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Abstract. Signcryption is a cryptographic protocol that provides authentication and confidential-
ity as a single primitive at a cost lower than the combined cost of sign and encryption. Code-based
cryptography, a likely candidate for post-quantum cryptography, provides an exciting alternative to
number-theoretic cryptography. Courtois, Finiasz and Sendrier proposed the only practical code-based
signature(CFS signature) at Asiacrypt 2001. But that signature scheme currently lacks a formal proof
of security due to the existence of the high rate distinguisher proposed by Faugère et al. In this pa-
per, we make use of an alternate key-construct for the CFS signature, and thus prove its existential
unforgeability under chosen message attacks (EUF-CMA). Also, we propose a code-based signcryption
scheme and prove its security. To the best of our knowledge, this is the first code-based, provably secure
signature and signcryption scheme in literature.

Keywords. Signature, Signcryption, Code-based cryptography, CFS signature, Syndrome decod-
ing.

1 Introduction

Authentication and confidentiality of a message are among important security goals achieved us-
ing cryptography. Confidentiality is achieved by encryption and signature achieves authentication.
Signcryption as a primitive, aims at attaining the above goals at a lower cost than individually
signing and encrypting or vice-versa. Zheng [32], in 1997 proposed the first digital signcryption
scheme. Later, a formal model of security for signcryption schemes was provided by Baek et al.
in [2], which includes signcrypted text indistinguishabile under chosen ciphertext attack (SC-IND-
CCA2) for confidentiality and signature on the signcrypted text is existential unforgeable under
chosen message attack (SC-EUF-CMA) for unforgeability. Also, a stronger notion of security called
insider security was introduced by An et al. in [1], which proposed that a signcryption scheme
needs to offer confidentiality even if all the private-keys except the receiver’s private key are known
(the private key of the sender in particular, is known to the adversary), and it must be unforgeable
even if all the private keys except the private-key of the sender are known (in particular, the private
key of the receiver is known to the adversary).
The notion of code-based cryptography was initiated by the encryption scheme proposed by McEliece
[28] in 1978, which was based on the Bounded Decoding Problem. The aforementioned problem
is NP-complete [5]. Niederreiter [18] proposed an encryption scheme which was effectively on the
dual of the code used in the McEliece encryption scheme. In the Niederreiter system, the security
was based on the hardness of the Syndrome Decoding Problem. The security of the schemes by
McEliece [28] and Niederreiter [18] are shown to be equivalent in [22]. Stern [30] proposed an ef-
ficient code-based identification scheme, which did not require a trapdoor like Goppa codes and
its corresponding decoding mechanism, unlike the above cryptosystems. But, to obtain a signature
scheme based on [30] is practically infeasible as the signature size is very large. Courtois et al.[9]
in 2001 proposed a signature scheme (CFS signature scheme) based on the hardness of Syndrome
Decoding Problem. These signatures are practical only for high-rate linear codes (as the density of



non-decodable syndromes is sparse). Although it has a relatively large signing time, the signature
scheme was an exciting breakthrough, as it laid a foundation-stone for development of many code-
based schemes in various cryptographic primitives. Barreto et al. [4] proposed one-time signature
and Kabatianskii et al. [19] also proposed a signature which is secure only for few signatures. Ot-
mani e al. [25] proved an attack on the above two schemes.
Motivation. The first practical code based signature scheme was reported in 2001 by Courtois
et al. [10]. Later the authors added few more details in the scheme presented in [9]. The running
time of the signing algorithm, is estimated to be O(t2t!log(n)3), where t is the number of errors
that can be corrected and n is the length of the code word. The formal proof for the signature
was not presented in the paper, but to arrive at safe parameter values, the authors considered
the attacks like Canteaut Chabaud (CC) attack [7] and Lee Brickell (LB) attack [20]. Assuming a
threshold of 280 binary work factor for security against specific attack, (log(n), t) values that would
withstand the attacks and the corresponding signing times were estimated. Specifically in order to
resist the attacks like the CC attack and LB attack, [9] suggests that the values such as (15,10),
(16,9) are appropriate for (log(n), t). They have also shown that the running time of the signature
algorithm is reasonable for these choice of parameters. In 2009, Finiasz et al. [16] considered an
attack due to Daniel Bleichenbacher (communicated through the private communication to the
authors of [16], but never published). The authors of [16] suggested the parameters must be set
to (15,12) or (16,12) etc. for (log(n), t) values in view of this new attack. Subsequently, in 2011,
Sendrier[29] studied another attack, namely decoding one out of many. The revised parameters
that can be chosen according to [29] are (18,13), (19,12), (20,11) for (log(n), t). In 2007, a formal
proof was given by Dallot [11] assuming the hardness of syndrome decoding and code indistin-
guishability. In 2010, Faugere et al. [14] cryptanalysed the McEliece variants with compact keys
algebraically, which was subsequently extended in [12]. The analysis of [12] is an extended analysis
of a high rate distinguisher for McEliece encryption in [13]. This result gives that the t values (the
error-correcting capacities) must be set higher than previous estimates to achieve a provably secure
system. In particular if log(n) (n is the length of the code) is chosen as 18, 19 or 20 then t values
must be set to 85, 114, 157 respectively. But, these parameters lead to impractical signing times
(> 2220 operations).
Still the distinguisher does not imply a concrete attack on the scheme in [11] or in [9]. In fact, the
randomised CFS signature has widely been conjectured to be unforgeable, even though a formal
security argument does not exist currently. Hence, we need to explore alternatives to overcome the
distinguisher to arrive at a proof of security.
Signcryption is an important primitive in applications such as e-commerce, secure and authentic
e-mails, etc., because it offers both confidentiality and authentication simultaneously. However,
designing a signcryption scheme using the paradigm ’sign-then-encrypt’ will lead to an inefficient
scheme in code based scenario.

