
Concurrent Signature without Random Oracles

Xiao Tan1, Qiong Huang2, and Duncan S. Wong1

1 Department of Computer Science, City University of Hong Kong, China
xiaotan4@gapps.cityu.edu.hk, duncan@cityu.edu.hk

2 College of Informatics, South China Agricultural University, Guangzhou, China
csqhuang@alumni.cityu.edu.hk

Abstract. Concurrent signatures provide a way to exchange digital sig-
nature among parties in an efficient and fair manner. To the best of our
knowledge, all the existing solutions can only be proven secure in the ran-
dom oracle model. How to build an efficient concurrent signature scheme
in the standard model has remained as an open problem since its intro-
duction in 2004. In this paper we answer the problem affirmatively. Base
on a novel idea, we propose a new concurrent signature construction,
the security of which does not rely on the random oracle assumption.
Our idea stems from an attempt of achieving a strong ambiguity fea-
ture that anyone should be able to produce indistinguishable ambiguous
signatures by just using public information available in the system. In
the multi-user setting, we prove the security of the new scheme based
on Computational Diffie-Hellman (CDH) assumption, which is a rather
standard and well-studied assumption in cryptography.

Keywords: fair exchange, concurrent signature, ambiguity, multi-user setting

1 Introduction

The fair exchange of digital signatures is a protocol which ensures the atomicity
of signature exchange among a group of parties so that the exchange is performed
in an all-or-nothing manner, either all the parties get the others’ signatures or
none of them does. One of the electronic commerce applications of fair exchange
is contract signing [11]. There are two main approaches for doing fair exchange.
One is the timed release technique [9, 10] in which the signatures are computed
as segments and exchanged in a polynomial number of rounds such that in any
round, the amount of one party’s knowledge on the counter-party’s signature is
nearly the same as that of the other party. This technique requires a number
of communication rounds, and its fairness depends on the assumption that the
parties have comparable computing power. The other technique relies on a semi-
trusted offline arbitrator which only gets involved in the exchange when a dispute
between the parties occurs. This type of fair exchange is referred to as Optimistic
Fair Exchange (OFE) [1, 3, 12].

Concurrent signature, introduced by Chen, Kudla and Paterson [7], is the
third approach for performing fair exchange of signatures. In a concurrent sig-
nature scheme, two parties A and B produce some signatures called ambiguous

2 X. Tan, Q. Huang and D. S. Wong

signatures σA and σB , respectively. The signatures are ambiguous in a way that
no outsider can distinguish the signers of them until an extra secret called key-
stone is released by A. Once the keystone is released, σA and σB will become
binding to their signers concurrently and anyone can verify the validity of σA
and σB with respect to their corresponding signers. Unlike OFE, a concurrent
signature scheme does not have a semi-trusted arbitrator. Instead, the initia-
tor A and the matcher B interact in the following three phases: (1) Keystone
Generation Phase: A generates a keystone s and the corresponding keystone fix
f , and sends f to B; (2) Ambiguous Signature Generation Phase: A generates
and sends σA to B, then B generates and sends σB back to A after verifying
the validity of σA; and (3) Signature Authorship Binding Phase: A verifies the
validity of σB and sends s to B. The keystone s binds the authorship of σA and
σB to A and B, respectively and concurrently.

A secure concurrent signature should be unforgeable, ambiguous and fair.
By Chen et al.’s model [7], unforgeability requires that when a party, say the
matcher B, receives an ambiguous signature σA, B can be sure that σA must be
generated by the initiator A, and vice versa. Ambiguity prevents the public from
telling if an ambiguous signature σA (resp. σB) was generated by A or B before
the keystone s is released. In addition, no one including B (resp. A) should be
able to convince anyone else that σA (resp. σB) was generated by A (resp. B).
Fairness requires that once s is released, the authorship of σA to A and that of
σB to B should be bound concurrently. If s is not released, none of σA or σB
will bind to any signer.

Concurrent signature facilitates very efficient solutions to many electronic
commerce applications. Generally, these applications assume that B will receive
the keystone s when B’s binding signature (s, f, σB) is to be used by A. This
assumption can be easily guaranteed by existing mechanisms or in certain sce-
narios [7]. For instance, A needs B’s signature to acquire goods or service from
B, then B can always ask A to show the keystone before providing service to A.

Motivation: Several concurrent signature schemes were proposed in the litera-
ture [17, 19, 16, 13, 8, 18, 21]. These works either focus on improving the ambigu-
ity model [17, 13], or fixing potential attacks against fairness [19], or extending
concurrent signatures to multi-party setting [16, 18] or identity based setting
[8], or balancing the capability of controlling the keystone between the initiator
and the matcher [21]. However, none of the schemes are proven secure without
random oracles. As we know, the random oracle model [4] is often criticized
as a heuristic methodology, assuming that all the parties have oracle access to
some truly random functions. Canetti et al. proved that there does not exist any
equivalent function ensemble in the real world that can replace random oracles
without security loss [6]. Therefore, it is more desirable to construct concurrent
signatures in the standard model for reliable security.

We also observed a restriction in existing ambiguity models [7, 17]: given
the ambiguous signatures, the public knows that at least one of the legitimate
parties must have been involved. This leaked information harms privacy of the
corresponding parties who prefer to remain anonymous until the fair exchange

Concurrent Signature without Random Oracles 3

has been done successfully. A natural scenario is, when A and B sign a contract
or coalition agreement of sensitive content, it is probably undesirable for others
to know that either A or B are involved until the contract is validated by both of
them. In this case, we need an ambiguity model to ensure that nothing about the
authorship of ambiguous signatures are revealed before the keystone is released.

Contributions: Our contributions in this paper are two-fold:

– We propose a new ambiguity model for concurrent signatures that overcomes
the restriction above. This model renders an arbitrarily large signer space to
protect the anonymity of the corresponding parties.

– We present a concrete concurrent signature scheme in the new model, and
prove its security without random oracles in the multi-user setting. It is the
first concurrent signature scheme in the standard model.

1.1 Our Idea

To show the difficulty of finding a construction in the standard model, a useful
observation is that most of the concurrent signatures are based on ring signatures
built from Schnorr signature [15]. As a result, these schemes have to apply the
forking lemma [14] to prove the unforgeability in the random oracle model.

In order to get rid of this barrier, we start from an efficient two-user ring sig-
nature in the standard model [5]. Instead of directly applying the ring signature
as the building block, we twist it such that the ring is formed by one of the two
parties and a keystone fix which can be treated as a virtual user. More precisely,
the initiator A’s ambiguous signature σA is produced upon the ring (pkA, f)
using skA, and the matcher B’s ambiguous signature σB is produced upon the
ring (pkB , f) using skB . If A follows the scheme to generate the keystone fix f ,
then releasing s in the binding phase will result in decomposition of the rings
(pkA, f) and (pkB , f) simultaneously. That is, (s, f, σA) and (s, f, σB) become
bound to A and B respectively as two concurrent signatures. The overall idea is
shown by Figure 1.

