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Abstract. In all existing efficient proofs of knowledge of a solution to the infinity norm Inhomogeneous
Small Integer Solution (ISIS∞) problem, the knowledge extractor outputs a solution vector that is only
guaranteed to be Õ(n) times longer than the witness possessed by the prover. As a consequence,
in many cryptographic schemes that use these proof systems as building blocks, there exists a gap
between the hardness of solving the underlying ISIS∞ problem and the hardness underlying the security
reductions. In this paper, we generalize Stern’s protocol to obtain two statistical zero-knowledge proofs
of knowledge for the ISIS∞ problem that remove this gap. Our result yields the potential of relying on
weaker security assumptions for various lattice-based cryptographic constructions. As applications of
our proof system, we introduce a concurrently secure identity-based identification scheme based on the
worst-case hardness of the SIVPÕ(n1.5) problem (in the `2 norm) in general lattices in the random oracle
model, and an efficient statistical zero-knowledge proof of plaintext knowledge with small constant gap
factor for Regev’s encryption scheme.
Keywords. Lattice-based cryptography, zero knowledge proof, proof of plaintext knowledge, ISIS prob-
lem, ID-based identification

1 Introduction

Zero-knowledge proofs and proofs of knowledge are fundamental notions and powerful tools in cryptography.
In a zero-knowledge proof system [GMR89], a prover convinces a verifier that some statement is true while
leaking nothing but the validity of the assertion. In a proof of knowledge ([GMR89, BG93]), the prover
also convinces the verifier that he indeed knows a satisfying “witness” for the given statement. In the last
25 years, zero-knowledge proofs of knowledge (ZKPoK) have been extensively studied ([FFS87, GQ90,
FS89, RS92, Mau09],...). These proof systems are the building blocks in many cryptographic constructions
(e.g., identification schemes, group signatures, anonymous credential systems, to name just a few). In this
work, we focus on ZKPoK for an important hard-on-average problem in lattice-based cryptography - the
Inhomogeneous Small Integer Solution (ISIS) problem, that was introduced in [GPV08] and has since then
been used extensively ([ABB10a, ABB10b, CHKP10, Boy10],...).

In recent years, lattice-based cryptography has received much attention from the research community
because it enjoys a unique combination of attractive features: provable security under worst-case hardness
assumptions, conjectured resistance against quantum computers, and asymptotic efficiency. The rapid devel-
opment of the field yields an interesting challenge of designing and improving proof systems for lattice prob-
lems. There exist several proof systems, both interactive and non-interactive ([GG98, MV03, GMR05, PV08])
that exploit the geometric structure of worst-case lattice problems. On the other hand, when designing
lattice-based cryptographic protocols, one essentially has to deal with the average-case problems that enjoy
worst-case to average-case reductions, such as the SIS and ISIS problems ([Ajt96, MR07, GPV08]) and the
Learning With Errors (LWE) problem ([Reg05, Reg09, Pei09]). All existing proofs of knowledge for the ISIS
problem ([MV03, Lyu08]) have some limitations, most notably the fact that there is a gap between the norm



of the witness vector and the norm of the vector computed by the knowledge extractor: The latter is only
guaranteed to be Õ(n) larger than the former in the case of the infinity norm, where n denotes the dimension
of the corresponding worst-case lattice problem. As a consequence, cryptographic schemes using these proof
systems as building blocks rely on a stronger security assumption than the assumed hardness of finding a
witness for the ISIS instance, by a Õ(n) factor. This hints that the existing ZKPoK for the ISIS∞ problem
are sub-optimal: Is it possible to design an efficient ZKPoK for ISIS∞ whose security provably relies on a
weaker assumption than the existing ones? In this work, we reply positively, and describe such a ZKPoK,
for which there is only a constant gap between the norm of the witness vector and the norm of the vector
computed by the extractor. We also briefly describe a scheme with no gap (i.e., constant factor 1), but that
is less efficient.
Notations. Throughout the paper, we assume that all vectors are column vectors. We denote vectors by
bold lower-case letters (e.g., x), and matrices by bold upper-case letters (e.g., A). The Gram-Schmidt norm
of a matrix A is denoted by ‖Ã‖. We let the Hamming weight of a vector x ∈ {0, 1}m be denoted by wt(x).
We let B3m denote the set of all vectors x ∈ {−1, 0, 1}3m having exactly m coordinates equal to −1; m
coordinates equal to 0; and m coordinates equal to 1. The symmetric group of all permutations of k elements
is denoted by Sk. We use the notation y $←− D when y is sampled from the distribution D. When S is a finite
set, y $←− S means that y is chosen uniformly at random from S. We let n denote the security parameter of
our schemes. A function ε : N→ R≥0 is said negligible in n (denoted by negl(n)) if it vanishes faster than the
inverse of any polynomial. We say that an event happens with overwhelming probability if it happens with
probability 1−ε(n) for some negligible function ε. We often use the soft-O notation: We write f(n) = Õ(g(n))
if f(n) = O(g(n) logc g(n)) for some constant c. The statistical distance between two distributions X and Y
over a countable domain D is 1
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∑
d∈D |X(d) − Y(d)|. We say that X and Y are statistically close (denoted

by X ≈s Y) if their statistical distance is negligible.

1.1 Related Works

We briefly review some of the results related to proofs of knowledge for the ISIS problem. The ISISpn,m,q,β
problem in the `p norm with parameters (n,m, q, β) asks to find a vector x ∈ Zm such that and ‖x‖p ≤ β
and Ax = y mod q for a uniformly chosen input matrix A ∈ Zn×mq and a uniformly chosen input vector
y ∈ Znq . The hardness of the ISIS2n,m,q,β problem is established by a worst-case to average-case reduction
from standard lattice problems, such as the Shortest Independent Vectors Problem (SIVP).

