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Abstract. We propose a polynomial time quantum algorithm for solv-
ing the discrete logarithm problem in matrices over finite group rings.
The hardness of this problem was recently employed in the design of a
key-exchange protocol proposed by D. Kahrobaei, C. Koupparis, and V.
Shpilrain [4]. Our result implies that the Kahrobaei et al. protocol does
not belong to the realm of post-quantum cryptography.
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1. Introduction

The discrete logarithm problem (DLP) in a finite cyclic group G is an al-
gorithmic question to find for any given pair of elements g, h ∈ G a number
n ∈ N satisfying gn = h. This problem is extremely important due to its
relation to cryptography. One of the most prominent and long withstanding
protocols, the Diffie-Hellman key-exchange protocol, is based on the as-
sumption that DLP is hard in certain groups. The Diffie-Hellman protocol
proposed in [1] was the first practical solution to the key distribution prob-
lem, allowing two parties (Alice and Bob), never having met in advance or
shared keying material, to establish a shared secret by exchanging messages
over an open channel ([9]). Its basic version works as follows:

Algorithm 1. Diffie-Hellman key-agreement.

One-time setup: Choose an appropriate prime p and a generator g of F∗p
with 2 ≤ g ≤ p− 2.

1: Alice chooses a random secret a with 1 ≤ a ≤ p−2 and sends ga mod p
to Bob.

2: Bob chooses a random secret b with 1 ≤ b ≤ p− 2 and sends gb mod p
to Alice.

3: Alice receives gb and computes the shared key as K = (gb)a mod p.
4: Bob receives ga and computes the shared key as K = (ga)b mod p.
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To break this scheme a passive eavesdropper must solve the Diffie-Hellman
problem or, more generally, the discrete logarithm problem (DLP) in Fp.
After 30 years of extensive research DLP still looks hard for a conventional
computer. Nevertheless, it can be efficiently solved using a quantum com-
puter. Shor in [18] showed that DLP can be solved by a quantum algorithm
in polynomial time in any finite field Fps (where p is prime and s ∈ N).
Currently quantum computers are weak, but a full scale quantum computer
(if ever built) will defeat all DLP-based and factorization-based schemes.
This is a powerful motivator for the design and construction of quantum
computers and for the study of new quantum computer algorithms. It also
facilitates research on new cryptosystems that are secure against quantum
computers, collectively called post-quantum cryptography. Currently post-
quantum cryptography is mostly focused on four different approaches:

• Lattice-based cryptography such as NTRU ([3]) and GGH ([2]).
• Multivariate cryptography such as unbalanced oil and vinegar ([5]).
• Hash-based signatures such as Lamport signatures ([6]) and Merkle

([10]) signature scheme.
• Code-based cryptography that relies on error-correcting codes, such

as McEliece encryption ([7]) and Niederreiter signatures ([13]).

For a recent survey of quantum-resistant public-key schemes see [16]. There
are also attempts to employ the ideas from combinatorial group theory in the
design of cryptographic primitives secure in a post-quantum world ([11, 12]).
In particular, there are ideas of how to generalize the original Diffie-Hellman
protocol using different group-oriented constructions. For instance, Odoni,
Varadharajan, and Sanders in [14] suggested to use exponentiation in a
group of non-singular matrices over a finite field GLn(Fps). That proposal
was cryptanalyzed by Meneses and Wu in [8] who showed that there exists
a probabilistic polynomial time reduction of DLP in GLn(Fps) to DLP in
some small extension field of Fps , proving that the proposal brings nothing
new to the field.

