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Abstract. The security of pairing-based cryptosystems relies on the
hardness of the discrete logarithm problems in elliptic curves and in fi-
nite fields related to the curves, namely, their embedding fields. Public
keys and ciphertexts in the pairing-based cryptosystems are composed
of points on the curves or values of pairings. Although the values of the
pairings belong to the embedding fields, the representation of the field is
inefficient in size because the size of the embedding fields is usually larger
than the size of the elliptic curves. We show factor-4 and 6 compression
and decompression for the values of the pairings with the supersingular
elliptic curves of embedding degrees 4 and 6, respectively. For compres-
sion, we use the fact that the values of the pairings belong to algebraic
tori that are multiplicative subgroups of the embedding fields. The al-
gebraic tori can be expressed by the affine representation or the trace
representation. Although the affine representation allows decompression
maps, decompression maps for the trace representation has not been
known. In this paper, we propose a trace representation with decom-
pression maps for the characteristics 2 and 3. We first construct efficient
decompression maps for trace maps by adding extra information to the
trace representation. Our decompressible trace representation with ad-
ditional information is as efficient as the affine representation is in terms
of the costs of compression, decompression and exponentiation, and the
size.

Keywords: public-key cryptosystems, the discrete logarithm problem,
algebraic tori, compression, decompression

1 Introduction

Practical public-key cryptography is fundamental technology in the field
of network security. Current security standards recommend the use of
* This paper is the full version of [Yonemura, T., Isogai, T., Muratani, H., Hanatani,

Y.: Factor-4 and 6 (De)compression for Values of Pairings using Trace Maps. In:
Pairing2012 (2012)].



2048-bit or larger RSA keys [2] and history in these decades suggests that
this figure may increase with advances in computational power. Such
key sizes are problematic for devices with limited storage, computational
power or network bandwidth. One approach to overcome these limitations
is a safe key compression [20, 6, 14,16, 5,19, 12, 13], but these compression
techniques are unsuited to RSA keys. Therefore, we focus on cryptosys-
tems based on the discrete logarithm problem in a prime-order group. To
compress the public-key size is to represent the prime-order group with
fewer bits than the size of the embedding field. For instance, the recom-
mended size of the finite field is 2048 bits, and the corresponding size
of the prime-order group is 224 bits [2], because the discrete logarithm
problem in the finite field is easier than in the general group, namely, the
elliptic curve.

The index calculus is a relatively efficient algorithm to solve the dis-
crete logarithm problem in finite fields. The time complexity of the index
calculus is subexponential L,[1/3, ¢] = exp((c+o(1))(log ¢)/3(log log q)*/?)
for the finite field IF,, and does not depend on the characteristic or the
extension degree [7,1,10, 11] except the constant c¢. On the other hand,
there are only exponential algorithms for solving the discrete logarithm
problem in the elliptic curves.

Pairings map a pair of elliptic curve points to an element of the multi-
plicative group of a finite field, namely, the curve’s embedding field. Since
pairings are bilinear, the discrete logarithm problem in elliptic curves is
also solved in their embedding fields. The bilinearity is used to develop
efficient cryptographic schemes [18, 9, 3]. In pairing-based cryptosystems,
we deal with both rational points of elliptic curves and values of pairings.
Although the values of the pairings belong to the embedding fields, the
representation of the field is inefficient in the size. We show factor-4 and
6 compression and decompression for the values of the pairings with the
supersingular elliptic curves of embedding degrees 4 and 6, respectively.
For compression, we use the fact that the values of the pairings belong to
also algebraic tori that are the multiplicative subgroups of the embedding
fields.

Related Work. Table 1 presents existing compression methods. There are
two kinds of compression methods: the affine representation and the trace
representation. Algebraic tori (To, Tg, LUC, XTR) and their subgroups
(Karabina, Shirase) have compact expressions.

In the affine representation, elements of algebraic tori are embedded
in extension fields and identified by an element / elements from subfields.
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Table 1. compression methods:ECC, FFC and ATC mean the elliptic curve cryptosys-
tems, the finite field cryptosystems and the algebraic torus cryptosystems, respectively.

system ECC|FFC ATC

class - - the affine representation the trace representation

name - - T, |Te¢ |Karabina|Karabina|LUC|XTR|Karabina|Shirase

factor - 1 2 3 4 6 2 3 4 6

public-key|160 (1024|512 |341 |256 170 512 [341 256 170

size (bit) |224 [2048]1024|683 [512 341 10241683 (512 341
256 [3072(1536(1024|768 512 1536 {1024 |768 512

reference |- - [16] |[16] |[13] [13] [20] |[14] |[12] [19]

comp. - - available available

decomp. |- - available no

Elements of subgroups of algebraic tori are identified by a tuple of an
element from subfields and additional information, namely, 1 bit for factor
4 or 1 trit (ternary digit) for factor 6. Each affine representation has
efficient inverse map allowing multiplication and exponentiation in the
embedding fields.