On the other hand, our construction achieves ambiguity in a flavor of anonymity
which ensures that any person can produce f by another means, such that it
will be capable of generating indistinguishable σA, σB as honestly computed
ones. The indistinguishability holds even against the matcher B, say B can not
identify the authorship of the received ambiguous signature σA when running a
concurrent signature protocol. Hence, this strong ambiguity is mutually exclu-
sive to the conventional unforgeability model. Fortunately, our scheme ensures
that the concurrent signatures are still unforgeable after the keystone is released.
In particular, σA, σB can be bound to A, B respectively only if f , σA, σB are
produced honestly by following the scheme.

2 Definitions

Our definition for concurrent signatures is slightly different from previous formal-
izations. In particular, we need an additional algorithm KFVer for the matcher

4 X. Tan, Q. Huang and D. S. Wong

Fig. 1. An Illustration on the Idea of Our Concurrent Signature Construction

to verify the keystone. Formally, a concurrent signature scheme consists of the
following probabilistic polynomial time (PPT) algorithms.

– Setup(1k). On input a security parameter k ∈ N, it outputs a set of system
parameters denoted by param including the message space M, the keystone
space S, the keystone fix space F .

– SKGen(param). On input param, it outputs a public key pair (pk, sk).

– KFGen(param). On input param, it outputs a keystone s ∈ S and a keystone
fix f ∈ F .

– KFVer(param, f). On input param, a keystone fix f , it outputs 1 (accept) or
0 (reject).

– ASign(param, pki, pkj , f,m, ski). On input param, two public keys pki, pkj ,
a keystone fix f , a message m ∈ M, and a private key ski, it outputs an
ambiguous signature σi.

– AVer(param, pki, pkj , f, σi,m). On input param, pki, pkj , f , an ambiguous
signature σi, and a message m, it outputs 1 (accept) or 0 (reject).

– Ver(param, pki, pkj , s, f, σi,m). On input param, pki, pkj , f ∈ F , s ∈ S, an
ambiguous signature σi, and a message m, it outputs 1 (accept) or 0 (reject).

The correctness requires that for all param← Setup(1k), any two public keys
pki, pkj where (pki, ski) ← SKGen(param), (pkj , skj) ← SKGen(param), and a
message m ∈M:

1. If (s, f)← KFGen(param), then KFVer(param, f) = 1.

2. If σi ← ASign(param, pki, pkj , f , m, ski), where (s, f) ← KFGen(param),
then AVer(param, pki, pkj , f, σi,m) = 1, and Ver(param, pki, pkj , s, f, σi,m) =
1. This condition also holds for σj .

Concurrent Signature without Random Oracles 5

2.1 The Protocol

We now describe how the concurrent signature scheme is to be carried out be-
tween two users A and B with public keys pkA and pkB , respectively. Suppose
A is the initiator, and B is the matcher. They run the protocol in the following
three rounds:

R1 :A computes (s, f)← KFGen(param) and σA ← ASign(param, pkA, pkB , f,m,
skA), and sends 〈f, σA〉 to B.

R2 : B checks if KFVer(param, f) = 1 and AVer(param, pkA, pkB , f, σA,m) = 1. If
the verifications hold, B computes σB ← ASign(param, pkB , pkA, f,m, skB),
and sends σB to A.

R3 : A checks if AVer(param, pkB , pkA, f, σB ,m) = 1. If the verification holds, A
sends s to B. Then, everyone can verify the concurrent signatures (s, f, σA)
and (s, f, σB) by checking if Ver(param, pkA, pkB , s, f, σA,m) = 1 and Ver(
param, pkB , pkA, s, f, σB ,m) = 1.

3 Security Models

We define a set of games for formalizing unforgeability, ambiguity and fairness
of concurrent signatures respectively, in the multi-user setting.

3.1 Unforgeability

The unforgeability is defined in the following game between a challenger C and
an adversary A.

– Setup Phase: On input a security parameter k ∈ N, C runs param ←
Setup(1k), and generate key pairs for the participants in the system by
running (pki, ski) ← SKGen(param) of multiple times, and sends param,
PKSet = {pki} to A.

– Query Phase: A can make queries to the following oracles.

• CorruptOracle. It takes a public key pki ∈ PKSet and returns the cor-
responding private key ski.

• ASignOracle. It takes two public keys pki, pkj ∈ PKSet, a keystone fix
f ∈ F , a message m ∈M, returns σi ← ASign(param, pki, pkj , f,m, ski).

– Output Phase: A outputs two public keys pki∗ , pkj∗ ∈ PKSet, a mes-
sage m∗ ∈ M, a keystone s∗ ∈ S, a keystone fix f∗ ∈ F , and an am-
biguous signature σi∗ . A wins the game if both the following conditions
hold: (1) Ver(param, pki∗ , pkj∗ , s

∗, f∗, σi∗ ,m) = 1; (2) A has never queried
CorruptOracle(pki∗) or ASignOracle(pki∗ , pkj∗ , f

∗,m∗).

Note that A can generate keystones and keystone fixes by simply running
the KFGen algorithm. A is not challenged by any keystone or keystone fix in this
game, so it does not need oracles for generating or revealing keystones.

6 X. Tan, Q. Huang and D. S. Wong

Definition 1 (Unforgeability). A concurrent signature scheme is said to be
(ε, t, qc, qs)-unforgeable if for any probabilistic polynomial-time adversary A which
runs in time t making qc queries to CorruptOracle and qs queries to ASignOracle,
its probability of winning in the game above is bounded by ε.

Our definition of unforgeability ensures that no PPT adversary A can pro-
duce a valid concurrent signature bound to a public key pki if A does not know
ski. This formalization refers to the “unforgeability of binding signatures”, which
differs from the original unforgeability model proposed by Chen et al. [7] refer-
ring to the “unforgeability of ambiguous signatures” in the view of the two
corresponding parties. However, we address that our model is sufficient for most
scenarios of fair exchange of signatures. The reason is, even if the ambiguous
signatures are forgeable by others besides the legitimate parties, our unforge-
ability model ensures that only the legitimate parties can make the ambiguous
signatures become binding. Note that [21] formalizes unforgeability of concurrent
signatures in a similar way as our model.

3.2 Ambiguity

Informally, the ambiguity prevents anyone from telling if two ambiguous signa-
tures together with the keystone fix are generated honestly by user i and j, or
merely simulated by anyone using the public information, before the keystone
is released. In the formalization below, we define an algorithm ASignSim called
ambiguous signature simulator, which models the capability of an outsider who
outputs two simulated ambiguous signatures σi, σj together with a keystone fix
f .