More recently, D. Kahrobaei, C. Koupparis, and V. Shpilrain in [4] con-
sidered yet another variation of the Diffie-Hellman key-exchange protocol
which uses the ring of 3× 3 matrices over a group-ring F7[S5]. The authors
claim that the new scheme can withstand quantum algorithm attacks and
provide some supporting arguments. In this paper we disprove that claim. In
more detail, we prove that the ring M3(F7[S5]) can be embedded into a ring
M360(F7) (see below for precise definitions) and generalize the Meneses-Wu
reduction to the case of a singular base matrix. This efficiently reduces DLP
in M3(F7[S5]) to DLP in some small extension field of Fps which is finally
solved by Shor’s quantum algorithm. This proves the following results:
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Theorem 1. Let G be a finite group and p a prime number. The discrete
logarithm problem in the ring Mn(Fps [G]) can be solved by a probabilistic
quantum algorithm in (expected) polynomial time in n, log2(p), s, |G|. �

Corollary 2. Let G be a finite group and p a prime number. The discrete
logarithm problem in the group-ring Fps [G] can be solved by a probabilistic
quantum algorithm in (expected) polynomial time in log2(p), s, |G|. �

In Section 2 we give the definition of a group ring and describe the
Kahrobaei et al. protocol. In Section 3 we recall the Meneses-Wu reduction
and extend it to singular matrices. In Section 4 we describe the embedding
construction and briefly discuss the results of experiments.

2. Group rings and Kahrobaei et al. protocol

Let G = {g1, . . . , gk} be a finite group of order k and R is a commutative
ring. The group-ring R[G] is the set of formal linear combinations of gi’s:

k∑
i=1

aigi, ai ∈ R

equipped with addition and multiplication defined as follows:(
k∑
i=1

aigi

)
+

(
k∑
i=1

bigi

)
=

k∑
i=1

(ai + bi)gi

and (
k∑
i=1

aigi

)
·

(
k∑
i=1

bigi

)
=

k∑
i=1

 ∑
gjgk=gi

(ajbk)

gi.
It is easy to see that multiplication is not commutative unless the group G
is commutative. For more on group-rings see [15]. By Sn we denote the
group of permutations on n elements. We denote by GLm(Fp[Sn]) the group
of invertible m ×m matrices over the ring Fp[Sn] and by Mm(Fp[Sn]) the
ring of all m×m matrices over the ring Fp[Sn].

The protocol proposed by Kahrobaei et al. [4] works exactly the same way
as the original Diffie-Hellman. We describe it here just to fix the notation
and parameter values:

Algorithm 2. Kahrobaei-Koupparis-Shpilrain key-agreement.

One-time setup: Choose a matrix M ∈M3(F7[S5]).
1: Alice chooses a random secret a and sends Ma to Bob.
2: Bob chooses a random secret b and sends M b mod p to Alice.
3: Alice receives M b and computes the shared key as K = (M b)a.
4: Bob receives Ma and computes the shared key as K = (Ma)b.
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3. Menezes-Wu reduction and singular matrices

The original reduction is described for invertible matrices only. To design
an algorithm for matrices over group rings we need a more general technique
which works with singular matrices as well. We start out with the description
of the original reduction following by the modifications which extend the
reduction to arbitrary matrices.

Let A ∈ GL(n, q) (where q = ps and p is prime) and B = Ak. Our goal is
to find a number l ∈ N satisfying B = Al. Below we sketch the Menezes-Wu
algorithm which uses Shor’s quantum algorithm for factoring integers [18].

(1) Using Hessenberg algorithm compute the characteristic polynomial
pa(x) for A and using Ben-Or’s algorithm express it as a product:

pa(x) = fe11 (x) . . . fess (x),

where fi’s are distinct and irreducible.
(2) Some sufficiently large extension E of Fq contains the eigenvalues

λ1, . . . , λs for A. Unfortunately, E can be very large. To avoid this
problem consider the following extensions separately:

Fq(λi) ' Fq[x]/〈fλi(x)〉,

where fλi is the irreducible polynomial for λi, and describe the struc-
ture of the Jordan form for A. This can be done regardless of M
being invertible or not.