Theorem 1 ([GPV08]). For any m, β = poly(n), and for any integer q ≥ β ·ω(
√
n log n), solving a random

instance of the ISIS2n,m,q,β problem with non-negligible probability is at least as hard as approximating the
SIVP2

γ problem on any lattice of dimension n to within certain γ = β · Õ(
√
n) factors.

By the relationship between the `2 and `∞ norms (i.e., for any vector x ∈ Rn, we have ‖x‖∞ ≤ ‖x‖2 ≤√
n · ‖x‖∞), it follows that the ISIS∞n,m,q,β problem is at least as hard as SIVP2

γ (in the `2 norm) for some
γ = β · Õ(n). Without loss of generality, throughout this work, we will assume that β is a positive integer.
We define the relation RISIS∞n,m,q,β

for this problem as

RISIS∞n,m,q,β
=
{
((A,y),x) ∈ Zn×mq × Znq × Zm: (‖x‖∞ ≤ β) ∧ (Ax = y [q])

}
.

Kawachi et al. [KTX08] adapted Stern’s identification scheme [Ste96] to the lattice setting to obtain a
ZKPoK for a restricted version of the ISIS∞ problem, with respect to the relation

RKTXn,m,q,w=
{
((A,y),x) ∈ Zn×mq × Znq ×{0, 1}m: (wt(x) = w) ∧ (Ax = y [q])

}
.

This restriction of RISIS∞n,m,q,β
does not seem to suffice for a wide range of applications. For some cryptographic

schemes that allow many users, such as ID-based identification [Sha85] and group signature [CH91] schemes,
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the secret keys of the users are typically generated from the public keys by a trusted authority. For such
schemes that rely on lattice-based hardness assumptions ([SSTX09, Rüc10a, CNR12, GKV10]), this task is
performed by using a secret trapdoor possessed by the trusted authority, consisting in a relatively short basis
of a publicly known lattice. As a result, a user secret key x is a general solution to the ISIS∞n,m,q,β problem,
where β is typically Õ(

√
n). Whenever a user in the scheme wants to identify himself, he must prove that he

knows such a vector x. In other words, these schemes require a PoK for the relation RISIS∞n,m,q,β
, for which,

up to the best of our knowledge, there exist two options:
• A proof of knowledge for RISIS∞n,m,q,β

was introduced by Lyubashevsky [Lyu08]. His protocol is efficient
with low communication cost, but suffers from several limitations: It is not proven zero-knowledge (it is
only proven to be witness-indistinguishable - a weaker notion than zero-knowledge [FS90]); It has a constant
completeness error in each round; And it relies on a relatively strong hardness assumption for the ISIS∞

problem, with a Õ(n) gap factor.

• Another proof system can be obtained by transforming the ISIS instance into a GapCVP instance, and
adapting the Micciancio-Vadhan ZKPoK for GapCVP [MV03] to the infinity norm. Let B be any basis of
the lattice Λ⊥q (A) = {x ∈ Zm : Ax = 0 mod q} and t be a vector in Zm such that At = y mod q. Such B and
t can be efficiently computed using linear algebra. Then run the Micciancio-Vadhan protocol for GapCVP∞γ
with common input (B, t, β). The prover’s auxiliary input is e = t− x ∈ Λ⊥q (A). We note that the knowledge
extractor in [MV03] is only able to output a vector e′ ∈ Λ⊥q (A), such that ‖t− e′‖∞ ≤ g · β for some g > 1.
This implies that x′ = t− e′ is a solution to the ISIS∞n,m,q,g·β problem with respect to (A,y). However, in the
infinity norm, the best smallest g that can be obtained is ≥ Θ(n/ log n) while the bit complexity is relatively
high. In more details, the gap factor g depends on some parameter k as follows: g = m1+Ω(1) for k = ω(1);
g = Ω(m) for k = ω(logm); and g = Ω(m/ logm) for k = poly(m) - a sufficiently large polynomial. The
communication cost of the protocol depends linearly on k. Alternatively, one could apply the ISIS-GapCVP
transformation to the Micciancio-Vadhan protocol for the `2 norm, and then use the relationship between
the `2 and `∞ norms. However, in this case, the gap is slightly bigger (at least Θ(n/

√
log n)).

We now shortly review a class of proof systems related to our work: zero-knowledge proofs of plaintext
knowledge (ZKPoPK) for Regev’s LWE-based cryptosystem ([Reg05, Reg09]). All known such ZKPoPK
([BD10, BDOZ11, AJLA+12, DLA12]) were derived from Secure Multi-Party Computation protocols, via
the [IKOS07] transformation from MPC to ZK. The proof systems are relatively inefficient and rely on the
assumption that SIVP is hard for super-polynomial approximation factors (i.e., γ = nω(1)). We observe (in
Section 3.2) that a PoPK for Regev’s cryptosystem can be obtained from a PoK for RISIS. Thus, a ZKPoK
for the ISIS problem with lower communication cost and a weaker hardness assumption leads to a significant
improvement in this direction.