– ASignSim(param, pki, pkj ,m). On input param, two public keys pki, pkj , a
message m, the algorithm outputs a keystone fix f and two ambiguous sig-
natures σi, σj .

Note that ASignSim needs to be specified explicitly in the scheme description.
The ambiguity game is defined as follows where a challenger C runs the game
against an adversary A.

– Setup Phase: The same as the setup phase in Section 3.1, except that C
also sends the private keys SKSet = {ski} of all the participants to A.

– Query Phase: A can query the following oracles.
• KFGenOracle. It returns a keystone fix f by running (s, f)← KFGen(param).
• KSReleaseOracle. It takes a keystone fix f which is produced by KFGenOracle,

returns the corresponding keystone s.
– Challenge Phase: A sends to C two public keys pki, pkj ∈ PKSet and a

message m ∈M. C tosses a random bit b ∈ {0, 1}:
• If b = 0: C runs (s, f)← KFGen(param), then σi ← ASign(param, pki, pkj , f,
m, ski) and σj ← ASign(param, pkj , pki, f,m, skj).

• If b = 1: C runs (f, σi, σj)← ASignSim(param, pki, pkj ,m).

Concurrent Signature without Random Oracles 7

Then C responses A with (f, σi, σj).
– Output Phase:A continues querying the oracles above and outputs a guess-

ing b′ ∈ {0, 1} at the end of the game, under the restriction that A has never
queried KSReleaseOracle(f). A wins the game if b′ = b. The advantage of A
is defined as AdvAMB,A

CS = |Pr[b′ = b]− 1/2|.

Since A knows all the private keys, it can produce any users’ signatures by itself.
Hence, C does not provide CorruptOracle and ASignOracle in this game.

Definition 2 (Ambiguity). A concurrent signature scheme is said to be (ε, t, qf , qr)-
ambiguous if for any probabilistic polynomial-time adversary A which runs in
time t making qf queries to KFGenOracle and qr queries to KSReleaseOracle, its
probability of winning in the game above is bounded by ε.

In the literature, two ambiguity models were proposed for concurrent signa-
tures. One is the original ambiguity model proposed by Chen et al. [7] (we denote
it by AMBO), the other is the perfect ambiguity model proposed by Susilo et al.
[17, 19] (we denote it by AMBP). Below we compare these two models with our
ambiguity model which has a flavor of anonymity, denoted by AMBA.

[17, 19] has shown that AMBP is a stronger model than AMBO, in the sense
that it is more difficult for an adversary to identify the authorship of ambiguous
signatures before the keystone is released. Given a pair of ambiguous signatures
(σA, σB) on a keystone fix f , AMBP captured the following four possibilities of
the signers while AMBO only covers the first three: (1) σA is produced by A and
σB is produced by B; (2) both σA and σB are produced by A; (3) both σA and
σB are produced by B; (4) σA is produced by B and σB is produced by A. As we
can see, in the previous ambiguity models, the probability is at least 1/4 for an
adversary to correctly guess the signers. Furthermore, both AMBO and AMBP
leak the following information to the public: given the ambiguous signatures,
at least one of the corresponding parties (A or B) must have been involved.
This leaked information harms the privacy of the concerned parties before their
exchange is successfully completed. On the other hand, AMBA renders an ar-
bitrarily large signer space that totally overcomes the above restriction, since
everyone can use ASignSim to produce indistinguishable ambiguous signatures
as generated by honest participants. Obviously, Case (1)(2)(3) above are already
covered by AMBA, but it does not cover Case (4), since that when σA and σB
are produced by ASignSim, the issuer of both the ambiguous signatures must be
the same person. However, there seems no realistic scenario fall in Case (4). The
reason is, Case (4) implies that both A and B are malicious, which contradicts
with the general assumption in a cryptographic protocol that at least one par-
ticipant is honest. Table 1 compares the cardinality of signer space among the
existing ambiguity models.

Nguyen proposed a similar property called anonymity for concurrent signa-
tures [13]. It requires that the ambiguous signatures are indistinguishable from
random distribution. We address that Nguyen’s model is not well defined: even
if the ambiguous signatures are uniformly distributed in the signature space,
it is still possible for an adversary to distinguish whether signatures are issued

8 X. Tan, Q. Huang and D. S. Wong

Table 1. Comparison of Ambiguity Models

Models # Signer Space of (σA, σB)

AMBO |{(A,B), (A,A), (B,B)}| = 3
AMBP |{(A,B), (A,A), (B,B), (B,A)}| = 4
AMBA |{(A,B), (X,X)}| =∞
* Signer Space denotes the set of possible signers given the ambiguous signatures,

e.g. (A, B) represents that A signs σA and B signs σB . # denotes the cardinality.
X denotes an arbitrary person who knows the system parameters and pkA, pkB .

by honest parties. In Appendix A, we show that Nguyen’s concurrent signature
scheme is not anonymous in our ambiguity model, implying that Nguyen’s model
is strictly weaker than ours.

3.3 Fairness

Concurrent binding is the key security requirement toward fairness. There are
two aspects to satisfy: (1) Binding after Releasing: an adversary should not be
able to produce a valid ambiguous signature σi bound to the public key pki,
until s is published; and (2) Concurrency of Binding: an adversary should not
be able to generate two ambiguous signatures σi and σj such that σi is bound to
the public key pki while σj is not bound to the public key pkj , after the keystone
s is released.

The fairness game is defined as below, where a challenger C simulates the
game against an adversary A.

– Setup Phase: The same as the Setup Phase in Section 3.2.
– Query Phase: The same as the Query Phase in Section 3.2.
– Output Phase: A generates and sends (pki∗ , pkj∗ , f

∗, s∗, m∗, σi∗) back to
C, where pki∗ , pkj∗ ∈ PKSet, f∗ ∈ F , s∗ ∈ S, m∗ ∈ M, and σi∗ is an am-
biguous signature.A wins the game if either of the following conditions holds:
(1) Ver(param, pki∗ , pkj∗ , s

∗, f∗, σi∗ ,m
∗) = 1 under the restriction that f∗ is

returned by KFGenOracle and A has never queried KSReleaseOracle(f∗); (2)
A outputs another ambiguous signature σj∗ , satisfying: AVer(param, pki∗ , pkj∗ ,
f∗, σi∗ ,m

∗) = 1, AVer(param, pkj∗ , pki∗ , f
∗, σj∗ ,m

∗) = 1, Ver(param, pki∗ , pkj∗ ,
s∗, f∗, σi∗ ,m

∗) = 1, but Ver(param, pkj∗ , pki∗ , s
∗, f∗, σj∗ ,m

∗) = 0.

