of {e}kj , it holds that c is the
corresponding computational image of {e′}kp in bs and that {echal}kus v {e

′}kp ;
(iv) there exists ({e}kj , bs) ∈ eval-exp, such that k−1

us+1,ons+1
occurs in {e}kj and that

for some subexp {e′}kp of {e}kj , it holds that c is the concrete value of {e′}kp in
bs, {e′}kp is disjoint from {echal}kus and R0[{e′}kp ] (or equivalently R1[{e′}kp ]) is
type-1;

(v) echal has a subexp {e′}kp such that R0[{e′}kp ] is type-1 and that c is the computa-
tional image of {e′}kp in Ereal;

(vi) echal has a subexp e′ such that R1[{e′}kp ] is type-1 and that c is the computational
image of {e′}kp in Efake.

then
42: return ⊥ (i.e. the decryption query is invalid)

43: else
44: if i 6= us then
45: return Dec(c, ski)
46: else
47: return OEsk(c)
48: end if
49: end if
50: end if

51: if Awstci makes a subexp-testing query subexp({e}ki , bsi, {e′}kj , bsj) then
52: if k−1

us+1,ons+1
does not occur in {e}ki then

53: if bsj is the concrete value of {e′}kj in bsi then
54: return 1
55: else
56: return 0
57: end if
58: else
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59: if k−1
us+1,ons+1

occurs in {e}ki and either {e′}kj has {echal}kus as a subexp, or is disjoint
from {echal}kus then

60: if bsj is the concrete value of {e′}kj in bsi then
61: return 1
62: else
63: return 0
64: end if
65: else
66: if bsj is the concrete value of {e′}kj in Ereal or in Efake then
67: return 1
68: else
69: return 0
70: end if
71: end if
72: end if
73: end if

74: If at any point during the simulation, any of the following events occurs, HALT and return
a random bit (these spell out situations in which the simulation fails).

75: – For s ≤ i 6= j ≤ l, it holds that ui = uj
– For s+ 1 ≤ i ≤ l, kui−1 does not encrypt k−1

ui,oni

76: When Awstci outputs his guess, if all the following conditions hold, output the adversary’s
guess; otherwise, return a bit uniformly at random.

77: – vus
ons+1−−−→ vus+1

ons+2−−−→ . . .
onl−−→ vul is a strongly, coinductively continuable path.

– For every s+1 ≤ j ≤ l, it should hold that
∣∣∣<cont.(

onj−−→ vuj
onj+1−−−→ vuj+1

onj+2−−−→ . . .
onl−−→ vul)

∣∣∣ =

edj . Moreover, kuj−1 is the ed′jth lowest key among <cont.(
onj−−→ vuj

onj+1−−−→ vuj+1

onj+2−−−→
. . .

onl−−→ vul).

In the sequel, we verify the two required properties described earlier, namely Efficiency and
Correctness, about Strgy0. First we provide a brief explanation about the presented algorithms.

C.3 Explanation

For all 1 ≤ i ≤ n we assume that k′i is a fresh symbolic key and different from all ki’s and other
k′j ’s. The key-renaming operators R0 and R1 correspond to the two computational mappings
τ0
H and τ1

H , in that, for q ∈ {0, 1}, when τ qH gives a fake value to k−1
i,o (i.e. a value independent

of pki, which is already given to the adversary as the public key value for ki), Rq maps k−1
i,o to

k′−1
i . We assume that these two key-renaming operators, and all others that will be introduced

henceforth, map any adversarial key to itself. We also use Rq[e] to mean the expression obtained
from e by replacing every k−1

i with Rq[k
−1
i ]. The only difference between the two worlds Strgy0

0

and Strgy1
0 is that one of them gives a fake value to k−1

us+1,ons+1
and the other one gives the real

value to it. (Recall that Strgyb0 is the world created from Strgy0 when the CCA2-challenge bit
is b.)

Roughly speaking, the distribution of replies given to an adversaryA’s encryption, corruption
and decryption queries under Strgy0 is “close” to the distribution of replies that A would
have received under the standard WSTCI game, for one of h = 0 or h = 1, when every A’s
query encrypt(e, ki) was replaced with encrypt(Rh[e], ki). (The point that to which of these two
distributions Strgy0 corresponds to depends on the values of bs+1 and the CCA2-challenge bit
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b; namely, if b = bs+1 then it corresponds to h = 0 and otherwise it corresponds to h = 1.
See line 13.) Let’s call this statement (which we will formalize in subsequent sections) the basic
statement. With this intuition in mind, we now briefly explain the ideas behind the decryption
restrictions spelled out in lines proceeding 39.

The first condition reflects the decryption restriction from the CI game; namely decrypt(c, i)
is invalid, if there exists ({e}kj , Ej) ∈ eval-exp such that {e}kj has a subexp {e′}ki , which is
encrypted in {e}kj only under keys whose decryption keys are in closurec(eval-exp

1) and that
c corresponds to the computational image of {e′}ki in Ej . We remark here that if {e′}ki is
“coinductively reachable” in {e}kj (using eval-exp1), then for both w = 0 and w = 1, Rw[{e′}ki ]
is coinductively reachable in Rw[{e}kj ]. (This is because the key-renaming operators R0 and R1

only “rename” k−1
us , . . . , k

−1
ul

, all of which are required to remain coinductively irrecoverable by
the guesswork—otherwise the guessing fails—implying that, in case that the guesswork does not
fail, the sets of coinductively irrecoverable keys from eval-exp1, R0[eval-exp1] and R1[eval-exp1]
are all equivalent.) Hence the first decryption condition, informally speaking, “agrees” with the
basic statement described above. Moreover it is easy to see that this condition is efficiently
verifiable by the simulating adversary Acca. (This is because Acca has the computational values
of all private key symbols which are coinductively recoverable.)

The remaining items reflect the decryption restriction imposed under the WSTCI game (they
were separated for the reason that we give below); namely decrypt(c, i) is invalid, if there exists
({e}kj , Ej) ∈ eval-exp such that {e}kj has a type-1 subexp {e′}ki , where c is the corresponding
computational image of {e′}ki in Ej .

For Item (ii), assuming ({e}kj , bs) ∈ eval-exp, note that if k−1
us+1,ons+1

does not occur in {e}kj ,
then (1) all constituting bitstrings of bs is already known by Acca (since the LOR encryption
oracle is never called for constructing bs , as k−1

us+1,ons+1
6v {e}kj ), and (2) for any e′′ v {e}kj , it

holds R0[e′′] = R1[e′′]. Thus this item can be efficiently implemented by Acca.
For Item (iii), again assuming ({e}kj , bs) ∈ eval-exp, if k−1

us+1,ons+1
occurs in {e}kj and also

{echal}kus v {e
′}kp v {e}kj , then it holds that (1) both R0[{e′}kp ] and R1[{e′}kp ] are type-1 (this

is because {echal}kus v {e
′}kp andR0[k−1

us,o] = R1[k−1
us,o] = k′−1

us , for all o’s; namely, all occurrences
of k−1

us as a plaintext receive a fake value), and (2) Acca can efficiently check if a given c is the
corresponding computational image of {e′}kp in bs. (This is because {echal}kus v {e

′}kp and the
computational image of {e′}kp is constructed from the computational image of {echal}kus , whose
computational image is obtained through the LRO-encryption oracle; thus, Acca knows the
corresponding computational image of {e′}kp .) Now (1) implies that any c which corresponds to
the computational image of such an {e′}kp is an illegitimate ciphertext for decryption (according
to the WSTCI decryption condition). In particular, E′, which is returned by the LOR-encryption
oracle (Line 13), will be an illegitimate ciphertext for decryption. (This is actually the main
reason that we added a new decryption condition to the WSTCI game. That is, under the
original CI game, E′ may possibly be a legitimate ciphertext and if at any point during the
simulation the decryption of E′ is requested, then the simulation fails.)

For Item (iv), again assuming ({e}kj , bs) ∈ eval-exp, if k−1
us+1,ons+1

occurs in {e}kj and also
{e′}kp v {e}kj and {e′}kp is disjoint from {echal}kus , then quite analogously to Item (ii), we can
verify that we have (1) R0[{e′}kp ] = R1[{e′}kp ], and (2) the computational image of {e′}kp in bs
is known by Acca.

Finally for Items (v) and (vi)—which describe the only remaining case; namely, ciphertexts
that are constituents of the underlying plaintext of the challenge ciphertext E′ and which should
not be decrypted due to the WSTCI-decryption condition—since Acca does not know the value
of the underlying CCA2-challenge-bit, Acca cannot determine, with certainty, whether a given
ciphertext is the constituent of the underlying plaintext of E′, and so he cannot determine if the
ciphertext is illegitimate due to corresponding to the image of a type-1, subexp of echal. Therefore
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for this case, we exclude a larger set of ciphertexts; namely, if echal has a subexp {e′}kp such
that it holds that either R0[{e′}kp ] is type-1 and c is the corresponding computational image of
{e′}kp in Ereal, or R1[{e′}kp ] is type-1 and c is the corresponding computational image of {e′}kp
in Efake, then we determine c as an illegitimate ciphertext. Note that, this fact may cause the
distribution of replies given to an adversary A’s encryption, corruption and decryption queries
under Strgy0 not to be completely identical to the distribution of replies that A would have
received under the standard WSTCI game, for any h = 0 or h = 1, when every A’s query
encrypt(e, ki) is replaced with encrypt(Rh[e], ki). (i.e. The basic statement explained above
may not “perfectly” hold.) However we will prove in subsequent subsections that this these
two distributions are computationally identical. (Intuitively, the reason for this is that if we
assume that E′ is the encryption of, say, Ereal, then Efake does not participate in the replies
given to adversary’s queries, and in some sense, it is identically distributed as a ciphertext
freshly sampled from the same distribution, that is Je1Kτ1H . This means that the chances of
any adversary to ever produce a ciphertext c that is the corresponding computational image of
{e′}kp in Efake where R1[{e′}kp ] is type-1 is “as good as” the chances of an adversary who can
do this based on a freshly generated bitstring from Je1Kτ1H , which we will prove is negligible.

C.4 Efficiency

Based on the previous Subsection C.3, it is fairly easy to verify that the whole simulation works
in polynomial time. All checks related to decryption queries (i.e. starting at line 39) can be
performed in polynomial time, and also the CCA2-challenge ciphertext (as explained in the
previous subsection) will never be asked for decryption. It is also easy to verify that the other
parts of the algorithm can be efficiency performed, and hence the whole simulation is efficiently
implementable.

C.5 Correctness

We assume the following in the remainder of the paper.

Convention 2 In all the theorems, lemmas, and propositions given henceforth, unless otherwise
stated, we assume any used asymmetric or symmetric encryption scheme provides IND-CCA2
security. Therefore, we do not explicitly mention this assumption henceforth.

First, we denote Awstci’s and Acca’s advantages in attacking the encryption scheme, in the sense
of l−WSTCI and IND-CCA2, respectively, by:

∆cca(η)
4
= |Pr [Acca(η) = 1 | b = 0]− Pr [Acca(η) = 1 | b = 1]|

∆wstci(η)
4
=
∣∣Pr
[
AWSTCI
wstci (η) = 1 | b = 0

]
− Pr

[
AWSTCI
wstci (η) = 1 | b = 1

]∣∣ (6)

For the sake of readability, we omitted the mentions of E , the encryption scheme for which
WSTCI security is violated, and b in the above equality assignments, and wrote AWSTCI

wstci instead

of AWSTCIEb
wstci . Also sometimes when it is necessary to differentiate between several challenge bits,

we add as a subscript to them the name of the game they belong to. (e.g. bwstci may be used
to denote the challenge bit under the standard WSTCI game.) we denoted the challenge bit
of the WSTCI game by bwstci to make it distinct from b, the CCA2-challenge bit that Acca is
challenged to guess. We fix E in the remainder of this paper.

Our goal is to show the following:

Goal 1 ∆wstci(η) > negl(η)⇒ ∆cca(η) > negl(η)
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We borrow some notations from [46]. We let Bad denote the event that the simulation
process of Acca fails; namely, Bad occurs if any of the following events occur:

– vus
ons+1−−−→ vus+1

ons+2−−−→ . . .
onl−−→ vul is not a strongly, coinductively continuable path;

– For some s+ 1 ≤ j ≤ l, it holds that
∣∣∣<cont.(

onj−−→ vuj
onj+1−−−→ vuj+1

onj+2−−−→ . . .
onl−−→ vul)

∣∣∣ 6= edj ;

– For some s + 1 ≤ j ≤ l, kuj−1 is not the ed′jth lowest key among <cont.(
onj−−→ vuj

onj+1−−−→
vuj+1

onj+2−−−→ . . .
onl−−→ vul); or

– Awstci makes a challenge query challenge(k−1
j , bs) and ul 6= j.

The first step of our proof is similar to that of [46]. Namely, we show that the probability
Bad occurs given b = 0 is at most negligibly different from that given b = 1.

Observation 1 We have

|Pr [Bad | b = 0]− Pr [Bad | b = 1]| = negl(η).

It is not hard to see why Observation 1 is true. Given that E is IND-CCA2 secure (see Convention
2), if the statement of the observation fails to hold, then one can easily construct a second
adversary A′′ who simulates Acca and who outputs 1 exactly when the event Bad occurs. (If
Acca finishes his computation without Bad having occurred, A′′ outputs a uniformly-selected
random bit.) Now it is easy to verify that A′′ violates the IND-CCA2 security assumption of E .

Also from the very description of the SIMULATION process, one can easily verify the
following statement.

Observation 2

Pr[Acca(η) = 1 | Bad ∧ b = 0] = Pr[Acca(η) = 1 | Bad ∧ b = 1] =
1

2

The above observation holds because Acca simply outputs a uniformly-selected random bit
whenever Bad occurs.

We write Bad to denote the complement of Bad. Given Observations (1) and (2), we expand
∆cca(η) as follows.

∆cca(η) =
∣∣Pr[Acca(η) = 1 | b = 0]− Pr[Acca(η) = 1 | b = 1]

∣∣
=
∣∣Pr[Acca(η) = 1 ∧ Bad | b = 0] + Pr[Acca(η) = 1 ∧ Bad | b = 0]

− Pr[Acca(η) = 1 ∧ Bad | b = 1]− Pr[Acca(η) = 1 ∧ Bad | b = 1]
∣∣

=
∣∣(Pr[Acca(η) = 1 ∧ Bad | b = 0]− Pr[Acca(η) = 1 ∧ Bad | b = 1]|)+
+ (Pr[Acca(η) = 1 | Bad ∧ b = 0] Pr[Bad | b = 0]− Pr[Acca(η) = 1 | Bad ∧ b = 1] Pr[Bad | b = 1])

∣∣
=
∣∣Pr[Acca(η) = 1 ∧ Bad | b = 0]− Pr[Acca(η) = 1 ∧ Bad | b = 1] +

1

2
negl(η)

∣∣
=

1

2
negl(η) +

1

2

∣∣Pr[Acca(η) = 1 ∧ Bad ∧ b = 0]− Pr[Acca(η) = 1 ∧ Bad ∧ b = 1]
∣∣

Defining

∆cca-sim
4
=
∣∣Pr
[
Acca(η) = 1 ∧ Bad ∧ b = 0

]
− Pr

[
Acca(η) = 1 ∧ Bad ∧ b = 1

]∣∣ , (7)

to prove the statement of Goal 1, it suffices to prove the statement of the following goal.

Goal 2 ∆wstci(η) > negl(η), then ∆cca-sim > negl(η)
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For m ∈ N we define [m]
4
= {1, . . . ,m}. We introduce a few more events. Let Ψ

(dl,dl−1,...,dj+1)

(wl,wl−1,...,wj+1)

denote the event that the following conditions are all satisfied:

(a) u0 = u1 = . . . uj−1 = 0, uj 6= 0 (i.e. s = j), and for j+1 ≤ i ≤ l, it holds that indeg(vui) = di
and oni = wi,

(b) vus
ons+1−−−→ vus+1

ons+2−−−→ . . .
onl−−→ vul is a strongly, coinductively continuable path, and for

j + 1 ≤ i ≤ l, we have
∣∣∣<cont[ oni−−→ vui

oni+1−−−→ vui+1

oni+2−−−→ . . . ,
onl−−→ vul ]

∣∣∣ = edi, and kui−1 is

the ed′i’th lowest key among <cont[
oni−−→ vui

oni+1−−−→ vui+1

oni+2−−−→ . . . ,
onl−−→ vul ],

(c) if Awstci makes a challenge query challenge(k−1
j , bs), then j = ul.

Also we define Ψ−dl to be the event that the following conditions are satisfied:

(a) u0 = · · · = ul−1 = 0 and indeg(vul) = dl (note that it always holds ul 6= 0 and, by
Assumption 1, indeg(vul) > 0 given vul is the challenge node),

(b) if Awstci makes a challenge query challenge(k−1
j , bs), then j = ul. (Note that this by itself

implies that vul is coinductively irrecoverable.)

We continue to introduce a few more types of events. We define Ψ−max(dl,dl−1,...,dj+1)

(wl,wl−1,...,wj+1) to be

the event that Ψ
(dl,dl−1,...,dj+1)

(wl,wl−1,...,wj+1) occurs and indeg(vuj ) = 0. Dually, we define Ψ−max(dl,dl−1,...,dj+1)

(wl,wl−1,...,wj+1)

to be the event that Ψ
(dl,dl−1,...,dj+1)

(wl,wl−1,...,wj+1) occurs and indeg(vuj ) 6= 0. Also, for b′l, b
′
l−1, . . . , b

′
j+1 ∈

{0, 1}, we let Ψ
(dl,dl−1,...,dj+1)

(wl,wl−1,...,wj+1)[b
′
l, b
′
l−1, . . . , b

′
j+1] denote the event that, (a) Ψ

(dl,dl−1,...,dj+1)

(wl,wl−1,...,wj+1) hap-

pens, and (b) for every j + 1 ≤ i ≤ l, it holds bi = b′i. (Recall that, bi is the random bit value
sampled in SETUP phase.)