1.2 Our Contributions and Techniques

The discussions above raise the question whether it is possible to design a ZKPoK for the general ISIS prob-
lem that completely removes the gap. Even a ZKPoK that has small constant gap factor while maintaining
efficiency would be desirable. In this work, we answer this question positively. Specifically, we show that
there exists a statistical ZKPoK (called Naive SternExt) for the relation RISIS∞n,m,q,β

whose security relies
on the assumed hardness of the ISIS∞n,m,q,β . This scheme achieves optimal gap, as the norm bounds for the
witness and the security assumptions are identical. However, its communication cost depends linearly on β,
which may be a significant drawback for large β. Our main result is a statistical ZKPoK called SternExt
achieving both security and efficiency requirements: it has an almost optimal gap factor (g ≤ 2), while the
communication cost compares favorably to the Micciancio-Vadhan proof system. We believe that our result
can be applied to many cryptographic primitives. In particular, we will describe two applications of the
SternExt proof system:

1. A concurrently secure identity-based identification scheme that relies on worst-case hardness of the
SIVPÕ(n1.5) problem (in the `2 norm) in general lattices. This is the weakest security assumption among
contemporary lattice-based ID-based ID schemes ([SSTX09, Rüc10a]).
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2. An efficient statistical ZKPoPK for Regev’s cryptosystem with small constant gap factor between the
sizes of a valid plaintext and the output of the knowledge extractor. In comparison with the results of
[BD10, BDOZ11, AJLA+12, DLA12], our proof system offers a noticeable improvement in both security
and efficiency points of view.

We now sketch our approach. While the [MV03] protocol exploits the geometric aspect of the ISIS problem,
our protocol exploits its combinatorial and algebraic aspects. We first look at the scheme from [Ste96,
KTX08], and investigate how to loosen the restrictions on the witness x, which are x ∈ {0, 1}m and wt(x) =
w. Note that these conditions are invariant under all permutations of coordinates: For π ∈ Sm, a vector
x satisfies those restrictions if and only if π(x) also does. Thus, a witness x with such constraints can be
verified in zero-knowledge thanks to the randomness of π. We then notice that the same statement still holds
true for x ∈ B3m, namely: for π ∈ S3m, x ∈ B3m ⇔ π(x) ∈ B3m. This basic fact allows us to generalize the
proof system from [Ste96, KTX08]. Our generalization consists of two steps:

Step 1. Removing the restriction on the Hamming weight. Specifically, we observe that a ZKPoK for
the relation

RISIS∞n,m,q,1
=
{
((A,y),x) ∈ Zn×mq × Znq × {−1, 0, 1}m: Ax = y mod q

}
can be derived from Stern’s scheme by the following extensions: For any vector x ∈ {−1, 0, 1}m, append 2m
coordinates from the set {−1, 0, 1} to x to obtain x′ ∈ B3m. Next, append 2m zero-columns to matrix A to
get A′ ∈ Zn×3mq . We then have:

x′ ∈ B3m ⇔ x ∈ {−1, 0, 1}m,
A′x′ = y mod q ⇔ Ax = y mod q.

In other words, if a verifier is convinced that x′ ∈ B3m and A′x′ = y mod q, then he is also convinced that
x is a valid witness for the relation RISIS∞n,m,q,1

.
Step 2. Increasing the `∞ bound to β, for any β > 0. The principle of Step 1 can be generalized

in a naive manner. For any x ∈ {−β, . . . , 0, . . . , β}m, one can append 2βm coordinates to x to obtain an
x∗ ∈ {−β, . . . , 0, . . . , β}(2β+1)m that has exactly m coordinates equal to d for each d ∈ {−β, . . . , 0, . . . , β}.
The extended matrix A∗ ∈ Zn×(2β+1)m

q is obtained by appending 2βm zero-columns to matrix A. Then
A∗x∗ = Ax mod q. Moreover, the constraints of x∗ can be verified in zero-knowledge by using a uni-
form π ∈ S(2β+1)m. Therefore, we obtain a ZKPoK for RISIS∞n,m,q,β

, that we call Naive SternExt, where
the extraction gap factor is completely removed. However, as mentioned earlier, the proof is inefficient for
large β as its communication cost is β · Õ(n lg q).

A much more efficient method to achieve our goal is based on the idea of representing any vector x ∈
{−β, . . . , 0, . . . , β}m by k = blg βc+1 vectors ũ0, . . . , ũk−1 in {−1, 0, 1}m via a binary decomposition, namely:
x =

∑k−1
j=0 2

j · ũj . Next we apply the extension of Step 1: Extend each ũj to uj ∈ B3m, and extend A to
A′ ∈ Zn×3mq . We then have:

A′
( k−1∑
j=0

2j · uj
)
= y mod q ⇔ Ax = y mod q.

This allows us to combine k proofs for RISIS∞n,m,q,1
into one proof RISIS∞n,m,q,β

.1 We thus obtain a statistical
ZKPoK for the general ISIS∞ problem, that we call SternExt, with the following properties:

• The knowledge extractor obtains an x′ with ‖x′‖∞ ≤ β′, where β ≤ β′ ≤ 2β − 1 (depending on the
binary representation of β). Hence, the extraction gap factor satisfies g < 2.

• The communication cost is lg β · Õ(n lg q). In particular, in most cryptographic applications q is poly(n),
and we then have lg β ≤ lg q = Õ(1).

1 This packing of proofs is akin to Jain et al.’s recent work on the Learning Parity with Noise problem [JKPT12,
Section 4.2].
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Overall, SternExt provides a better proof system for RISIS∞n,m,q,β
in both security and efficiency aspects than

the one derived from the Micciancio-Vadhan protocol. We summarize the comparison among the PoK for
RISIS∞n,m,q,β

in Table 1. The comparison data are for one round of protocol, in which case all the considered
proof systems admit a constant soundness error.

Schemes [Lyu08] [MV03] Naive
SternExt

SternExt

Zero-knowledge? 7(WI) 3 3 3

Perfect completeness? 7 3 3 3

Norm bound in the
ISIS hardness assumption β · Õ(n) β · Õ(n) β ≤ 2β − 1

Communication cost Õ(n lg q) Õ(n lg q) β · Õ(n lg q) lg β · Õ(n lg q)

Table 1. Comparison among the proofs of knowledge for RISIS∞
n,m,q,β

. See discussion in Section 1.1 for other secu-
rity/efficiency trade-offs for the [MV03] scheme.

