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Abstract. Randomizers are popularly used to prevent various types of attacks
on batch-verification schemes. Recently, several algorithms based upon symbolic
computation are proposed for the batch verification of ECDSAsignatures. In this
article, we demonstrate that the concept of randomizers canbe easily embedded
in these symbolic-computation algorithms. The performance degradation caused
by randomizers is comparable with that associated with ECDSA*.

Keywords: Digital Signature, Elliptic Curve, ECDSA, ECDSA*, Batch Verifica-
tion, Symbolic Computation, Randomizer, Montgomery Ladder.

1 Introduction

In many applications, digital signatures are verified in batches in order to reduce the
total verification time. For many digital-signature algorithms, the batch-verification cri-
terion is reasonably obvious. However, the popular ECDSA signature scheme presents
some resistance to batch-verification ideas. During ECDSA signature generation, an
elliptic-curve pointR is computed, and only thex-coordinater of R is included in the
signature. Although this does not impair the verification primitive or the security of the
scheme, absence of the knowledge of they-coordinate ofR leads to special considera-
tions for batch verification of ECDSA signatures. In [2], several symbolic-computation
schemes are proposed to address this issue. These schemes are shown, in terms of se-
curity, to be equivalent to ECDSA* (the variant of ECDSA, where the entire pointR
replacesr in the signature).

Batch verification schemes suffer from special attacks because, in some sense, these
schemes verify the aggregate of a collection of signatures.Two such attacks on the
schemes of [2] are proposed by Bernstein et al. [1].

In the notation of [2], the verification equation for thei-th signature is:

Ri = uiP + viQi.



A collection oft signatures is verified as:
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Naccache et al. [4] propose the use of randomizers during theaggregation of the ver-
ification equations. For randomly chosen non-zero multipliersξ1, ξ2, . . . , ξt, we now
verify whether the following equality holds:
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(The original batch-verification criterion corresponds toξ1 = ξ2 = · · · = ξt = 1.)
Many attacks on batch-verification schemes can be eliminated (or made infeasible) by
using these randomizers. However, the computation oft scalar multiplesξiRi signifi-
cantly brings down the performance gains achieved by batching.

If only the x-coordinatesri of Ri are available, neither Eqn (1) nor Eqn (2) is
directly applicable. In [2], the point

∑

t

i=1
Ri in Eqn (1) is computed symbolically. It is

conjectured in [1] that these symbolic-computation algorithms are hard to adapt to the
weighted case of Eqn (2).

In this article, we demonstrate that the use of randomizers can be seamlessly embed-
ded in the symbolic-computation algorithms of [2]. We present two techniques (essen-
tially equivalent to one another) highlighting that the introduction of randomizers is no
hindrance to the working of the symbolic-computation algorithms on the weighted sum
∑

t

i=1
ξiRi. Moreover, the performance degradation caused by randomizers is practi-

cally the same in these algorithms as it is in ECDSA*.

2 Numeric Computation of ξiRi

Suppose that only thex-coordinate ofR = (r, y) is provided. We treat they-coordinate
of R as a symbol satisfying the elliptic-curve equation:

y2 = r3 + ar + b.

Any non-zero multipleuR of R is of the form(h, ky), whereh andk are field elements
fully determined by the knownx-coordinater (andu). For proving this, we letP1 =
(h1, k1y) andP2 = (h2, k2y) be two non-zero multiples ofR. The following easily
verifiable formulas show that the sumP3 = P1 + P2 and the doubleP4 = 2P1 (if
non-zero) can again be expressed in the formP3 = (h3, k3y) andP4 = (h4, k4y).

λ =
k2 − k1

h2 − h1

λ′ =
3h2

1 + a

2k1

h3 = (r3 + ar + b)λ2
− h1 − h2 h4 = (r3 + ar + b)−1λ′2

− 2h1

k3 = λ(h1 − h3)− k1 k4 = (r3 + ar + b)−1λ′(h1 − h4)− k1

Upon(r, 1) as input, we precompute the quantityr3 + ar + b and its inverse, and run
the standard repeated double-and-add loop with these revised addition and doubling
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formulas. At the end of the loop, the two computed field elementsh, k yield the desired
multipleξR = (h, ky). In short, we do not need to carry out any symbolic computation
at all for obtainingξR. Moreover, these formulas readily adapt to faster variantsof the
standard double-and-add point-multiplication algorithm(like the windowed variant or,
for that matter, any addition-chain-based variant).