We now expand ∆cca-sim in terms of Ψ ’s as follows:

∆cca-sim =
∣∣Pr[Acca(η) = 1 ∧ Bad ∧ b = 0]− Pr[Acca(η) = 1 ∧ Bad ∧ b = 1]

∣∣
=

∣∣∣∣∣ ∑
1≤k≤l

∑
b′l,...,b

′
k∈{0,1}

∑
dl∈[P ]
wl∈[dl]

· · ·
∑
dk∈[P ]
wk∈[dl]

[
Pr[Acca(η) = 1 ∧ Ψ

(dl,...,dk)
(wl,...,wk)[b

′
l, . . . , b

′
k] ∧ b = 0]

− Pr[Acca(η) = 1 ∧ Ψ
(dl,...,dk)
(wl,...,wk)[b

′
l, . . . , b

′
k] ∧ b = 1]

]
+
∑
dl∈[P ]

[
Pr[Acca(η) = 1 ∧ Ψ − dl ∧ b = 0]

− Pr[Acca(η) = 1 ∧ Ψ − dl ∧ b = 1]
]∣∣∣∣∣

Recalling the definition of strategy explained earlier, if ST is an strategy used by a chal-
lenger to answer to Awstci’s queries, then as a simplifying notation we write PrST [E] to
denote the probability that when Awstci operates under ST, event E occurs. For example,
PrStrgy0

[indeg(vul) > 3] denotes the probability that when Acca uses strategy Strgy0 to an-
swer to Awstci’s queries, it holds that indeg(vul) > 3. Moreover, as mentioned earlier, we use
wstci to refer to the strategy prescribed under the standard WSTCI game, and, for example, we
may write Prwstci [Awstci(η) = 1 | b = 0] instead of Pr

[
AWSTCI
wstci (η) = 1 | b = 0

]
. (See Equation

6.)
For two events E1 and E2 we write E1 ≡ E2 if it holds that PrStrgy0

[Awstci(η) = 1 ∧ E1] =
PrStrgy0

[Awstci(η) = 1 ∧ E2]. Also, we write E1
∼= E2 if it holds that |PrStrgy0

[Awstci(η) = 1 ∧ E1]−
PrStrgy0

[Awstci(η) = 1 ∧ E2] | = negl(η).
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We define the following events:

θwstci
0 =

l∨
i=1

∨
dl∈[P ]

...
di∈[P ]

Ψ−max(dl,...,di)
(1,...,1) [bl = 0; . . . ; bi = 0] ∧ b = 0

θwstci
1 =

l∨
i=1

∨
dl∈[P ]

...
di∈[P ]

Ψ−max(dl,...,di)
(1,...,1) [bl = 1; . . . ; bi = 1] ∧ b = 1.

It is not hard to intuitively see that the view of Awstci under Strgy0 and when θ0 (resp.
θ1) occurs is quite similar to that under the WSTCI game when the challenger bit, bwstci, is 0
(resp. is 1). We will formally show this in Corollary 1.

For any n > 0 and H1 = (h1, . . . , hn) ∈ Nn and H2 = (h′1, . . . , h
′
n) ∈ Nn, we say H1 ≤ H2 if

for all 1 ≤ i ≤ n it holds that hi ≤ h′i.

Lemma 4. For all 1 ≤ j ≤ l, Bj+1 = (b′l, . . . , b
′
j+1) ∈ {0, 1}l−j, Dj = (dl, dl−1, . . . , dj) ∈

[P ]l+1−j, and Wj = (wl, . . . , wj+1, wj) ≤ (dl, . . . , dj+1, dj − 1), if we define

A0
total,j,Bj+1,Dj ,Wj

=

j−1∨
k=1

∨
dj−1∈[P ]

...
dj−k∈[P ]

Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj ,1,...,1) [b′l, . . . , b
′
j+1, 1, 0, . . . , bj−k = 0] ∧ b = 0

∨
Ψ−max(dl,...,dj+1,dj)

(wl,...,wj+1,wj)
[b′l, . . . , b

′
j+1, 1] ∧ b = 0

A1
total,j,Bj+1,Dj ,Wj

=

j−1∨
k=1

∨
dj−1∈[P ]

...
dj−k∈[P ]

Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj+1,1,...,1) [b′l, . . . , b
′
j+1, 1, 1, . . . , bj−k = 1] ∧ b = 1

∨
Ψ−max(dl,...,dj+1,dj)

(wl,...,wj+1,wj+1)[b
′
l, . . . , b

′
j+1, 1] ∧ b = 1

A′
0
total,j,Bj+1,Dj ,Wj

=

j−1∨
k=1

∨
dj−1∈[P ]

...
dj−k∈[P ]

Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj+1,1,...,1) [b′l, . . . , b
′
j+1, 0, 0, . . . , bj−k = 0] ∧ b = 0

∨
Ψ−max(dl,...,dj+1,dj)

(wl,...,wj+1,wj+1)[b
′
l, . . . , b

′
j+1, 0] ∧ b = 0

A′
1
total,j,Bj+1,Dj ,Wj

=

j−1∨
k=1

∨
dj−1∈[P ]

...
dj−k∈[P ]

Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj ,1,...,1) [b′l, . . . , b
′
j+1, 0, 1, . . . , bj−k = 1] ∧ b = 1

∨
Ψ−max(dl,...,dj+1,dj)

(wl,...,wj+1,wj)
[b′l, . . . , b

′
j+1, 0] ∧ b = 1

then, we have:
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1.
A0
total,j,Bj+1,Dj ,Wj

∼= A1
total,j,Bj+1,Dj ,Wj

2.
A′

0
total,j,Bj+1,Dj ,Wj

∼= A′
1
total,j,Bj+1,Dj ,Wj

Lemma 5. For all 2 ≤ j ≤ l, Bj = (b′l, . . . , b
′
j) ∈ {0, 1}l+1−j, Dj = (dl, dl−1, . . . , dj) ∈ [P ]l+1−j,

and Wj = (wl, . . . , wj+1, wj) ≤ Dj, if we define

B0
total,j,Bj ,Dj ,Wj

= Ψ−max(dl,...,dj)

(wl,...,wj)
[b′l, . . . , b

′
j ] ∧ b = 0

B1
total,j,Bj ,Dj ,Wj

=

j−1∨
k=2

∨
dj−1∈[P ]

...
dj−k∈[P ]

Ψ−max(dl,...,dj ,dj−1,dj−2,...,dj−k)

(wl,...,wj ,dj−1,1...,1) [b′l, . . . , b
′
j , bj−1 = 0, bj−2 = 1, . . . , bj−k = 1] ∧ b = 1

∨
dj−1∈[P ]

Ψ−max(dl,...,dj ,dj−1)

(wl,...,wj ,dj−1)[b
′
l, . . . , b

′
j , 0] ∧ b = 1

C0
total,l+1 =

∨
d′l∈[P ]

(
Ψ − d′l

)
∧ (b = 0)

C1
total,l+1 =

l−1∨
k=1

∨
d′l∈[P ]

...
d′l−k∈[P ]

Ψ−max(d′l,d
′
l−1...,d

′
l−k)

(d′l,1,...,1)
[bl = 0, bl−1 = 1, . . . bl−k = 1] ∧ b = 1

∨
d′l∈[P ]

Ψ−max(d′l)

(d′l)
[bl = 0] ∧ b = 1

B′
0
total,j,Bj ,Dj ,Wj

=

j−1∨
k=2

∨
dj−1∈[P ]

...
dj−k∈[P ]

Ψ−max(dl,...,dj ,dj−1,dj−2,...,dj−k)

(wl,...,wj ,dj−1,1...,1) [b′l, . . . , b
′
j , bj−1 = 1, bj−2 = 0, . . . , bj−k = 0] ∧ b = 0

∨
dj−1∈[P ]

Ψ−max(dl,...,dj ,dj−1)

(wl,...,wj ,dj−1)[b
′
l, . . . , b

′
j , 1] ∧ b = 0

B′
1
total,j,Bj ,Dj ,Wj

= Ψ−max(dl,...,dj)

(wl,...,wj)
[b′l, . . . , b

′
j ] ∧ b = 1

C ′
0
total,l+1 =

l−1∨
k=1

∨
d′l∈[P ]

...
d′l−k∈[P ]

Ψ−max(d′l,d
′
l−1...,d

′
l−k)

(d′l,1,...,1)
[bl = 1, bl−1 = 0, . . . bl−k = 0] ∧ b = 0

∨
d′l∈[P ]

Ψ−max(d′l)

(d′l)
[bl = 1] ∧ b = 0

C ′
1
total,l+1 =

∨
d′l∈[P ]

(
Ψ − d′l

)
∧ (b = 1)

then we have:

1.
B0
total,j,Bj ,Dj ,Wj

∼= B1
total,j,Bj ,Dj ,Wj
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2.

B′
0
total,j,Bj ,Dj ,Wj

∼= B′
1
total,j,Bj ,Dj ,Wj

3.

C0
total,l+1

∼= C1
total,l+1,∅,∅,∅

4.

C ′
0
total,l+1

∼= C ′
1
total,l+1,∅,∅,∅.

Now for h ∈ {0, 1} we define

Ahtotal,j =
∨

Bj+1∈{0,1}l−j

∨
Dj=(dl,...,dj+1,dj)

dl∈[P ]

...
dj+1∈[P ]
dj∈[P ]

∨
Wj=(wl,...,wj)

wl∈[dl]

...
wj+1∈[dj+1]
wj∈[dj−1]

Ahtotal,j,Bj+1,Dj ,Wj

A′
h
total,j =

∨
Bj+1∈{0,1}l−j

∨
Dj=(dl,...,dj+1,dj)

dl∈[P ]

...
dj+1∈[P ]
dj∈[P ]

∨
Wj=(wl,...,wj)

wl∈[dl]

...
wj+1∈[dj+1]
wj∈[dj−1]

A′
h
total,j,Bj+1,Dj ,Wj

Bh
total,j =

∨
Bj∈{0,1}l+1−j

∨
Dj∈[P ]l+1−j

∨
Wj≤Dj

Bh
total,j,Bj ,Dj ,Wj

B′
h
total,j =

∨
Bj∈{0,1}l+1−j

∨
Dj∈[P ]l+1−j

∨
Wj≤Dj

B′
h
total,j,Bj ,Dj ,Wj

.

Also we define

θ0 =

 l∨
j=1

[
A0
total,j ∨A′

0
total,j

] ∨
 l∨
j=2

[
B0
total,j ∨B′

0
total,j

] ∨ (C0
total,l+1 ∨ C ′

0
total,l+1

)
,

θ1 =

 l∨
j=1

[
A1
total,j ∨A′

1
total,j

] ∨
 l∨
j=2

[
B1
total,j ∨B′

1
total,j

] ∨ (C1
total,l+1 ∨ C ′

1
total,l+1

)
.

Now we can concisely write the results of Lemmas 4 and 5 as follows:

Summary of Lemmas 4 and 5.

|Pr [Acca(η) = 1 ∧ θ0]− Pr [Acca(η) = 1 ∧ θ1]| = negl(η) (8)

Note that, the assumption that “l is constant” is necessary to have Equation (8) derive
from Lemmas 4 and 5. Under this assumption and the fact that the sum of polynomially-many
negligible functions is negligible, the implication holds by a union bound.

Note that, in fact Lemmas 4 and 5 imply the following:∣∣∣∣ Pr
Strgy0

[Awstci(η) = 1 ∧ θ0]− Pr
Strgy0

[Awstci(η) = 1 ∧ θ1]

∣∣∣∣ = negl(η),
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but since we have PrStrgy0
[Awstci(η) = 1 ∧ θh] = Pr [Acca(η) = 1 ∧ θh], for h ∈ {0, 1}, Equation

(8) follows. This latter follows from the fact that θh ∧Bad = ∅ and that we have

Pr
Strgy0

[
Awstci(η) = 1 ∧ θh ∧Bad

]
= Pr

[
Acca(η) = 1 ∧ θh ∧Bad

]
.

The following corollary completes the proof of Lemma 2:

Corollary 1. We have

1.

∆cca-sim =

∣∣∣∣ (Pr [Acca(η) = 1 ∧ θ0]− Pr [Acca(η) = 1 ∧ θ1])

+
(
Pr
[
Acca(η) = 1 ∧ θwstci0

]
− Pr

[
Acca(η) = 1 ∧ θwstci1

]) ∣∣∣∣
2.

Pr
Strgy0

[
θwstci0

]
= (

1

1 + 2nP 2
)l+1 + negl(η)

Pr
Strgy0

[
θwstci1

]
= (

1

1 + 2nP 2
)l+1 + negl(η)

3. ∣∣∣∣ Pr
WSTCI

[Awstci(η) = 1 | b = 0]− Pr
Strgy0

[
Awstci(η) = 1 | θwstci0

]∣∣∣∣ = negl(η)∣∣∣∣ Pr
WSTCI

[Awstci(η) = 1 | b = 1]− Pr
Strgy0

[
Awstci(η) = 1 | θwstci1

]∣∣∣∣ = negl(η)

4.

Pr
[
Acca(η) = 1 | θwstci0

]
= Pr

Strgy0

[
Awstci(η) = 1 | θwstci0

]
Pr
[
Acca(η) = 1 | θwstci1

]
= Pr

Strgy0

[
Awstci(η) = 1 | θwstci1

]
.

5.

∆wstci(η) > negl(η)⇒ ∆cca-sim(η) > negl(η)

Item 5 of above Corollary is exactly what we need to prove for Lemma 2 (i.e. Goal 2). In the
remainder of this section, we give the proof of both of the above lemmas and corollary.

C.6 Proof of Lemma 4

The proofs of both parts of the lemma are entirely similar, so we prove part (1) of the lemma. Let
j, b′l, . . . , b

′
j+1, dl, . . . , dj+1, dj , wl, . . . , wj+1, wj be as the statement of the lemma and be fixed.

Also, for the sake of better readability, since j is fixed, we will drop subscripts j, Bj+1, Dj

and Wj from the associated events described in this part of the lemma and write, for example,
A0
total. Therefore, we have

45



A0
total =

j−1∨
k=1

∨
dj−1∈[P ]

...
dj−k∈[P ]

Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj ,1,...,1) [b′l, . . . , b
′
j+1, 1, 0, . . . , bj−k = 0] ∧ b = 0

∨
Ψ−max(dl,...,dj+1,dj)

(wl,...,wj+1,wj)
[b′l, . . . , b

′
j+1, 1] ∧ b = 0

A1
total =

j−1∨
k=1

∨
dj−1∈[P ]

...
dj−k∈[P ]

Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj+1,1,...,1) [b′l, . . . , b
′
j+1, 1, 1, . . . , bj−k = 1] ∧ b = 1

∨
Ψ−max(dl,...,dj+1,dj)

(wl,...,wj+1,wj+1)[b
′
l, . . . , b

′
j+1, 1] ∧ b = 1

Now defining ∆0 = PrStrgy0
[A0

total] and ∆1 = PrStrgy0
[A1

total], we will prove the following
two claims.

Claim 1 |∆0 −∆1| = negl(η)

Claim 2 If ∆0 > negl(η) and ∆1 > negl(η), then

| Pr
Strgy0

[Awstci(η) = 1 | A0
total]− Pr

Strgy0
[Awstci(η) = 1 | A1

total]| = negl(η)

We will separately prove the above two claims. Note that Claims 1 and 2 together complete
the proof of this part of the lemma. This is because we need to prove that:∣∣∣∣∆0 × Pr

Strgy0

[Awstci(η) = 1 | A0
total]−∆1 × Pr

Strgy0

[Awstci(η) = 1 | A1
total]

∣∣∣∣ = negl(η), (9)

and if, say, ∆0 = negl(η), then by Claim 1, we obtain ∆1 = negl(η), and the above equality
then obviously holds. On the other hand, if both ∆0 > negl(η) and ∆1 > negl(η), then Claims
1 and 2 imply equation 9. We omit the details.

First we establish some notations that will be used in the proofs of both claims above. For
1 ≤ k ≤ j − 1, D = (dj−1, . . . , dj−k) ∈ {[P ]}k, we define the following events:

A0
k,D = Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj ,1,...,1) [bl = b′l, . . . , bj+1 = b′j+1, bj = 1, bj−1 = 0, . . . , bj−k = 0] ∧ b = 0

A0
0,∅ = Ψ−max(dl,...,dj+1,dj)

(wl,...,wj+1,wj)
[bl = b′l, . . . , bj+1 = b′j+1, bj = 1] ∧ b = 0

A1
k,D = Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj+1,1,...,1) [bl = b′l, . . . , bj+1 = b′j+1, bj = 1, bj−1 = 1, . . . , bj−k = 1] ∧ b = 1

A1
0,∅ = Ψ−max(dl,...,dj+1,dj)

(wl,...,wj+1,wj+1)[bl = b′l, . . . , bj+1 = b′j+1, bj = 1] ∧ b = 1

E0
k,D = Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj ,1,...,1)

E0
0,∅ = Ψ−max(dl,...,dj+1,dj)

(wl,...,wj+1,wj)

E1
k,D = Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj+1,1,...,1)

E1
0,∅ = Ψ−max(dl,...,dj+1,dj)

(wl,...,wj+1,wj+1)
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We also define

E0
total =

j−1∨
k=0

∨
D∈[P ]k

E0
k,D

E1
total =

j−1∨
k=0

∨
D∈[P ]k

E1
k,D

Note that we have:

Pr
Strgy0

[A0
k,D] =

1

2

l−j+k+2

. Pr
Strgy0

[E0
k,D | bl = b′l; . . . ; bj+1 = b′j+1; bj = 1; bj−1 = 0; . . . ; bj−k = 0; b = 0]

Pr
Strgy0

[A1
k,D] =

1

2

l−j+k+2

. Pr
Strgy0

[E1
k,D | bl = b′l; . . . ; bj+1 = b′j+1; bj = 1; bj−1 = 1; . . . ; bj−k = 1; b = 1]

We now expand ∆0 and ∆1 in terms of the probability of events E0
k,D’s and E1

k,D’s as follows:

∆0 =

j−1∑
k=0

∑
D∈{[P ]}k

(
1

2
)l−j+k+2 Pr

Strgy0

[E0
k,D | bl = b′l; . . . ; bj+1 = b′j+1

; bj = 1; bj−1 = 0; . . . ; bj−k = 0; b = 0]
(10)

∆1 =

j−1∑
k=0

∑
D∈{[P ]}k

(
1

2
)l−j+k+2 Pr

Strgy0

[E1
k,D | bl = b′l; . . . ; bj+1 = b′j+1

; bj = 1; bj−1 = 1; . . . ; bj−k = 1; b = 1]
(11)

C.6.1 Proof of Claim 1 We introduce a new replying strategy, denoted by Strgyj , which
is a modified version of Strgy0 for responding to adversary’s queries. (Henceforth we may also
refer to an strategy as a game, and use both names interchangeably.) In the SETUP phase:

– Variables u0, . . . , ul are sampled in the same manner as in Strgy0, and denoting by s the
smallest index where us 6= 0, if s ≥ j, then the execution is terminated (a failed situation).
Otherwise, for each s < t ≤ l we sample three parameters (ont, edt, ed

′
t), again, in exactly

the same manner as in Strgy0 (under Strgyj this sequence of triples of random values play
no role in responses made to adversary’s queries; they are included in the game as we are to
formulate some events depending on them).