Outline. The rest of the paper is organized as follows: In Section 2, we present the SternExt proof system;
And in Section 3, we describe two cryptographic applications. We refer the reader to [Gol04, Chap. 4]
and [GPV08] for standard definitions of zero-knowledge proof systems and lattice problems, respectively. In
appendix, we adapt SternExt to the relation RSIS∞ associated to the SIS problem: RSIS∞ corresponds to
setting y = 0 and imposing x 6= 0 in RISIS∞ .

2 A Zero-Knowledge Proof of Knowledge for ISIS

Our scheme extends Stern’s ZKPoK [Ste96] for the Syndrome Decoding Problem (SDP). Stern’s proof
system is a 3-move interactive protocol: the prover P computes three commitments and sends them to the
verifier V ; verifier V sends a uniformly random challenge to P ; prover P reveals two of the three commitments
according to the challenge. Kawachi et al. [KTX08] adapted Stern’s scheme to the lattice setting, exploiting
the similarity between the SDP and ISIS problems. Their construction makes use of a string commitment
scheme that is statistically hiding and computationally binding.

Definition 1. A statistically hiding, computationally binding string commitment scheme is a PPT algorithm
COM(s, ρ) satisfying:

• For all s0, s1 ∈ {0, 1}∗, we have (over the random coins of COM):

COM(s0; ·) ≈s COM(s1; ·),
• For all PPT algorithm A returning (s0, ρ0); (s1, ρ1), where s0 6= s1, we have (over the random coins of
A):

Pr[COM(s0; ρ0) = COM(s1; ρ1)] = negl(n).

2.1 Setup

For a security parameter n, let q be a positive integer. Let β be some positive integer, and k = blg βc + 1.
Let COM be a statistically hiding and computationally binding string commitment scheme. It was shown
in [KTX08] that such a scheme can be constructed based on the hardness of the ISIS∞

n,m,q,Õ(1)
problem.

For simplicity, in the interactive protocol, we will not explicitly write the randomness ρ of the commitment
scheme COM.

The common input is a pair (A,y) such that y belongs to the image of A, and the prover’s auxiliary input
is vector x. Prior to the interaction, both P and V form the extended matrix A′ ∈ Zn×3mq by appending 2m
zero-columns to matrix A. In addition, prover P performs the following preparation steps:
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1. Decomposition. The goal is to represent vector x = (x1, x2, . . . , xm) by k vectors in {−1, 0, 1}m.
For each 1 ≤ i ≤ m, consider a binary representation of coordinate xi, that is: xi = bi,0 · 20 + bi,1 ·
21 + . . . + bi,k−1 · 2k−1, where bi,j ∈ {−1, 0, 1}, for all j = 0, . . . , k − 1. Now for each index j, let
ũj = (b1,j , b2,j , . . . , bm,j) ∈ {−1, 0, 1}m. We observe that x =

∑k−1
j=0 2

j · ũj .

2. Extension. For each index j = 0, . . . , k−1, extend ũj to a vector uj ∈ B3m as follows: If the numbers of
coordinates −1, 0, and 1 in vectors ũj are λ

(−1)
j , λ(0)j and λ(1)j respectively, then choose a random vector

tj ∈ {−1, 0, 1}2m that has exactly (m− λ(−1)j ) coordinates −1, (m− λ(0)j ) coordinates 0, and (m− λ(1)j )
coordinates 1; and append tj to ũj , i.e., set uj = (ũj‖tj). Since the last 2m columns of matrix A′ are
zero-columns, we have:

A′
( k−1∑
j=0

2j · uj
)
= y mod q ⇔ Ax = y mod q.

2.2 The Interactive Proof System

The prover P and the verifier V interact as described in Figure 1.

1. Commitment. Prover P samples k vectors r0, . . . , rk−1
$←− Z3m

q ; k permutations π0, . . . , πk−1
$←− S3m, and sends

the commitment CMT := (c1, c2, c3), where
c1 = COM(π0, . . . , πk−1,A

′(
∑k−1

j=0 2j · rj) mod q)

c2 = COM(π0(r0), . . . , πk−1(rk−1))

c3 = COM(π0(u0 + r0), . . . , πk−1(uk−1 + rk−1))

2. Challenge. Receiving CMT, verifer V sends a challenge Ch $←− {1, 2, 3} to P .
3. Response. Prover P replies as follows:

• If Ch = 1, then reveal c2 and c3. For each j, let vj = πj(uj), and wj = πj(rj).
Send RSP := (v0, . . . ,vk−1,w0, . . . ,wk−1).

• If Ch = 2, then reveal c1 and c3. For each j, let φj = πj , and zj = uj + rj .
Send RSP := (φ0, . . . , φk−1, z0, . . . , zk−1).

• If Ch = 3, then reveal c1 and c2. For each j, let ψj = πj , and sj = rj .
Send RSP := (ψ0, . . . , ψk−1, s0, . . . , sk−1).

Verification. Receiving the response RSP, verifier V performs the following checks:

• If Ch = 1: Check that vj ∈ B3m for all j = 0, . . . , k − 1, and{
c2 = COM(w0, . . . ,wk−1)

c3 = COM(v0 +w0, . . . ,vk−1 +wk−1)

• If Ch = 2: Check that {
c1 = COM(φ0, . . . , φk−1,A

′(
∑k−1

j=0 2j · zj)− y mod q)

c3 = COM(φ0(z0), . . . , φk−1(zk−1))

• If Ch = 3: Check that {
c1 = COM(ψ0, . . . , ψk−1,A

′(
∑k−1

j=0 2j · sj) mod q)

c2 = COM(ψ0(s0), . . . , ψk−1(sk−1))

In each case, verifier V outputs the decision d = 1 (Accept) if and only if all the conditions hold. Otherwise, he
outputs d = 0 (Reject).