In the trace representation, elements of algebraic tori or these sub-
groups are identified by a trace value. Because conjugates are mapped to
a same trace value, no inverse map exists. Therefore, multiplication could
not be defined in the trace representation. On the other hand, exponen-
tiation can be calculated without decompression or without distinction
among conjugates. Although Karabina discusses “decompression” with-
out distinction among conjugates, no efficient “decompression” maps are
presented [12]. Most cryptosystems use not only exponentiation but also
multiplication. The existing trace representation is not useful because of
lack of multiplication.

Qur Contributions. We propose factor-4 and 6 decompressible trace rep-
resentation with additional information for characteristics 2 and 3, re-
spectively. We construct decompression maps for the trace representation
by adding extra information. Our decompression maps are efficient. Since
our representation permits decompression, we are able to introduce mul-
tiplication in the trace representation for the first time. All cryptographic
protocols based on group law and the discrete logarithm problem can be
implemented on this representation. Why do we focus not on the affine
representation, but on the trace representation? One of the reasons is
the trace representation seems to be suited to improving the compression
factor.



There are two steps for the construction of our representation: Firstly,
we find easily solvable equations whose coefficients are written by the
trace value to obtain the elements of the algebraic tori in the embedding
fields as solutions. Secondly, we distinguish these solutions by additional
information, namely, 2 bits for factor 4 or 1 bit and 1 trit for factor 6.

In order to improve the compression factor, it is required that the
tuple of a trace value and additional information have to achieve a bet-
ter compression factor than Bosma’s conjecture. Bosma’s conjecture on
generalization of XTR mentioned the tuple of a trace value and other
fundamental symmetric polynomials to improve the compression factor
[4]. However, the additional information is much smaller than the funda-
mental symmetric polynomials.

Structure of This Paper. In section 2 and 3, we present the necessary
preliminaries and literature review respectively. In section 4, we propose
decompression maps for the trace representation with additional informa-
tion. In section 5, we compare the efficiency of our representation with
existing affine representation.

2 Preliminaries and Notation

Let p be a prime, and n, m and d be positive integers. Let [F,» be a finite
field of order p™. I;, My, and S; are costs of inversion, multiplication,
and square in the field Fym)a. We ignore costs of Frobenius maps and
addition in F(pm)d that are small compared with the above costs. Maps
Tr]p(pm)n [y ya and N]F(pm)n [ ya denote a trace map and a norm map
from Fymyn to Fipmyd, respectively, where, d divides n. Maps T,/ and
N, /4 are short for the above maps.

Definition 1. An algebraic torus T, over Fym is defined by

To(Em)= (]  Ker [N]F(pm)n / F} . (1)

Fpm CFQF(pm yn

Definition 2. Let i be the Mobius function. The n-th cyclotomic poly-
nomial @y, (x) is defined by @, (x) = Hd|n(xd — 1)un/d),

Theorem 1. (a) #T,,(Fpym) = &, (p™).
(b) If h € Ty (Fym) has a prime order not dividing n, then h ¢ Fymya for
any d|n with d < n.
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Proof. (a) Note that F' can be Fmye for any dln with d < n. See also
[16].

(b) Let prime r be the order of h. Since r /fn, X™ — 1 has no repeated
roots in the algebraic closure of F,.. See also [4]. 0

In the case of m > 1, #T,n(F,) = Prn(p). If b € T, (Fp) has a
prime order not dividing mn, then h ¢ F,a for any d|lmn with d < mn.
On the other hand, the order of the finite field F,m ). is factored as in eq.
(2) by using cyclotomic polynomials.

(p™" = 1) = [] ®alx) (2)

dlmn

The secure subgroup of the multiplicative group IE'(X myn is not covered in
proper subfield Fq«. In other words, it is a subgroup of Ty, (Fp), and is
not a subgroup of Ty(F,). Therefore, public-key cryptosystems defined
on prime-order subgroup not dividing mn of the algebraic tori Ty, (F,)
have the same security level as the multiplicative group Fxpm -

Let E be an elliptic curve defined over F,m, and let r be a positive
integer such that r|#E(IF,= ). A subgroup of E(F,= ) with order r has the
embedding degree k, and k is the smallest integer such that r|{(p™)* —1}.
The Tate pairing is a function

e 2 E(Fpm)r] X B(Fymy) [rEm i) = By {Fomye )

A value of the Tate pairing is an equivalence class in IE‘E; m)k/ {IE‘E; m)k}’".
For practical purposes, we obtain the reduced Tate pairing e(P, Q) =
(P, Q)i(pm)kfl}/r € pur C IF(Xpm)k as a unique representative of this class,
where p, is a set of r-th roots of unity. There is an important fact u, C
Ty (Fpm ) C IF(Xpm)k. By definition of the embedding degree, r f{(p™)¢ — 1}
with d < k. In other words, p, is a subgroup of Ty (F,~), and is not a
subgroup of Ty(IF,m ).