Definition 3 (Fairness). A concurrent signature scheme is said to be (ε, t, qf , qr)-
fair if for any probabilistic polynomial-time adversary A which runs in time t
making qf queries to KFGenOracle and qr queries to KSReleaseOracle, its proba-
bility of winning in the game above is bounded by ε.

The winning condition (1) ensures that a concurrent signature becomes bound
only if the keystone is released or compromised. The restrictions in condition (1)

Concurrent Signature without Random Oracles 9

forbid A from winning the game in an obvious way: A produces a forged ambigu-
ous signature σi∗ using ski∗ , then binds σi∗ to pki∗ by querying KSReleaseOracle
to get s∗. The condition (2) ensures that the binding of the signatures to their
respective signers occurs concurrently.

4 A Concurrent Signature Scheme without Random
Oracles

In this section, we propose an efficient concurrent signature scheme and prove
its security under the games we defined above. The underlying complexity as-
sumptions are reviewed in Appendix B.

4.1 Proposed Scheme

Below are the details of our concurrent signature scheme.

– param ← Setup(1k). The setup algorithm selects two cyclic groups G and
GT of prime order q ≥ 2k and an admissible pairing e : G × G → GT .

It also picks a generator g ∈ G and h
R← G. Set the message space M =

{0, 1}∗, the keystone space S = Zq, the keystone fix space F = G × G.
Let H : {0, 1}∗ → {0, 1}l be a collision-resistant hash function, where the
output length l is given as an auxiliary input to the Setup algorithm. Define
param := (G,GT , e, q, g, h,M,S,F , H).

– (pk, sk)← SKGen(param). The key generation algorithm picks α
R← Zq and

u′, u1, u2, · · · , ul
R← G, computes δ = gα, and outputs pk = (δ, u′, u1, u2, · · · , ul),

sk = α.
– (s, f)← KFGen(param). The keystone fix generation algorithm picks a key-

stone s
R← Zq, computes ρ = hs, τ = gs

−1

, and sets the keystone-fix as
f = (ρ, τ).

– 1/0← KFVer(param, f). The keystone fix verification algorithm parses f =
(ρ, τ), and outputs 1 if ρ, τ ∈ G and the following equation holds:

e(ρ, τ) = e(g, h)

Otherwise, it outputs 0.
– σi ← ASign(param, pki, pkj , f,m, ski). The ambiguous signature generation

algorithm parses f = (ρ, τ) and pki = (δi, u
′
i, ui1, ui2, · · · , uil), picks ri

R← Zq,
computes ηi = gri , Mi = H(pki‖pkj‖f‖m), ζi = ρski(u′i

∏
t∈M̃i

uit)
ri where

M̃i is the set of indices t such that the string Mi’s t-th bit Mi[t] = 1, and
outputs σi = (ζi, ηi).

– 1/0← AVer(param, pki, pkj , f, σi,m). The ambiguous signature verification
algorithm parses f = (ρ, τ), pki = (δi, u

′
i, ui1, ui2, · · · , uil), σi = (ζi, ηi),

computes Mi = H(pki‖pkj‖f‖m), and outputs 1 if the following equation
holds:

e(g, ζi) = e(δi, ρ)e(ηi, u
′
i

∏
t∈M̃i

uit)

10 X. Tan, Q. Huang and D. S. Wong

Otherwise, it outputs 0.
– 1/0 ← Ver(param, pki, pkj , s, f, σi,m). The signature verification algorithm

parses f = (ρ, τ), and outputs 1 if all the following conditions hold:

(1) ρ = hs and τ = gs
−1

;
(2) AVer(param, pki, pkj , f, σi,m) = 1.

Otherwise, it outputs 0.

The correctness of the scheme above is straightforward and therefore is omitted
here. The following is the ambiguous signature simulation algorithm ASignSim
which is needed in the proof of ambiguity. Let pki = (δi, u

′
i, ui1, ui2, · · · , uil),

pkj = (δj , u
′
j , uj1, uj2, · · · , ujl).

– (f, σi, σj) ← ASignSim(param, pki, pkj ,m). The ambiguous signature simu-
lator performs the following computations:

(1) Pick s
R← Zq, compute ρ = gs, τ = hs

−1

, and set the keystone-fix as
f = (ρ, τ).

(2) Pick ri
R← Zq, compute ηi = gri ,Mi = H(pki‖pkj‖f‖m), ζi = δi

s(u′i
∏
t∈M̃i

uit)
ri ,

and σi = (ζi, ηi).

(3) Pick rj
R← Zq, compute ηj = grj ,Mj = H(pkj‖pki‖f‖m), ζj = δj

s(u′j
∏
t∈M̃j

ujt)
rj ,

and σj = (ζj , ηj).
(4) Output f, σi, σj as required.

4.2 Security Proofs

We start with a brief security analysis of the proposed scheme on the high
level. For unforgeability, just note that any PPT adversary can not compute
(s∗, f∗, σi∗) with non-negligible probability if it does not know either ski∗ or the
logarithm of h to base g, due to the hardness of CDH problem. On the other
hand, the ambiguity is enforced since that the keystone can be produced in either
one of two indistinguishable patterns by KFGen or ASignSim. The scheme is fair
because both σi∗ and σj∗ are produced on the same keystone s∗ of which the
releasing leads to concurrent binding, and the DL assumption in G ensures that
it is infeasible to compute s∗ from f∗ with noticeable advantage for any PPT
adversary.

Below we give the formal proof with respect to unforgeability (Def. 1), am-
biguity (Def. 2) and fairness (Def. 3).

Theorem 1. The proposed concurrent signature scheme is (ε, t, qc, qs)-unforgeable,
if (ε′, t′)-Computational Diffie Hellman (CDH) assumption holds in G:

ε′ ≥ ε

4qs(l + 1)p(k)
, t′ ≥ t+O(qstm(l + 2) + (p(k) + 4qs)te),

where p(k) denotes the number of participants in the system1, tm and te denote
the time needed for one multiplication and one exponentiation on G respectively.

Concurrent Signature without Random Oracles 11

Proof. We construct a PPT algorithm S that simulates the oracles in the un-
forgeability game, and produces a valid solution for a CDH instance if there
exists an (ε, t, qc, qs)-adversary A who successfully outputs a forgery. Let the
CDH instance be (G, q, g, A = ga, B = gb) where g,A,B ∈ G of order q.

Setup: At the start, S sets the parameters G, q, g as given in the CDH instance
and h = A. The other parameters are set as in Setup algorithm. S sets n = 2qs
and we assume that n(l+1) < q. S guesses a value 1 ≤ î ≤ p(k) that A will forge
the concurrent signature of the user i∗ = î. For 1 ≤ i ≤ p(k) where i 6= î, S runs
SKGen for p(k)−1 times to produce key pairs {(pki, ski)} for all the users except
user î. To generate user î’s public key, S performs the following computations:

1. Pick w
R← Zl, µ′, µ1, µ2, · · · , µl

R← Zn, and ν′, ν1, ν2, · · · , νl
R← Zq.