– We generate n pairs of public/private key pairs (pk1, sk1), . . . , (pkn, skn), fake private keys
fskus , fskus+1 . . . , fskul , and n nonces nc1, . . . , ncn, all independently at random from the
same distributions used in Strgy0. (We stress here that, unlike Strgy0, under Strgyj we
sample a pair of public/private keys for all key pairs.)

In the Simulation phase: (we first define b′j = 1)

– An encryption query encrypt(e, i) is answered by E ← JeKτ0 , where τ0 is defined as follows:
τo(xi) = nci, τ0(ki) = pki for 1 ≤ i ≤ n. Moreover, if k−1

i /∈ {k−1
uj , k

−1
uj+1

, . . . , k−1
ul
}, we assign

τ0(k−1
i,o ) = ski, for all o’s, and for k−1

uj , we assign τ0(k−1
uj,o1

) = fskuj and τ0(k−1
uj,o2

) = skuj , for

47



all 1 ≤ o1 ≤ wj and o2 ≥ wj+1. Finally, for all t ∈ {j+1, . . . , l}, we define τ0(k−1
ut,o3) = fskut

and τ0(k−1
ut,o4) = skut , for all o3 < wt and o4 > wt, and if b′t = b′t−1, then τ0(k−1

ut,wt) = skut ,
and, τ0(k−1

ut,wt) = fskut , otherwise.
– A corruption query corrupt(i) is handled by returning ski.
– For decryption queries, we first define a key-renaming function, R, as follows: for all k−1

i,o

we have R[k−1
i,o ] = k−1

i if τ0(k−1
i,o ) = ski, and R[k−1

i,o ] = k′−1
i if τ0(k−1

i,o ) = fski. Now a
query decrypt(c, i) is answered by Dec(c, ski), if none of the following events occur, and it
is answered by ⊥, otherwise: (a) (c, i) is coinductively visible in eval-exp, and (b) for some
({e}kh , bs) ∈ eval-exp it holds that there exists a subexp {e′}kp of {e}kh such that R[{e′}kp ]
is type-1 and that c is the computational image of {e′}kp in bs.

– A subexp-testing query subexp({e}ki , bsi, {e′}kj , bsj) is answered by 1 if bsj is the computa-
tional image of {e′}kj in bsi, and answered by 0, otherwise.

For Strgyj , we may also define events of the form Ψ
(d′l,d

′
l−1,...,d

′
r+1)

(w′l,w
′
l−1,...,w

′
r+1)

. We claim that

Lemma 6. For every D = [P ]k, it holds that:

| Pr
Strgy0

[E0
k,D | bl = b′l; . . . ; bj+1 = b′j+1; bj = 1; bj−1 = 0; . . . ; bj−k = 0; b = 0]− Pr

Strgyj
[E0

k,D]| = negl(η)

| Pr
Strgy0

[E1
k,D | bl = b′l; . . . ; bj+1 = b′j+1; bj = 1; bj−1 = 1; . . . ; bj−k = 1; b = 1]− Pr

Strgyj
[E1

k,D]| = negl(η)

Lemma 7.

j−1∑
k=0

∑
D∈[P ]k

(
1

2
)l−j+k+2 Pr

Strgyj
[E0

k,D] =

j−1∑
k=0

∑
D∈[P ]k

(
1

2
)l−j+k+2 Pr

Strgyj
[E1

k,D]

Note that Lemma 6 and Lemma 7, together, complete the proof of Claim 1. Now we give the
proofs of both lemmas:

C.6.1.1 Proof of Lemma 6 We prove the first part of the lemma; the proof of the second
part follows similarly. We introduce another security game (i.e. replying strategy) Strgy′0, as
follows. First in the SETUP phase, we do the following steps:

– we first generate the sequence {ui}0≤i≤l in the same manner as that in Strgy0, and denoting
by s the smallest index where us 6= 0, if s ≥ j then the execution is terminated (failed
situation). To sample bi’s, we assign br = b′r for all j + 1 ≤ r ≤ l, bj = 1, and assign bi = 0
for all s ≤ i ≤ j− 1. (Note that, differently from Strgy0, under this game we introduce and
assign a bit value to bs as well.)

– We sample {(onr, edr, ed′r)}s+1≤t≤l, and {pki, ski}1≤i≤n, and {nci}1≤i≤n, and {fskui}s≤i≤l,
all independently at random from the same distributions as used in Strgy0. (Again note
that we sample (pkus , skus).)

In the SIMULATION phase:

– we respond to an encryption query, encrypt(e, i), by E ← enc(JeKτ0 , pki), where τ0 is defined
as follows: For 1 ≤ i ≤ n, assign τ0(ki) = pki and τ0(xi) = nci. For all t ≥ 1, assign τ0(k−1

us,t) =

fskus , and τ0(k−1
h,t ) = skh, where k−1

h /∈ {k−1
us , k

−1
us+1

. . . k−1
ul
}. For i ∈ {s + 1, s + 2, . . . , l},

assign τ0(k−1
ui,t1

) = fskui and τ0(k−1
ui,t2

) = skui for all t1 < oni and t2 > oni, and if bi−1 = bi,
assign τ0(k−1

ui,oni) = skui , and τ0(k−1
ui,oni) = fskui , otherwise.
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– A corruption query corrupt(i) is handled by returning ski.
– For decryption queries, we again similarly define a key-renaming function, R0, as follows: for

all k−1
i,o we have R0[k−1

i,o ] = k−1
i if τ0(k−1

i,o ) = ski, and R0[k−1
i,o ] = k′−1

i if τ0(k−1
i,o ) = fski. Now a

query decrypt(c, i) is answered byDec(c, ski) if none of the following events occurs, and by⊥,
otherwise: (a) (c, i) is coinductively visible in eval-exp, or (b) for some ({e}kh , bs) ∈ eval-exp
it holds that there exists a subexp {e′}kp of {e}kh such that R0[{e′}kp ] is type-1 and that c
is the computational image of {e′}kp in bs.

– For a subexp-testing query subexp({e}ki , bsi, {e′}kj , bsj), it proceeds as Strgyj ; namely, it
is answered by 1 if bsj is the computational image of {e′}kj in bsi, and answered by 0,
otherwise.

Now Lemma 6 derives from the following two claims.

Claim 3
Pr

Strgyj
[E0

k,D] = Pr
Strgy′0

[E0
k,D]

Claim 4

| Pr
Strgy0

[E0
k,D | bl = b′l; . . . ; bj+1 = b′j+1; bj = 1; bj−1 = 0; . . . ; bj−k = 0; b = 0]− Pr

Strgy′0

[E0
k,D] | = negl(η)

We separately provide the proof of each of the above two claims.

Proof of claim 3: First recall that

E0
k,D = Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj ,1,...,1) , where D = (dj−1, . . . , dj−k)

Let E be the following event:

E ::= (u0 = · · · = uj−k−3 = uj−k−2 = 0) ∧ (uj−k−1 6= 0)

∧ (onj−k = onj−k+1 = · · · = onj−1 = 1) ∧ (onj = wj) ∧ (onj+1 = wj+1) ∧ · · · ∧ (onl = wl)

Now we can write
Pr

Strgy′0

[E0
k,D] = Pr

Strgy′0

[E0
k,D | E] · Pr

Strgy′0

[E] (12)

Pr
Strgyj

[E0
k,D] = Pr

Strgyj
[E0

k,D | E] · Pr
Strgyj

[E] (13)

The above two equalities follow from the fact that PrStrgy′0 [E0
k,D | E] = PrStrgyj [E

0
k,D | E] = 0.

Moreover it is easy to see that PrStrgy′0 [E] = PrStrgyj [E]; this is because occurrence/non-
occurrence of E is determined right after the execution of the SETUP phase (it is in fact
independent of how SIMULATION phase proceeds); thus, it occurs with equal probabilities
in both games. Finally it is not hard to verify that, provided that E occurs, an adversary
has identical view when run under Strgy′0 or Strgyj , implying that PrStrgy′0 [E0

k,D | E] =

PrStrgyj [E
0
k,D | E], and this completes the proof of the claim. ut

Proof of Claim 4: We need to prove

| Pr
Strgy0

[E0
k,D | bl = b′l; . . . ; bj+1 = b′j+1; bj = 1; bj−1 = 0; . . . ; bj−k = 0; b = 0]− Pr

Strgy′0

[E0
k,D] | = negl(η).

We define

p1 = Pr
Strgy0

[E0
k,D | bl = b′l; . . . ; bj+1 = b′j+1; bj = 1; bj−1 = 0; . . . ; bj−k = 0; b = 0].
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We first add a “failing condition” to the SIMULATION phase of Strgy′0, making it closer to
that of Strgy0, and prove that the affected change does not modify the probability of E0

k,D’s

occurrence (under Strgy′0). In the new version of Strgy′0, we build τ0 and answer to adversary’s
queries similarly as before, with the only addition that in the sequence of adversary’s encryption
queries, if it happens that kus does not encrypt k−1

us+1,ons+1
, then we halt the execution; otherwise

if encrypt(e, i) is the query for which k−1
us+1,ons+1

occurs in e, assuming that {e1}uks is the

smallest subexp of e with e1 containing k−1
us+1,ons+1

, we introduce echal = e1 and let M ← Je1Kτ1 ,

where τ1(s) = τ0(s) if s 6= k−1
us+1,ons+1

and τ1(k−1
us+1,ons+1

) = q, where q = {fskus+1 , skus+1} −
τ0[k−1

us+1,ons+1
]. We then continue replying to adversary’s queries exactly the same as before.

(We note that the value of M and expression echal, in this game, are not used in the process
of answering to adversary’s queries; we have introduced them to later define an event based
on them.) Also, for simplicity, we divide the execution of the game into two phases; the first
phase, called the preceding phase, ends as soon as the adversary issues and receives the reply to
the encryption query encrypt(e, i), where k−1

us+1,ons+1
occurs in e, and the second phase, called

succeeding phase, begins (if the game does not halt due to the above condition) right after
the completion of the preceding phase. It is fairly easy to see that the probability of E0

k,D’s

occurrence under the two versions of Strgy′0 is equal; thus in the rest of the proof, by Strgy′0
we refer to the new version of the game.

We now introduce another game, Strgy′′0 by slightly changing Strgy′0, and prove that the
probability of E0

k,D occurring under Strgy′′0 is equal to p1. The SETUP phase of Strgy′′0 is

performed exactly the same as that of Strgy′0, and in the SIMULATION phase, we introduce
τ0 and answer to adversary’s encryption queries exactly like that of Strgy′0. Just for decryption
and subexp-testing queries, when the game proceeds to the succeeding phase (i.e. after τ1 is
introduced and M → JechalKτ1 is sampled), we do the following:

– decryption queries: we add another restriction to the set of invalid decryption queries (i.e.
those replied with ⊥). For this, we first define a key-renaming function, R1 (which cor-
responds to τ1), as follows: for all k−1

i,o we have R1[k−1
i,o ] = k−1

i if τ1(k−1
i,o ) = ski, and

R1[k−1
i,o ] = k′−1

i if τ1(k−1
i,o ) = fski. Now for a decryption query decrypt(c, i) if it holds

that echal has a subexp {e′}kp such that R1[{e′}kp ] is type-1 and that c is the computational
image of {e′}kp in M , then the query is answered by ⊥.

– subexp-testing queries: We add one more condition to those of Strgy′0 for subexp-queries.
If in the succeeding phase for subexp({e}ki , bsi, {e′}kj , bsj) it holds that {e′}kj is a subexp of
echal and that bsj is the corresponding computational image of {e′}kj in M , then we return
1.

The rest of the game is exactly the same as that of Strgy′0.

Now from the very description of Strgy′′0 (especially considering how bi’s are assigned values
under Strgy′′0), the following is immediately derived:

p1 = Pr
Strgy′′0

[E0
k,D]

Thus it remains to prove that the difference of probabilities of E0
k,D’s occurrence under Strgy′0

and Strgy′′0 is negligible. To show this, we let Failed-Dec describe the event that, in the suc-
ceeding phase of the game, either a decryption query is answered by ⊥ due to the newly added
condition, or a subexp-testing query is answered by 1 due to the newly added condition. That
is, Failed-Dec occurs if any of the following events occur:

(a) For a decryption query decrypt(c, i) in the succeeding phase, it holds that c is the compu-
tational image of {e′}kp in M , where {e′}kp v echal R1[{e′}kp ] is type-1;
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(b) For a subexp-testing query subexp({e}ki , bsi, {e′}kj , c) in the succeeding phase it holds that
c is the computational image of {e′}kj in M , where {e′}kj v echal.

Note that Failed-Dec is well-defined under both Strgy′0 and Strgy′′0, and, moreover,

Pr
Strgy′0

[Failed−Dec] = Pr
Strgy′′0

[Failed−Dec].

Also from the very descriptions of Strgy′0 and Strgy′′0, it immediately follows that:

Pr
Strgy′0

[E0
k,D | Failed−Dec] = PrStrgy′′0 [E0

k,D | Failed−Dec]

Therefore, to complete the proof of Claim (4), it is sufficient to show that PrStrgy′0 [Failed-Dec]
is negligible. We show this in the following lemma.

Lemma 8.
Pr

Strgy′0

[Failed-Dec] = negl(η)

Proof of Lemma 8: Suppose, to the contrary, that there exists an adversary A1 who interacts
with the challenger under Strgy′0, and for whom Failed-Dec occurs. We first define two random
variables which wil help to simplify Failed-Dec. We let Ci denote the random variable that
corresponds to the ith ciphertext that the adversary issues for decryption in the succeeding
phase. Also by C ′i we denote the fourth argument of the ith subexp-testing query issued in
the succeeding phase. (i.e. In subexp({e}ki , bsi, {e′}kj , bsj) the fourth argument is bsj .) First
we can easily see that both random variables in each of the pairs (M,Ci) and (M,C ′i) are
independent; namely, if m1,m2 ∈ JechalKτ1 , then Pr[Ci = c | M = m1] = Pr[Ci = c | M = m2]
and Pr[C ′i = c | M = m1] = Pr[C ′i = c | M = m2]. This is because M is kept secret (i.e. M
takes part in no replies given to adversary’s queries), and, therefore, the random value of M
does not affect the view of the adversary.

To conclude the proof of this lemma, if such an adversary A1 exists, then there exists an
adversary A2 who wins with a non-negligible probability in the following experiment. However,
the next proposition will show the computational impossibility of this fact. The experiment,
called exper-1, runs in the following steps: (a) The adversary specifies a public keys symbol
k; (b) (pk, sk) is sampled by running Gen(η), and a computational mapping τ is initialized by
(τ(k), τ(k−1)) = (pk, sk), and the computational values for other symbols under τ are chosen
by the adversary; (c) the adversary introduces an expression {e}k, where k−1 6v e; (d) the
challenger generates E ← J{e}kKτ and keeps E secret from the adversary; and (e) the adversary
(given access to τ) wins if he correctly guesses E.

Before presenting the proposition, we briefly explain how A2 is constructed from A1. Recall-
ing the random variable M and computational mapping τ1 defined earlier, the main observation
here is that, since M takes no part in any replies given to adversary’s queries, for any subexp
ew of echal, if Mw is the corresponding computational image of ew in M , then the chances of
any adversary to correctly guess Mw during the game is the same as his chances of correctly
guessing the value of Ew, where Ew is freshly generated from JewKτ1 . This in particular implies
that for any query decrypt(c, i) issued in the succeeding phase, the probability that c hits the
corresponding computational image of ew in M is equal to the probability that c hits Ew. Us-
ing this observation we explain how A2 works. Suppose A1 in the succeeding phase produces
decrypt(c, i), where, with a nonnegligible probability, it holds that c is the computational image
of {e′}kp in M , where {e′}kp v echal and R1[{e′}kp ] is type-1. (The other case where Failed-Dec
occurs due to a subexp-testing query is proved using a similar argument.) Since R1[{e′}kp ] is
type-1, it has a subexpression {e′′}kq v {e′}kp , where k−1

q 6v R1[{e′′}kq ]. Now A2 plays as a chal-
lenger under Strgy′0 with the following slight modifications: (a) A2 first guesses kq and specifies
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it as the public key in Exper1, and if (pk, sk) are the values sampled for (kq, k
−1
q ), he uses pk

as the value for kq and sk as the real value for k−1
q in Strgy′0, and accordingly he initializes

τ0 and τ1. Finally based on τ0 and τ1, he initializes his Exper-1-computational-mapping τ ;
(b) A2 no longer samples M ; and (c) A2 guesses the decryption query number corresponding
to decrypt(c, i) which makes Failed-Dec occur. Now using τ1, he decrypts c to to obtain c′′,
the (possible) corresponding computational image of {e′′}kq in c. Now from the observation
given above and from the assumption that Failed-Dec occurs with a non-negligible probabil-
ity, it follows that ({e′′}kq , c′′) makes A2 wins in his Exper1 experiment with a non-negligible
probability.

Proposition 1 Suppose k−1 6v e and τ is a computational mapping, where (τ(k), τ(k−1) ←
Gen(η). For other symbols, τ samples their computational values in an arbitrary, efficient man-
ner. If E is IND-CCA2 secure and E ← J{e}kKEτ , then for every adversary A having access to
τ , the probability that A guesses E is negligible.

Proof of Proposition 1: Define pmax(η) = maxc∈S Pr[E = c], for S = {0, 1}|J{e}kKEτ |, where the
probability is computed over the random coins used to form τ and to sample E from J{e}kKEτ .
First we can show that since the encryption scheme is IND-CCA2 secure, pmax should be a
negligible function. (If this does not hold, one can show that there exists an adversary B who
can distinguish between encryptions under τ(k) of two messages m1 ← JeKEτ and an arbitrary
message m2 /∈ JeKEτ . Note that this immediately enables an IND-CPA attack since k−1 6v e.)
Now let the random variable E1 be defined as E1 = out(Aτ (η)), where out(Aτ (η)) denotes the
output of A, having access to τ , and given η as input. Note that, since E is not given to the
adversary, for c1, c2 ∈ S, we have Pr[E1 = c | E = c1] = Pr[E1 = c | E = c2], which implies that
Pr[E = c1 ∧ E1 = c2] = Pr[E = c1].Pr[E1 = c2]. Now the probability of success is:∑

c∈S
Pr[E = c ∧ E1 = c] =

∑
c∈S

Pr[E = c].Pr[E1 = c] ≤ pmax
∑
c∈S

Pr[E1 = c] = pmax

and this completes the proof. ut
Now from the above proposition, the proof of Lemma 8, and consequently Claim 4, follows.

ut
ut

Now Claim 3 and Claim 4 imply the result of lemma 6.
ut

C.6.1.2 Proof of Lemma 7: We need to show that

j−1∑
k=0

∑
D∈[P ]k

(
1

2
)l−j+k+2 Pr

Strgyj
[E0

k,D] =

j−1∑
k=0

∑
D∈[P ]k

(
1

2
)l−j+k+2 Pr

Strgyj
[E1

k,D].