Fig. 1: The SternExt proof system.
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Completeness. We observe that if prover P has a valid witness x for the relation RISIS∞n,m,q,β
and follows

the protocol, then he always gets accepted by V . Therefore, the proof system has perfect completeness.

Communication cost. The size of the commitment scheme from [KTX08] is Õ(n lg q). If Ch = 1, then
the size of RSP is 3km + 3km lg q. If Ch = 2 or Ch = 3, then RSP consists of k vectors in Z3m

q and k
permutations. Note that in practice, instead of sending the permutations and vectors, one would send the
random seed of the PRNG used to generate these data, and thus significantly reduce the communication
cost. Overall, the total communication cost of the protocol is lg β · Õ(n lg q).

2.3 Statistical Zero-Knowledge

We now prove that the proof system SternExt is statistically zero-knowledge, by exhibiting a transcript
simulator.

Theorem 2. If COM is a statistically hiding string commitment scheme, then the proof system SternExt
from Figure 1 is statistically zero-knowledge.

Proof. Adapting the techniques of [Ste96] and [KTX08], we construct a simulator S which has black-box
access to a (possibly cheating) verifier V̂ , such that on input the public parameters A (and implicitly its
extension A′) and y, outputs with probability 2/3 a successful transcript (i.e., an accepted interaction), and
the view of V̂ in the simulation is statistically close to that in the real interaction. The simulator S begins by
selecting a random Ch ∈ {1, 2, 3} (a prediction of the challenge value that V̂ will not choose), and a random
tape r′ of V̂ . We note that in all the cases we consider below, by the assumption on the commitment scheme
COM, the distributions of c′1, c′2, c′3 are statistically close to the distributions of the commitments in the real
interaction, and thus, the distributions of the challenge Ch from V̂ is also statistically close to that in the
real interactions.

Case Ch = 1: The simulator S computes x′ ∈ Zmq such that Ax′ = y mod q using linear algebra. It picks

k − 1 random vectors ũ′1, . . . , ũ′k−1
$←− Zmq and sets:

ũ′0 := x′ −
k−1∑
j=1

2j · ũ′j mod q.

In other words, we have x′ =
∑k−1
j=0 2

j · ũ′j mod q. Now for each j, the simulator extends ũ′j to u′j ∈

Z3m
q by appending 2m random coordinates. It then picks k vectors r′0, . . . , r

′
k−1

$←− Z3m
q ; k permutations

π′0, . . . , π
′
k−1

$←− S3m; and uniformly random strings ρ′1, ρ′2, ρ′3. It sends the following commitments to V̂ :
c′1 = COM(π′0, . . . , π

′
k−1,A

′(
∑k−1
j=0 2

j · r′j) mod q; ρ′1)

c′2 = COM(π′0(r
′
0), . . . , π

′
k−1(r

′
k−1); ρ

′
2)

c′3 = COM(π′0(u
′
0 + r′0), . . . , π

′
k−1(u

′
k−1 + r′k−1); ρ

′
3)

Receiving a challenge Ch from V̂ , simulator S provides a transcript as follows:

• If Ch = 1: Output ⊥ and halt.
• If Ch = 2: Output(

r′, (c′1, c
′
2, c
′
3), 2, (π

′
0, π
′
1, . . . , π

′
k−1,u

′
0 + r′0, . . . ,u

′
k−1 + r′k−1); ρ

′
1, ρ
′
3

)
.

• If Ch = 3: Output
(
r′, (c′1, c

′
2, c
′
3), 3, (π

′
0, . . . , π

′
k−1, r

′
0, . . . , r

′
k−1); ρ

′
1, ρ
′
2

)
.
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Case Ch = 2: The simulator S picks r′0, . . . , r′k−1
$←− Z3m

q ; u′0, . . . ,u′k−1
$←− B3m; permutations π′0, . . . , π′k−1

$←−
S3m; and uniformly random strings ρ′1, ρ′2, ρ′3. It sends to V̂ the commitments:

c′1 = COM(π′0, . . . , π
′
k−1,A

′(
∑k−1
j=0 2

j · r′j) mod q; ρ′1)

c′2 = COM(π′0(r
′
0), . . . , π

′
k−1(r

′
k−1); ρ

′
2)

c′3 = COM(π′0(u
′
0 + r′0), . . . , π

′
k−1(u

′
k−1 + r′k−1); ρ

′
3)

Receiving a challenge Ch from V̂ , simulator S computes the following transcript:

• If Ch = 1: Output(
r′, (c′1, c

′
2, c
′
3), 1, (π

′
0(u
′
0), . . . , π

′
k−1(u

′
k−1), π

′
0(r
′
0), . . . , π

′
k−1(r

′
k−1)); ρ

′
2, ρ
′
3

)
.

• If Ch = 2: Output ⊥ and halt.
• If Ch = 3: Output

(
r′, (c′1, c

′
2, c
′
3), 3, (π

′
0, . . . , π

′
k−1, r

′
0, . . . , r

′
k−1); ρ

′
1, ρ
′
2

)
.

Case Ch = 3: The simulator picks the uniformly random vectors, permutations, and strings exactly as in
the case Ch = 2 above, but sends the following:

c′1 = COM(π′0, . . . , π
′
k−1,A

′(
∑k−1
j=0 2

j · (u′j + r′j))− y mod q; ρ′1)

c′2 = COM(π′0(r
′
0), . . . , π

′
k−1(r

′
k−1); ρ

′
2)

c′3 = COM(π′0(u
′
0 + r′0), . . . , π

′
k−1(u

′
k−1 + r′k−1); ρ

′
3)

Receiving a challenge Ch from V̂ , simulator S computes a transcript as follows:

• If Ch = 1: Output(
r′, (c′1, c

′
2, c
′
3), 1, (π

′
0(u
′
0), . . . , π

′
k−1(u

′
k−1), π

′
0(r
′
0), . . . , π

′
k−1(r

′
k−1)); ρ

′
2, ρ
′
3

)
.