2. Set u′
î

= B−nw+µ′gν
′
, and uît = Bµtgνt for 1 ≤ t ≤ l.

3. Set pkî = (B, u′
î
, · · · , uît).

Then S sends param and {pki} for 1 ≤ i ≤ p(k) to A, and keeps {skj} for

1 ≤ j ≤ p(k), j 6= î for answering queries to CorruptOracle later.
Besides, S defines the following functions where M̃ is the set of indices t such

that M [t] = 1:

J(M) = µ′ +
∑
t∈M̃

µt − nw, L(M) = ν′ +
∑
t∈M̃

νt

Then we have:

u′
î

∏
t∈M̃

uît = BJ(M)gL(M)

Query: S simulates the ExtractOralce and ASignOracle as follows:

– CorruptOracle: If the corrupted public key pki 6= pkî, C returns the corre-
sponding ski which is produced in Setup phase. Otherwise, S aborts.

– ASignOracle: If the ASign query (pki, pkj , f,m) is for pki 6= pkî, C runs
σi ← ASign(param, pki, pkj , f,m, ski) using ski, and returns σi. Otherwise,
if pki = pkî, S performs the following computations:

1. Compute Mî = H(pkî‖pkj‖f‖m).
2. If J(Mî) 6= 0 mod q, parse f = (ρ, τ), randomly pick rî ∈ Zq, compute:

ζî = ρ−L(Mî)/J(Mî)(u′
î

∏
t∈M̃î

uît)
rî , ηî = ρ−1/J(Mî)grî

and return σî = (ζî, ηî).
3. If J(Mî) = 0 mod q, S simply aborts.

1 p is a polynomial function of the security parameter k. Obviously we have qc ≤
p(k)− 1.

12 X. Tan, Q. Huang and D. S. Wong

The simulation for generating pkî’s ambiguous signatures is perfect:

ζî = ρ−L(Mî)/J(Mî)(u′
î

∏
t∈M̃î

uît)
rî = Bas(BJ(Mî)gL(Mî))−as/J(Mî)(BJ(Mî)gL(Mî))rî

= ρb(BJ(Mî)gL(Mî))rî−as/J(Mî) = ρb(u′
î

∏
t∈M̃î

uît)
r̃î

ηî = ρ−1/J(Mî)grî = grî−as/J(Mî) = gr̃i

where we denote s = loghρ and r̃i = rî − as/J(Mî).
As n(l + 1) < q, we have 0 ≤ nw < q. Hence J(Mî) = 0 mod q implies
J(Mî) = 0 mod n, or equivalently J(Mî) 6= 0 mod n implies J(Mî) 6= 0 mod
q. So the simulation for ASignOracle does not abort if J(Mî) 6= 0 mod n.

Output: Suppose the forged concurrent signature output by A is σi∗ = (ζi∗ , ηi∗)
on (pki∗ , pkj∗ , f

∗, s∗,m∗). When pki∗ = pkî and J(Mi∗) = 0 mod q where Mi∗ =
H(pki∗‖pkj∗‖f∗‖m∗), S can solve the CDH instance by computing gab as:

(
ζi∗

η
L(Mi∗)
i∗

)s
∗−1

= (
Bas

∗
(u′
î

∏
t∈M̃i∗

ui∗t)
ri∗

(gri∗)L(Mi∗)
)s
∗−1

= (
Bas

∗
(gL(Mi∗))ri∗

(gri∗)L(Mi∗)
)s
∗−1

= Ba = gab

Otherwise, S aborts when pki∗ 6= pkî or J(Mi∗) 6= 0 mod q.
Now we analyze the probability that S outputs gab without abort. Note that

if all the four events below happen, there will be no abort in the simulation:

(1) P ∗: J(X∗) = 0 mod q, where X∗ = Mi∗ ;
(2) Pπ: J(Xπ) 6= 0 mod n, for any Xπ = Mî = H(pkî‖pkj‖f‖m) 6= Mi∗ when

(pkî, pkj , f,m) is queried to ASignOracle1;
(3) Q∗: Y ∗ = pkî, where Y ∗ = pki∗ .
(4) Qξ: Yξ 6= pkî, for any Yξ = pki queried to CorruptOracle.

Let qm be the number of queries made in event (2), then we have qm ≤
qs. Obviously the number of queries made in event (4) is qc. Therefore, the
probability that S not aborting in the game is:

Pr[¬abort] ≥ Pr[P ∗ ∧
qm∧
π=1

Pπ ∧Q∗ ∧
qc∧
ξ=1

Qξ]

Note that P ∗ ∧
∧qs
π=1 Pπ and Q∗ ∧

∧qc
ξ=1Qξ are independent events. Below

we separately analyze the probabilities that either of these two events happens.
Since that X∗ 6= Xπ, the event ¬Pπ: J(Xπ) = 0 mod n is independent from

P ∗, thus Pr[¬Pπ|P ∗] = 1/n. Besides, J(X∗) = 0 mod q implies J(X∗) = 0 mod
n, so we have:

1 Note that A can not query (pkî, pkj , f,m) to ASignOracle when Mî = Mi∗ . Since H
is collision resistant, we have pkî‖pkj‖f‖m = pki∗‖pkj∗‖f∗‖m∗. So this query is not
allowed in the unforgeability game.

Concurrent Signature without Random Oracles 13

Pr[P ∗ ∧
qm∧
π=1

Pπ] = Pr[P ∗]Pr[

qm∧
π=1

Pπ|P ∗]

= Pr[J(X∗) = 0 mod q ∧ J(X∗) = 0 mod n](1− Pr[

qm∨
π=1

Pπ|P ∗])

≥ 1

n
· 1

l + 1
· (1− qs

n
) =

1

4qs(l + 1)

Since that it is not allowed to query the target public key pki∗ to CorruptOr-
acle, the event ¬Qξ: Yξ = pki = pkî could never happen when Q∗ happens, so
Pr[¬Qξ|Q∗] = 0. And we have:

Pr[Q∗ ∧
qc∧
ξ=1

Qξ] = Pr[Q∗]Pr[

qc∧
ξ=1

Qξ|Q∗] = Pr[pki∗ = pkî](1− Pr[

qc∨
ξ=1

Qξ|Q∗])

≥ 1

p(k)
(1−

qc∑
ξ=1

Pr[¬Qξ|Q∗]) =
1

p(k)

Here comes the combined result:

Pr[¬abort] ≥ Pr[P ∗ ∧
qs∧
π=1

Pπ]Pr[Q∗ ∧
qm∧
ξ=1

Qξ] ≥
1

4qs(l + 1)p(k)

Hence, S solves the given CDH instance with probability at least ε
4qs(l+1)p(k)

when an (ε, t, qc, qs)-adversary A outputs a forgery without aborts. In the sim-
ulation, it requires 1 exponentiation for producing each key pair, l+ 2 multipli-
cations and 4 exponentiations for each ASignOracle query. Therefore, the time
complexity of S is bounded by t+O(qstm(l + 2) + (p(k) + 4qs)te). ut

Theorem 2. The proposed concurrent signature scheme is unconditionally am-
biguous.