Recall that for 0 ≤ k ≤ j − 1

E0
k,D = Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj ,1,...,1) , where D = (dj−1, . . . , dj−k)

E1
k,D = Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj+1,1,...,1) , where D = (dj−1, . . . , dj−k).

We first establish some notation. Let G(Awstci) be the key-graph after the execution of

Strgyj and assume that P = vpr
ar−1−−−→ vpr−1

ar−2−−−→ . . .
a1−→ vp1 is a coinductively, continuable

path in G(Awstci). For ar ≤ indeg(vpr) and i ≤
∣∣∣<cont.(

ar−→ P])
∣∣∣, we define prev(

ar−→ P, i) to be
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the ith-deepest key in <cont.(
ar−→ P). In case that P is not a coinductively, continuable path, we

define <cont.(
ar−→ P), for every a1 ≥ 1.

Let Ebasis be the event that after the execution of Strgyj all the following conditions hold:

1. E0
basis ::= ∀i ∈ {j, . . . , l}, indeg(vui) = di,

2. E1
basis ::= ∀i ∈ {j, . . . , l − 1}, oni+1 = wi+1,

3. E2
basis ::= ∀i ∈ {j, . . . , l − 1}, edi+1 = <cont.(

wi+1−−−→ vui+1

wi+2−−−→ vui+2

wi+3−−−→ . . .
wl−→ vul),

4. E3
basis ::= ∀i ∈ {j, . . . , l}, vui = prev

(
wi+1−−−→ vui+1

wi+2−−−→ vui+2

wi+3−−−→ . . .
wl−→ vul , ed

′
i+1

)
,

5. E4
basis ::= if Awstci makes a challenge query challenge(k−1

j , bs) (i.e. private-key challenge),
then j = ul.

That is, Ebasis = E0
basis∧· · ·∧E4

basis. Informally speaking, Ebasis is the “largest” event which
is a subset of both E0

k,D and E1
k,D. For b ∈ {0, 1}, letting

totalb =

j−1∑
k=0

∑
D∈[P ]k

(
1

2
)l−j+k+2 Pr

Strgyj
[Ebk,D],

we prove that:

total0 = total1 = (
1

2
)
l−j+1

· ( 1

1 + 2nP 2
)
j

· Pr
Strgyj

[Ebasis] (14)

To prove (14), we show that

total0 = (
1

2
)
l−j+1

· ( 1

1 + 2nP 2
)
j

· Pr
Strgyj

[Ebasis], (15)

and the equality for total1 is also obtained similarly, and this concludes the proof.

Let Pc = vuj
wj+1−−−→ vuj+1

wj+2−−−→ . . .
wl−→ vul , which is a coinductively continuable path if

Ebasis occurs. (Subscript “c” stands as an initial for ”common”.) We define random variable V0

as follows: after the execution of Strgyj , if Ebasis does not occur, then V0 = −1, otherwise,

V0 is determined as follows: pick a node, vi0 , uniformly at random from <cont.(
wj−→ Pc) and if

indeg(vi0) = 0 then V0 = 0, otherwise, let c = 0, and:

1: while indeg(vic > 0) do

2: Pick vic+1 uniformly at random from <cont.(
1−→ vic

1−→ . . .
1−→ vi0

wj−→ Pc)
3: c→ c+ 1
4: end while
5: V0 = c

Now letting

sumk =
∑

D∈[P ]k

Pr
Strgyj

[E0
k,D],

we prove that for all 0 ≤ k ≤ j − 1, we have

sumk = 2k+1 · ( 1

1 + 2nP 2
)j · Pr

Strgyj
[Ebasis] · Pr

Strgyj
[V0 = k | Ebasis] (16)

From this, (15) follows. (This is because, from the assumption that the diameter of the hidden
subgraph is at most l, we obtain that V0 = −1 or 0 ≤ V0 ≤ j − 1.) Thus we focus on proving
(16).
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For i ∈ {0, . . . , j − 1}, we define the following events:

A0
i = (s ≤ i) ∧ (∀i1 : i+ 1 ≤ i1 ≤ j − 1, oni1 = 1) ∧ (∀i2 ∈ {j, . . . , l} : oni2 = wi2)

A1
i =

(
∀i1 : i+ 1 ≤ i1 ≤ j − 1, edi1 =

∣∣∣<cont.(
1−→ vui1

1−→ . . .
1−→ vuj−1

wj−→ vuj
wj+1−−−→ . . .

wl−→ vul)
∣∣∣)

∧
(
∀i2 ∈ {j, . . . , l}, edi2 =

∣∣∣<cont.(
wi2−−→ vui2

wi2+1−−−−→ . . .
wl−→ vul)

∣∣∣)
A2
i =

(
∀i1 : i+ 1 ≤ i1 ≤ j − 1, vu(i1−1)

= prev
(

1−→ vui1
1−→ . . .

1−→ vuj−1

wj−→ vuj
wj+1−−−→ . . .

wl−→ vul , ed
′
i1

))
∧
(
∀i2 ∈ {j, . . . , l}, vu(i2−1)

= prev
( wi2−−→ vui2

wi2+1−−−−→ vu(i2+1)

wi2+2−−−−→ . . .
wl−→ vul , ed

′
i2

))

We define Ai = A0
i ∧A1

i ∧A2
i ∧ E0

basis. We can now expand sumk as follows:

sumk = Pr
Strgyj

[
(u0 = · · · = uj−k−2 = 0) ∧Aj−k−1 ∧ indeg(vu(j−k−1)

) = 0
]

(17)

= (
1

1 + 2nP 2
)j−k−1 · Pr

Strgyj

[
Aj−k−1 ∧ indeg(vu(j−k−1)

) = 0
]

The reason that (17) holds is that all ui’s are sampled independently from each other. Thus to
prove 16, it is sufficient to prove the following lemma:

Lemma 9. For all 0 ≤ k ≤ j − 1, it holds

Pr
Strgyj

[
Aj−k−1 ∧ indeg(vu(j−k−1)

) = 0
]

= (
2

1 + 2nP 2
)k+1 · Pr

Strgyj
[Ebasis] · Pr

Strgyj
[V0 = k | Ebasis]

Proof of Lemma 9.

For j − k ≤ i ≤ j − 1, we define A′i = Ai ∧ (indeg(vui) > 0), and we also define A′j−k−1 =

Aj−k−1 ∧
(
indeg(vuj−k−1

= 0)
)
. Thus we want to compute the probability of A′j−k−1 under

Strgyj . We expand the probability as follows:

Pr
Strgyj

[
A′j−k−1

]
= Pr

Strgyj

[
A′j−k−1 | A′j−k

]
· Pr
Strgyj

[
A′j−k | A′j−k+1

]
(18)

· · · Pr
Strgyj

[
A′j−2 | A′j−1

]
· Pr
Strgyj

[
A′j−1 | Ebasis

]
· Pr
Strgyj

[Ebasis] . (19)

For j − k ≤ i ≤ j − 2, we can write:

Pr
Strgyj

[
A′i | A′i+1

]
= Pr

Strgyj

[
Ai ∧ indeg(vui) > 0 | A′i+1

]
= Pr

Strgyj

[
Ai| A′i+1

]
· Pr
Strgyj

[
indeg(vui) > 0 | Ai ∧A′i+1

]
= Pr

Strgyj

[
Ai| A′i+1

]
· Pr
Strgyj

[indeg(vui) > 0 | Ai]

Similarly, we can show that

Pr
Strgyj

[
A′j−k−1 | A′j−k

]
= Pr

Strgyj

[
Aj−k−1| A′j−k

]
· Pr
Strgyj

[
indeg(vuj−k−1

) = 0 | Aj−k−1

]
Pr

Strgyj

[
A′j−1 | Ebasis

]
= Pr

Strgyj
[Aj−1 | Ebasis] · Pr

Strgyj

[
indeg(vuj−1) > 0 | Aj−1

]
54



Now if we define

product1 = Pr
Strgyj

[
indeg(vuj−1) > 0 | Aj−1

]
· Pr
Strgyj

[
indeg(vuj−2) > 0 | Aj−2

]
·

· · · Pr
Strgyj

[
indeg(vuj−k) > 0 | Aj−k

]
· Pr
Strgyj

[
indeg(vuj−k−1

) = 0 | Aj−k−1

]
product2 = Pr

Strgyj
[Aj−1 | Ebasis] · Pr

Strgyj

[
Aj−2| A′j−1

]
· · · Pr

Strgyj

[
Aj−k−1| A′j−k

]
,

we have

Pr
Strgyj

[
A′j−k−1

]
= product1 · product2 · Pr

Strgyj
[Ebasis] . (20)

For j − k − 1 ≤ h ≤ j − 2, we can write:

Pr
Strgyj

[
Ah| A′h+1

]
= Pr

Strgyj

[
(onh+1 = 1) ∧

(
edh+1 =

∣∣∣<cont.(
1−→ vuh+1

1−→ . . .
1−→ vuj−1

wj−→ Pc)
∣∣∣)

∧
(
vuh = prev(

1−→ vuh+1

1−→ . . .
1−→ vuj−1

wj−→ Pc, ed′h+1)
)]

=
1

P
· 1

P
· 2P 2

1 + 2nP 2

=
2

1 + 2nP 2
. (21)

Also, similarly, we can show that

Pr
Strgyj

[Aj−1 | Ebasis] =
2

1 + 2nP 2
.

For j − k ≤ i ≤ j − 2 we have:

= Pr
Strgyj

[indeg(vui) > 0 | Ai]

= Pr
Strgyj

[V0 > j − i− 1 | V0 > j − i− 2] . (22)

The last equation follows from the very description of V0 and the fact that under Strgyj ,
u0, . . . , uj−1 does not affect the randomness of replies given to adversary’s queries. Similarly we
have

Pr
Strgyj

[
indeg(vuj−k−1

) = 0 | Aj−k−1

]
= Pr

Strgyj
[V0 = k | V0 > k − 1]

Pr
Strgyj

[
indeg(vuj−1) > 0 | Aj−1

]
= Pr

Strgyj
[V0 > 0 | Ebasis] .

Thus we have

product1 = Pr
Strgyj

[V0 = k | V0 > k − 1] · Pr
Strgyj

[V0 > k − 1 | V0 > k − 2]

· · · Pr
Strgyj

[V0 > 1 | V0 > 0] · Pr
Strgyj

[V0 > 0 | Ebasis]

=
PrStrgyj [V0 = k]

PrStrgyj [V0 > k − 1]
·

PrStrgyj [V0 > k − 1]

PrStrgyj [V0 > k − 2]
· · ·

PrStrgyj [V0 > 1]

PrStrgyj [V0 > 0]
·

PrStrgyj [V0 > 0]

PrStrgyj [Ebasis]

= Pr
Strgyj

[V0 = k | Ebasis]
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product2 = (
2

1 + 2nP 2
)k+1.

Now from equation (20) and the above two equality formulas the proof follows. ut
Now the proof of Lemma 7 is complete. ut
Now Lemma 6 and Lemma 7 imply the result of Claim 1. ut

C.6.2 Proof of Claim 2 We first review some of the notations we fixed earlier.

A0
total =

j−1∨
k=1

∨
dj−1∈[P ]

...
dj−k∈[P ]

Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj ,1,...,1) [b′l, . . . , b
′
j+1, 1, 0, . . . , bj−k = 0] ∧ b = 0

∨
Ψ−max(dl,...,dj+1,dj)

(wl,...,wj+1,wj)
[b′l, . . . , b

′
j+1, 1] ∧ b = 0

A1
total =

j−1∨
k=1

∨
dj−1∈[P ]

...
dj−k∈[P ]

Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj+1,1,...,1) [b′l, . . . , b
′
j+1, 1, 1, . . . , bj−k = 1] ∧ b = 1

∨
Ψ−max(dl,...,dj+1,dj)

(wl,...,wj+1,wj+1)[b
′
l, . . . , b

′
j+1, 1] ∧ b = 1

E0
k,D = Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj ,1,...,1) , where 1 ≤ k ≤ j − 1 and D = (dj−1, . . . , dj−k)

E0
0,∅ = Ψ−max(dl,...,dj+1,dj)

(wl,...,wj+1,wj)

E1
k,D = Ψ−max(dl,...,dj+1,dj ,dj−1,...,dj−k)

(wl,...,wj+1,wj+1,1,...,1) , where 1 ≤ k ≤ j − 1 and D = (dj−1, . . . , dj−k)

E1
0,D = Ψ−max(dl,...,dj+1,dj)

(wl,...,wj+1,wj+1)

E0
total =

j−1∨
k=0

∨
D∈[P ]k

E0
k,D

E1
total =

j−1∨
k=0

∨
D∈[P ]k

E1
k,D

Letting

D(η) = | Pr
Strgy0

[Awstci(η) = 1 | A0
total]− Pr

Strgy0

[Awstci(η) = 1 | A1
total]|

we need to prove that if ∆0 = Pr[A0
total] > negl(η) and ∆1 = Pr[A1

total] > negl(η), then D(·) is
a negligible function. To this end, we make the following two claims:

Claim 5 If Pr[A0
total] > negl(η) and Pr[A1

total] > negl(η), then

(i)

∣∣∣∣ Pr
Strgy0

[
Awstci(η) = 1 | A0

total

]
− Pr

Strgyj

[
Awstci(η) = 1 | E0

total

]∣∣∣∣ = negl(η)

(ii)

∣∣∣∣ Pr
Strgy0

[
Awstci(η) = 1 | A1

total

]
− Pr

Strgyj

[
Awstci(η) = 1 | E1

total

]∣∣∣∣ = negl(η)

Claim 6

Pr
Strgyj

[
Awstci(η) = 1 | E0

total

]
= Pr

Strgyj

[
Awstci(η) = 1 | E1

total

]
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Note that from the above two claims, the proof of Claim 2 follows immediately. Thus we focus
on proving the above claims.

C.6.2.1 Proof of Claim 5 The proof of both (i) and (ii) are similar, so we prove part (i). We
first show that the probability that Awstci outputs 1 given E0

total occurs in Strgyj is equal to
the same conditional probability under Strgy′0. Then we proceed to show that the difference of
the values of the said conditional probability under Strgy0 and Strgy′0 is negligible, concluding
the proof.

Lemma 10. We have

(a)

Pr
Strgyj

[
Awstci(η) = 1 | E0

total

]
= Pr

Strgy′0

[
Awstci(η) = 1 | E0

total

]
(b) If Pr[A0

total] > negl(η), then∣∣∣∣ Pr
Strgy0

[
Awstci(η) = 1 | A0

total

]
− Pr

Strgy′0

[
Awstci(η) = 1 | E0

total

]∣∣∣∣ = negl(η)

Now we give the proof of each part of the lemma:

Proof of Part (a) of Lemma 10. The proof of this part almost immediately follows from the

very descriptions of Strgyj and Strgy′0, considering that

1. E0
total occurs with the same probability under Strgyj and Strgy′0, and

2. Given E0
total occurs, Awstci has identical views when run under Strgyj and Strgy′0.

We omit the details.

ut

Proof of Part (b) of Lemma 10. We have to show that if PrStrgy0
[A0

total] > negl(η), then∣∣∣∣ Pr
Strgy0

[
Awstci(η) = 1 | A0

total

]
− Pr

Strgy′0

[
Awstci(η) = 1 | E0

total

]∣∣∣∣ = negl(η)

We expand each conditional probability as follows:

p1
4
= Pr

Strgy0

[
Awstci(η) = 1 | A0

total

]
= Pr

Strgy0

[
Awstci(η) = 1 ∧ Failed-Dec | A0

total

]
+ Pr

Strgy0

[
Awstci(η) = 1 ∧ Failed-Dec | A0

total

]
= Pr

Strgy0

[
Awstci(η) = 1 | Failed-Dec ∧A0

total

]
· Pr
Strgy0

[
Failed-Dec | A0

total

]
+ Pr

Strgy0

[
Awstci(η) = 1 ∧ Failed-Dec | A0

total

]
.

Similarly we have

p2
4
= Pr

Strgy′0

[
Awstci(η) = 1 | E0

total

]
= Pr

Strgy′0

[
Awstci(η) = 1 | Failed-Dec ∧ E0

total

]
· Pr
Strgy′0

[
Failed-Dec | E0

total

]
+ Pr

Strgy′0

[
Awstci(η) = 1 ∧ Failed-Dec | E0

total

]
.
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We need to show that if PrStrgy0
[A0

total] > negl(η), then |p1 − p2| is negligible. To do so, we
first show that if PrStrgy0

[A0
total] > negl(η), then PrStrgy′0 [E0

total] > negl(η). Then the proof
of |p1 − p2| = negl(η) is derived from the following proposition. In the following proposition,
Failed-Dec refers to the event defined in the proof of Claim (4). Although, it was defined for
Strgy′0, it can similarly be defined for Strgy0 as well.

Proposition 2. We have

(i) If PrStrgy0 [A0
total] > negl(η), then

Pr
Strgy0

[
Awstci(η) = 1 ∧ Failed-Dec | A0

total

]
= negl(η)

(ii) If PrStrgy′0 [E0
total] > negl(η), then

Pr
Strgy′0

[
Awstci(η) = 1 ∧ Failed-Dec | E0

total

]
= negl(η)

(iii)

Pr
Strgy0

[
Awstci(η) = 1 | Failed-Dec ∧A0

total

]
= Pr

Strgy′0

[
Awstci(η) = 1 | Failed-Dec ∧ E0

total

]
(iv) If PrStrgy0 [A0

total] > negl(η) and PrStrgy′0 [E0
total] > negl(η)∣∣∣∣ Pr

Strgy0

[
Failed-Dec | A0

total

]
− Pr

Strgy′0

[
Failed-Dec | E0

total

]∣∣∣∣ = negl(η)

As discussed earlier, we first show that if PrStrgy0
[A0

total] > negl(η), then PrStrgy′0 [E0
total] >

negl(η), and then we proceed to prove the above proposition.