Our Contribution. In this paper, we alter the key-construct of the CFS signature [9] (based
on the key construct in [17]) and formally argue the security of the proposed signature in the EUF-
CMA model. To do so, we introduce a new distinguishability assumption, which is weaker than
the current Goppa-code distinguishability assumption. We also propose the first code-based sign-
cryption scheme (also, the first signcryption not using the classical number-theoretic assumptions,
to the best of our knowledge) using the Niederreiter’s system [18] and the CFS signature, both
using the modified key-construct. The signcryption scheme is loosely based on the construction
in [21]. We formally prove the confidentiality (in the SC-IND-CCA2) and unforgeability (in the
SC-EUF-CMA).
Organisation of paper. In the next section we provide some preliminaries. In section 3, we
briefly introduce our weaker distinguishability assumptions. We also argue (informally) as to why



it is weaker than the conventional distinguishability assumptions. In section 4, we give the proposed
signature scheme along with the security proof. In section 5, we give the proposal for signcryption
and provide a sketch of its security and identify a few secure parameters for the scheme. We con-
clude in section 5. The formal proof of security of the signcryption scheme is given in appendix
A.

2 Preliminaries

Before proceeding to the preliminaries, one should note that negl(n) is a negligible value with
respect to the parameter n. We now enlist some basics of coding theory and the definitions of the
primitives involved.

2.1 Coding Theory

A binary linear-error correcting code of length n and dimension k or a [n, k]- code is a k-dimensional
subspace of Fn2 . If the minimum distance between code-words is d, then we denote the code as an
[n, k, d] code, where d is called the Hamming distance. The error correcting capability of the code
is t = bd−1

2 c. The generator matrix G ∈ Fk×n2 of a [n, k] linear code C is a matrix of rank k whose
rows span the code C. The parity-check matrix H ∈ Fn−k×n2 of a [n, k] code C is defined as a matrix
satisfying HGT = 0. Hence, we can define the code C as {mG : ∀m ∈ Fk2} or {c : HcT = 0}. We
now proceed to list the hard problems.

Definition 1 Syndrome Decoding Problem. For some parameters [n, k, 2t + 1] given an a ∈
Fn−k2 and a random matrix H ∈ Fn−k×n2 , find a vector e ∈ Fn2 with weight wt(e) ≤ t such that
HeT = a.

The advantage of a probabilistic polynomial time (PPT) algorithm D of solving the syndrome
decoding problem for [n, k, 2t+ 1] code is denoted by AdvSD

D (n, k). Syndrome Decoding Problem is
hard (worst-case) for any random code [5]. Hence, AdvSD

D (n, k) = negl(n). But, for Goppa codes,
there is a polynomial time algorithm for syndrome decoding.

Definition 2 Punctured Codes [31] Let C be a code of length n and S ⊂ N where N denotes
the set {1, ..., n}. Let CS denote the code which is obtained by deleting all coordinates of C in N/ S.
CS is called punctured code of C in N/ S.

Definition 3 Equivalent Codes[26] [31] Let C and D be two codes over the same field and of
same length n. C and D are called equivalent, if there is a permutation π : {1, ..., n} → {1, ..., n}
such that
(c1, ..., cn) ∈ C ⇔

(
cπ(1), ..., cπ(n)

)
∈ D.

The problem of finding code equivalence is proven to be harder than graph isomorphism problem[27].

Consider the problem with C be a code of length n and D a code of length m, such that m ≤ n,
Does there exist a subset S ⊂ {1, ..., n}, such that CS and D are equivalent?

Definition 4 Let M be a k× n matrix over a field F with columns m1, ...,mn and τ : {1, ..., q} →
{1, .., n} an injection, such that (q ≤ n). The k × q matrix consists of the columns mτ(1), ...,mτ(q)

( in this order ) is denoted by Mτ .



Definition 5 Equivalent Punctured Codes (EPC) [31] Let M be a k × n matrix and H be
a k ×m matrix where m ≤ n over a field F , Does there exist a non-singular matrix k × k matrix
T and an injective map τ such that (TM)τ = TMτ = H.

The EPC problem was shown to be NP-completeby reducing three dimensional matching (3DM)
problem reduced to Equivalent Punctured code problem [31], [24]. In fact, the hardness of EPC
problem is the basus of the encryption scheme given in [31]. Thus we are justified in the following
assumption.

Assumption 1 There is no PPT algorithm D that can find a a non-singular matrix k× k matrix
T and an injective map τ such that (TM)τ = TMτ = H, given M and H.

In the construction of the signature presented in this paper, the security of signature is reduced to
Equivalent Punctured Code problem.

2.2 Signature

Definition 6 A signature scheme consists of a triple of algorithms (KeyGen,Sign,Verify) where,

KeyGen is a PPT algorithm that takes as input the security parameter κ (or 1κ) to return the
key-pair (sk, pk), where sk is the signing-key which is kept as secret with the signer, and pk is
the verification-key which is made public.

Sign is a PPT algorithm that takes as input the secret signing key sk and the document/message
m from the message space and outputs a signature σ.

Verify is a polynomial time algorithm that takes as input the public verification key pk, the docu-
ment/message m and the signature σ on the message and outputs ACCEPT if σ is valid and
REJECT otherwise.

Definition 7 (Unforgeability.) A signature scheme is said to be existentially unforgeable against
chosen-message insider attack (EUF-CMA) if no PPT forger F has a non-negligible advantage in
the following game:

1. The challenger runs KeyGen to generate a key pair (sk, pk). sk is kept secret while pk is given
to the adversary F .

2. The forger F adaptively makes a polynomial number of queries to the signature oracle and the
hash oracles (if any).

3. The forger F produces a signature σ and wins the game if :
– Verify(pk,m,σ) outputs ACCEPT and
– (m,σ) is not the output of any signature oracle, described in step 2.