Theorem 3. The proposed concurrent signature scheme is (ε, t, qf , qr)-fair, if
(ε′, t′)-Discrete Logarithm (DL) assumption holds in G:

ε′ ≥ ε(1− qr
qf

), t′ ≥ t+O((2qf − 1)te),

where te denotes the time needed for one exponentiation on G.

The proofs for Theorem 2 and Theorem 3 are given in Appendix C and
Appendix D respectively, for lack of space.

14 X. Tan, Q. Huang and D. S. Wong

Table 2. Performance Comparison

Schemes Initiator’s Cost Matcher’s Cost Verifier’s Cost Signature
Size

Keystone
Size

CS [7] 2.41E 2.41E 2.5E 3|q| |q|
PCS1 [17] 9.41E 3.41E 7.98E 3|q| 4|q|+ 2|p|
iPCS1 [19] 3.41E 4.41E 2.5E 3|q| 2|q|
ACS [13]* 4.16E 3E 4.16E |p|+ |q| |p|
CS-FNBC [21] 5.41E 5.41E 6.5E 3|q| |p|+ |q|
PCS2 [17] 6P + 3.41E + 1M 6P + 3.41E 7P + 3.5E 3|q| 2|q|
iPCS2 [19] 6P + 3.41E 6P + 3.41E + 1M 6P + 2.5E 3|q| 2|q|
ID-PCS1 [8] 3P+2SM+1E+2M 3P+2SM+1E+1M 2SM + 2E |G|+ 2|q| 2|q|
ID-PCS2 [8] 3P + 2SM + 2M 3P + 2SM + 1M 4P + 2SM 3|G| 2|G|
Ours 3P + 1SM + 3M 5P + 1SM + 1M 6P + 2M 2|G| 2|G|

* ACS defines two signing algorithms for initiator and matcher respectively. For consistency,
the table only shows the signature size of initiator in ACS.

5 Performance and Comparison

Table 2 compares the performance of the proposed concurrent signature with
existing schemes. In the table, “E” denotes a modular exponentiation in Z∗p or
GT of order q, “M” denotes a scalar multiplication in G, “SM” denotes a si-
multaneous scalar multiplication of the form aP + bQ in G, and “P” denotes a
computation of the bilinear pairing e : G × G → GT . The simultaneous expo-
nentiations of the form gx1

1 gx2
2 and gx1

1 gx2
2 gx3

3 are optimized to about 1.16 and
1.25 single exponentiation operations respectively, by the method of an expo-
nent array [2]. Point additions in G and hash evaluations are not taken into
account since their influence on the time complexity is negligible compared to
other operations.

“Initiator’s Cost” denotes the total computational cost of the initiator A
in one session of concurrent signature protocol. Generally, it covers the cost of
generating the keystone and keystone fix (s, f), producing the ambiguous sig-
nature σA, and verifying σB received from B. In most of perfect concurrent
signature schemes [17, 19, 8], it also includes the cost for validating B’s keystone
fix f ′ derived from f . “Matcher’s Cost” is similarly defined for the matcher B,
except that it does not necessarily cover the cost of generating keystone. “Ver-
ifier’s Cost” denotes the cost for verifying the concurrent signatures (s, f, σA)
and (s, f, σB). “Signature Size” (resp. “Keystone Size”) denotes the number of
bits of an ambiguous signature (resp. of a keystone fix).

From Table 2, we can see that the proposed scheme without random oracles
has comparable (or even better) efficiency to the other pairing based concurrent
signature schemes, like PCS2 [17], iPCS2 [19], ID-PCS1, ID-PCS2 [8], which
are only proven secure in the random oracle model. The new scheme requires
the least computations with respect to Initiator’s Cost, and outperforms PCS2,
iPCS2 with respect to Matcher’s Cost or Verifier’s Cost. The signature size is only
342 bits when we set |q| = 170 bits and |G| = 171 bits, which is approximately
2/3 as short as the other signatures. Besides, there is no increase in the keystone
size. On the other hand, the proposed scheme has a longer public key of size

Concurrent Signature without Random Oracles 15

linear to the security parameter l, which is a common feature for constructions
that are free of random oracles based on Waters’ approach [20].

6 Conclusion and Future Work

A novel ambiguity model that provides anonymity for concurrent signatures is
proposed in this paper, together with a concrete scheme under the new model.
This is the first concurrent signature scheme proven secure without random
oracle heuristic.

There are two interesting open problems along this research line: (1) extend
our security model of (two-party) concurrent signatures to support multiple par-
ties in which the fair exchange of signatures may take place among more than
two participants, and (2) construct efficient concurrent signature schemes in the
extended model. We leave these topics as our future work.

References

1. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of signatures. In:
EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer (1998)

2. Ateniese, G.: Efficient verifiable encryption (and fair exchange) of digital signa-
tures. In: CCS 1999. pp. 138–146 (1999)

3. Baum-Waidner, B., Waidner, M.: Round-optimal and abuse free optimistic multi-
party contract signing. In: ICALP 2000. LNCS, vol. 1853, pp. 524–535. Springer
(2000)

4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: CCS 1993. pp. 62–73. ACM Press (1993)

5. Bender, A., Katz, J., Morselli, R.: Ring Signatures: Stronger Definitions, and Con-
structions Without Random Oracles. In: TCC 2006. LNCS, vol. 3876, pp. 60–79.
Springer (2006)

6. Canetti, R., Goldreich, O., Halevi, S.: The random rracle methodology, revisited.
In: STOC 1998. pp. 209–218. ACM Press (1998)

7. Chen, L., Kudla, C., Paterson, K.: Concurrent signatures. In: EUROCRYPT 2004.
LNCS, vol. 3027, pp. 287–305. Springer (2004)

8. Chow, S., Susilo, W.: Generic Construction of Identity-Based Perfect Concurrent
Signatures. In: ICICS 2005. LNCS, vol. 3783, pp. 194–206. Springer (2005)

9. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28(6), 637–647 (1985)

10. Garay, J., Pomerance, C.: Timed Fair Exchange of Standard Signatures: [Extended
Abstract]. In: FC 2003. LNCS, vol. 2742, pp. 190–207. Springer (2003)