Suppose PrStrgy0
[A0

total] > negl(η), and, to the contrary, PrStrgy′0 [E0
total] = negl(η). From

Claim (3), we obtain that PrStrgyj [E
0
total] = negl(η), and consequently, the following,

j−1∑
k=0

∑
D∈[P ]k

(
1

2
)l−j+k+2 · Pr

Strgyj
[E0

k,D]

is also negligible. (Note that we have j ≤ l.) Now we are reaching a contradiction; since, by
Lemma (6), Equation (10) and the fact that l is constant, we have∣∣∣∣∣∣ Pr

Strgy0

[A0
total]−

j−1∑
k=0

∑
D∈[P ]k

(
1

2
)l−j+k+2 · Pr

Strgyj
[E0

k,D]

∣∣∣∣∣∣ = negl(η),

which implies that PrStrgy0
[A0

total] should also be negligible.

Now we proceed to prove Proposition (2).

Proofs of Parts (i) and (ii) of Proposition (2). The proofs of both (i) and (ii) are entirely
similar, so we prove (i). Suppose, to the contrary,

Pr
Strgy0

[
Awstci(η) = 1 ∧ Failed-Dec | A0

total

]
> negl(η).

Since we already have PrStrgy0
[A0

total] > negl(η), we obtain that

Pr
Strgy0

[
Awstci(η) = 1 ∧ Failed-Dec ∧A0

total

]
> negl(η),
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and as a result,

Pr
Strgy0

[Failed-Dec] > negl(η).

Now exactly like the proof of Lemma (8), from non-negligibility of the above probability, one
can efficiently construct a successful IND-CCA2-attack against the encryption scheme, thereby
contradicting the IND-CCA2 security assumption of the scheme. This concludes the proof. ut

Proof of Part (iii). The idea of the proof is analogous to that of part (a) of Lemma 10;

namely, intuitively, the view of Awstci under Strgy0 and provided Failed-Dec ∧A0
total occurs is

“identical” to his view under Strgy′0 and provided Failed-Dec∧E0
total occurs. We now formalize

this idea below.

First note that all the random coins needed to be tossed by Acca under Strgy0 are also
tossed under Strgy′0, while, at most, an additional l number of coin-tossings are needed under
Strgy0 to sample bi’s. (Note that the values of bi’s are fixed under Strgy′0.) Therefore, without
loss of generality, we assume that Acca when run under Strgy0 uses l more random bits than
when run under Strgy′0, and that the first l bits of rAcca under Strgy0 are used to sample
bi’s. Under this assumption, if (rAwstci , rAcca) is a valid (i.e. of required length) pair of random
coins under Strgy′0, so is (rAwstci , rl||rAcca) under Strgy0, where rl ∈ {0, 1}l. Now we can
easily verify that if, for rl ∈ {0, 1}l, the pair (rAwstci , rl||rAcca) enforces (Failed-Dec ∧ A0

total) to
occur under Strgy0, then (rAwstci , rAcca) enforces (Failed-Dec ∧ E0

total) to occur under Strgy′0;
and that if (rAwstci , rl||rAcca), under Strgy0, makes Awstci output 1 provided that it enforces
(Failed-Dec ∧ A0

total) to occur, then (rAwstci , rAcca) makes Awstci output 1 under Strgy′0. The
converse of this is also true; namely, if (rAwstci , rAcca) under Strgy′0 enforces (Failed-Dec∧E0

total)
to occur, and in particular (Failed-Dec ∧ E0

k,D) to occur for some k ∈ {0, . . . , j − 1}, then

(rAwstci , rl||rAcca) does also enforce (Failed-Dec∧A0
k,D) (and as a result (Failed-Dec∧A0

total)) to
occur under Strgy0, where rl is any bitstring of length l which induces the same sampling of
bi’s as that enforced under Strgy′0 by using (rAwstci , rAcca). (i.e. br = b′r for j+1 ≤ r ≤ l, bj = 1,
and bi = 0 for s ≤ i ≤ j − 1, where s is the number induced by (rAwstci , rAcca) under Strgy′0.)
Moreover, if if (rAwstci , rAcca) under Strgy′0 makes Awstci output 1 provided that it enforces
(Failed-Dec ∧ E0

total) to occur, then (rAwstci , rl||rAcca) makes Awstci output 1 under Strgy0, for
any rl ∈ {0, 1}l which enforces the same sampling on bi’s as that enforced under Strgy′0 by
using (rAwstci , rAcca). The proof immediately follows from the above observations. ut

Proof of Part (iv). To prove this part, we show that PrStrgy0

[
Failed-Dec | A0

total

]
= negl(η)

and PrStrgy′0

[
Failed-Dec | E0

total

]
= negl(η), and this completes the proof. This is because we

have:

Pr
Strgy0

[
Failed-Dec | A0

total

]
= 1− Pr

Strgy0

[
Failed-Dec | A0

total

]
Pr

Strgy′0

[
Failed-Dec | E0

total

]
= 1− Pr

Strgy′0

[
Failed-Dec | E0

total

]
.

Now we show that PrStrgy0

[
Failed-Dec | A0

total

]
= negl(η). (The proof for PrStrgy′0

[
Failed-Dec | E0

total

]
= negl(η)

is exactly similar.) Suppose PrStrgy0

[
Failed-Dec | A0

total

]
> negl(η); since by assumption we

have PrStrgy0
[A0

total] > negl(η), we obtain PrStrgy0

[
Failed-Dec ∧A0

total

]
> negl(η), and as a

result, PrStrgy0
[Failed-Dec] > negl(η), which is a contradiction, as illustrated in the proof of

Part (i). ut
Now the proof of Proposition (2), Lemma (10) , and Claim (5) are all complete. ut

ut
ut
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C.6.2.2 Proof of Claim 6 We need to prove that

Pr
Strgyj

[
Awstci(η) = 1 | E0

total

]
= Pr

Strgyj

[
Awstci(η) = 1 | E1

total

]
.

First we discuss why intuitively the above equality should be true, and then we rigorously
demonstrate its correctness using a probabilistic argument. The intuition behind the above
equality is that the view of Awstci run under Strgyj is identical under the occurrence of E0

total

or E1
total. To see this, note that provided that E0

total occurs, the distribution of replies given to
Awstci’s queries is formed as follows:

1. The first wj occurrences of k−1
uj are replaced with a fake value (i.e. fskuj ), and the rest with

the real value (i.e. skuj ). Also for j + 1 ≤ t ≤ l, the first wt − b′′t occurrences of k−1
ut are

replaced with a fake value (i.e. fskut), and the rest with the real value (i.e. skut), where
b′′t = 0 if b′t 6= b′t−1, and b′′t = 1 otherwise.

2. All other symbols (i.e. nonces, public keys, and other private keys) are replaced with their
real values.

Note that the above distribution is also what formed as a result of the occurrence of E1
total. In

particular, the values of uj−1, . . . , us have no effect on the distribution of replies given to the
adversary, and the values of uj , . . . , ul (which do participate in the randomness of replies) are
distributed “identically” under both E0

total and E1
total. Now we turn the above reasoning into a

rigorous argument. First let’s introduce some notation.

E0
basis = ∀i ∈ {j, . . . , l}, indeg(vui) = di

E1
basis = ∀i ∈ {j + 1, . . . , l}, oni = wi

E2
basis = ∀i ∈ {j + 1, . . . , l}, edi = <cont.(

wi−→ vui
wi+1−−−→ vui+1

wi+2−−−→ . . .
wl−→ vul)

E3
basis = ∀i ∈ {j, . . . , l − 1}, vui = prev

(
wi+1−−−→ vui+1

wi+2−−−→ vui+2

wi+3−−−→ . . .
wl−→ vul , ed

′
i+1

)
E4
basis = If Awstci makes a challenge query challenge(k−1

j , bs) (i.e. private-key challenge), then ul = j.

We prove that:

Pr
Strgyj

[
Awstci(η) = 1 | E0

total

]
= Pr

Strgyj

[
Awstci(η) = 1 | E1

total

]
= Pr

Strgyj
[Awstci(η) = 1 | Ebasis] ,

(23)

where Ebasis = E0
basis ∧ · · · ∧ E4

basis. We show the above equality for E0
total and the proof for

E1
total is obtained similarly. We give the following last set of notation:

A0
i = (u0 = u1 = · · · = ui−1 = 0) ∧ (ui 6= 0) ∧ (∀i1 : i+ 1 ≤ i1 ≤ j − 1, oni1 = 1) ∧ (onj = wj)

A1
i =

(
∀i1 : i+ 1 ≤ i1 ≤ j − 1, edi1 = <cont.(

1−→ vui1
1−→ . . .

1−→ vuj−1

wj−→ vuj
wj+1−−−→ . . .

wl−→ vul)
)

∧ (edj = <cont.(
wj−→ vuj

wj+1−−−→ . . .
wl−→ vul))

A2
i =

(
∀i1 : i+ 1 ≤ i1 ≤ j − 1, vu(i1−1)

= prev
(

1−→ vui1
1−→ . . .

1−→ vuj−1

wj−→ vuj
wj+1−−−→ . . .

wl−→ vul , ed
′
i1

))
∧
(
vu(j−1)

= prev
(
wj−→ vuj

wj+1−−−→ vu(j+1)

wj+2−−−→ . . .
wl−→ vul , ed

′
j

))
.

Letting Ai = A0
i ∧A1

i ∧A2
i , and defining Ec = A0∨A1∨ · · ·∨Aj−1, we have E0

total = Ebasis∧Ec.
Now we can write

Pr
Strgyj

[
Awstci(η) = 1 | E0

total

]
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= Pr
Strgyj

[Awstci(η) = 1 | Ebasis ∧ Ec]

=
PrStrgyj [Awstci(η) = 1 ∧ Ec | Ebasis]

PrStrgyj [Ec | Ebasis]

=
PrStrgyj [Awstci(η) = 1 | Ebasis] · PrStrgyj [Ec | Ebasis]

PrStrgyj [Ec | Ebasis]
(24)

= Pr
Strgyj

[Awstci(η) = 1 | Ebasis]

The reason why the equality line (15) holds is that, given that Ebasis occurs, the two events
Awstci(η) = 1 and Ec are independent. This is because (as also explained above) variables
{ui}s≤i≤j−1, {(oni, edi, ed′i)}s≤i≤j−1, edj do not affect the randomness of replies given to adver-
sary’s queries, which make the two events Awstci(η) = 1 and Ec independent. Now the proof of
Claim 6 is complete. ut

Now Claim 5 and Claim 6 imply Claim 2. ut
Claim 1 and Claim 2 completes the proof of Lemma 4. ut

C.7 Proof of Lemma 5

The proof of this lemma fairly follows a similar path taken for the proof of Lemma (4). Thus we
present a less detailed proof than that of Lemma (4). The proof of all parts of the lemma are
entirely similar, so we give the proof for part (1). Let j, b′l, . . . , b

′
j , wl, . . . , wj , dl, . . . , dj be defined

as specified in the statement of the lemma, and also define b′j−1 = 0. We fix all these variables

throughout the proof, and for ease of notation, we write Bh
total instead of Bh

total,j,Bj ,Dj ,Wj
(for

h ∈ {0, 1}). Now defining S0 = PrStrgy0
[B0

total] and S1 = PrStrgy0
[B1

total], we have to show that,∣∣∣∣ Pr
Strgy0

[
B0
total

]
· Pr
Strgy0

[
Awstci(η) = 1 | B0

total

]
− Pr

Strgy0

[
B1
total

]
· Pr
Strgy0

[
Awstci(η) = 1 | B1

total

]∣∣∣∣ = negl(η).

(25)
To this end, we, similarly as before, prove the following two claims.

Claim 7 |S0 − S1| = negl(η).

Claim 8 If S0 > negl(η) and S1 > negl(η), then

Pr
Strgy0

[Awstci(η) = 1 | B0
total]− Pr

Strgy0
[Awstci(η) = 1 | B1

total] = negl(η)

.

Note that, again, the above two claims yield (25), because if either S0 or S1 is negligible, then
according to Claim (7), the other one will also be negligible, and consequently (25) follows.

Thus we focus on proving the above two claims. We give the following notations. For 2 ≤
k ≤ j − 1 and D = (dj−1, . . . , dj−k) ∈ [P ]k, we define the following events:

B1
k,D = Ψ−max(dl,...,dj ,dj−1,dj−2,...,dj−k)

(wl,...,wj ,dj−1,1...,1) [bl = b′l, . . . , bj = b′j , bj−1 = 0, bj−2 = 1, . . . , bj−k = 1] ∧ b = 1

B1
1,{dj−1} = Ψ−max(dl,...,dj ,dj−1)

(wl,...,wj ,dj−1)[bl = b′l, . . . , bj = b′j , bj−1 = 0] ∧ b = 1

F 1
k,D = Ψ−max(dl,...,dj ,dj−1,dj−2,...,dj−k)

(wl,...,wj ,dj−1,1...,1)

F 1
1,{dj−1} = Ψ−max(dl,...,dj ,dj−1)

(wl,...,wj ,dj−1)
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F 0
total = Ψ−max(dl,...,dj)

(wl,...,wj)

F 1
total =

j−1∨
k=1

∨
D∈[P ]k

F 1
k,D

Now can expand S0 and S1 as follows:

S0 = (
1

2
)l−j+2. Pr

Strgy0

[
F 0
total | bl = b′l; . . . ; bj = b′j ; b = 0

]
S1 =

j−1∑
k=1

∑
D∈[P ]k

(
1

2
)l−j+k+2. Pr

Strgy0

[
F 1
k,D | bl = b′l; . . . ; bj = b′j ; bj−1 = 0; bj−2 = 1; . . . ; bj−k = 1; b = 1

]

C.7.1 Proof of Claim 7 We introduce a new security game, Strgy′j−1, as follows: in the
SETUP phase:

– Variables u0, . . . , ul are sampled in the same manner as in Strgy0, and denoting by s the
smallest index where us 6= 0, if s ≥ j, then the execution is terminated (a failed situation),
otherwise, for each s < t ≤ l we sample three parameters (ont, edt, ed

′
t), again, in exactly the

same manner as in Strgy0. (Again, under Strgy′j−1 this sequence of triples of random values
has no effect on the randomness of replies given to adversary’s queries; they are included in
the game as we are to formulate some events depending on them.)

– We generate n pairs of public/private key pairs (pk1, sk1), . . . , (pkn, skn), fake private keys
fskuj−1 , fskuj . . . , fskul , and n nonces nc1, . . . , ncn, independently at random from the same
distributions used in Strgy0.

In the Simulation phase:

– An encryption query encrypt(e, i) is answered by E ← JeKτ0 , where τ0 is defined as follows:
τo(xi) = nci, τ0(ki) = pki for 1 ≤ i ≤ n. Moreover, if k−1

i /∈ {k−1
uj−1

, k−1
uj , . . . , k

−1
ul
}, we assign

τ0(k−1
i,o ) = ski, for all o’s, and for k−1

u(j−1)
, we assign τ0(k−1

u(j−1),o1
) = fskuj , for all o1’s. Finally,

for all t ∈ {j, . . . , l}, we define τ0(k−1
ut,o3) = fskut and τ0(k−1

ut,o4) = skut , for all o3 < wt and
o4 > wt, and if b′t = b′t−1, then τ0(k−1

ut,wt) = skut , and, τ0(k−1
ut,wt) = fskut , otherwise. (Recall

that we set b′j−1 = 0.)
– A corruption query corrupt(i) is handled by returning ski.
– For decryption queries, we first define a key-renaming function, R, as follows: for all k−1

i,o

we have R[k−1
i,o ] = k−1

i if τ0(k−1
i,o ) = ski, and R[k−1

i,o ] = k′−1
i if τ0(k−1

i,o ) = fski. Now a
query decrypt(c, i) is answered by Dec(c, ski), if none of the following events occur, and it
is answered by ⊥, otherwise: (a) (c, i) is coinductively visible in eval-exp, and (b) for some
({e}kh , bs) ∈ eval-exp it holds that there exists a subexp {e′}kp of {e}kh such that R[{e′}kp ]
is type-1 and that c is the computational image of {e′}kp in bs.

– A subexp-testing query subexp({e}ki , bsi, {e′}kj , bsj) is answered by 1 if bsj is the computa-
tional image of {e′}kj in bsi, and answered by 0, otherwise.

Similarly to Lemmas 6 and 7, we can give the following two Lemmas.

Lemma 11. For every D = [P ]k, it holds that:∣∣∣∣∣ Pr
Strgy0

[
F 0
total | bl = b′l; . . . ; bj = b′j ; b = 0

]
− Pr

Strgy′j−1

[F 0
total]

∣∣∣∣∣ = negl(η)
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∣∣∣∣∣ Pr
Strgy0

[
F 1
k,D | bl = b′l; . . . ; bj = b′j ; bj−1 = 0; bj−2 = 1; . . . ; bj−k = 1; b = 1

]
− Pr

Strgy′j−1

[F 1
k,D]

∣∣∣∣∣ = negl(η)

Lemma 12.

(
1

2
)l−j+2. Pr

Strgy′j−1

[
F 0
total

]
=

j−1∑
k=1

∑
D∈{[P ]}k

(
1

2
)l−j+k+2. Pr

Strgy′j−1

[
F 1
k,D

]
The above two Lemmas yield Claim (7). (Again here we are using the assumption that l is
constant.) The proofs of the above lemmas also follow an essentially similar line of reasoning as
those of Lemmas (6) and (7); therefore, we will omit most of the details.

C.7.1.1 Proof Sketch for Lemma (11). We give the outline of the proof for the second part;
the proof for the first part is obtained similarly. We proceed similarly to the proof of Lemma
6. We first define an intermediate game, Strgy′′0, which similarly to Strgy′0, is a special case of
Strgy0 by just (deterministically) setting the values for bi’s to b′i’s. Namely, after sampling the
sequence {ui}0≤i≤l, and letting s denote the smallest index for which it holds us 6= 0, if s ≥ j,
then the execution is terminated; otherwise we assign bi = b′i for j ≤ i ≤ l, and bj−1 = 0, and
finally br = 1 for s ≤ r ≤ j − 2. The rest of the game is exactly similar to that of Strgy′0. Now
analogously to Claims 3 and 4, we can prove the following two results, completing the proof of
Lemma 11.

