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Abstract. Randomizers are popularly used to prevent various typestadias
on batch-verification schemes. Recently, several algogtbhased upon symbolic
computation are proposed for the batch verification of ECBBatures. In this
article, we demonstrate that the concept of randomizerdbeasasily embedded
in these symbolic-computation algorithms. The perforneathegradation caused
by randomizers is comparable with that associated with E€DS
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1 Introduction

In many applications, digital signatures are verified inchas in order to reduce the
total verification time. For many digital-signature aldbms, the batch-verification cri-
terion is reasonably obvious. However, the popular ECD$Aaure scheme presents
some resistance to batch-verification ideas. During ECDi§Aasure generation, an
elliptic-curve pointR is computed, and only the-coordinate- of R is included in the
signature. Although this does not impair the verificatioimtive or the security of the
scheme, absence of the knowledge ofghepordinate ofR leads to special considera-
tions for batch verification of ECDSA signatures. In [2], sead symbolic-computation
schemes are proposed to address this issue. These schershswn, in terms of se-
curity, to be equivalent to ECDSA* (the variant of ECDSA, wé¢he entire poini?
replaces in the signature).

Batch verification schemes suffer from special attacksszan some sense, these
schemes verify the aggregate of a collection of signatuies. such attacks on the
schemes of [2] are proposed by Bernstein et al. [1].

In the notation of [2], the verification equation for th¢h signature is:

R; = u; P + v;Q;.



A collection oft signatures is verified as:
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Naccache et al. [4] propose the use of randomizers duringdgeegation of the ver-
ification equations. For randomly chosen non-zero mudigly, &2, ..., &, we now
verify whether the following equality holds:

Z&Ri = <Z &m) P+ <Z fiUin) . ()
i=1 i=1 i=1

(The original batch-verification criterion correspondstto= & = -+ = & = 1.)
Many attacks on batch-verification schemes can be elimin@emade infeasible) by
using these randomizers. However, the computatiansoflar multipleg; R; signifi-
cantly brings down the performance gains achieved by hagchi

If only the z-coordinates; of R, are available, neither Eqn (1) nor Eqn (2) is
directly applicable. In [2], the poinz:’;:1 R, in Egn (1) is computed symbolically. It is
conjectured in [1] that these symbolic-computation aligynis are hard to adapt to the
weighted case of Eqn (2).

In this article, we demonstrate that the use of randomizerde seamlessly embed-
ded in the symbolic-computation algorithms of [2]. We preége/o techniques (essen-
tially equivalent to one another) highlighting that theaduction of randomizers is no
hindrance to the working of the symbolic-computation aidpons on the weighted sum
Z‘;:l & R;. Moreover, the performance degradation caused by randosiz practi-
cally the same in these algorithms as it is in ECDSA*.

2 Numeric Computation of &; R;

Suppose that only the-coordinate ofR = (r, y) is provided. We treat thg-coordinate
of R as a symbol satisfying the elliptic-curve equation:

y? =713 +ar+0b.

Any non-zero multiple: R of R is of the form(h, ky), whereh andk are field elements
fully determined by the known-coordinater (andwu). For proving this, we lefP; =
(h1,k1y) and Py = (he, kay) be two non-zero multiples aR. The following easily
verifiable formulas show that the sufy = P, + P, and the double®, = 2P; (if
non-zero) can again be expressed in the félm= (hs, ksy) and Py = (ha, kay).

A= fazh \_ Vi
ha =M 2%y

h3:(r3+ar+b))\2_h1_h2 h4=(T3+ar+b)_1)\’2_2h1

k3:)\(h1—h3)—/{31 k/’4:(73+ar+b)71)\/(h1—h4)—k;1

Upon(r, 1) as input, we precompute the quantity+ ar + b and its inverse, and run
the standard repeated double-and-add loop with theseeteaiddition and doubling



formulas. At the end of the loop, the two computed field eletsiknk yield the desired
multiple¢R = (h, ky). In short, we do not need to carry out any symbolic computatio
at all for obtainings R. Moreover, these formulas readily adapt to faster variafitse
standard double-and-add point-multiplication algorittiike the windowed variant or,
for that matter, any addition-chain-based variant).

The modified addition formula involves only one extra fieldltiplication (by the
precomputed quantity> + ar + b) than the standard elliptic-curve addition formula.
Point doubling requires two extra field multiplications¢bdy the precomputed inverse
(r3 4+ ar + b)~1). This implies that the modified double-and-add point-iplittation
algorithms are slightly slower than their standard colpdds.

