
An Attack on a Fully Homomorphic Encryption Scheme

Yupu Hu1 and Fenghe Wang2

1 Telecommunication School, Xidian University, 710071 Xi’an, China
2 Department of Mathematics and Physics Shandong Jianzhu University, 250101,Jinan,China

yphu@mail.xidian.edu.cn

fenghe2166@163.com

Abstract. In this paper we present an attack on a fully homomorphic encryption scheme on PKC2010.
We construct a modified secret key, a modified decryption algorithm and a subset of the ciphertext
space. When the ciphertext is from the subset, we can correctly decrypt it by our modified secret key
and modified decryption algorithm. We also discuss when our modified decryption algorithm is efficient,
and when the subset is not negligible.
Keywords: Fully Homomorphic Encryption, lattice-based PKC, cloud-computation.

1 Introduction: Bootstrapping-based FHE and attacks

Fully-homomorphic-Encryption (FHE) is a novel technique applied to cloud-computation. It is for
such procedure. The user needs to obtain the output of ring-operations in plaintext space, but
wants to compute nothing but only decryption. The sever implements ”homomorphic operations in
ciphertext space” of these operations in plaintext space. That is, the server is given corresponding
ciphertexts of input plaintexts of these ring-operations, and computes corresponding ciphertext
of output plaintext of these ring-operations. Then the server sends this output ciphertext to the
user. The user then decrypts this output ciphertext to obtain original output plaintext. To be
fully-homomorphic, these ring-operations in plaintext space must be of any depth.

Lattice-based PKC can achieve homomorphic encryption function for shallow ring-operations
in plaintext space. This homomorphic encryption function is called somewhat homomorphic en-
cryption function. But lattice-based PKC belongs to the class of error correction type PKC, so
that the ciphertext must include noise. Deep ring-operations in plaintext space means deep ho-
momorphic operations in ciphertext space, and noise will be greatly enhanced, resulting in wrong
decryption. Therefore the major problem to achieve fully-homomorphic-encryption is to decrease
the size of the noise. The frontier work to solve this problem belongs to Gentry [1], who presented
a novel technique named bootstrapping. After that many fully-homomorphic-encryption schemes
were presented [2-21], with major efforts on decreasing the computation complexity. Among them is
a fully-homomorphic-encryption scheme [6], presented by Smart and Vercauteren, and on PKC2010.
We call this paper SV10. SV10 scheme is one of efforts changing the ciphertexts from polynomials
to integers. It has relatively small key and ciphertext sizes.

In this paper we present an attack on this fully homomorphic encryption scheme. In fact, our
attack only aims at its “somewhat homomorphic encryption algorithm”. We construct a modified
secret key, a modified decryption algorithm and a subset of the ciphertext space. Whenever the
ciphertext is from the subset, we can correctly decrypt it by our modified secret key and modified
decryption algorithm. We also discuss when our modified decryption algorithm is efficient, and
when the subset is not negligible. Our attack implies that it should be careful for designing fully
homomorphic encryption over the integers.



The paper is organized as following. In section 2 we state the fully-homomorphic-encryption
scheme presented by SV10, including its correctness. In section 3 we present our major proposition,
which is the basis of our attack. In section 4 we present our attack, including modified secret key,
modified decryption algorithm, and a subset of the ciphertext space. In this section we also discuss
when our modified decryption algorithm is efficient, and when the subset is not negligible. Section
5 is the conclusion.

2 The FHE scheme of SV10

2.1 The Somewhat Homomorphic Encryption Algorithm

Q[x] and Z[x] are respectively the set of polynomials with rational and integer coefficients. Given
a polynomial g(x) =

∑t
i=0 gix

i ∈ Q[x], ||g(x)||∞ = max
t=0,··· ,t

|gi|. For a positive value r, B∞,N (r) is

such set of polynomials with integer coefficients:

B∞,N (r) = {g(x) =
N−1∑

i=0

gix
i, ||g(x)||∞ ≤ r}.