Pr
Strgy′j−1

[
F 1
k,D

]
= Pr

Strgy′′0

[
F 1
k,D

]
∣∣∣∣ Pr
Strgy′′0

[
F 1
k,D

]
− Pr

Strgy0

[
F 1
k,D | bl = b′l; . . . ; bj = b′j ; bj−1 = 0; bj−2 = 1; . . . ; bj−k = 1; b = 1

]∣∣∣∣ = negl(η).

The proofs of both equality formulas above are obtained by the same reasoning used to prove
Claims 3 and 4; therefore, we omit the details. ut

C.7.1.2 Proof Sketch for Lemma 12. Defining

tot0 = (
1

2
)l−j+2 · Pr

Strgy′j−1

[
F 0
total

]
tot1 =

j−1∑
k=1

∑
D∈[P ]k

(
1

2
)l−j+k+2 · Pr

Strgy′j−1

[
F 1
k,D

]
,

we prove that

tot0 = tot1 = (
1

2
)l−j+2 · ( 1

1 + 2nP 2
)
j−1

· Pr
Strgy′j−1

[Fbasis] , (26)

(27)

where Fbasis is the intersection of the following four events (i.e. Fbasis = F 0
basis ∧ · · · ∧ F 4

basis):

1. F 0
basis ::= (∀i ∈ {j, . . . , l}, indeg(vui) = di) ∧

(
indeg(vu(j−1)

) > 0
)

,

2. F 1
basis ::= ∀i ∈ {j, . . . , l}, oni = wi,

3. F 2
basis ::= ∀i ∈ {j, . . . , l}, edi = <cont.(

wi−→ vui
wi+1−−−→ vui+1

wi+3−−−→ . . .
wl−→ vul),

4. F 3
basis ::= ∀i ∈ {j − 1, j, . . . , l}, vui = prev

(
wi+1−−−→ vui+1

wi+2−−−→ vui+2

wi+3−−−→ . . .
wl−→ vul , ed

′
i+1

)
.
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5. F 4
basis ::= If Awstci makes a challenge query challenge(k−1

j , bs) (i.e. private-key challenge),
then ul = j.

Proving (26) for tot0 is rather straightforward. For this, note that we have:

tot0 = (
1

2
)l−j+2 · Pr

Strgy′j−1

[
F 0
total

]
= (

1

2
)l−j+2 · Pr

Strgy′j−1

[Fbasis ∧ (uj−2 = uj−3 = · · · = u0 = 0)]

= (
1

2
)l−j+2 · Pr

Strgy′j−1

[Fbasis] · Pr
Strgy′j−1

[uj−2 = uj−3 = · · · = u0 = 0]

= (
1

2
)l−j+2 · ( 1

1 + 2nP 2
)
j−1

· Pr
Strgy′j−1

[Fbasis] .

Showing (26) for tot1 is relatively more involved, but essentially follows a similar line of prob-
abilistic reasoning to that of the proof of Lemma 7 for total0. Now we briefly explain how the
proof works.

First, we let Pc = vuj−1

wj−→ vuj
wj+1−−−→ . . .

wl−→ vul , which is a non-maximal, coinductively-
continuable path if Fbasis occurs. Now, analogously to V0 defined in the proof of Lemma 7,
we define the random variable V1 which takes values in {−1, 1, 2, . . . , j − 1} with the follow-
ing probability distribution: after the execution of Strgy′j−1, if Fbasis does not occur, then
V1 = −1; otherwise, the probability that V1 = 1 is the probability that indeg(vi1) = 0, where

vi1 is picked uniformly at random from <cont.(
indeg(vuj−1 )
−−−−−−−−→ Pc). For r > 1, the probability

that V1 = r is defined to be the probability that q = r after the execution of the follow-
ing:

1: q ← 1
2: while indeg(viq > 0) do

3: Pick viq+1 uniformly at random from <cont.(
1−→ viq

1−→ . . .
1−→ vi1

indeg(vuj−1 )
−−−−−−−−→ Pc)

4: q ← q + 1
5: end while

Recall that

F 1
k,D = Ψ−max(dl,...,dj ,dj−1,dj−2,...,dj−k)

(wl,...,wj ,dj−1,1...,1) .

Now, defining

sumk =
∑

D∈[P ]k

Pr
Strgy′j−1

[
F 1
k,D

]
,

to prove (26) we show that

sumk = 2k · ( 1

1 + 2nP 2
)
j−1

· Pr
Strgy′j−1

[Fbasis] · Pr
Strgy′j−1

[V1 = k | Fbasis] , (28)

and this completes the proof. (This is because, the assumption that the diameter of the hidden
subgraph is at most l implies that V1 = −1 or 1 ≤ V1 ≤ j−1.) To this end, for i ∈ {1, . . . , j−2},
we introduce the following random variables:

A0
i = (s ≤ i) ∧ (∀i1 : i+ 1 ≤ i1 ≤ j − 2, oni1 = 1) ∧

(
onj−1 = indeg(vuj−1)

)
∧ (∀i2 ∈ {j, . . . , l} : oni2 = wi2)
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A1
i =

(
∀i1 : i+ 1 ≤ i1 ≤ j − 2, edi1 = <cont.

(
1−→ vui1

1−→ . . .
1−→ vuj−2

indeg(vuj−1 )
−−−−−−−−→ Pc

))
∧
(
edj−1 = <cont.

(
indeg(vuj−1 )
−−−−−−−−→ Pc

))
∧
(
∀i2 ∈ {j, . . . , l}, edi2 = <cont.

( wi2−−→ vui2
wi2+1−−−−→ . . .

wl−→ vul

))
A2
i =

(
∀i1 : i+ 1 ≤ i1 ≤ j − 2, vu(i1−1)

= prev

(
1−→ vui1

1−→ . . .
1−→ vuj−2

indeg(vuj−1 )
−−−−−−−−→ Pc, ed′i1

))
∧
(
vuj−2 = prev

(
indeg(vuj−1 )
−−−−−−−−→ Pc, ed′j−1

))
∧
(
∀i2 ∈ {j, . . . , l}, vu(i2−1)

= prev
( wi2−−→ vui2

wi2+1−−−−→ vu(i2+1)

wi2+2−−−−→ . . .
wl−→ vul , ed

′
i2

))

We defineAi = A0
i∧A1

i∧A2
i∧F 0

basis, and for j−k ≤ i ≤ j−2, we defineA′i = Ai ∧ (indeg(vui) > 0),
and finally A′j−k−1 = Aj−k−1 ∧

(
indeg(vuj−k−1

= 0)
)
. Similarly to the proof of Claim 4, one can

see that we can write sumk as follows:

sumk = Pr
Strgy′j−1

[
(u0 = · · · = uj−k−2 = 0) ∧A′j−k−1

]
= (

1

1 + 2nP 2
)j−k−1 · Pr

Strgy′j−1

[
A′j−k−1

]
Thus to prove (28), we just need to prove the following lemma:

Lemma 13. For all 0 ≤ k ≤ j − 1, it holds

Pr
Strgy′j−1

[
A′j−k−1

]
= (

2

1 + 2nP 2
)k · Pr

Strgy′j−1

[Fbasis] · Pr
Strgy′j−1

[V1 = k | Fbasis]

Proof of Lemma 13.

Note that we have
A′j−k−1 ⊆ A′j−k ⊆ · · · ⊆ A′j−2 ⊆ Fbasis.

Based on this, we expand the probability as follows:

Pr
Strgy′j−1

[
A′j−k−1

]
= Pr

Strgy′j−1

[
A′j−k−1 | A′j−k

]
· Pr
Strgy′j−1

[
A′j−k | A′j−k+1

]
· · · Pr

Strgy′j−1

[
A′j−3 | A′j−2

]
· Pr
Strgy′j−1

[
A′j−2 | Fbasis

]
· Pr
Strgy′j−1

[Fbasis] .

For j − k ≤ i ≤ j − 3, we can write:

Pr
Strgy′j−1

[
A′i | A′i+1

]
= Pr

Strgy′j−1

[
Ai ∧ indeg(vui) > 0 | A′i+1

]
= Pr

Strgy′j−1

[
Ai| A′i+1

]
· Pr
Strgy′j−1

[
indeg(vui) > 0 | Ai ∧A′i+1

]
= Pr

Strgy′j−1

[
Ai| A′i+1

]
· Pr
Strgy′j−1

[indeg(vui) > 0 | Ai] .

The last equality follows from the fact that Ai ⊆ A′i+1. Similarly, we can show that

Pr
Strgy′j−1

[
A′j−k−1 | A′j−k

]
= Pr

Strgy′j−1

[
Aj−k−1| A′j−k

]
· Pr
Strgy′j−1

[
indeg(vuj−k−1

) = 0 | Aj−k−1

]
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Pr
Strgy′j−1

[
A′j−2 | Fbasis

]
= Pr

Strgy′j−1

[Aj−2 | Fbasis] · Pr
Strgy′j−1

[
indeg(vuj−2) > 0 | Aj−2

]
Now if we define

product1 = Pr
Strgy′j−1

[
indeg(vuj−2) > 0 | Aj−2

]
· Pr
Strgy′j−1

[
indeg(vuj−3) > 0 | Aj−3

]
·

· · · Pr
Strgy′j−1

[
indeg(vuj−k) > 0 | Aj−k

]
· Pr
Strgy′j−1

[
indeg(vuj−k−1

) = 0 | Aj−k−1

]
product2 = Pr

Strgy′j−1

[Aj−2 | Fbasis] · Pr
Strgy′j−1

[
Aj−3| A′j−2

]
· · · Pr

Strgy′j−1

[
Aj−k−1| A′j−k

]
,

we have

Pr
Strgy′j−1

[
A′j−k−1

]
= product1 · product2 · Pr

Strgy′j−1

[Fbasis] . (29)

Now similarly to the proof of Lemma 9 one can derive the following equality formulas:

Pr
Strgy′j−1

[
Ah| A′h+1

]
=

2

1 + 2nP 2
, for j − k − 1 ≤ h ≤ j − 3 (30)

Pr
Strgy′j−1

[Aj−2 | Fbasis] =
2

1 + 2nP 2
(31)

Pr
Strgy′j−1

[indeg(vui) > 0 | Ai] = Pr
Strgy′j−1

[V1 > j − i− 1 | V1 > j − i− 2] , for j − k ≤ i ≤ j − 3

(32)

Pr
Strgy′j−1

[
indeg(vuj−k−1

) = 0 | Aj−k−1

]
= Pr

Strgy′j−1

[V1 = k | V1 > k − 1] (33)

Pr
Strgy′j−1

[
indeg(vuj−2) > 0 | Aj−2

]
= Pr

Strgy′j−1

[V1 > 1 | Fbasis] (34)

As a result, we can simplify product1 and product2 as follows, completing the proof of Lemma
13:

product1 = Pr
Strgy′j−1

[V1 = k | Fbasis]

product2 = (
2

1 + 2nP 2
)k

ut
Now the proofs of Lemma 12 and Claim 7 are complete.

ut
ut

C.7.2 Proof of Claim 8 The idea of the proof is exactly like that of Claim 2, therefore we
omit most of the details. Letting

D′(η) = | Pr
Strgy0

[Awstci(η) = 1 | B0
total]− Pr

Strgy0

[Awstci(η) = 1 | B1
total]|,

we need to prove that if S0 = Pr[B0
total] > negl(η) and S1 = Pr[B1

total] > negl(η), then D′(·) is
a negligible function. To this end, we give the following lemma:

Lemma 14. We have:
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1. If Pr[B0
total] > negl(η) and Pr[B1

total] > negl(η), then

(i)

∣∣∣∣∣ Pr
Strgy0

[
Awstci(η) = 1 | B0

total

]
− Pr

Strgy′j−1

[
Awstci(η) = 1 | F 0

total

]∣∣∣∣∣ = negl(η)

(ii)

∣∣∣∣∣ Pr
Strgy0

[
Awstci(η) = 1 | B1

total

]
− Pr

Strgy′j−1

[
Awstci(η) = 1 | F 1

total

]∣∣∣∣∣ = negl(η)

2.

Pr
Strgy′j−1

[
Awstci(η) = 1 | F 0

total

]
= Pr

Strgy′j−1

[
Awstci(η) = 1 | F 1

total

]
Note that the above lemma immediately implies that D′ is negligible. Thus we turn our attention
to proving the above lemma. The idea of the proof for part (2) of the above lemma is essentially
similar to that of Claim 6; namely, using the same argument presented there, one can also show
here for game Strgy′j−1 that the view of Awstci is identically distributed under the occurrences
of F 0

total and F 1
total, yielding the desired equality. We omit the details.

For part (1), similarly to the proof of Claim 5, the proof of both (i) and (ii) follow the same
line of reasoning and, hence, we present an overview of the proof for (i). To prove (i), we can
show that

(a)

Pr
Strgy′j−1

[
Awstci(η) = 1 | F 0

total

]
= Pr

Strgy′′0

[
Awstci(η) = 1 | F 0

total

]
(b) If Pr[B0

total] > negl(η), then∣∣∣∣ Pr
Strgy0

[
Awstci(η) = 1 | B0

total

]
− Pr

Strgy′′0

[
Awstci(η) = 1 | F 0

total

]∣∣∣∣ = negl(η),

where Strgy′′0 is the game defined in the proof of Lemma 11. Now the proofs for (a) and (b)
above, again, proceed in a very similar manner to those of, respectively, parts (a) and (b) of
Lemma 10. This concludes the proofs of Lemma 14 and Claim 8. ut

ut
Now Claim 7 and Claim 8 imply the result of Lemma 5. ut

C.8 Proof of Corollary 1

Proof of Part 1. From Equation (7) we have

∆cca-sim =
∣∣Pr
[
Acca(η) = 1 ∧ Bad ∧ b = 0

]
− Pr

[
Acca(η) = 1 ∧ Bad ∧ b = 1

]∣∣ .
To prove Part 1, it suffices to show that(

Bad ∧ b = 0
)

=
(
θ0 ∨ θwstci

0

)
(35)(

Bad ∧ b = 1
)

=
(
θ1 ∨ θwstci

1

)
(36)

We give the proof for (35), and the proof for (36) is obtained similarly. If E is one of the events
Bad, θ0, or θwstci

0 , we define S(E) to be the set of all events OR’ed together to form E, where

each of such events is either of the form ψ-max
(.,...,.)
(.,...,.) [., . . . , .] or of the form ψ-max

(.,...,.)
(.,...,.)[., . . . , .].
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(Henceforth, we refer to the former as ψ-max-type and to the latter as ψ-max-type of events.)
To show the result, it suffices to show that

E ∈ S(Bad)⇔ (E ∧ b = 0) ∈ S(θ0) ∪ S(θwstci
0 )

The (⇐) direction is obvious; if (E ∧ b = 0) ∈ S(θ0) ∪ S(θwstci
0 ), then obviously E ∈ Bad; this

follows from the very definitions of S(θ0) and S(θwstci
0 ).

The other direction is less trivial and requires careful reasoning. Suppose E ∈ Bad; we have
the following cases:

(i) E is a ψ-max-type event; namely, there exists i ∈ {2, . . . , l}, and dl, . . . , di ∈ [P ], and

wl ∈ [dl], . . . , wi ∈ [di], and b′l, . . . , b
′
i ∈ {0, 1} such that E = ψ-max

(dl,...,di)
(wl,...,wi)

[b′l, . . . , b
′
i];

then obviously (E ∧ b = 0) ∈ S(B0
total,i), and consequently, (E ∧ b = 0) ∈ S(θ0). Moreover

if E = ψ − dl then (E ∧ b = 0) ∈ S(C0
total,l+1).

(ii) E = ψ-max
(dl,...,di+1,di)
(wl,...,wi+1,wi)

[b′l, . . . , b
′
i+1, 1], where 1 ≤ i ≤ l, and dl, . . . , di ∈ [P ], and wl ∈

[dl], . . . , wi ∈ [di], and b′l, . . . , b
′
i+1 ∈ {0, 1}. Now it is easy to see that if wi < di, then

(E ∧ b = 0) ∈ S(A0
total,i). Otherwise, we have two cases: (a) wi = di and i < l: in this case

(E∧b = 0) ∈ S(B′0total,i+1), or (b) wi = di and i = l: in this case (E∧b = 0) ∈ S(C ′0total,l+1).
Thus, in either case, we have (E ∧ b = 0) ∈ S(θ0).

(iii) E = ψ-max
(dl,...,di+1,di)
(wl,...,wi+1,wi)

[b′l, . . . , b
′
i+1, 0], where b′l, . . . , b

′
i+1 ∈ {0, 1} and 1 ≤ i ≤ l, and

dl, . . . , di ∈ [P ], and wl ∈ [dl], . . . , wi+1 ∈ [di+1] and 2 ≤ wi ≤ di. In this case, we have
(E ∧ b = 0) ∈ S(A′0total,i), and again, (E ∧ b = 0) ∈ S(θ0).

(iv) E = ψ-max
(dl,...,di+1,di)
(wl,...,wi+1,1)[b

′
l, . . . , b

′
i+1, 0], where b′l, . . . , b

′
i+1 ∈ {0, 1} and 1 ≤ i ≤ l, and

dl, . . . , di ∈ [P ], and wl ∈ [dl], . . . , wi+1 ∈ [di+1]. Now if for all i+ 1 ≤ k ≤ l, both wk = 1
and b′k = 0 hold, then (E ∧ b = 0) ∈ S(θwstci

0 ). Otherwise, let k1 ∈ {i + 1, . . . , l} be the
smallest number for which either wk1 > 1 or b′k1 = 1 holds (they could both happen).
It follows from the definition that for all k2 ∈ {i, . . . , k1 − 1} both wk2 = 1 and b′k2 = 0
hold. Now if b′k1 = 1, then there are two cases: either wk1 < dk1 in which case we have

(E ∧ b = 0) ∈ S(A0
total,k1

), or wk1 = dk1 in which case we have (E ∧ b = 0) ∈ S(B′0total,k1+1)

if k1 < l, and (E ∧ b = 0) ∈ S(C ′0total,l+1) if k1 = l. Otherwise if b′k1 = 0, then we must

have wk1 > 1, in which case we will obtain (E ∧ b = 0) ∈ S(A′0total,k1). Thus, we always

have (E ∧ b = 0) ∈ S(θwstci
0 ) ∪ S(θ0).