After &, R; = (hy, k;y;) are computed forall = 1,2, ..., ¢, we supply these points
as input to the symbolic-computation algorithms for batehification. They; values
continue to satisfy the equatiop$ = 73 + ar; + b to be used in the symbolic simplifi-
cation process, whereg are available from the ECDSA signatures.

The knowledge of the entire poini,, R, allows us to comput&; 1 + & Re
using a single double-and-add loop, yielding noticeab&edpp over two point mul-
tiplications. If they-coordinates ofR; and R, are treated as symbolg, yo, then
too &1 Ry + &3 Ro can be computed seminumerically. Any non-zero point of trenf
uRy + vRy can be expressed &8 + jyiyq2, kyr + ly2) for field elementsh, 7, k,1
uniquely determined by the-coordinates-, r, (andu,v) alone. Addition and dou-
bling of such points can be rephrased numerically in termthes$e field elements.
However, the resulting formulas are somewhat clumsy, aechat expected to benefit
the computation of; R, + & Rs in a single double-and-add loop. For the weighted
sum of three or more points, this idea of seminumeric comjmuntaan be theoretically
extended, but chances of getting practical benefits aremratim.

3 Using Montgomery Ladders

Itis easy to see that if only the.coordinate- of a pointR is provided, the:-coordinate
of any multiple£ R can be uniquely determined. The Montgomery ladder [3] isr& co
crete algorithmic realization of this idea. The ladder may&es nor computes the
coordinate of any pointin its repeated double-and-addtpauitiplication loop.

We can use Montgomery ladders in our context as follows. hetrtcoordinates

r1,72,...,7¢ Of Ry, Ro, ..., Ry be available from ECDSA signatures. We choose ran-
dom multiplierséy, &, . . ., &, and compute the-coordinates; of & R; using Mont-
gomery ladders fof = 1,2, ...,t. We supply thez-coordinates, 75, . . ., 7, as input

to the symbolic-computation algorithms for batch verificat The corresponding-
coordinategj; now satisfy

Y =7 +ari+b

for all i. These relations are to be used now in the symbolic simpiificgrocess.
The double-and-add loop based on Montgomery ladders is a@bfe in perfor-
mance with the double-and-add loop of the standard poirtipfication algorithm.
Although Montgomery ladders never compute gngoordinate, their formulas for-
coordinates involve more field operations than standanatpoiltiplication. Moreover,



irrespective of the bits of the multiplier, each iteratiortihe Montgomery-ladder loop
performs one doubling and one addition. Finally, it is netals beneficial to extend
Montgomery ladders to windowed or addition-chain-basethnss.

Our preliminary experiments tend to suggest that the nunennputation of the
xz-coordinate of R (as discussed in Section 2) is slightly faster than the caatjoun
based on the Montgomery ladder. Moreover, the numeric ctettipa also supplies the
other coordinate of R as a multiple of;. Indeed, these numeric formulas provide an al-
ternative to the Montgomery ladder not only in our currentteat but in other contexts
too, including the context of [3] where the Montgomery laddantroduced. However,
point multiplication using Montgomery ladders is more ségit to side channel attacks
than the numeric algorithm.

4 Effect on Performance

The extra security offered by the randomizérssés, . . ., & comes at a cost. We now
need to compute additional point multiplications (or something equivaién that).
This performance degradation affects all variants of thé Enily of signatures, in-
cluding ECDSA and ECDSA*. The previous two sections esshiihat the symbolic-
manipulation algorithms for ECDSA batch verification aréeefed too, but not more
severely than those in which the entire poiftare available as input.

Fortunately, however, we can make a compromise. The rarmwameed not be of
full lengths (that is, of lengths close to that of the primdeny of the relevant elliptic-
curve group). Much smaller randomizers typically sufficdrtestrate most attacks on
batch-verification schemes. For example, if we take be a512-bit prime, and if we
choose64-bit randomizers, then for a batch of size eight, the totarbead of using
randomizers is about the same as that of only one point rlioétn.

5 Conclusion

This article illustrates that the ECDSA batch-verificatidgorithms based on symbolic
manipulation are fully compatible with the use of randoméz@nd are equivalent to
ECDSA* batch verification in this regard, in terms of bothfpemance and security.
An alternative to the Montgomery ladder is also proposed.
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