The scheme is parameterized by three values (N, η, µ). A typical set of parameters would be
(N, η, µ) = (N, 2

√
N ,
√

N), N = 2n.
KeyGen(.):

1. Set the plaintext space to be {0, 1}. Choose a monic irreducible polynomial F (x) ∈ Z[x] of
degree N .Typically we can take F (x) = xN + 1 = x2n

+ 1.
2. Repeat:
• S(x) ←R B∞,N (η/2).
• G(x) ← 1 + 2S(x).
• p ← resultant(G(x), F (x)).
-Until p is prime.

3. D(x) ← gcd(G(x), F (x)) over Fp[x]
-D(x) ← gcd(G(x), F (x)) over Fp[x]
-Let α ∈ Fp denote the unique root of D(x).

4. Apply the XGCD algorithm over Q[x] to obtain Z(x) =
∑N−1

i=0 zix
i ∈ Z[x] such that

Z(x)G(x) = pmodF (x).

5. B ← z0mod2p

-The public key is (p, α). The secret key B.

Encrypt(M, p, α):

1. Let R(x) ←R B∞,N (µ/2).
2. Let C(x) ← M + 2R(x).
3. Let c ← C(α)modp.

-Output c.



Decrypt(c,B): M ← c− dcB/Pmod2
-Output M .
Add(c1, c2, p, α): c3 ← c1 + c2modp.
-Output c3.
Mult(c1, c2, p, α): c3 ← c1c2modp.
-Output c3.

2.2 Some Notes

It should be pointed out that, although Z(x) is obtained by the XGCD algorithm over Q[x],
Z(x)Z(x) because p = resultant(G(x), F (x)). According to typical parameters, the ciphertext
can be correctly decrypted. Again according to typical parameters, the scheme allows about d

homomorphic multiplications over the ciphertext space, where d ≈ log 2

√
N

2
√

N

log N
√

N
. In other words, the

product of not more than d ciphertexts can be correctly decrypted. The value of d increases with
the value of N . For N = 256, d = 0. For (N = 512, d = 1). For N = 65536, d = 10.

The scheme of SV10 uses both the somewhat homomorphic encryption algorithm and the boot-
strapping technique to achieve FHE. Our attack only aims at the somewhat homomorphic encryp-
tion algorithm, so that we don’t introduce the bootstrapping.

3 Our Major Proposition

3.1 The Proposition

Take a positive integer δ such that δ < N . Take βk = 2αk(modq), k = 0, 1, · · · , N − 1. Define N +2
sets {A0, A1, · · · , AN−1, A∗, A∗∗} as follows. For k = 0, 1, 2, · · · , N − 1,

Ak = (0, p)
⋂ { +∞⋃

i=0

(2i
p

βk
− 1

µ(δ + 2)
p

βk
, 2i

p

βk
+

1
µ(δ + 2)

p

βk
)
}

if βk(mod2) = 0, and

Ak = (0, p)
⋂ { +∞⋃

i=0

((2i + 1)
p

βk
− 1

µ(δ + 2)
p

βk
, (2i + 1)

p

βk
+

1
µ(δ + 2)

p

βk
)
}

if βk(mod2) = 1.

A∗ = (0, p)
⋂ { +∞⋃

i=0

(2ip− p

2(δ + 2)
, 2ip +

p

2(δ + 2)
)
}
.

A∗∗ = (0, p)
⋂ { +∞⋃

i=0

(2i + 1− 1
µδ(δ + 2)

, 2i + 1 +
1

µδ(δ + 2)
)
}
.