The probability that, for a parameter n a forger is able to forge a signature is denoted by Succeuf−cmaF (n)

2.3 Signcryption

We first begin by formally defining a signcryption scheme. This formal definition is based on the
definition given in [21].

Definition 8 A signcryption scheme is a triple of algorithms (UKg, S, U) for a security parameter
1k.

(sk, pk) ← UKg(1k) is the Key-generation algorithm which takes a security parameter k to
generate the private/public key pair (sk,pk).



σ ← S(1k, m, skS , pkR) is the Signcryption is a PPT algorithm which takes a security parameter
k, the message m from a message space M, the sender’s private key skS and receiver’s public
key pkR, to output the signcrypted text σ.

((m, s),Accept)/Reject ← U(1k, σ, skR, pkS) is the De-signcrypt algorithm. The De-Signcrypt
algorithm is a two-staged process.
Stage 1 It takes k,the signcrypted text σ and the receiver’s private key skR as input to decrypt

and get the signed message m, a verifiable signature s (extracted from σ) on m and the
verification key pkS, or Reject which indicates failure of de-signcrypt.

Stage 2 It takes the signature s and message m, both obtained from Stage 1, and verifies using
the verification key pkS to output Accept or Reject.

The security notions of confidentiality and unforgeability (that also model the insider security
notion) are described here. The notion is based on the notion mentioned in [21].

Definition 9 (Confidentiality.) A signcryption scheme is semantically secure against chosen
ciphertext attack (SC-IND-CCA2) if no PPT adversary A has a non-negligible advantage in the
following game:

1. The challenger runs UKg to generate a key pair (skU , pkU ). skU is kept secret while pkU is
given to the adversary A. For the others users U ′(say), the challenger runs UKg to generate
(skU ′ , pkU ′), and sends the tuple to the adversary. (Insider security).

2. In the first stage, A makes a polynomial number of queries to the following oracles:
Signcryption Oracle : A prepares a message m ∈ M and a public key pkR, and queries the

Signcryption Oracle (simulated by the challenger) for the result of S(m,skU , pkR). The result
is returned if pkR 6= pkU and pkR is valid in the sense that pkR is in the range of UKg with
respect to the security parameter. Otherwise, a symbol ’⊥’ is returned for rejection.

De-signcryption Oracle : A produces a signcrypted text σ and queries for the result of U(σ, skU , pkS).
The message is returned if the de-signcryption is successful and the signature is valid under
the sender’s public key. Otherwise, a symbol ’⊥’ is returned for rejection.

The queries may be asked adaptively,i.e., each query may depend on the answers to the previous
queries.

3. A produces two messages m0,m1 ∈M of equal length and a valid private key skS. The challenger
takes a random b

R←− {0, 1} and computes a signcryption σ∗ = S(mb, skS , pkU ) of mb with the
sender’s private key skS under the receiver’s public pkU . σ∗ is sent to A as a challenge.

4. A makes a number of queries as in the first stage with the restriction that it cannot query the
de-signcryption oracle with σ∗.

5. At the end of the game, A outputs a bit b′ and wins if b′ = b.

A’s advantage is defined as Advind−cca(A) = Pr[b = b′] − 1
2 and the probability that b = b′ is the

probability that A wins the game.

Definition 10 (Unforgeability.) A signcryption scheme is said to be existentially unforgeable
against chosen-message insider attack (SC-EUF-CMA) if no PPT forger F has a non-negligible
advantage in the following game:

1. Follow the first two steps as that of confidentiality game.
2. The forger F produces a signcrypted text σ and a valid key pair (skR, pkR) and wins the game

if :
– U(σ, skR, pkU ) returns a tuple (m,s) such that the output of verification on (m, s) for the

verification key pkU is Accept.
– σ is not the output of the signcryption oracle.



3 Weak Distinguishability Assumptions

In this section, we introduce a weak Goppa distinguishability assumption. We assume that the
public key construct using Goppa code is computationally indistinguishable from a random matrix.
The public key and private key pair must be constructed in such a way that given public key, it
should not be possible to reconstruct the private key[8]. Therefore signature scheme is a variant of
the CFS, but uses an alternate public key construction such that the public key is no longer the
permutation equivalent of the private code. The key construct is some what similar to the one used
in [17], but there are subtle differences. The private keys used for signing are Q,H,P , where Q is an
n− k×n− k invertible matrix, H a Parity Check Matrix of a binary code C of type Goppa(n, k, t),
which is always a nonzero matrix, and a random n × n permutation matrix P as per the CFS
signature. But the public key H̃ used in our scheme is (n − k + 1) × n matrix, unlike (n − k) × n
parity check matrix used as the public key in the CFS signature. Therefore the public key is no
longer a permuted randomised parity check matrix of a Goppa code. Also the matrix Q is computed
as a product of two randomly generated matrices H ′ of size n− k × n′, where n′ = n− k + 1 and
Q′ of size n′ × n− k. The process is repeated until Q is invertible. We see that Q is invertible with
probability at least 0.288 [6]. Hence, in roughly 4 trials we can expect to obtain an invertible Q.
Also, a is selected such that H ′aT = 0. Due to all these differences, we obtain a novel and provably
secure signature scheme.

3.1 Key-Construct

The key generation involves the following steps

– Select H, a Parity Check Matrix of a binary code C of type Goppa(n, k, t). and a random n×n
permutation matrix P .