(3) By [8, Theorem 2] the order of A in G can be found as:

ord(A) = lcm(ord(λ1), . . . , ord(λs)) · p{t}

where ord(λi) is the order of λi in Fq(λi), t is the size of the largest
Jordan block and p{t} is the least power of p greater than or equal
to t. The number l is uniquely determined modulo ord(A).

(4) Using quantum computer we can efficiently find prime power factor-

ization for the numbers |(Fq[x]/〈fλi(x)〉)∗| = qdeg(fλi )− 1. Given the

factorization of qdeg(fλi )−1 it is straightforward to compute ord(λi).
(5) For every eigenvalue λi of A find (conjugating by an appropriate

matrix) the corresponding eigenvalue λli of B. Using quantum com-
puter solve the DLP in Fq(λi) which gives a number li satisfying

λlii = λli in Fq(λi). This gives a relation

li ≡ l mod ord(λi).

(6) Compute l mod p{t} as described in [8].
(7) Finally, compute l mod ord(A) using the generalized Chinese re-

mainder theorem.

For a detailed description of the algorithm we refer the reader to the original
paper by Menezes and Wu.

Now, if A is a singular matrix, then some eigenvalues λi are trivial and
the Jordan form of A is a direct sum N ⊕ Z of a non-singular block N and
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a singular block Z. Recall that a matrix A is called nilpotent if An = 0 for
some n ∈ N. The least positive n satisfying An = 0 is called the degree of
nilpotency. It is easy to see that a singular Jordan d×d-block is nilpotent of
degree d. Hence, the singular block Z is nilpotent of degree r, where r is the
size of a largest singular Jordan block in Z. Therefore, for some invertible
matrix S we have:

Ar = S−1(N ⊕ Z)rS

= S−1(N r ⊕ 0)S

= S−1(N r+ord(N) ⊕ 0)S

= Ar+ord(N).

Furthermore, r and ord(N) are the least positive numbers satisfying the
equality above. The number ord(N) can be computed as in Menezes-Wu
and the number r can be computed by observing the structure of the Jordan
form.

Next, to solve an instance (A,B) of DLP in Mn(Fq) we do the following:

• Describe the Jordan normal form for A and B. Let NA and NB be
the non-singular blocks of A and B respectively.
• Applying Menezes-Wu and Shor algorithms, solve the DLP for the

instance (NA, NB) and obtain the number l′ satisfying:

NB = N l′
A and l′ ≤ ord(NA).

• Take into account the singular block in the Jordan’s matrix for A.
One number l from the set

{l′ + c · ord(NA) | c ∈ N ∪ {0}, l′ + c · ord(NA) ≤ r + ord(NA)}.
satisfies B = Al. The set contains up to r numbers and, hence, we
can enumerate it and find the required number.

This gives a quantum algorithm for singular matrices.

4. The embedding

In this section we describe the reduction of the discrete logarithm problem
in Mn(Fps [G]) to the discrete logarithm problem in some extension of Fps . In
a more general setting, fix a finite group G = {g1, . . . , gk} and a commutative
ring R. Let a, b ∈ R[G] and c = a · b where

a =
∑
g∈G

ag · g, b =
∑
g∈G

bg · g, and c =
∑
g∈G

cg · g,

for some ag, bg ∈ R. For a ∈ R[G] define a matrix Ma ∈Mk(R) and a vector

va ∈ Rk as follows:

Ma =

 ag1g−1
1

. . . ag1g−1
k

. . .
agkg−1

1
. . . agkg−1

k

 and va =

 ag1
. . .
agk

 .
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It is easy to see that:

(1) Ma · vb = vc.

Therefore, the right multiplication in R[G] is a linear transformation of Rk

and can be naturally interpreted in Mk(R).

Proposition 3. For any a, b ∈ R[G] we have Ma·b = Ma ·Mb. Furthermore,
the map a 7→Ma is a ring monomorphism.