It is clear that A∗ = (0, p
2(δ+2)), A0 = (0, p

µ(δ+2)). For δ integers k1, k2, · · · , kδ, such that 0 ≤ k1 <
k2 < · · · < kδ ≤ N − 1, define the intersection set

A(k1, k2, · · · , kδ) = Ak1

⋂
Ak2

⋂
· · ·

⋂
Akδ

⋂
A∗

⋂
A∗∗,



and define the subset of the ciphertext space

C(k1, k2, · · · , kδ) =
{
C(α)(modp)|C(x) = M+rk1x

k1+rk2x
k2+· · ·+rkδ

xkδ , rki
even, |rki

| ≤ µ, i = 1, · · · , δ
}

Proposition 1. Take a real number B from the set A(k1, k2, · · · , kδ). Then any ciphertext c from
C(k1, k2, · · · , kδ) can be correctly decrypted by the algorithm c− bcB/pe.
Proof. c = M+( rk1

2 βk1+
rk2
2 βk2+· · ·+

rkδ
2 βkδ

)−up, where
rki
2 is an integer, | rk2

2 | ≤ µ
2 , i = 1, 2, · · · , δ.

It is immediate that 0 ≤ u ≤ µ
2 δ.

Notice the definition of A(k1, k2, · · · , kδ). 0 ≤ MB
p ≤ 1

2(δ+2) .
rki

βki
B

2p is in (− 1
2(δ+2) ,

1
2(δ+2))

neighboring field of an integer, and that integer is modular 2 congruent with rki
βki

uB is in
(− 1

2(δ+2) ,
1

2(δ+2)) neighboring field of an integer, and that integer is modular 2 congruent with
up. From all of the above,

c− bcB/pe(mod2)
= M −bMB/pe+ rk1βk1 −brk1βk1B/pe+ rk1βk1 −brk2βk2B/pe+ · · ·+ rk1βk1 −brkδ

βkδ
B/pe

−up + buBe(mod2) = M.

3.2 Time Cost for Finding a B from A(k1, k2, · · · , kδ)

Suppose βkδ
= 0(mod2) (βkδ

= 1(mod2)), for i = 0, 1, · · · check whether the interval (2i p
βk
−

1
µ(δ+2)

p
βk

, 2i p
βk

+ 1
µ(δ+2)

p
βk

) (the interval ((2i+1) p
βk
− 1

µ(δ+2)
p
βk

, (2i+1) p
βk

+ 1
µ(δ+2)

p
βk

) intersects the
set {A0, A1, · · · , Aδ−1, A∗, A∗∗} until it intersects all of them. Then take any real number B from
such intersection set.

Checking whether an interval intersects the set {Ak2 , Ak3 , · · · , Aδ, A∗, A∗∗} is a quite simple
task. On the other hand, A∗ = (0, p

2(δ+2)), and p is extremely large. The length of the set Ak

is about p
µ(δ+2) . The length of the set A∗∗ is about p

µδ(δ+2) . Then the length of the intersec-
tion set Ak1

⋂
Ak2

⋂ · · ·⋂ Akδ

⋂
A∗∗ is about p

µδ+1δ(δ+2)δ+1 . This means that the length of the
intersection set A(k1, k2, · · · , kδ) = Ak1

⋂
Ak2

⋂ · · ·⋂ Akδ

⋂
A∗

⋂
A∗∗ is about p

2µδ+1δ(δ+2)δ+2 , and
A(k1, k2, · · · , kδ) ⊂ (0, p

2(δ+2)).
If k1 > 0, the point of A(k1, k2, · · · , kδ) are randomly distributed within (0, p

2(δ+2)).
If k1 = 0, A(k1, k2, · · · , kδ) ⊂ (0, p

µ(δ+2)), and the points of A(k1, k2, · · · , kδ) are randomly
distributed within (0, p

µ(δ+2)). Therefore there should be a point of A(k1, k2, · · · , kδ) which is smaller
than O(µδ+1δ(δ + 2)δ+1), and checking at most O(µδ+1δ(δ + 2)δ+1) intervals should find a real
number B of A(k1, k2, · · · , kδ).

Suppose N = 256, then µ =
√

N = 16. Take δ = 3, O(µδ+1δ(δ + 2)δ+1) = O(164 × 3 × 54) ≈
O(227). Take δ = 9, O(µδ+1δ(δ + 2)δ+1) = O(1610 × 9 × 1110) ≈ O(278). Table 1 lists n(δ) the
appropriate number of intervals for checking, with N = 256.