– Select randomly a H ′ ∈R Fn−k×n
′

2 and a Q′ ∈R Fn
′×n−k

2 , such that Q′ is full-rank and compute
matrix Q = H ′Q′. Repeat the step until Q is invertible.

– Select an a ∈ Fn′2 , such that H ′aT = 0 and Select b ∈R Fn2 ..
– Compute a parity check matrix H̃ as H̃ = Q′HP ⊕ aTb. H̃ is a n′ × n matrix. If H̃ is not

full-rank, repeat the process with a different random b, until we obtain a full-rank H̃.

3.2 Assumption

For the aforementioned key construct we make the following hardness assumptions which is harder
than Goppa code Distinguishability assumption. The symbols in this section are as defined in the
key construct (unless specified otherwise).

Assumption 2 There is no PPT distinguisher D that can distinguish H̃ from a parity check matrix
R of a random (n, k − 1, t) linear code.

Let the advantage of such a distinguisher be AdvDist
D (n, k) = |Pr[D(H̃) → 1] − Pr[D(R) → 1]|.

We consider assumption 2 to be weaker than the Goppa-code distinguishability assumption. The
reason for this can be explained based on another assumption.

Assumption 3 Given H̃, it is infeasible to retrieve H, a and b.

Given H̃ it is infeasible to find H ′. The corresponding decisional version of assumption 3 is ”Given
H̃, does there exist a H ′ such that H ′H̃ = QHP for some Goppa code with parity matrix H, some
n− k × n− k invertible matrix Q and n× n permutation matrix P”. This is clearly Assumption 2



(if there doesn’t exists such a H ′ then the input matrix is random). This is a generalisation of the
Punctured Code problem. To elaborate, suppose this decision problem is solved, then we can solve
the following problem,
For two matrices M and H does there exist a T and selections S1, S2 ⊆ {1, 2, . . . n} such that
(TM)S1 = HS2.
Another reason, why we consider this problem to be weaker than the Goppa distinguishability is
based on the equations for the distinguisher. It is seen that the public key is not a parity check matrix
of a permutation equivalent code of the secret code. We take the generator matrix corresponding
to the public matrix. Hence, to solve the system to obtain the private keys, the following system
of equations have to be solved,

{gi1(Xj
1Y1 + ajb1) + . . .+ gin(Xj

nYn + ajbn) = 0 | i ∈ {1, . . . , k} & j ∈ {0, . . . , n− k}}

where gij is the element of the generator matrix at the ith row and jth column. Unlike the system in
[13], the system here is not trivially linearisable. Hence, the distinguishing based on the dimension
may not hold good.

4 Proposed Signature Scheme

4.1 Scheme

System Parameters(κ). The following system parameters are used:

– Parameters of the code n, k, t for any [n, k, 2t + 1] linear code, with n, k determined by the
security parameter κ, and t = n−k

log2 n
.

– We define n′ = n− k + 1.
– Hash function G : Fn2 × {0, 1}n → Fn′2

Key Generation(κ, parameters). The key generation is as mentioned in section 3 and we have
private key: H,P,Q,H ′; public key: H̃; parameters: [n, k, t], n′,G
Sign(m,H,P,Q,H ′). To sign a message m ∈ {0, 1}l

– repeat

r
R←− Fn2

m′1 ← G(r,m)
m1 = H ′m′1

T

s1 = P TDecodeH(Q−1m1) //If m1 is not decodable for H, the decoding algorithm sets s1 =⊥.
until(s1 6=⊥ && m′1 = H̃sT1 )

– The signature is σ = (s1, r)

Verify(m,σ, H̃). Verification of the signature σ = (s1, r) on m is done by checking H̃s1T
?= G(r,m)

and wt(s1) ≤ t. If TRUE then return ACCEPT, else return REJECT.
Note that m1 is made a syndrome for H ′ for the word m′1, and m1 also made a syndrome for
code word s1 for QHP . When m′1 is replaced with H̃sT1 according to the signing procedure in
m1 = H ′m′1

T , observe that it becomes a syndrome for code word s1 for QHP
Note 1. To elaborate on the scheme, we take two cases.

– In the first case, assume m′1 is a decodable syndrome for H̃, i.e., there exists an s1 such that
m′1 = H̃sT1 and wt(s1) ≤ t. Then it is seen that m1 = H ′m′1

T = H ′(Q′HP ⊕aTb)sT1 = QHPsT1
(since Q = H ′Q′ and H ′aT = 0). Hence, it is possible to decode m1 using the decoding algorithm
on H to obtain s1 which is the solution of syndrome decoding of m′1 for H̃.



– In the second case, assume m′1 is not decodable for H̃. Hence, there does not exist any s1 unlike
the first case. But m1 can either be decodable or not decodable for H. It is the property of any
binary linear code of length n′ and dimension k′, to partition the space Fn′2 into 2n

′−k′ partitions
of size 2k

′
, using the syndromes. Hence, for H ′ (which has dimension 1), exactly two values m′1

and m′2(say) map to the same syndrome m1. If m1 is not decodable for H then both m′1 and
m′2 are not decodable for H̃. But, if m1 is decodable (and can be decoded to s (say)) , then one
of the two the values m′1 and m′2 is of the form H̃sT , whereas the other is not decodable. This
can be proved by contradiction, as, assuming both m′1 and m′2 are decodable for H̃, into s1 and
s2 repsepctively. Then, H ′m′1 and H ′m′2 are also correspondingly decodable into s1 and s2 for
H. But, we know that H ′m′1 = H ′m′2 = m1. Hence, it is a contradiction that m1 decodes into
two vectors (both of weight ≤ t). Therefore, only one vector is decodable, while the other is not
decodable.

Hence, the expected time taken [9] for the above signature is O(t!t2m3).