Now the proof is complete.

ut
Proof of Part 2. Recalling that

θwstci
0 =

l∨
i=1

∨
dl∈[P ]

...
di∈[P ]

Ψ−max(dl,...,di)
(1,...,1) [bl = 0; . . . ; bi = 0] ∧ b = 0

θwstci
1 =

l∨
i=1

∨
dl∈[P ]

...
di∈[P ]

Ψ−max(dl,...,di)
(1,...,1) [bl = 1; . . . ; bi = 1] ∧ b = 1,
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we have to show that

Pr
Strgy0

[
θwstci

0

]
=(

1

1 + 2nP 2
)l+1 + negl(η) (37)

Pr
Strgy0

[
θwstci

1

]
=(

1

1 + 2nP 2
)l+1 + negl(η). (38)

We prove (37); the proof for (38) is also obtained similarly. For 1 ≤ k ≤ l and D = (dl, . . . , dk) ∈
[P ]l−k+1 we define

θk,D0 = Ψ−max(dl,...,dk)
(1,...,1) .

Now to prove (37), it suffices to show that

l∑
k=1

∑
D∈[P ]l−k+1

(
1

2
)l−k+2 · Pr

Strgy0

[
θk,D0 | bl = 0; . . . ; bk = 0; b = 0

]
= (

1

1 + 2nP 2
)l+1 + negl(η).

(39)

We define a new security game, Strgyci,0, which executes exactly as in the WSTCI game when
the challenge bit is 0. Namely, under Strgyci,0, we randomly sample {(pki, ski)}1≤i≤n and
{nci}1≤i≤n, and proceed in the same way as that of the WSTCI game when the challenge bit

is 0. Moreover, to discuss events θk,D0 ’s under Strgyci,0, we additionally sample the following
parameters as before (note that none of these coming parameters take part in the randomness
of the replies given to adversary’s queries): variables u0, . . . , ul are sampled in the same way
as that of Strgy0, and letting s denote the smallest index where us 6= 0, for each s < t ≤ l
we sample three parameters (ont, edt, ed

′
t) from the same distributions used in Strgy0. Now to

prove (39), we show that:

(A) ∣∣∣∣ Pr
Strgy0

[
θk,D0 | bl = 0; . . . ; bk = 0; b = 0

]
− Pr

Strgyci,0

[
θk,D0

]∣∣∣∣ = negl(η), (40)

(B)
l∑

k=1

∑
D∈[P ]l−k+1

(
1

2
)l−k+2 · Pr

Strgyci,0

[
θk,D0

]
= (

1

1 + 2nP 2
)l+1. (41)

The proof of (A) follows using the same arguments as those used in Lemma 6 (or Lemma 11).
Namely to argue that the difference of probability values is negligible, one has to show that the
probability that Failed-Dec occurs under Strgyci,0 is negligible. We omit the details.

To prove (B), we first define Lfirst, a random variable which (intuitively) corresponds to the
length of a random path selected uniformly from the set of paths which are strongly coinduc-
tively continuable and end in the challenge node. More formally, Lfirst takes values in {1, . . . , l}
according to the following distribution: after the execution of Strgyci,0, denoting by vch the
random variable corresponding to the challenge node, the probability that Lfirst = 1 is the

probability that indeg(vi1) = 0, where vi1 is picked uniformly at random from <cont.(
1−→ vch).

For r > 1, the probability that Lfirst = r is defined to be the probability that q = r after the
execution of the following:

1: q ← 1
2: while indeg(viq > 0) do
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3: Pick viq+1 uniformly at random from <cont.(
1−→ viq

1−→ . . .
1−→ vi1

1−→ vch)
4: q ← q + 1
5: end while

We now prove that

sumk
4
=

∑
D∈[P ]l−k+1

Pr
Strgyci,0

[
θk,D0

]
(for 1 ≤ k ≤ l)

= (
2

1 + 2nP 2
)l−k+2 · ( 1

1 + 2nP 2
)k−1 · Pr [Lfirst = l − k + 1]

(42)

Now it is easy to see that the above equality formula yields the result claimed in (B). The
proof for (42) follows along the same line of reasoning as that of Lemma 7; namely, first for
0 ≤ i ≤ l − 1, we define the following random variables:

A0
i = (s ≤ i) ∧ (∀i2 ∈ {i+ 1, . . . , l} : oni2 = 1) ∧ (vul = vch)

A1
i =

(
∀i2 ∈ {i+ 1, . . . , l}, edi2 = <cont.

(
1−→ vui2

1−→ vui2+1

1−→ . . .
1−→ vul

))
A2
i =

(
∀i2 ∈ {i+ 1, . . . , l}, vu(i2−1)

= prev
(

1−→ vui2
1−→ vu(i2+1)

1−→ . . .
1−→ vul , ed

′
i2

))

Now if we define Ai
4
= A0

i ∧ A1
i ∧ A2

i ∧ indeg(vui = 0), similarly to the proof of Lemma 9, one
can see that it holds:

sumk = Pr
Strgyci,0

[(u0 = · · · = uk−2 = 0) ∧Ak−1]

= (
1

1 + 2nP 2
)k−1 · Pr

Strgyci,0
[Ak−1] ,

Pr
Strgyci,0

[Ak−1] = (
2

1 + 2nP 2
)l−k+2 · Pr [Lfirst = l − k + 1] .

(43)

We omit the details as to how the above equalities follow, as they are highly similar to those of
the proof of Lemma 9. From the above two equalities, the claimed equality of (42) follows, and
the proof is complete.

ut
Proof of Part 3. The proofs of both equalities are entirely similar, and their main proof ideas
have been extensively discussed earlier. Thus, here we just sketch an overview of the proof for
the first equality. Namely we show∣∣∣∣ Pr

wstci
[Awstci(η) = 1 | b = 0]− Pr

Strgy0

[
Awstci(η) = 1 | θwstci

0

]∣∣∣∣ = negl(η). (44)

Now recalling the notations introduced in the proof of part (2) of this corollary, the following
claimed equalitues imply the equality of (44):

Pr
wstci

[Awstci(η) = 1 | b = 0] = Pr
Strgyci,0

[Awstci(η) = 1] , (45)

Pr
Strgyci,0

[Awstci(η) = 1] = Pr
Strgyci,0

[
Awstci(η) = 1 | θwstci

0

]
, (46)
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∣∣∣∣ Pr
Strgyci,0

[
Awstci(η) = 1 | θwstci

0

]
− Pr

Strgy0

[
Awstci(η) = 1 | θwstci

0

]∣∣∣∣ = negl(η). (47)

Equality (45) trivially holds by the very definition of Strgyci,0. Equality (46) also holds by con-
sidering the fact that the two events (Awstci(η) = 1) and θwstci

0 are independent under Strgyci,0.
(Note that under Strgyci,0, the values of ui’s, oni’s, edi’s, ed

′
i’s do not influence the randomness

of replies given to adversary’s queries.) Finally, (47) can also be proved using similar arguments
to those used in the proof of part (b) Lemma 10; namely, we expand

p1
4
= Pr

Strgy0

[
Awstci(η) = 1 | θwstci

0

]
= Pr

Strgy0

[
Awstci(η) = 1 | Failed-Dec ∧ θwstci

0

]
· Pr
Strgy0

[
Failed-Dec | θwstci

0

]
+ Pr

Strgy0

[
Awstci(η) = 1 ∧ Failed-Dec | θwstci

0

]
,

p2
4
= Pr

Strgyci,0

[
Awstci(η) = 1 | θwstci

0

]
= Pr

Strgyci,0

[
Awstci(η) = 1 | Failed-Dec ∧ θwstci

0

]
· Pr
Strgyci,0

[
Failed-Dec | θwstci

0

]
+ Pr

Strgyci,0

[
Awstci(η) = 1 ∧ Failed-Dec | θwstci

0

]
.

From part (2) of this corollary we have PrStrgy0

[
θwstci

0

]
> negl(η). From the same part,

we also have that PrStrgyci,0
[
θwstci

0

]
> negl(η). Also similarly as before, we can prove that

PrStrgy0
[Failed-Dec] = negl(η) and PrStrgyci,0 [Failed-Dec] = negl(η). Consequently, it follows

that:

Pr
Strgy0

[
Awstci(η) = 1 ∧ Failed-Dec | θwstci

0

]
= negl(η)

Pr
Strgyci,0

[
Awstci(η) = 1 ∧ Failed-Dec | θwstci

0

]
= negl(η)∣∣∣∣ Pr

Strgy0

[
Failed-Dec | θwstci

0

]
− Pr

Strgyci,0

[
Failed-Dec | θwstci

0

]∣∣∣∣ = negl(η).

Also using the same techniques described earlier, we can easily verify that

Pr
Strgy0

[
Awstci(η) = 1 | Failed-Dec ∧ θwstci

0

]
= Pr

Strgyci,0

[
Awstci(η) = 1 | Failed-Dec ∧ θwstci

0

]
.

Now the proof is complete.

ut
Proof of Part 4. Follows from the very description of the SIMULATION phase of Acca, con-
sidering that for both h = 0 and h = 1 we have θwstcih ∧Bad = ∅.

ut
Proof of Part 5. Follows immediately from the previous parts of the corollary. ut

C.9 WSTCI Game and Nonce Challenge

The proof that we have given so far is for the case where the adversary makes only a key-
challenge query in his guessing phase. The proof for the other case (i.e. the case where the
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adversary is allowed to make only a nonce-challenge query) is obtained in a very similar manner
with the following simple modifications. First in the SETUP phase, besides us, . . . , ul, we also
sample ul+1 ← {1, . . . , n}, with associated parameters (onl+1, kdl+1, kd

′
l+1), and, further, require

the following conditions: (a) the number of keys which encrypt the onl+1’th occurrence of xul+1

and which are coinductively irrecoverable is kdl+1 (we call this set of keys A), (b) kul is the
kd′l+1’th lowest key among A, and (c) xul+1

= xch, where xch is the nonce challenged by the
adversary in the guessing phase. We continue to sample the same number of bi’s (from the
same distributions) under the new reduction, and we answer to encryption queries in the same
way as Strgy0, with the following modification: for any o1 < onl+1 and o2 > onl+1, we replace
xul+1,o1 with fncul+1

(i.e. fake nonce) and xul+1,o2 with ncul+1
(real nonce), where xi,o denotes

the o’th occurrence of xi. For xul+1,onl+1
if bl+1 6= bl then we replace it with fncul+1

, and,
otherwise, e replace it with ncul+1

. Finally for challenge(xch), if xul+1
6= xch, then we halt the

execution (a failing situation), and otherwise, we always return ncul+1
. Now using the approach

used to prove Lemmas 4, 5, we can easily verify that the two events which remain at the end
of the proofs (i.e. those which correspond to θ0

wstci and θ1
wstci) are the following two events: (1)

the one in which all keys/nonces are replaced with their real values (in particular, ncul+1
is

used both to replace xul+1
’s and as the value returned in response to challenge(xul+1

)), and (2)
the one in which all keys and nonces, except xul+1

, are replaced with their real values, and for
xul+1

the following holds: all occurrences of xul+1
(during the interaction phase) are replaced

with fncul+1
and ncul+1

is returned in response to challenge(xul+1
). We omit the details. This

concludes the proof.

C.10 Proof of Lemma 3

We formulate a new variation of the WSTCI game, which we call WSTCI1, as follows: the game
again proceeds in three phases: the setup phase, the interaction phase, and the guessing phase.
The setup phase of WSTCI1 is exactly similar to that of the WSTCI game; namely, the values
{(pkj , skj)}1≤j≤n, {ncj}1≤j≤n and the challenge bit b are sampled; symbols {(kj , k−1

j )}1≤j≤n and
{xj}1≤j≤n are introduced; and finally the computational mapping τ is accordingly initialized.
In the interaction phase, the adversary first arbitrarily chooses a challenger’s private key, say
k−1
i , and then begins adaptively interacting with the challenger by issuing the following queries,

with the only restriction that at the end of the interaction phase, it must hold that k−1
i /∈

closurec(eval-exp
1). Before discussing how responses to adversary’s queries are made, we define

two key-renaming functions R0 and R1 as follows: R0[k−1
h ] = k−1

h , for all 1 ≤ h ≤ n (i.e. the

identity function), and R1[k−1
r ] = k−1

r , if r 6= i, and R1[k−1
i ] = k′−1

i . The adversary’s queries as
usual are:

– Corruption: A corruption query corrupt(j) is answered by returning skj .

– Encryption: In response to an encryption query encrypt(e, j), the challenger does the fol-
lowing: if b = 0, the challenger returns c← J{e}kj Kτ , and if b = 1, he returns c← J{e}kj Kτ ′ ,
where τ ′(s) = τ(s) if s 6= k−1

i , and τ ′(k−1
i ) = fski, with fski ← Gen1(η) being chosen

independently from all values sampled in the setup phase. (Here Gen1 denotes the second
component, that is the secret key, of the key-generation algorithm.)

– Decryption: As in the WSTCI game, a decryption query decrypt(c, j) is replied to with ⊥ if
any of the following conditions hold, and with Dec(c, skj), otherwise: (a) (c, j) is coinduc-
tively visible in eval-exp; or (b) there exists ({e}kp , Ep) ∈ eval-exp such that {e}kp has a
subexp {eh}kh where Rb [{eh}kh ] is type-1 and c is the corresponding computational image
of {eh}kh in Ep.

72



– A Subexp-Testing query is also treated similarly as before: namely subexp({e}ki , bsi, {e′}kj , bsj)
is answered by 1 if bsj is the corresponding computational image of {e′}kj in bsi, and by 0,
otherwise.

Finally, in the guessing phase, the adversary outputs his guess for b. Similarly to Definition 4,
we can define l-WSTCT1 security, for any constant l.

Intuitively, an adversary under the WSTCI1 game is challenged to tell two worlds apart:
one in which all occurrences of k−1

i receive a fake value, and the other in which all of them
receive the real value. By slightly modifying the proof of Lemma 2, one can also prove that
CCA2 security implies l-WSTCT1 security, for every constant l. For this, to reduce AWSTCT1 ,
attacking the scheme in the sense of l-WSTCT1, to Acca, attacking the scheme in the sense
of CCA2, we just need to make the following two adjustments to Algorithm 1 (which is the
SETUP phase of Acca): (1) We let ul be the index of the challenger’s key that AWSTCT1 decides
to challenge in the beginning of the interaction phase and sample u0, . . . , ul−1 as in Algorithm
1, and (2) bl+1 is no longer sampled under this new construction, and, instead, we let bl = 1
and sample bs+1, . . . , bl−1 as that in Algorithm 1. The rest of the construction stays unchanged.
With these adjustments, the following statement follows:

CCA2⇒WSTCT1 (48)

As the next step, we introduce another game, called the SEG game. (Here SEG stands for
subexp generation.) The SEG game proceeds in three phases: the setup phase, the interaction
phase, and the generation phase (as opposed to the guessing phase). The setup phase runs
similarly as in the WSTCT1 game, except that under the SEG game no challenge bit is sampled.
The interaction phase is also similar to that of WSTCTb=0

1 (i.e. the WSTCI1 game when the
WSTCI1-challenge bit is 0), except that subexp-testing queries are no longer allowed. Namely, in
the interaction phase, the adversary first chooses a challenger’s key k−1

i , and starts interacting
with the challenger by making only corruption, encryption, and decryption queries, provided
that it must always hold that k−1

i /∈ closurec(eval-exp1). Finally in the generation phase, the
adversary outputs ({e}ki , Ei, {e′}kj , Ej); the output of the game is 1 (the adversary wins) if all
the following conditions hold, and 0 otherwise: there exists ({ep}kp , Ep) ∈ eval-exp such that (1)
{e}ki is a subexp {ep}kp and is encrypted in {ep}kp only under keys whose decryption keys are in
closurec(eval-exp

1) (i.e. {e}ki is coinductively visible in eval-exp), (2) Ei is the corresponding
computational image of {e}ki in Ep, (3) {e′}kj v {e}ki , (4) {e′}kj is type-1, and (5) Ej is the
corresponding computational image of {e′}kj in Ep. We say that an encryption scheme provides
SEG-security if for every A, his probability of success is negligible.

Finally as the last game, we define a weaker version of the SEG game, which we call
SEGw game, which is exactly like SEG except that its interaction phase proceeds according
to WSTCTb=0

1 (i.e. all occurrences of k−1
i are replaced with the fake value fski). Now it is not

hard to prove that if an encryption scheme provides IND-CCA2 security, then it also provides
SEGw security. Before presenting the statements formally, we give some explanation about the
SEG (and SEGw) games.

First without loss of generality we assume that for the adversary’s output ({e}ki , Ei, {e′}kj , Ej)
the conditions (1), (2), (3) and (4) above always hold. Note that this is without loss of general-
ity, because conditions (1), (3) and (4) can be trivially checked by the adversary, and condition
(2) can also be checked by the adversary because of the following observation (that was also
pointed out previously a few times): if {ei}ki is encrypted under a key kv (where by assumption
k−1
v ∈ closurec(eval-exp1)) and even if the adversary does not know the computational value of
k−1
v , the adversary can obtain it by querying corrupt(k−1

v ); note that this last query does not
change the symbolic knowledge of the adversary.
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We now formally show the following statement which was informally stated above.

Lemma 15. (1) IND-CCA2 ⇒ SEGw

(2) IND-CCA2 ⇒ SEG

Proof. Proof of (1) is relatively straightforward; namely, if Asegw attacks the scheme in the
sense of SEGw and wins with a non-negligible probability, then one can build Acca to win in
a CCA2-indistinguishability experiment under key pk (whose matching secret key is unknown
to the adversary) as follows: if Asegw chooses to challenge k−1

i , then we use pk as the value
for ki, and after that, we generate a fake value fski to replace k−1

i ’s, and freshly generated
values for all other symbols of the challenger, thereby forming the concrete-evaluation function
τ . Also, in the beginning, Acca guesses the encryption query number and the “index of the
subexps”, which Asegw ’s output is going to depend on in the generation phase. (To stay in
line with the above formalization, we assume that the (a priori unknown) encryption query is
encrypt(ep, kp) and also assume that {e}ki and {e′}kj are as above. Note that {e}ki need not
be guessed, as it is uniquely determinable from {ep}kp and eval-exp.) Now when Acca has to
reply to encrypt(ep, kp), he generates E0, E1 ← J{e′}kj Kτ , and, based on E0, E1, he produces
E′0, E

′
1, computational images of e. Now he submits (E′0, E

′
1) to his LOR-encryption-oracle to

receive the challenge ciphertext c, and based on c, he properly builds cp, a computational image
of {ep}kp and returns cp to Asegw . Now using τ , he replies to the rest of Asegw ’s queries in
its usual way. (No more query will be made to the CCA2-LOR-encryption oracle.) Note that,
Asegw is not permitted to ask for decryption of c under the secret key of the oracle. (since it is
an invalid decryption query, guaranteed by the assumption that {e}ki is coinductively visible in
{ep}kp ; actually this is the only reason we included that requirement for valid SEG outputs.)
For decryption requests for all other ciphertexts, Acca can decrypt them either by himself or
through his decryption oracle. Now when Asegw returns his output in the generation phase,
Acca can use this to determine what message was encrypted under his CCA2-oracle. It is obvious
that the probabilities of success of the two adversaries are polynomially related. We omit the
details.