4 Our Attack

4.1 The Modified Decryption Algorithm

Suppose that for any δ integers k1, k2, · · · , kδ such that 0 ≤ k1 < k2 < · · · < kδ ≤ N − 1, we have
chosen a real number B(k1, k2, · · · , kδ) from the set A(k1, k2, · · · , kδ). Our modified secret key is



Table 1. he Appropriate Number of Intervals for Checking (N=256)

δ 1 2 3 4 5 6

n(δ) 162 × 32 163 × 2× 43 164 × 3× 54 165 × 4× 65 166 × 5× 76 167 × 6× 87

δ 7 8 9 10 11 12

n(δ) 168 × 7× 98 169 × 8× 109 1610 × 9× 1110 1611 × 10× 1211 1612 × 11× 1312 1613 × 12× 1413

B(k1, k2, · · · , kδ)|0 ≤ k1 < k2 < · · · < kδ ≤ N − 1. For any δ − 1 integers l1, l2, · · · , lδ−1 such that
0 ≤ l1 < l2 < · · · < lδ−1 ≤ N − 1, define the set

S(l1, l2, · · · , lδ−1) = {B(k1, k2, · · · , lδ) ⊃ {l1, l2, · · · , lδ−1}}.

Notice that |S(l1, l2, · · · , lδ−1)| = N − δ + 1.
The modified decryption algorithm is as the follow. For a ciphertext c, compute

{c− bcB(k1, k2, · · · , kδ)/pe(mod2)|0 ≤ k1 < k2 < · · · < kδ ≤ N − 1}.

If there is some S(l1, l2, · · · , lδ−1), such that all values

{c− bcB(k1, k2, · · · , kδ)/pe(mod2)|B(k1, k2, · · · , kδ) ∈ S(l1, l2, · · · , lδ−1)}

are same, take the plaintext as such same value. If there is no such S(l1, l2, · · · , lδ−1), the decryption
fails.

4.2 The Correctness

For a ciphertext c, the corresponding polynomial is C(x) = M + 2R(x). If R(x) has m non-zero
coefficients, we say that the Hamming weight of c is m. Define C(m) as the set of all ciphertexts
with the Hamming weights not more than m. It is clear that C(m) =

⋃
0≤l1<l2<···<lm≤N−1

, and that

C(0) ⊂ C(1) ⊂ · · · ⊂ C(N). C(N) is the ciphertext space.
Now we explain that our algorithm makes wrong decryption with a negligible probability for

the ciphertexts from C(δ − 1).
Take any ciphertext c ∈ C(δ − 1), any C(l1, l2, · · · , lδ−1) ⊂ C(δ − 1). If c ∈ C(l1, l2, · · · , lδ−1),

all value {c − bcB(k1, k2, · · · , kδ)/pe(modq)|B(k1, k2, · · · , kδ) ∈ S(l1, l2, · · · , lδ−1)} are the plain-
text of c. If c /∈ C(l1, l2, · · · , lδ−1), value {c − bcB(k1, k2, · · · , kδ)/pe(modq)|B(k1, k2, · · · , kδ) ∈
S(l1, l2, · · · , lδ−1)} are random, therefore the probability they are same as the wrong value is 1

2N−δ+1 .
There are at most Cδ−1

N − 1 different C(l1, l2, · · · , lδ−1) such that c /∈ C(l1, l2, · · · , lδ−1), therefore

the probability c is decrypted as wrong value is not larger than Cδ−1
N −1

2N−δ+1 . For N ≥ 256, δ ≤ 17, this
probability is negligible.

4.3 The Efficiency

Our modified secret key includes Cδ
N real numbers. Our modified decryption algorithm includes Cδ

N

ordinary decryptions, and a judgment.