4.2 Security of the scheme

We now proceed to prove the unforgeability of the scheme under the EUF-CMA security notion in
random oracle model.

Theorem 1 The given scheme is EUF-CMA (under the random oracle model) if the syndrome
decoding (SD) is hard to solve and the public key is computationally indistinguishable from the
parity matrix of a random (n, k − 1, t) code R.

Proof: We build the proof, by constructing a challenger C through a sequence of games Game0,
Game1,· · · . Game0 is played by using the protocol as mentioned in EUF-CMA game. Successive
games are obtained by small modifications of the preceding games, in such a way that the difference
of the view in consecutive games is easily quantifiable. Let qG , qs be the maximum number of queries
made by the forger F to the hash oracle of G and the signature oracle. We want to show that the
advantage for the adversary F is equivalent to the advantage of solving the hard problem SD for a
random code with parity check matrix R and some syndrome s.
To answer the hash queries and the signature queries, we maintain the lists, Glist, σlist and Λ. If
there is no value in a list we denote its output by ⊥.

– The list Glist contains a tuple ((x, s), a) indexed by (r,m).
– The σlist (the signature list) consists of entries of the form (m,σ = (s, r)).
– The list Λ consists of indices r of Λ(m) for which the simulator is able to produce a signature

on G(m,Λ(m)),i.e., the list of r for which G(m,Λ(m)) is a decodable syndrome.

Game 0. Here the challenger employs the actual scheme according to the EUF-CMA game. The
private and public key pair are obtained by running the key generation algorithm given the
scheme, to obtain secret key (Q,H,P,H ′), where H ← Goppa(n, k) (a binary Goppa code), and
the public key H̃ = Q′HP ⊕ aTb. H̃ is given to F . Also, F is given access to the hash oracle
G. The signature oracle functions as mentioned in the scheme. Let X0 be the event that F wins
Game 0. It is seen that Game 0 runs the EUF-CMA game on the proposed scheme perfectly.
Hence,

Pr[X0] = Succeuf−cma(F)

Game 1. (Simulation of hash oracle) In this game, the hash oracle for G is simulated, while the
rest of the protocol is executed as in the previous game. The oracle is simulated as follows:



For the query on G of the form (m, r), we have two situations, depending on whether r ∈ Λ(m).
The simulation of the oracle is given below:
Input: A tuple (m, r)
Output: A syndrome x
if r 6= Λ(m) then

if s =⊥ then
s1

R←− Fn2 // Since, the challenger may not be able to decode G(m, r),
x← H̃s1

T // we take a s randomly, and may not have weight < t
s←⊥ Glist(m, r)← ((x, s), s1)

end
return G(m, r) = x

else
if x =⊥ then

s1
R←− Fn2 such that wt(s1) = t

x← H̃sT1 // x is decodable, since wt(s1) ≤ t
s← s1 Glist(m, r)← ((x, s), s1)

end
return G(m, r) = x

end
It is seen that, while the oracles are simulated in the Game 1, the distribution of these oracles
remain unchanged from Game 0 (i.e., the randomness is maintained). Let the event that F wins
Game 1 be denoted by X1. Hence

Pr[X1] = Pr[X0]

Game 2. (Simulation of the signing oracle.) The signing oracle is simulated as follows:
Input: the message m of length l Output: A signature σ = (s1, r)
if Λ(m) =⊥ then

r
R←− Fn2 //Fix a r such that G(m, r) is decodable, and

Λ(m)← r // s such that H̃sT1 = G(m, r) and wt(s) ≤ t
end
((x, s1), s1)← G(m,Λ(m))
if (s1 =⊥) then //Incoherence, as G(m, r) was set earlier, when r 6= Λ(m)

ABORT
else
r ← Λ(m)
Λ(m)←⊥

Return σ = (s1, r).
The signature produced by the signing oracle, is valid according to the verification algorithm,
since,H̃sT1 = G(m, r) and wt(s1) ≤ t.
In Game 2, incoherence occurs if the oracle to G is queried initially for some (m, r) such that
later r is set to Λ(m). This happens with the probability qs

2n (since the indices Λ are defined
only when the signature oracle is queried). It can be noted that this incoherence is the only
scenario in which F can distinguish Game 2 from Game 1. Therefore, for the event X2 that F
wins Game 2,

|Pr[X1]− Pr[X2]| ≤ qs
2n

Game 3. (Changing the key generation algorithm) The parity check matrix R, for which the
syndrome decoding problem needs to be solved, is taken as the private key, i.e., H = R. The



public key is H̃ = R′ , where R′T = [RT |zT ] where z ∈R Fn2 . The verification key H̃ is given to
the forger F , while C keeps the remaining secret keys. By assumption 2

|Pr[X2]− Pr[X3]| ≤ AdvDist
C (n, k)

Game 4. In this game, the challenger modifies the winning condition. The challenger first gets a
random c

R←− {1, . . . , qs + qG + 1}. F wins the Game if, in addition to the above conditions (as
given in the previous game), the forgery was made on the c-th query to the hash oracle G. This
occurs with the probability 1

qs+qG+1 . For the event that F wins Game 4, X4, we obtain

Pr[X4] =
Pr[X3]

qs + qG + 1

Game 5. In this game the challenger modifies the hash oracle, incorporating the problem instance
(syndrome s) in the c − th query. Since, the key used is R′ and not R, we require a syndrome
of length n′. Hence, a bit generated uniformly at random, sc, is appended to the end of s.
Therefore, the output of the hash oracle for the c− th query is s′ such that s′T = [sT |sc]. Since,
in game 5, the forger can output a forgery only if the final bit sc has been guessed correctly
(then s′ is consistent with s),

Pr[X5] = Pr[X4]/2

Let s∗ be the signature output by the forger. It is seen that s∗ is the solution to the bounded
decoding problem on the syndrome s′ for H̃. Also, s∗ is guaranteed to be the solution for the
syndrome RsT on R. Hence, we have

Pr[X5] ≤ AdvSDC (n, k)

Now, combining all results and use of triangular inequality, we have:
Succeuf−cma(F) ≤ qs

2n + AdvDist
C (n, k) + 2(qs + qG + 1)AdvSDC (n, k).