The modified addition formula involves only one extra field multiplication (by the
precomputed quantityr3 + ar + b) than the standard elliptic-curve addition formula.
Point doubling requires two extra field multiplications (each by the precomputed inverse
(r3 + ar + b)−1). This implies that the modified double-and-add point-multiplication
algorithms are slightly slower than their standard counterparts.

After ξiRi = (hi, kiyi) are computed for alli = 1, 2, . . . , t, we supply these points
as input to the symbolic-computation algorithms for batch verification. Theyi values
continue to satisfy the equationsy2

i
= r3

i
+ ari + b to be used in the symbolic simplifi-

cation process, whereri are available from the ECDSA signatures.
The knowledge of the entire pointsR1, R2 allows us to computeξ1R1 + ξ2R2

using a single double-and-add loop, yielding noticeable speedup over two point mul-
tiplications. If they-coordinates ofR1 and R2 are treated as symbolsy1, y2, then
too ξ1R1 + ξ2R2 can be computed seminumerically. Any non-zero point of the form
uR1 + vR2 can be expressed as(h + jy1y2, ky1 + ly2) for field elementsh, j, k, l
uniquely determined by thex-coordinatesr1, r2 (andu, v) alone. Addition and dou-
bling of such points can be rephrased numerically in terms ofthese field elements.
However, the resulting formulas are somewhat clumsy, and are not expected to benefit
the computation ofξ1R1 + ξ2R2 in a single double-and-add loop. For the weighted
sum of three or more points, this idea of seminumeric computation can be theoretically
extended, but chances of getting practical benefits are rather slim.

3 Using Montgomery Ladders

It is easy to see that if only thex-coordinater of a pointR is provided, thex-coordinate
of any multipleξR can be uniquely determined. The Montgomery ladder [3] is a con-
crete algorithmic realization of this idea. The ladder never uses nor computes they-
coordinate of any point in its repeated double-and-add point-multiplication loop.

We can use Montgomery ladders in our context as follows. Let thex-coordinates
r1, r2, . . . , rt of R1, R2, . . . , Rt be available from ECDSA signatures. We choose ran-
dom multipliersξ1, ξ2, . . . , ξt, and compute thex-coordinates̄ri of ξiRi using Mont-
gomery ladders fori = 1, 2, . . . , t. We supply thex-coordinates̄r1, r̄2, . . . , r̄t as input
to the symbolic-computation algorithms for batch verification. The correspondingy-
coordinates̄yi now satisfy

ȳ2
i
= r̄3

i
+ ar̄i + b

for all i. These relations are to be used now in the symbolic simplification process.
The double-and-add loop based on Montgomery ladders is comparable in perfor-

mance with the double-and-add loop of the standard point-multiplication algorithm.
Although Montgomery ladders never compute anyy-coordinate, their formulas forx-
coordinates involve more field operations than standard point multiplication. Moreover,
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irrespective of the bits of the multiplier, each iteration in the Montgomery-ladder loop
performs one doubling and one addition. Finally, it is not always beneficial to extend
Montgomery ladders to windowed or addition-chain-based variants.

Our preliminary experiments tend to suggest that the numeric computation of the
x-coordinate ofξR (as discussed in Section 2) is slightly faster than the computation
based on the Montgomery ladder. Moreover, the numeric computation also supplies the
other coordinate ofξR as a multiple ofy. Indeed, these numeric formulas provide an al-
ternative to the Montgomery ladder not only in our current context but in other contexts
too, including the context of [3] where the Montgomery ladder is introduced. However,
point multiplication using Montgomery ladders is more resistant to side channel attacks
than the numeric algorithm.

4 Effect on Performance

The extra security offered by the randomizersξ1, ξ2, . . . , ξt comes at a cost. We now
need to computet additional point multiplications (or something equivalent to that).
This performance degradation affects all variants of the DSA family of signatures, in-
cluding ECDSA and ECDSA*. The previous two sections establish that the symbolic-
manipulation algorithms for ECDSA batch verification are affected too, but not more
severely than those in which the entire pointsR are available as input.

Fortunately, however, we can make a compromise. The randomizers need not be of
full lengths (that is, of lengths close to that of the prime orderq of the relevant elliptic-
curve group). Much smaller randomizers typically suffice tofrustrate most attacks on
batch-verification schemes. For example, if we takeq to be a512-bit prime, and if we
choose64-bit randomizers, then for a batch of size eight, the total overhead of using
randomizers is about the same as that of only one point multiplication.

5 Conclusion

This article illustrates that the ECDSA batch-verificationalgorithms based on symbolic
manipulation are fully compatible with the use of randomizers, and are equivalent to
ECDSA* batch verification in this regard, in terms of both performance and security.
An alternative to the Montgomery ladder is also proposed.
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