11. Goldreich, O.: A simple protocol for signing contracts. In: CRYPTO 1983. pp.
133–136. Springer (1983)

12. Huang, Q., Yang, G.M., Wong, D.S., Susilo, W.: Ambiguous Optimistic Fair Ex-
change. In: ASIACRYPT 2008. LNCS, vol. 5350, pp. 74–89. Springer (2008)

13. Nguyen, K.: Asymmetric concurrent signatures. In: ICICS 2005. LNCS, vol. 3783,
pp. 181–193. Springer (2005)

14. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13(3), 361–396 (2000)

16 X. Tan, Q. Huang and D. S. Wong

15. Schnorr, C.P.: Effcient signature generation for smart cards. Journal of Cryptology
4(3), 239–252 (1991)

16. Susilo, W., Mu, Y.: Tripartite Concurrent Signatures. In: IFIP/SEC 2005. LNCS,
vol. 181, pp. 425–441. Springer (2005)

17. Susilo, W., Mu, Y., Zhang, F.: Perfect concurrent signatures schemes. In: ICICS
2004. LNCS, vol. 3269, pp. 14–26. Springer (2004)

18. Tonien, D., Susilo, W., Safavi-Naini, R.: Multi-party concurrent signatures. In: ISC
2006. LNCS, vol. 4176, pp. 131–145. Springer (2006)

19. Wang, G., Bao, F., Zhou, J.: The fairness of perfect concurrent signatures. In:
ICICS 2006. LNCS, vol. 4307, pp. 435–451. Springer (2006)

20. Waters, B.: Efficient identity-based encryption without random oracles. In: EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer (2005)

21. Yuen, T.H., Wong, D.S., Susilo, W., Huang, Q.: Concurrent signatures with fully
negotiable binding control. In: ProvSec 2011. LNCS, vol. 6980, pp. 170–187.
Springer (2011)

A Analysis of Nguyen’s scheme

Nguyen’s asymmetric concurrent signature scheme is defined by the following
eight PPT algorithms, essentially the same as the formalization in [13]. Note that
the scheme uses distinct ambiguous signature generation algorithms: IASign for
the initiator and MASign for the matcher. There are no keystone generation algo-
rithm in the scheme, since that the ambiguous signature generation algorithms
are also responsible for generating keystones and keystone fixes.

– param ← Setup(1k). The setup algorithm selects two primes p and q ≥ 2k

such that q|(p− 1), and a generator g for the subgroup 〈g〉 in Z∗p of order q.
The message spaceM = {0, 1}∗, the keystone space S = Zq and the keystone
fix space F = 〈g〉. Let H : {0, 1}∗ → Zq be a hash function modeled as a
random oracle. Define param = (p, q, g,M,S,F , H).

– (pk, sk)← SKGen(param). The key generation algorithm picks α
R← Zq, and

outputs pk = gα, sk = α.
– σi ← IASign(param,m, ski). The initiator’s ambiguous signature generation

algorithm picks r
R← Zq, computes c = H(gr,m), f = gr+c·ski , and outputs

σi = (f, c). Here f is the keystone fix for the initiator, the keystone s =
r + c · ski is implicitly defined and kept secret.

– σj ← MASign(param,m, skj). The matcher’s ambiguous signature gener-

ation algorithm picks r′
R← Zq, computes f ′ = fskj , c′ = H(gr

′
f ′,m),

k1 = (r′ − c′)/skj , and outputs σj = (f ′, k1, c
′). Here f ′ is the keystone

fix for the matcher.
– 1/0 ← IAVer(param, σi, pki,m). The initiator’s ambiguous signature veri-

fication algorithm parses σi = (f, c) and outputs 1 if c = H(pk−ci f,m);
otherwise, it outputs 0.

– 1/0← MAVer(param, σj , pkj ,m). The matcher’s ambiguous signature verifi-

cation algorithm parses σj = (f ′, k1, c
′) and outputs 1 if c′ = H(gc

′
pkk1j f

′,m);
otherwise, it outputs 0.

Concurrent Signature without Random Oracles 17

– 1/0 ← IVer(param, s, σi, pki,m). The initiator’s concurrent signature ver-
ification algorithm parses σi = (f, c) and outputs 1 if both f = gs and
IAVer(param, σi, pki,m) = 1 hold; otherwise, it outputs 0.

– 1/0← MVer(param, s, σj , pkj ,m). The matcher’s concurrent signature veri-
fication algorithm parses σj = (f ′, k1, c

′) and outputs 1 if both f ′ = pksj and
MAVer(param, σj , pkj ,m) = 1 hold; otherwise, it outputs 0.

Below we analyze Nguyen’s concurrent signature scheme in our proposed
ambiguity model AMBA.

Claim. Nguyen’s asymmetric concurrent signature is not anonymous in AMBA.

Proof. Given two ambiguous signatures (σA, σB) produced by Nguyen’s scheme,
we constructs an adversary A with the knowledge of skB , in particular, the
matcher B or who corrupted B, to win the AMBA game with advantage of
1/2− 1/2q.

In the ambiguity game,A does not need to make any query to KFGenOracle or
KSReleaseOracle. Suppose the challenger C outputs σA = (f, c), σB = (f ′, k1, c

′).
Note that there are two co-related keystone fixes in Nguyen’s scheme, where B’s
keystone fix f ′ is derived from A’s keystone fix f . A simply checks if fskB = f ′.
If the checking holds, A outputs b′ = 0; otherwise, A outputs b′ = 1.

We analyze the success probability of A by the following two cases:

– Case 1 : When (σA, σB) are honestly produced by A and B respectively, we
can see that the checking always holds, referring to the MASign algorithm.

– Case 2 : Otherwise, the ambiguous signatures are produced by the ASignSim
algorithm of Nguyen’s concurrent signature as below. Note that the keystone
fixes f , f ′ are embedded in σA, σB respectively.
(σA, σB)← ASignSim(param, pkA, pkB)

• Pick r
R← Zq, compute c = H(pkrA,m), f = pkr+cA , and σA = (f, c) where

f is the keystone fix of A.

• Pick r′, k1
R← Zq, compute c′ = H(gr

′
pkk1B ,m), f ′ = gr

′−c′ , and σB =
(f ′, k1, c

′) where f ′ is the keystone fix of B.

So A actually verifies if pk
(r+c)skB
A = gr

′−c′ . The equation holds with proba-
bility about 1/q, since r, r′ are uniformly picked from Zq and c, c′ are outputs
of the random oracle H.

Therefore, the advantage of A winning the game is non-negligible:

|Pr[b′ = b]− 1

2
| = |Pr[b′ = b|b = 0]Pr[b = 0] + Pr[b′ = b|b = 1]Pr[b = 1]− 1

2
|

= |1
2

+
1

2
(1− 1

q
)− 1

2
| = 1

2
(1− 1

q
)

ut

18 X. Tan, Q. Huang and D. S. Wong

B Assumptions

The unforgeability and fairness of the proposed scheme are based on the hardness
of the Computational Diffie-Hellman (CDH) Problem and the Discrete Loga-
rithm (DL) Problem respectively. Below are the definitions of these two standard
complexity assumptions. Note that CDH Assumption implies DL Assumption.