The detailed reduction of the equations to arrive at the final bound is available in the full version
of the paper.
Hence, the success of probability of the forger is bound by the advantage the challenger has in
solving the syndrome decoding problem. This implies the signature is unforgeable as long as the
corresponding syndrome decoding instance is hard to solve. ut

Since the scheme avoids the distinguisher attack, the parameters that can be used in this scheme
can be as that of the parameters suggested by [29] and the signing time will be slightly greater
than the signing time of the [9]

5 Proposed Signcryption Scheme

The proposed scheme is the first code-based signcryption scheme (to the best of our knowledge).
This scheme, takes into consideration the idea of construction used in [23, 21].

5.1 Scheme

System Parameters(κ). The following system parameters are used:

– Parameters of the code n, k, t for any [n, k, 2t + 1] linear code, with n, k determined by the
security parameter κ, and t = n−k

log2 n
.



– We define n′ = n− k + 1.
– Collision resistant Hash functions H : Fn

′×n
2 × Fn′2 × Fn2 → {0, 1}l (assuming messages of length

l) and G : Fn2 × {0, 1}n × Fn
′×n

2 × Fn
′×n

2 → Fn′2

Key Generation(κ,parameters). For a user U the key generation involves the following steps

– Select HU , a Parity Check Matrix of a binary code C of type Goppa(n, k, t).
– Select randomly a n× n permutation matrix PU .
– Select bU ∈R Fn2 .
– Select randomly H ′U of size n − k × n′ and Q′U ∈R Fn

′×n−k
2 , such that Q′U is full-rank and

compute the matrix QU = H ′UQ
′
U . Repeat until QU is invertible.

– Select aU , such that, H ′UaTU = 0.
– Compute a parity check matrix H̃U as H̃U = Q′UHUPU ⊕ aTUbU . H̃U is a n′ × n matrix. If H̃U

is not a full-rank matrix, we repeat the process with different random bU until we obtain a
full-rank H̃U .

Thus we have
private key: HU , PU , QU , H

′
U ; public key: H̃U ; parameters: H,G, n, k, t, n′

Signcrypt(m,HS , PS , QS , H
′
S , H̃R). To signcrypt a message m ∈ {0, 1}n from a sender S and

a receiver R

– repeat

r
R←− Fn2 , such that wt(r) ≤ t;

m′1 ← G(r,m, H̃R, H̃S)
m1 = H ′Sm

′
1
T

s1 = P TS DecodeHS
(Q−1

S m1)
until(s1 6=⊥ && m′1 = H̃Ss

T
1 )

– Compute U = H̃Rr
T

– Compute V = m⊕H(H̃R, U, r)
– The signcrypted text is σ = (U, V, s1)

De-signcrypt(σ,HR, PR, QR, H
′
R, H̃S). When the signcrypted text σ = (U, V, s1) is received R

does the following:
Compute U ′ = H ′RU

T

r′ = P TRDecodeHR
(Q−1

R U ′).
if (r′ =⊥ ||U 6= H̃Rr

′T ||wt(s1) > t)
Return Reject

else
Compute m′ = V ⊕H(H̃R, U, r

′)
if (H̃Ss1

T 6= G(r′,m′, H̃R, H̃S))
Return Reject

else
Return ((m′, s1),Accept)

end Note 1: The signcryption scheme is more efficient than individually signing and encrypting,
for the following reasons:

1. The scheme uses the same key-pair for both confidentiality and authentication.
2. Avoids the use of independently generated randomness and ephemeral keys while individually

signing and authenticating.



3. The scheme avoids the use of additional authenticating mechanism which is required for non-
malleability of the ciphertext.

5.2 Security of the scheme

The security of the scheme is argued based on the security models given in definitions 9 and 10 in
random oracle model.

Theorem 2 (Confidentiality.) The given scheme is secure in the sense of SC-IND-CCA2 (under
the random oracle model) if the syndrome decoding (SD) is hard to solve and the public key is
computationally indistinguishable from the parity matrix of a random (n, k − 1, t) code R.

We build the proof, by constructing a challenger C through a sequence of games Game0, Game1,· · · .
The complete proof is in Appendix A.

Theorem 3 (Unforgeability.) The given scheme is unforgeable in the sense of SC-EUF-CMA
(under the random oracle model) if the syndrome decoding (SD) is hard to solve and the public key
is computationally indistinguishable from the parity matrix of a random (n, k − 1, t) code R.

The proof of this theorem, follows the line of proof in theorem 1 and theorem 2. Hence, we do not
elaborate on the same.

5.3 Parameters selection

We give some of the parameters for which our scheme will be practical and remain secure. The
security proof explains the dependence of the scheme on the SD problem for security. The best-
known attack for the signature is that by Bleichenbacher which is given in [16]. Also, the best
known attack for syndrome decoding is Information-set decoding. A lower bound of the work factor
for the attack is given in [16]. The parameters are selected according to [29]. In Table 1we present
a few secure parameters. We also give the signing times of our signature scheme in table 1.