Proof. Pick arbitrary a, b ∈ R[G]. Obviously, Ma+b = Ma + Mb. To prove
that Ma·b = Ma ·Mb consider arbitrary 1 ≤ i, j ≤ n. The (i, j)’s entry in
the matrix Ma·b is:

(ab)gig−1
j

=
∑

gh=gigj

agbh,

which is the same as the (i, j)’s entry in the matrix Ma ·Mb:

k∑
m=1

agig−1
m
agmg−1

j
.

Therefore, Ma·b = Ma ·Mb and the map a 7→ Ma is a ring homomorphism.
Finally, we note that we can easily reconstruct a from Ma. Thus, the map
a 7→Ma is a monomorphism. �

Next, any matrix A = (aij) ∈ Mn(R[G]) defines a linear transformation
of (R[G])n in the usual way: a11 . . . a1n

. . .
an1 . . . ann

 ·
 b1

. . .
bn

 =

 ∑
a1ibi
. . .∑
anibi

 .

For A = (aij) ∈Mn(R[G]) define a block matrix A∗ and for a vector column

b = (b1, . . . , bn) ∈ (R[G])n a joint vector b∗ ∈ Rkn:

A∗ =

 Ma11 . . . Ma1n

. . .
Man1 . . . Mann

 and b∗ =

 vb1
. . .
vbn

 .

Let c = A · b. Then it is straightforward to check that:

(2) c∗ = A∗ · b∗.

Proposition 4. Let G be a finite group of order k and R a commutative
ring. Then the map ϕ : Mn(R[G]) → Mnk(R) given by A 7→ A∗ is a ring
monomorphism.

Proof. Pick arbitrary A,B ∈Mn(R[G]). Obviously, (A+B)∗ = A∗+B∗. It
follows from Proposition 3 that:

A∗ ·B∗ = (AB)∗

and, hence, ϕ is a homomorphism. The map ϕ is obviously injective because
given A∗ one can easily reconstruct the original matrix A. �
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Now let R = Fps . By Proposition 4, we can reduce the discrete logarithm
problem in Mn(Fps [G]) to DLP in Mnk(Fps) which further can be reduced to
DLP in some extension of Fps using the Menezes-Wu algorithm. The latter
can be solved by Shor’s algorithm. This proves Theorem 1.

Finally observe that DLP in the ring M3(F7[S5]) used by Kahrobaei et
al. is a particular case of the problem described above and, therefore, can
be solved efficiently on a quantum computer using the described reduction.

Out of curiosity we implemented the embedding and obtained the fol-
lowing statistics: 30% of randomly uniformly generated matrices M ∈
M3(F7[S5]) have M∗ ∈ GL360(F7). This means that 30% of instances of DLP
M3(F7[S5]) reduce to elements of GL360(F7) and the original Meneses-Wu
reduction works for them. Other 70% of the instances require generalized
technique described in the end of Section 3.

5. Conclusion

We presented a probabilistic polynomial-time quantum algorithm for solv-
ing the discrete logarithm problem in the ring Mn(Fps [G]) for any fixed fi-
nite group G. As a consequence we showed that the protocol proposed by
Kahrobaei et al. is vulnerable to quantum algorithm attacks and does not
belong to the realm of post-quantum cryptography. It is not clear how to
improve the protocol to resist this type of attacks.

Adding conjugation (as in [17]) helps, because on step (5) one can not
immediately find the eigenvalue λli of B corresponding to the eigenvalue λi
of A. But that does not look like a serious improvement since conjugation
preserves the Jordan blocks and to break the new scheme it will just require
to find the associated blocks in A and in B. Furthermore, our method
reduces the Diffie-Hellman problem with conjugation in M3(F7[S5]) to the
same problem in M360(F7), which means that the system with conjugations
over F7[S5] does not bring much new to the field either.

Another idea that comes to mind is taking a large group G. Unfortu-
nately, this will make exponentiation in Mn(Fps [G]) computationally infea-
sible because of the growth of the size of elements representing large powers
in Fps [G].
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