• If Ch = 2: Output (
r′, (c′1, c

′
2, c
′
3), 2, (π

′
0, . . . , π

′
k−1,u

′
0 + r′0, . . . ,u

′
k−1 + r′k−1); ρ

′
1, ρ
′
3

)
.

• If Ch = 3: Output ⊥ and halt.

We observe that the probability that the simulator outputs ⊥ is negligibly close to 1/3. Moreover, one
can check that whenever S does not halt, it will provide a successful transcript, and the distribution of the
transcript is statistically close to that of the prover in the real interaction. Hence, we have constructed a
simulator that can successfully impersonate the honest prover with probability 2/3, and completed the proof.

2.4 Proof of Knowledge

The fact that anyone can run the simulator to convince the verifier with probability 2/3 implies that the
SternExt proof system has soundness error ≥ 2/3. In the following, we prove that it is indeed a proof of
knowledge for the relation RISIS∞n,m,q,β

with knowledge error κ = 2/3.

Theorem 3. Assume that COM is a computationally binding string commitment scheme. Then there exists
a knowledge extractor K such that the following holds. If K has access to a cheating prover who convinces
the verifier on input (A,y) with probability 2/3+ ε for some ε > 0 and in time T , then K outputs an x such
that ((A,y);x) ∈ RISIS∞n,m,q,2β−1

with overwhelming probability and runtime T · poly(n,m, lg q, 1/ε).

As a corollary, SternExt is sound for uniform (A,y) under the assumption that the ISIS∞n,m,q,2β−1
problem is hard.
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Proof. We apply the technique of [Vér96] relying on trees to model the probability space corresponding to
the protocol execution. Suppose a cheating prover P̂ can convince the verifier with probability 2/3+ ε. Then
by rewinding P̂ a number of times polynomial in 1/ε, the knowledge extractor K can find with overwhelming
probability a node with 3 sons in the tree associated with the protocol between P̂ and the verifier. This node
corresponds to the reception of all 3 values of the challenge. In other words, P̂ is able to answer correctly to
all challenges for the same commitment. Therefore, K can get the following relations:

COM(φ0, . . . , φk−1,A
′(

k−1∑
j=0

2j · zj)− y) = COM(ψ0, . . . , ψk−1,A
′(

k−1∑
j=0

2j · sj))

COM(w0, . . . ,wk−1) = COM(ψ0(s0), . . . , ψk−1(sk−1))

COM(φ0(z0), . . . , φk−1(zk−1)) = COM(v0 +w0, . . . ,vk−1 +wk−1),

and vj ∈ B3m for all j = 0, . . . , k − 1. Since COM is computationally binding, it follows that:

A′
( k−1∑
j=0

2j · (zj − sj)
)
= y mod q,

and for all j, we have φj = ψj ;wj = ψj(sj);vj + wj = φj(zj);vj ∈ B3m. This implies that φj(zj −
sj) = vj ∈ B3m. Let v′j := zj − sj = φ−1j (vj), then we obtain that A′

(∑k−1
j=0 2

j · v′j
)

= y mod q and

v′j ∈ B3m. Then for each v′j , we drop the last 2m coordinates to obtain ṽ′j ∈ {−1, 0, 1}m. Now we have

A
(∑k−1

j=0 2
j · ṽ′j

)
= y mod q. Let x′ =

∑k−1
j=0 2

j · ṽ′j . Then Ax′ = y mod q, and

‖x′‖∞ ≤
k−1∑
j=0

2j · ‖ṽ′j‖∞ ≤
k−1∑
j=0

2j =

blg βc∑
j=0

2j = 2blg βc+1 − 1 ≤ 2β − 1.

The knowledge extractor outputs x′, which satisfies ((A,y;x′) ∈ RISIS∞n,m,q,2β−1
.

2.5 A Scheme Variant with no Gap

In a personal communication, D. Micciancio indicated to the authors a modification of the SternExt proof
system that removes the extraction gap entirely. Instead of relying on powers of 2, one can use the following
sequence of integers: b1 = dβ/2e, b2 = d(β− b1)/2e, b3 = d(β− b1− b2)/2e,. . ., and 1. One obtains a sequence
of numbers of length k = blg βc+ 1, whose subset sums are precisely the numbers between 0 and β. Finally,
any integer in this interval can be efficiently expressed as a subset sum of the integers in the sequence.

3 Applications

Our results described in Section 2 yield the potential of enabling weaker security assumptions and lower
complexities for various lattice-based cryptographic constructions. In this section, we will describe two ap-
plications of the SternExt proof system: an improved ID-based identification scheme and a new ZKPoPK
for Regev’s encryption scheme [Reg05, Reg09].

3.1 Identity-Based Identification

Definition 2 ([BNN09]). An identity-based identification (IBI) scheme is a tuple of four PPT algorithms
(MKg,UKg,P,V):

• MKg(1n): On input 1n, output a master public and master secret key pair (mpk,msk).
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• UKg(msk, id): On input msk and a user identity id ∈ {0, 1}∗, output a secret key skid for this user.
• 〈P,V〉 is an interactive protocol. The prover P takes (mpk, id, skid) as input, the verifier V takes (mpk, id)
as input. At the end of the protocol, V outputs 1 (accept) or 0 (reject).

The completeness requirement for an IBI scheme is as follows: For any mpk generated by MKg(1n), and skid
extracted by UKg(msk, id), the decision of V after interacting with P is always 1. We refer the reader to
[BNN09] for formal definitions of security notions for IBI schemes.