(log2(n), t) Security factor
for Confidential-
ity in log2

Security factor
for Authentica-
tion in log2

Time required for
signing in the pro-
posed scheme(approx.
in log2)

(18,13) 102.05 93.7 53.44
(19,12) 100.34 83.6 49.74
(20,11) 105.91 87.6 46.2

Table 1. Secure parameters for the scheme based on the bounds in [16]

6 Conclusion

In the paper, we introduced a weaker distinguishability assumption. This results in a modification
of CFS signature, which allows a formal proof of security, reducing the unforgeability problem
to syndrome decoding problem and the introduced assumption. Hence it overcomes the problems
associated with the high rate distinguisher in [13]. This lays the foundation stone for the use of CFS
schemes in various primitives. Also, existing primitives which have made use of the CFS signature



can now be altered appropriately to achieve provable security. Also, in this paper we present a
signcryption scheme. The scheme can be used in applications which require both confidentiality
and authentication, instead of individually signing and encrypting, as the efficiency is improved. It
can be noted that the key-construct in [3] can also be used for constructing the signature and the
signcryption scheme. The parameters of the proposed signcryption could be improved by using the
Parallel-CFS[15].
Also, it is interesting to investigate the possibility of using LDPC codes, and other codes with
better decoding properties. The key construct may be sufficiently altered to enable the secure use
of such codes. The subsequent improvement in efficiency has to be investigated further.
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A Proof of confidentiality for the signcryption scheme

Theorem 4 (Confidentiality.) The given scheme is secure in the sense of SC-IND-CCA2 (under
the random oracle model) if the syndrome decoding (SD) is hard to solve and the public key is
computationally indistinguishable from the parity matrix of a random (n, k − 1, t) code R.

Proof: We build the proof, by constructing a challenger C through a sequence of games Game0,
Game1,· · · . Game0 is the adaptation of the protocol to the SC-IND-CCA2 game. Successive
games are obtained by small modifications of the preceding games, in such a way that the difference
of the adversarial advantage in consecutive games is easily quantifiable.
Let qH, qG , qs, qu be the maximum number of queries made by the adversary A to the oracles for
the hash queries H,G, the signcryption oracle and the de-signcryption oracle. We want to show
that the advantage for the adversary A is bounded by the advantage of solving the hard problem
SD for a random code with parity check matrix R.
To answer the hash queries and the signcryption and the de-signcryption queries, we maintain the
lists, Glist,Hlist, σlist and Λ. If there is no value in a list we denote its output by ⊥.

– The list Glist contains a tuple ((x, s), a) indexed by (r,m, H̃R, H̃S).
– The listHlist consists of strings ρ ∈ {0, 1}l indexed by (H̃R, U, r) where H̃R and H̃S are (n−k)×n

sized parity check matrices, and U ∈ Fn−k2 and r ∈ Fn2 such that wt(r) ≤ t.
– The σlist (the signature list) consists of entries of the form (m,σ = (U, V, s)).
– The list Λ consists of indices r of Λ(m) for which the simulator is able to produce a signature

on G(m,Λ(m, H̃R, H̃S)), H̃R, H̃S), i.e., the list of r for which G(m,Λ(m, H̃R, H̃S)), H̃R, H̃S) is a
decodable syndrome.



Game 0. This is the standard SC-IND-CCA2 game. The private and public key pair are obtained
by running the key generation algorithm given the scheme, to obtain secret key (QU , HU , PU , H

′
U ),

where HU ← Goppa(n, k) ( a binary Goppa code), and the public key H̃U = Q′UHUPU ⊕ aUbTU .
H̃U is given to A. Also, A is given access to the hash oracles H and G. The signcryption oracle
and designcryption oracle function as mentioned in the scheme. Let X0 be the event that A
wins Game 0. It is seen that Game 0 runs the SC-IND-CCA2 game on the proposed scheme
perfectly. Therefore Pr[X0]− 1

2 = Advind−ccaA (n, k).
Game 1. (Simulation of hash oracles) In this game, the hash oracles for G and H are simulated,

while the rest of the protocol is executed as in the previous game. The two oracles are simulated
as follows:
For the query on G of the form (r,m, H̃R, H̃S), we have two situations, depending on whether
r = Λ(m, H̃R, H̃S). The simulation of the oracle is given below:
Input: A tuple (m, r, H̃R, H̃S)
Output: A syndrome x
if r 6= Λ(m, H̃R, H̃S) then

if s1 =⊥ then
s1

R←− Fn2
x← H̃Ss

T
1

Glist(r,m, H̃R, H̃S)← ((x,⊥), s1)
end
return G(r,m, H̃R, H̃S) = x

else
if x =⊥ then

s1
R←− Fn2 such that wt(s1) = t

x← H̃Ss
T
1

Glist(r,m, H̃R, H̃S)← ((x, s1), s1)
end
return G(r,m, H̃R, H̃S) = x

end For the query to H of the form (H̃R, U, r), the challenger searches Hlist for the tuple
(H̃R, U, r). If found, the corresponding value from the list is returned, else return a random
string ρ R←− {0, 1}l and store the tuple ((H̃R, U, r),ρ) in Hlist. Let X1 be the event that A wins
Game 1.It is seen that, while the oracles are simulated in Game 1, the distribution of the output
of these oracles remain unchanged (i.e., the randomness is maintained) from Game 0. Hence
Pr[X1] = Pr[X0]

Game 2. (Simulation of the signcryption oracle.) The signcryption oracle is simulated as follows:
Input: the tuple (m, H̃R, H̃U ) Output: A signcrypted text σ = (U, V, s1)
if Λ(m, H̃R, H̃U ) =⊥ then

r
R←− Fn2 , such that wt(r) ≤ t Λ(m, H̃R, H̃U )← r

end
((x, s1), s1)← G(Λ(m, H̃R, H̃U ),m, H̃R, H̃U )
if(s1 =⊥) then ABORT
else
r ← Λ(m, H̃R, H̃U ) Λ(m, H̃R, H̃U )←⊥ U = H̃Rr