4.4 The Impact

Our modified decryption algorithm can correctly decrypt all ciphertexts in C(δ − 1). If in the
encryption procedure, the step R(x) ←R B∞,N (µ/2) is under uniform distribution, C(δ − 1) is
negligible in the ciphertext space. However, the ciphertext with small Hamming weight will have
great advantage in somewhat homomorphic operations, especially in multiplication homomorphic
operations. If the step R(x) ←R B∞,N (µ/2) is partial to the smaller Hamming weights C(δ − 1) is
not negligible, and our attack is effective.

5 Conclusions

SV10 scheme is not as strong as some other fully homomorphic encryption schemes. Our attack
at least threatens the distribution of the step R(x) ←R B∞,N (µ/2) of the encryption procedure.
Our attack implies that it should be careful for designing fully homomorphic encryption over the
integers.

Acknowledgements This work was supported by the National Natural Science Foundation
of China (Grant Nos. 60970119, 61173151) and Science and Technology on Communication Security
Laboratory (9140C110201110C1102). This work was also supported by Huawei Co. (YBCB2012026).

References

1. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC ’09, pp. 169-178,2009.
2. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In FOCS

2011, pp. 97-106.
3. D. Stehle and R. Steinfeld. Faster fully homomorphic encryption. In Asiacrypt’10, pp. 377-394.
4. M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers. In

ASIACRYPT’10, pp.24-43.
5. Z. Brakerski and V. Vaikuntanathan. Fully Homomorphic Encryption from Ring-LWE and Security for Key

Dependent Messages. In CRYPTO’2011,pp. 505-524.
6. N. P. Smart, F. Vercauteren. Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes.

In PKC 2010, 420-443, 2010.
7. C. Gentry, S. Halevi. Implementing Gentry’s full homomorphic encryption scheme. In EUROCRYPT 2011, 129-

148, 2011.
8. C. Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In Crypto 2010, 116-137. 2010.
9. C. Gentry, S. Halevi. Fully homomorphic encryption without squashing using depth-3 arithmetic circuits. In

FOCS 2011, 107-109.
10. Z. Brakerski, C. Gentry, V. Vaikuntanathan. Fully homomorphic without Bootstrapping. http://

eprint.iacr.org/2011/277.
11. Jean-Sbastien Coron, Avradip Mandal, David Naccache, Mehdi Tibouchi. Fully Homomorphic Encryption over

the Integers with Shorter Public Keys. In Crypto 2011. 487-504. 2011.
12. Yuanmi Chen, Phong Q. Nguyen. Faster Algorithms for Approximate Common Divisors: Break-

ing Fully-Homomorphic-Encryption Challenges over the Integers. In Eurocrypto 2012, 502-519.
(http://eprint.iacr.org/2011/436)

13. Craig Gentry, Shai Halevi and Vinod Vaikuntanathan. i-Hop Homomorphic Encryption and Rerandomizable Yao
Circuits. In Crypto 2011.155-172.

14. Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP.
http://eprint.iacr.org/2012/078.

15. Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic Encryption.
http://eprint.iacr.org/2012/114.

16. Craig Gentry and Shai Halevi and Nigel P. Smart. Fully Homomorphic Encryption with Polylog Overhead. In
Eurocrypto 2012, 465-482. (http://eprint.iacr.org/2011/566).



17. P. Scholl and N.P. Smart. Improved Key Generation For Gentry’s Fully Homomorphic Encryption Scheme.
http://eprint.iacr.org/2011/471

18. Steven Myers and Mona Sergi and abhi shelat. Threshold Fully Homomorphic Encryption and Secure Computa-
tion. http://eprint.iacr.org/2011/454.

19. Loftus and A. May and N.P. Smart and F. Vercauteren. On CCA-Secure Fully Homomorphic Encryption.
http://eprint.iacr.org/2010/560.

20. Craig Gentry and Shai Halevi and Nigel P. Smart. Homomorphic Evaluation of the AES Circuit.
http://eprint.iacr.org/2012/099.

21. Jean-Sbastien Coron, David Naccache, Mehdi Tibouchi. Public-key Compression and Modulus Switching for
Fully Homomorphic Encryption over the Integers. In Eurocrypto 2012446-464 2012.