A common strategy in constructing IBI schemes consists in combining a signature scheme and a PoK
in the following way: The trusted authority generates (mpk,msk) as a verification key - signing key pair of
a signature scheme; Whenever a user id queries for his secret key, the authority returns skid as a signature
on id; For identification, the user plays the role of the prover, and runs a PoK to prove the possession of
skid. If the signature scheme is strongly secure against existential forgery under chosen message attacks, and
the PoK is at least witness-indistinguishable, then the resulting IBI scheme is secure against impersonation
under concurrent attacks [BNN09]. This strategy is widely used for lattice-based IBI schemes. Stehlé et
al. [SSTX09] combined the GPV signature scheme [GPV08], and the Micciancio-Vadhan [MV03] PoK to
obtain an IBI scheme based on the hardness of the SIVPÕ(n2) problem (in the `2 norm). Rückert [Rüc10a]
combined the Bonsai tree signature scheme [CHKP10] and Lyubashevsky’s PoK [Lyu08] for ideal lattices
to produce an IBI scheme based on the hardness of the restriction of SVPÕ(n3.5) to ideal lattices (in the `∞
norm).

Following the same approach, the SternExt proof system allows us to achieve better in terms of security
assumption. Since SternExt is zero-knowledge, it has the witness-indistinguishability (WI) property. As
WI is preserved under parallel composition [FS90], we can repeat the protocol ω(log n) times in parallel to
obtain a WIPoK with negligible soundness error. Combining with the GPV signature scheme, we obtain
a secure IBI scheme in the random oracle model with hardness assumption SIVPÕ(n1.5). At first, we review
the trapdoor generation and preimage sampling algorithms used in [GPV08], which will essentially serve as
the MKg(1n) and UKg(msk, id) algorithms in our IBI scheme. The following trapdoor generation algorithm
was introduced in [Ajt99], improved in [AP11], and recently simplified in [MP12].

Lemma 1 ([AP11, MP12]). Let q ≥ 2 and m ≥ 6n lg q. There is a PPT algorithm TrapGen(n,m, q) that
outputs a matrix A statistically close to uniform in Zn×mq , and a basis TA ∈ Zm×m for Λ⊥q (A) satisfying
‖T̃A‖ ≤ O(

√
n lg q).

Given an integer lattice L, the discrete Gaussian distribution DL,σ,c with parameter σ is the m-dimensional
Gaussian distribution centered at c, with support restricted to the lattice L. Given a basis B for L, the
distribution DL,σ,c can be sampled efficiently for σ ≥ ‖B̃‖ω(

√
logm).

Lemma 2 ([GPV08]). Let q ≥ 2 and m ≥ n. Let A be a matrix in Zn×mq and TA be a basis for Λ⊥q (A).
Then for y in the image of A and σ≥ ‖T̃A‖ω(

√
logm), there is a PPT algorithm SampleISIS(A,TA,y, σ)

that outputs x ∈ Zm sampled from the distribution DZm,σ,0, conditioned on the event that Ax = y mod q.

Let x be the output of SampleISIS(A,TA,y, σ). Gentry et al. [GPV08] noted that for any fixed function
t(m) ≥ ω(

√
logm), one has ‖x‖∞ ≤ σ · t with overwhelming probability. If TA is a basis generated by

TrapGen(n,m, q), then we can take σ = O(
√
n lg q) · ω(

√
logm). In this case, let β = dσ · te = Õ(

√
n).

Now let H : {0, 1}∗ → Znq be the random oracle used in the GPV signature. For parameters (m, q, β, σ) as
described above, we obtain the following IBI scheme:

• MKg(1n): Run algorithm TrapGen(n,m, q) to output a master public key mpk = A ∈ Zn×mq , and a
master secret key msk = TA ∈ Zm×m.
• UKg(msk, id): For id ∈ {0, 1}∗, let skid = SampleISIS(A,TA,H(id), σ). If ‖skid‖∞ > β (which happens

with negligible probability) then restart. Otherwise, output skid as the secret key for identity id. We
note that skid is the GPV signature for the message id, and is a solution to the ISIS∞n,m,q,β instance
(A,H(id)).
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• 〈P,V〉: The common input is the pair (A,H(id)). The auxiliary input of P is skid. Then P and V play
the roles of the prover and the verifier in the SternExt protocol. The protocol is repeated l = ω(log n)
times in parallel to make the soundness error negligibly small.

The completeness of the obtained IBI scheme follows from the perfect completeness of SternExt. Since the
GPV signature scheme is strongly secure against existential forgery under chosen message attacks [GPV08],
and the SternExt protocol is a WIPoK, the obtained IBI scheme is secure against impersonation under
concurrent attacks. The scheme relies on the assumed hardness of the ISIS∞n,m,q,2β−1 problem, where β =

Õ(
√
n). It follows from Theorem 1 that solving the ISIS∞n,m,q,2β−1 problem is at least as hard as solving

SIVP2
γ (in the `2 norm) with γ = (2β − 1) · Õ(n) = Õ(n1.5).

Theorem 4. The obtained IBI scheme is concurrently secure in the random oracle model if the SIVPÕ(n1.5)

problem is hard (in the worst-case).

Similarly, combining the SternExt proof system with lattice-based signature schemes that are secure in
the standard model (e.g., [CHKP10, Boy10, MP12]) we can obtain secure lattice-based IBI schemes in the
standard model, with weaker security assumptions than in the contemporary schemes.

3.2 Proof of Plaintext Knowledge for Regev’s Cryptosystem

Regev’s LWE-based encryption scheme is as follows:

• Parameters: Integers n,m, q, an integer p� q and a real α > 0.
• Private key: The private key is s $←− Znq .
• Public key: Let A

$←− Zn×mq and e
$←− (Ψα(q))

m , where Ψα(q) is the LWE error distribution [Reg05,
Reg09]. The public key is

(A,b = AT s+ e) ∈ Zn×mq × Zmq .