T

V = m⊕H(H̃R, U, r)
end
Return σ = (U, V, s1). The simulation of the signcryption is an extension of the signing oracle
simulation presented in the previous proof. It is thus, seen that the s1 is a valid signature on m



for verification key H̃U . Also, the remaining signcrypted text is also valid, and follows from the
signcrypt algorithm given in the scheme.
In Game 2, incoherence occurs if the oracle to G is queried initially for some (r,m, H̃R, H̃S)
such that later r is set to Λ(m, H̃R, H̃S). This happens with the probability qs0@n

t

1A (since the

indices Λ are defined only when the signcryption oracle is queried). It can be noted that this
incoherence is the only scenario in which F can distinguish Game 2 from Game 1. Therefore,
for the event X2,that A wins the Game 2, we obtain, |Pr[X1]− Pr[X2]| ≤ qs0@n

t

1A
Game 3. (Simulation of the designcryption oracle.) For the designcryption oracle queried on

(s1, U, V, H̃U , H̃S) the following is done:
– The challenger searches the Hlist for the tuple (H̃U , U, λ) such that H̃Uλ

T = U . If it exists
in the list, then the corresponding vector X is given as output. If no such tuple is found
(i.e., the hash for such a tuple has not been queried) then it fixes λ =⊥ and gives the
corresponding output from the hash oracle as X.

– It obtains m′ = V ⊕X.
– The challenger then searches Glist for the tuple of the form (λ,m′, H̃U , H̃S) where H̃Uλ

T = U
or λ =⊥. If the tuple is not in Glist, the challenger adds it to the list.

– Now the challenger verifies if H̃Us1
T ?= G(λ,m′, H̃U , H̃S).If the condition holds and H̃Uλ

T =
U , then the challenger returnsm′ as the message. If condition holds but λ =⊥ then challenger
ABORTS citing failure. If the condition does not hold at all, then the challenger returns ⊥,
as symbol of rejection of invalid signcrypted text.

In the above game, if the challenger aborts, it implies that the adversary created the signcrypted
text without querying the hash oracles. Hence, the probability of aborting is qd

2l .This scenario
(of ABORT) would not occur in Game 2. Hence, for the event X3 that A wins Game 3, we have
|Pr[X3]− Pr[X2]| ≤ qd

2l

Game 4. (Changing the key generation algorithm) The adversary has access to the private keys of
all users except the user U . Hence, for the other users, the keys are generated as in the scheme,
and given to the adversary. For the user U , C selects the private key HU = R. The public key
is H̃U = R′, where R′T = [RT |zT ] where z ∈R Fn2 . The verification key H̃U is given to the
adversary A. It follows from assumption 2 that |Pr[X3]− Pr[X4]| ≤ AdvDist

C (n, k) where X4 is
the event that A wins Game 4.

Game 5. (Challenge ciphertext) The challenger takes the message mb, and does the following to
create the challenge, which would aid the challenger in solving the problem instance, syndrome
s (where wt(s) > 2t+1). The challenger wants to find r ∈ Fn2 with wt(r) ≤ t such that s = RrT .
The challenger generates the challenge cipher-text as follows:
– C sets U∗ = s′, where s′T = [sT |sc] where sc is a randomly generated bit.
– For the query on H, C sets a special symbol >, randomly generates a vector y and stores

it in Hlist as (H̃U , U
∗,>, y). And for the query on G, again uses the special symbol >,

also a random decodable syndrome (say x, with the decoded vector s1) is given (just
as in the simulation in G oracle and the Signcrypt oracle), and stores in Glist the tuple
(mb,>, H̃U , H̃S , (x, s1), s1). The signing is simulated just as in signcryption oracle.

– The challenger set V = mb ⊕ y
Also, the challenger has to now alter the answer to the hash queries in the following way:
– For the H oracle, for any query (H̃U , H̃Us

T , r) where H̃Ur
T 6= H̃Us

T , some random value is
returned. If H̃Ur

T = U∗ and weight(r) ≤ t, then the value y is returned, and > is replaced
by r in the tuple. The valid r thus obtained is the solution to the problem instance.



– For the G oracle, for any query (m, r, H̃U , H̃S) if H̃Ur
T = U∗ and m = mb output x,else

output any random syndrome. The valid r thus obtained is the solution to the problem
instance.

Just as in the proof of unforgeability, the decodability of U∗ depends on correctly predicting sc,
which occurs with probability 1

2 . If X5 be the event that A wins Game 5, we can clearly claim
that, |Pr[X4]− Pr[X5]| ≤ AdvSDC (n, k)/2 where AdvSDC (n, k) is the advantage that some PPT
algorithm C has at solving the syndrome decoding problem (SD) on R.

Game 6. (Challenge ciphertext) In this game, the challenger C again alters the procedure of
producing the challenge ciphertext. For the ciphertext, the process of creating U and s is
the same, but changes for V . The challenger C sets V = z,where z R←− {0, 1}l. Clearly, now
the challenge ciphertext generated is completely random. But, even in game 5, the ciphertext
generated was random as we blinded the message with a completely random component. Hence,
there is no change in the distribution of the ciphertext space, i.e., Pr[X5] = Pr[X6], where X6

is the event that A wins Game 6. Also, it can noted that the probability of correctly guessing
the choice b by the adversary A is exactly half,i.e., Pr[X6] = 1

2

Accumulating all the above results and using triangular inequality we have the following result:
Advind−cca2(A) ≤ qs0@n

t

1A + qd
2l +AdvDist

C (n, k)+AdvSDC (n, k)/2. Hence, the advantage of the adversary

is bound by the advantage of the challenger in solving the syndrome decoding problem and the
weak distinguishability. ut