Definition 4 (CDH Assumption). Let G be a cyclic group of prime order q
where |q| ≥ k. The CDH problem is that given g, ga, gb ∈ G, compute gab ∈ G.
We say that (ε′, t′)-CDH assumption holds in G if no PPT machine can solve
this problem in time t′ with probability at least ε′.

Definition 5 (DL Assumption). Let G be a cyclic group of prime order q
where |q| ≥ k. The DL problem is that given g, ga ∈ G, compute a ∈ Zq. We say
that (ε′, t′)-DL assumption holds in G if no PPT machine can solve this problem
in time t′ with probability at least ε′.

C Proof of Theorem 2

Proof. We prove that the simulated signatures and keystone fix (f, σi, σj) output
by ASignSim are information-theoretically indistinguishable from that generated
honestly by participants of pki and pkj .

First, it is obvious to see that no matter C tosses a bit b = 0 or 1, the following
checking always holds for the challenge (f, σi, σj): (1) KFVer(param, f) = 1; (2)
AVer(param, pki, pkj , f, σi,m) = 1; (3) AVer(param, pkj , pki, f, σj ,m) = 1.

Parse f = (ρ, τ), σi = (ζi, ηi), σj = (ζj , ηj). Denote s = loghρ, s′ = loggρ.
From checking (1), we have:

e(ρ, τ) = e(hs, τ) = e(gs
′
, τ) = e(g, h)

Hence, g = τs and h = τs
′
. Then τ = gs

−1

= hs
′−1

. So f could be either produced
by KFGen using the keystone s as (hs, gs

−1

), or generated by ASignSim using s′

as (gs
′
, hs

′−1

). Below we check the consistency of f with σi, σj for either cases.
From checking (2), we have:

e(g, ζi) = e(gski , ρ)e(ηi, u
′
i

∏
t∈M̃i

uit) = e(δi, g
s′)e(ηi, u

′
i

∏
t∈M̃i

uit)

Denote ri = r′i = loggηi, we have ζi = ρski(u′i
∏
t∈M̃i

uit)
ri = δs

′

i (u′i
∏
t∈M̃i

uit)
r′i .

So σi could be either produced by ASign using ski as (ρski(u′i
∏
t∈M̃i

uit)
ri , gri),

or produced by ASignSim using s′ as (δs
′

i (u′i
∏
t∈M̃i

uit)
r′i , gr

′
i). By a similar anal-

ysis from checking (3), we have that σj could be either produced by ASign using
skj , or produced by ASignSim using s′.

Since that a challenge (f, σi, σj) given by C is a valid output by either the
case when b = 0 or the case when b = 1, the probability for the adversary A to
guess b′ = b is no better than 1/2, say AdvAMB,A

CS = |Pr[b′ = b]− 1/2| = 0. ut

Concurrent Signature without Random Oracles 19

D Proof of Theorem 3

Proof. Suppose there exists a PPT adversary A who (ε, t, qf , qr)-breaks the fair-
ness of the proposed scheme, then it wins the game either by condition (1) or
condition (2). We analyze these two cases as below.

– Case 1 : If A wins by condition (1), i.e. breaking the Binding after Releasing
property of the proposed scheme, we construct an adversary B who plays the
fairness game with A and outputs the solution of a DL instance (G, q, g, A =
ga) as follows:

Setup: B sets (G, q, g) as in the DL instance, sets h = Ab where b
R← Zq, and

follows Setup algorithm to generate the other parameters in param. Then
B runs SKGen to produce key pairs for all the participants, and forwards
(param, {(pki, ski)}) to A.
Query: At the beginning of this phase, B guesses a value 1 ≤ z ≤ qf ,
initiates an empty table Tf and a counter c = 0. Then it simulates the
oracles as follows:
• KFGenOracle: On each keystone generation query, B increments c = c+1.

If c 6= z, B runs (sc, fc) ← KFGen(param), inserts (sc, fc) into Tf , then
returns fc. If c = z, B sets fz = (gb, A).
The simulation for fz is perfect, since that:

gb = (gab)a
−1

= ha
−1

= hs, A = ga = gs
−1

where the keystone corresponding to fz is s = a−1.
• KSReleaseOracle. If the queried keystone fix f 6= fz, B returns s if there

is an entry (s, f) in Tf , otherwise returns ⊥. B aborts if f = fz.
Output: Finally A outputs a binding signature σi∗ on (pki∗ , pkj∗ , s

∗, f∗,m∗)
after making a set of adaptive queries. If f∗ 6= fz, B aborts; if f∗ = fz, B
outputs a = (s∗)−1.
When both the following events happen, B can complete the simulation
without abort:
(1) Q∗: Y ∗ = fz, where Y ∗ = f∗.
(2) Qξ: Yξ 6= fz, for any Yξ = f queried to KSReleaseOracle.
Note that there are totally qr queries made in event (2). Besides, we have
Pr[¬Qξ|Q∗] = 0 since that it is not allowed to query f = fz to KSReleaseO-
racle when f∗ = fz.
So the probability that B does not abort is:

Pr[¬abort] = Pr[

qr∧
ξ=1

Qξ ∧Q∗] = Pr[Q∗]Pr[

qr∧
ξ=1

Qξ|Q∗]

≥ qf − qr
qf

(1−
qr∑
ξ=1

Pr[¬Qξ|Q∗]) = 1− qr
qf

In the simulation, exponentiation is the dominant operation for time com-
plexity. For each query to KFGenOracle when c 6= z, it requires 2 exponen-
tiations. When c = z, the query to KFGenOracle requires 1 exponentiation.
Therefore, we have t′ = t+O((2qf − 1)te).

20 X. Tan, Q. Huang and D. S. Wong

– Case 2 : Otherwise, A breaks the Concurrency of Binding property by win-
ning condition (2). Since Ver(param, pki∗ , pkj∗ , s

∗, f∗, σi∗ ,m
∗) = 1, we have

ρ∗ = hs
∗

and τ∗ = g(s∗)−1

where f∗ = (ρ∗, τ∗). Besides, we have AVer(param,
pkj∗ , pki∗ , f

∗, σj∗ ,m
∗) = 1, so Ver(param, pkj∗ , pki∗ , s

∗, f∗, σj∗ ,m
∗) = 1, ac-

cording to the construction of the algorithm Ver in Section 4.1. Hence, even
assuming the adversary has unlimited computation power, this case could
never happens.

Combining the results in Case 1 and Case 2, the theorem follows. ut