A similar approach taken for part (1) does not work for part (2) since k−1
i , under the

SEG game, has to be replaced under its real value, and, hence, we cannot directly simulate an
Aseg adversary using an Acca adversary. Rather, we do the following: we show that for every
Aseg attacking the scheme in the sense of SEG, his probability of success, Pseg, is negligibly
different from his probability of success, Psegw , which would have been obtained if run under
SEGw, thereby concluding from part (1) that Pseg must be negligible. Now why should it be
that |Pseg − Psegw | = negl(η)? Because, otherwise, one can construct an adversary Awstct1 to
break the WSTCT1-security of the scheme, and as a result of (48) its CCA2-security, reaching
a contradiction. It is also immediate to see how one can construct Awstct1 from Aseg; namely,
when Aseg challenges an adversary’s key in his interaction phase, Awstct1 starts by challenging
the same key, and answers all Aseg’s queries using his own oracle access. Note that Awstct1
can perfectly simulate and answer to Aseg’s oracle queries using his own oracle access, and
depending on the secret bit b, it results in one of the two induced distributions that corresponds
to Aseg’s run either under SEG or under SEGw. Now when Aseg returns his output in the
generation phase, Awstct1 queries this output from his, additional, subexp-testing oracle, and
returns whatever the oracle returns. Now it is easy to see that Awstct1 ’s advantage is exactly
|Pseg − Psegw |, and this completes the proof.

ut

Completing the Proof of Lemma 3: Suppose A provides l-CI-security, but not l-WSTCI-
security. Thus it must be the case that, with a non-negligible probability, A makes a decryption
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query that is valid under the l-CI-game, but not under the l-WSTCI-game. That is, with a non-
negligible probability, at some point, A produces a decryption query decrypt(Ej , w) for which it
holds that there exists ({ep}kp , Ep) ∈ eval-exp such that {ep}kp has a “type-1”, “coinductively-
invisible” subexp {e′}kj , where Ej is the computational image of {e′}kj in Ep. Using this obser-
vation, one can construct another adversary, A′, who attacks the scheme in the sense of SEG
and wins with a non-negligible probability. The reduction is simple: A′ just needs to guess the
encryption query number (which makes ({ep}kp , Ep) as described above), the “index” of the
subexp of {ep}kp that corresponds to {e′}kj , and the index of the subexp of {ep}kp that corre-

sponds to {e}ki (here k−1
i is going to be the key thatA′ is going to “challenge” in his interaction

phase), and the decryption query number that corresponds to decrypt(Ej , w). Therefore, the
encryption scheme is not l-SEG secure, and, hence by Lemma 15, is not IND-CCA2 secure,
reaching a contradiction. ut

C.11 Lemmas 2 and 3 with Symmetric Encryption Schemes

The proofs that we gave for Lemmas 2 and 3 easily extend by adding the symmetric encryption
scheme (and hence disallowing k−1

i ’s, where ki is a public key, to occur as plaintexts). The reason
that we chose to work with these modified versions of the CI and WSTCI games was to do away
with the encryption oracles (which encrypts a single plaintext under the oracle’s key) which
would be otherwise present if we were dealing with private-key encryption also. Nevertheless,
all the presented proofs simply extend by observing that in IND-CCA2 definitions for symmetric-
key encryption schemes there exists an additional encryption oracle which encrypts plaintexts
under the oracle’s key. (This can aslo be modeled using a LOR encryption oracle, with the
two messages given to the oracle being the same.) Now we briefly explain how the extension
is made: in Algorithm 1 (with omitting some details), kus , kus+1 , . . . , kul will now be selected
from {k1, . . . , kn, k

sym
1 , . . . , ksymn }. (Note, although symmetric decryption keys do not occur as

plaintexts, meaning that the guessed parameters us+1, . . . , ul should definitely be indices of
symmetric key symbols (or otherwise the guessing is obviously wrong), we let all ui’s be selected
from the space of indices for both symmetric and asymmetric keys. Although this may result
in trivially wrong guessings, excluding it does not significantly improve the reduction bounds.)

Now in the SIMULATION phase if kus is a public key, no substantial change is needed.
Otherwise, if kus is a symmetric key, Acca will again replace all the occurrences of kus as a
plaintext with a fake value, and, now, makes “single” encryptions under kus with the aid of his
encryption oracle. The rest of the SIMULATION phase does not need substantial changes.

D Proof of Theorem 3

Suppose Easy provides IND-CCA2 security, and Esym provides both IND-CCA2 and INT-CTXT
security. We want to prove that Ep = (Easy, Esym) provides l-ACI-security. First by Theorem
2 we have that Ep provides l-CI-security; therefore, we just need to show that Ep provides
security under the ACI game. For the sake of contradiction, suppose there exists Aaci who
attacks Ep under the ACI game and wins with a non-negligible probability; namely, with a
non-negligible probability for his outputs (c, i) it holds that (1) ksymi /∈ closurec(eval-exp1), (2)
Decsym(c, cki) 6= ⊥, and (3) (c, i) is not coinductively visible in eval-exp. (See the corresponding
Definition in Paragraph C.0.1.) We first give a couple of claims below.

Claim A: We claim that, under the security assumptions made above about Easy and Esym, for
every adversary A in the ACI game, the probability that the following event occurs is negligible:
A during his interaction phase makes a query decrypt(c′, s), for s ∈ {k−1

1 , . . . , k−1
n , ksym1 , . . . , ksymn },

such that there exists ({eh}kh , ch) ∈ eval-exp which has a type-1 subexp {et}s1 , for s1 ∈

75



{k1, . . . , kn, k
sym
1 , . . . , ksymn }, where s−1

1 /∈ closurec(eval-exp1), {et}s1 /∈ clsourec(eval-exp1) and
c′ is the underlying value of {et}s1 in ch. This is because, otherwise, one can modify A slightly
to construct a new adversary who wins with a non-negligible probability under the SEG game,
and by Lemma 15, contradicting the fact that Esym and Esym provide IND-CCA2 security.

Claim B: We claim that with the assumptions made about Aaci and the assumptions made
about Easy and Esym above, the probability that the following occurs is non-negligible: for
Aaci’s output (c, i) all conditions (1), (2) and (3) above hold and moreover it holds that there
does not exist ({eh}kh , ch) ∈ eval-exp such that {eh}kh has a type-1 subexp {et}s1 , for s1 ∈
{k1, . . . , kn, k

sym
1 , . . . , ksymn }, where s−1

1 /∈ clsourec(eval-exp1), {et}s1 /∈ clsourec(eval-exp1) and
c′ is the underlying value of {et}s1 in ch. This claim follows immediately from the previous claim
and the assumptions made about Aaci.

Now we introduce a new adversary Awstci1 who, using Aaci as a blackbox, attacks Ep un-
der the WSTCI1 game as follows. Awstci1 first in his interaction phase guesses ksymi , the
symmetric key that Aaci is going to challenge in his guessing phase, specifies ksymi as his
WSTCI1-challenge key, and then replies to Aaci’s queries using his own oracle access. (We will
explain a bit later why Awstci1 is able to answer to all Aaci’s queries.) Once Aaci moves to his
guessing phase and outputs his ACI-challenge (c, i), first if the key that Awstci1 guessed in his
interaction does not match the key that Aaci challenges, then Awstci1 returns a bit uniformly
at random. Otherwise, Awstci1 calls his decryption oracle on (c, ksymi ) and determines his guess
for the WSTCI1-challenge-bit as follows: if the decryption oracle does not output ⊥, then Awstci1
outputs 1, otherwise he outputs 0.

Let’s first show that why Awstci1 is able to answer to all Aaci’s queries. First it is easy
all encryption and corrupt queries of Aaci can be perfectly handled by Awstci1’s oracles. As
for decryption queries, we claim that for both bwstci1 = 0 and bwstci1 = 1 (where bwstci1 is
the WSTCI1-challenge bit), the probability that Aaci makes a decryption query that cannot
be answered by Awstci1’s decryption oracle (because of the additional decryption condition
presented there) is negligible (or otherwise one of the assumptions made above is violated). If
bwstci1 = 0, this claim immediately follows from Claim (A). If bwstci1 = 1, things are less clear
(because here the occurrences of ksymi as a plaintext are “faked” and it is not clear how Claim
(A) applies to this situation). However, under bwstci1 = 1 the view of Aaci will be identically
distributed as his view under an ACI game in which he replaces all plaintext occurrences ksymi ’s
in his encryption queries with a new private key symbol k′symi . Now if under bwstci1 = 1 the
above claim does not hold, one can properly modifies Aaci in such a way that the new Aaci will
violate the statement of Claim (A). We omit the details.

Now having shown that the simulation can be done, now from Claim (B) it immediately
follows that the probability that Awstci1 outputs 1 when bwstci1 = 0 is non-negligible. As a result,
from Equation (48) we obtain that with a non-negligible probability (c, cki) (i.e. the output of
Aaci) is also a valid decryption query under world WSTCI1b=1. Now since under WSTCI1b=1

all occurrences of ksymi (i.e. the key that Awstci1 specifies in the beginning of his interaction
phase) are replaced with fake values, “(c, cki) being a valid decryption query under WSTCI1b=1

implies that for no ({eh}kh , ch) ∈ eval-exp, it holds that {eh}kh has a subexp {e′}ksymi
with c

being the underlying value of {e′}ksymi
in ch. (This is because {e′}ksymi

is always type-1 under

world WSTCI1b=1.) Now this enables efficiently performing an INT-CTXT attack. We provide
the details below.

We define a new game, the ACI1 game, as follows: the ACI1 game is similar to the ACI
game with the only difference that in the beginning of the interaction phase the adversary
has to specify ksymi , the key that he is going to challenge in the guessing phase, and this key
should remain coinductively irrecoverable during the game. Moreover, during the interaction
phase all occurrences of ksymi (as a plaintext) are replaced with a fake value. (i.e. The value used
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for ksymi when it appears a plaintext is independent of the value used when it appears as an
encryption key.) Finally a playing adversary under the ACI1 game wins if for his output, (c, i),
it holds that there exists no ({ej}kj , cj) ∈ eval-exp such that {ej}kj has a subexp {e′}ksymi

with

c being the underlying value of {e′}ksymi
in cj . Now from what proved thus far, we can easily see

that Aaci wins under the ACI1 game (i.e. breaks ACI1 security). The following claim concludes
the proof of this theorem.

Claim C: If Esym provides INT-CTXT security, then (Esym, Easy) provides ACI1-security.

It is fairly easy to see why the above claim is true; the central idea is that all occurrences
of ksymi (the key that is specified in the interaction phase of the ACI1 game and for which
a fresh ciphertext is produced in the final phase) as a plaintext are given a fake value; this
enables making an INT-CTXT attack without having to know the underlying value of the key
which parameterizes the CTXT-encryption oracle. To formalize the idea, we briefly show how
to reduce the ability of Baci1, who wins under the ACI1-game, to a new adversary, Bctx, who
breaks the INT-CTXT security of Esym. Since Bctxt attacks under the INT-CTXT game, he is
provided with an encryption oracle, which encrypts messages under an unknown random key
ck, and his goal is to produce a fresh ciphertext (not generated by the oracle) which decrypts
to a meaningful plaintext under ck. Now the idea of the reduction is clear: Bctx simulates Baci1,
generates random values for all basic symbols (as well as ck′i, a fake value for ksymi ), and replies to
Baci1’s queries using his generated values, with the only exception that encryptions under ksymi

are performed by its encryption oracle; namely, to compute the bitstring value of an expression
like {e}ksymi

, he first recursively computes E, the bitstring value of e, and then calls his oracle

on E to obtain the bitstring value of the expression. (We stress here again that all “plaintext”
occurrences of ksymi are replaced with ck′i.) Note that corruptions and decryptions of Aaci1 can
also be very easily replied to by Bctx. Now when Baci1 outputs his guess (c, i), Bctxt also outputs
c. This completes the proof.

ut

E Revealing Random Coins

Our computational trace-based model for protocols analysis (Section 3) assumes that if a user
ui is corrupted by the adversary, the adversary will only obtain the long-lived secret key of ui
and symmetric keys/nonces that ui has generated during the sessions she has engaged in, but
not her past random coins. In this section we present some results which allow us to relax this
assumption by allowing the adversary to also obtain the random coins of the corrupted users.
For this, for every user ui, we partition the random coins used by ui to R1

ui , those used to
sample the pair of long-lived keys, symmetric keys and nonces, and R2

ui , those used to perform
encryptions throughout the execution.

E.1 Random Coins for Non-Encryption Operations

We can easily show that our soundness results extend if the computational model is strengthened
by allowing the adversary to additionally receive R1

ui , for every ui who he corrupts. We call this
new computational model Cweak-coins, and call the respective soundness notion (defined along
the lines of Definition 1) the soundness+weak-coins-revelation notion.

Theorem 5. Suppose Ep = (Easy, Esym), where Easy is IND-CCA2 secure, and Esym is both
IND-CCA2 and INT-CTXT secure. Then for every PPT adversary A under the Cweak-coins
model, bounded protocol Π (See Section 3) it holds that

Pr
RA,RH

[∃{coind-legit AF } : FT (AF ) ≺ CT (Ac,RA,RH , ΠEp)] ≥ 1− negl(η)
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To prove the above theorem, first we can easily show that if the CI, ACI, and CNM games
are strengthened such that under a corrupt(s) or reveal(s) query, the random coins used to
sample τ(s) are also given out, then Theorems 2 and 3 extend for these stronger definitions.
The extension is easy; the only thing that needs to be added to Algorithm 1 is that under a
corrupt(s) or a reveal(s) query, Acca returns the random coins he used in the SETUP phase
to sample the corresponding random bitstring. We omit further details. Finally the same poof
given for Theorem 1 applies (with very small modifications) to conclude that extended-ACI-
security implies extended-CNM-security and this latter implies extended soundness. We omit
the details.

E.2 All Random Coins

We show that for every single-encryption protocol our soundness extends to still a stronger
setting wherein all the random coins of a corrupted user are given to the adversary. We call
Π = (M I

1 ,M
R
i , . . . ,M

X
r ), for X ∈ {I,R}, a single-encryption protocol if for all its components

MY
j it holds that MY

j has only one layer of encryption. (i.e. If MY
j has a subexp {M ′}K ,

then M ′ does not have any encrypted subexp.) We denote this stronger computational model
by Cstrong-coins (in which if ui is corrupted, then R2

ui is also given out), and also refer to the
respective soundness notion by soundness+strong-coins-revelation.

Theorem 6. Suppose Ep = (Easy, Esym), where Easy is IND-CCA2 secure, and Esym is both
IND-CCA2 and INT-CTXT secure. Then for every PPT adversary A under the Cstrong-coins
model, single bounded protocol Π, it holds that

Pr
RA,RH

[∃{coind-legit AF } : FT (AF ) ≺ CT (Ac,RA,RH , ΠEp)] ≥ 1− negl(η)

To show the above theorem, we first define variants of the CI, ACI and CNM games, which
are single-encryption-based variants of them strengthened by adding a new type of query. For
every CI, ACI and CNM game, the new variant of the game requires that, for every query
encrypt(e, k) of the adversary, e must be an encryption-free expression. (i.e. e does not have
a subexp of the form {e′}k′ .) Moreover the new variant allows a new type of query as fol-
lows: for ({e}k, c) ∈ eval-exp, if R is the random string used by the challenger to obtain
c from its corresponding plaintext, the adversary can make a query reveal-coins(c) to ob-
tain R, provided the following condition holds: either k = ksymi (i.e. k is a symmetric key)
and ksymi ∈ closurec(eval-exp, corrupt-keys), or k = kasyj (i.e. k is an asymmetric key) and
e ∈ closurec(eval-exp, corrupt-keys). For X ∈ {CI,ACI,CNM}, we call the respective ex-
tended game the single-encryption, coins-revealing X (shortly the SECRX ) game.

We first briefly explain how the proof of the second part of Theorem 1 extends to conclude
SECRCNM ⇒ soundness. In the proof the only part that is added is that when the simulated
adversaryAcs corrupts ui, and assuming that ui has already sent a ciphertext c (encrypted under
random coins R) to, say, (corrupted or uncorrupted) uj , we need to show how the simulating
adversary Acnm obtains R and gives it to Acs. We describe the idea through a running example:
consider two cases: (a) c is the computational image of {(xi,sn,h, ksymi,sn,h)}kj (i.e. c is obtained by
encrypting the concatenation of the local nonce and symmetric key under uj ’s public key); and,
(b) c is the computational image of {(xi,sn,h, ksymi,sn,h)}ksymi,sn,w

(i.e. c is obtained by encrypting the

concatenation of the local nonce and symmetric key under another local symmetric key. See the
proof of Theorem 1 for the meaning of these symbols). Now if (a) is the case, note that after
Acs corrupts ui, the simulating adversary, Acnm, (to simulate Acs) corrupts xi,sn,h and ksymi,sn,h)
(among perhaps other corruption queries) to give their computational images to Acs. Now at
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this point Acnm under the CNM game is legitimately allowed to obtain random coins used to
encrypt c under both cases (a) and (b) above.

Now the proof of the other part of Theorem 1 follows exactly as before. We now briefly
explain how the proof of Theorem 2 extends for the SECRCI game. (The extension for The-
orem 3 also follows similarly.) For this, suppose for ({e}k, c) ∈ eval-exp the adversary makes
reveal-coins(c) query. Now since e ∈ closurec(eval-exp

1, corrupt-keys), in Algorithm 1, the
ciphertext c is constructed entirely by Acca adversary himself, without calling his left-or-right
encryption query. This is because, in Algorithm 1 for the guessed parameters us, us+1, . . . , ul,
ons+1, . . . , onl, the (only) subexpression whose computational value is obtained through the
left-or-right encryption oracle (and hence its underlying random coins cannot be determined
by Acca) is the subexpression that contains kus+1,ons+1 (plus satisfying some more properties).
Moreover, the guessing procedure requires that k−1

us+1
(and other k−1

ui ’s) remain coinductively
irrecoverable during the game.
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