• Encryption: The message space is {0, . . . , p−1}. Given a messageM , and the public key (A,b), choose
a uniformly random2 integer vector r $←− {0, . . . , p− 1}m, and output the ciphertext

(u, c) = (Ar,bT r+M · bq/pc) ∈ Znq × Zq.

• Decryption: Given the ciphertext (u, c) ∈ Znq × Zq, and the private key s ∈ Znq , output M = b(c −
sTu) · p/qe.

For the correctness, security, and parameters selection of this cryptosystem we refer to [Reg09]. We now
show how to derive a PoPK for this encryption scheme from a PoK for the relation RISIS∞ . A PoPK for
Regev’s cryptosystem is a PoK for the following relation:

RRegev =
{
((A,b), (u, c), r‖M) ∈ (Zn×mq × Zmq )×(Znq× Zq)×{0, . . . , p−1}m+1 :

(u = Ar) ∧ (c = bT r+M · bq/pc)
}
.

We form the following matrix:

A′ =


0

A
...
0

bT bq/pe

 ∈ Z(n+1)×(m+1)
q ,

2 In fact, the proof system can be adapted to any nonce distribution, as long as ‖r‖∞ is bounded by some B
sufficiently smaller than q.
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and let y = (u‖c) ∈ Zn+1
q . Let x = (r‖M) be any witness of the relation RRegev. Then we have x ∈ Zm+1,

and ‖x‖∞ ≤ p−1. Moreover, we observe that A′x = y mod q. Therefore, vector x is a solution to the ISIS∞

problem with parameters (n+ 1,m+ 1, q, p− 1) defined by (A′,y). In other words, we have shown that the
relation RRegev can be embedded into the relation RISIS∞n+1,m+1,q,p−1

. We then run the SternExt protocol
for the relation RISIS∞n+1,m+1,q,p−1

to obtain an efficient ZKPoPK for Regev’s encryption scheme.

If a cheating prover succeeds in proving the knowledge of a plaintext x = (r‖M), then we use the knowledge
extractor to output a vector x′ = (r′‖M ′) ∈ Zm+1 such that ‖x′‖∞ ≤ 2 · (p− 1)− 1 = 2p− 3. In particular,
we obtain r′ ∈ Zm such that ‖r′‖∞ ≤ 2p − 3 and Ar′ = u mod q. Since A is chosen uniformly at random
in Zn×mq , and the distribution of u is statistically close to uniform over Znq (see [Reg09, Section 5]), vector r′
is a solution to the random ISIS∞n,m,q,2p−3 instance (A,u). This implies that the security of our ZKPoPK
for Regev’s encryption scheme relies on the assumed hardness of SIVPp·Õ(n) (in the `2 norm).
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A A Zero-Knowledge Proof of Knowledge for SIS

We consider the relation associated to the SIS∞n,m,q,β problem:

RSIS∞n,m,q,β
=
{
(A,x) ∈ Zn×mq × Zm: (0 < ‖x‖∞ ≤ β) ∧ (Ax = 0 mod q)

}
.

We now show how to modify the SternExt proof system for RISIS∞n,m,q,β
in Section 2 to handle the additional

requirement on the witness, i.e., x 6= 0. In particular, the protocol must prevent a cheating prover using x = 0
from passing the verification step. We look at the binary decomposition of x, i.e., x =

∑k−1
j=0 2

j · ũj , and
observe that x = 0 is equivalent to ∀j : ũj = 0. Our idea is to constrain the prover to prove in zero-knowledge
that (at least) one of his ũj ’s is non-zero.

Now, observe that if x = (x1, . . . , xm) is a valid witness for RSIS∞n,m,q,β
, and 2l is the highest power of 2

dividing gcd(x1, . . . , xm), then x∗ = (x1/2
l, . . . , xm/2

l) is also a valid witness for RSIS∞n,m,q,β
. Applying the

binary decomposition to vector x∗, we note that vector ũ∗0, whose coordinates are the least significant bits
of x1/2l, . . . , xm/2l, must be non-zero. To prove the knowledge of such a vector ũ∗0, the prover can use the
extension trick, but in dimension 3m−1 instead of dimension 3m. More precisely, the prover appends 2m−1
coordinate to ũ∗0 to get a vector u∗0 that has exactly m coordinates equal to 1; m coordinates equal to −1;
and m− 1 coordinates equal to 0. Seeing a permutation of u∗0 that has these constraints, the verifier will be
convinced that the original vector ũ∗0 must have at least one coordinate equal to 1 or −1, and thus it must
be non-zero.

In summary, the modified SternExt proof system for RSIS∞n,m,q,β
works as follows: The common input is a

matrix A ∈ Zn×mq . The auxiliary input of the prover is x. Prior to the interaction, both parties append 2m−1
and 2m zero-columns to matrix A to get matrix A∗, and matrix A′, respectively. In addition, the prover
performs the following preparation steps:

• Shifting: Map x to x∗, as described above.
• Binary decomposition: Write x∗ =

∑k−1
j=0 2

j · ũ∗j .
• Extensions: Append (2m− 1) coordinates to ũ∗0 as described above, and perform the usual extension to

dimension 3m for the other vectors ũ∗1, . . . , ũ∗k−1.

We note that A∗u∗0 + A′(
∑k−1
j=1 2

j · u∗j ) = 0 mod q is equivalent to Ax = 0 mod q. Therefore, we can now
apply the SternExt proof with a small tweak: The constraints of u∗0 are verified using a random permutation
of 3m− 1 elements. This leads to a ZKPoK for the SIS∞n,m,q,β problem.
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