The supersingular elliptic curves over = have the following order
[15]. For embedding degree k = 4,

~p=2and E;: 4> +y =123+ 2+ a;, where a; =0 and ap = 1.
— #E;j(Fym) =p™ £ /2p™ + 1, where m is odd.
For embedding degree k = 6,
~p=3and E; :y?> =2 — 2 + a;, where a; =1 and ay = —1.
— #E;(Fym) =p™ £ /3p™ + 1, where m is odd.



3 Literature review

3.1 The Affine Representation

In this section, we recall the definition of Ts. We use the Ty affine repre-
sentation as the special case of the projective representation for the fol-
lowing construction of decompression for trace maps. Because operations
are more efficient in the projective representation than the affine rep-
resentation, operations are done in the projective representation. Maps
between the affine representation and the projective representation are
called a compression map and a decompression map.

Ty. This is the factor-2 compression and decompression method by Ru-
bin and Silverberg. An element of Ty([F,~) is identified by an element

of F,m. Let an element ai;’:gm of Ty(F,m) be corresponding to (a,b).

Where a,b € Fym and (a,b) # (0,0), Fymy> = Fym (o), and o € IF(Xpm)Q.
This representation has a natural projective equivalence relation. The el-
ement corresponding to (a,b) is equivalent to the element corresponding
to (ac,be) for any ¢ € F;m. So, this representation can be called the pro-
jective representation. We obtain (a/b,1) as the representative point of
(a,b) and it is the affine representation of Ty (F,m )\{1}.

The compression map (from the projective representation to the affine
representation) C and the decompression map (from the affine represen-

tation to the projective representation) D are as follows:

C H Tg(Fpm)\{l} — Fpm D : Fpm — Tg(Fpm)\{l}
a+ bo a+o

——— > a/b a - —.
a + boP /b a' + oP

3.2 The Trace Representation —Compression by Trace Maps

In this section, we explain LUC, Karabina and Shirase. We construct
decompression maps for the compression in the next section. Note that
exponentiation in the trace representation itself can be calculated, but
multiplication is not done.

LUC. This is the factor-2 compression method by Smith and Skinner. An
element of Ty /So(Fym ) is identified by an element of ,m . The compression
map is as follows:

T’r'g/l : F(pm)2 — Fpm
g—g+g".
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In the trace representation, an element g and its conjugate ¢?" have the
same trace value. Let S; denote symmetric group of degree d, which is a
set of all bijections in {0, 1,--- ,d — 1}. It is shown that Ty /S is rational
on F,m [17]. The inverse map from A to Ty/Sy implies that g € To(F,m )
has no element which has the same trace value T'ry (¢9) without conjugate
gP" . the trace value Tr /1(g) is only for g € To(F,m ) and the conjugate

9"
Karabina. This is the factor-4 compression method. Let p = 2 and m be
odd. An element of groups G+, #G+ = p"" +£/2p™ + 1, is identified by an
element of [F,m without distinction among conjugates. The compression
map is as follows:

T’I"4/1 : F(pm)4 — Fpm
g g+ g7 +g®™? 4 @™’

Since #G 1 #G_ = &4(p™), The groups G+ are subgroups of Ty(F,m ).
Such subgroups are related to supersingular elliptic curves of embed-
ding degree 4. Karabina also proposed some exponentiation formulas.
Although there is “decompression” without distinction between conju-
gates, he didn’t give any efficient decompression maps.

Shirase. This is the factor-6 compression method. Let p = 3 and m be
odd. An element of groups G, #G4+ = p™+./3p™+1, is identified by an
element of [F,m without distinction among conjugates. The compression
map is as follows:

T’T'G/l . F(pm)6 — Fpm
g g+ g + P g g™ 4 g™ 4 ™)
Since #G #G_ = Pg(p™), The groups G4 are subgroups of Tg(Fpm ).

Such subgroups are related to supersingular elliptic curves of embedding
degree 6.

4 Construction of Decompression for Trace Maps

We propose the decompressible trace representation with additional in-
formation. The trace representation is decompressed to the projective
representation for factor 4 and 6, and then multiplication can be calcu-
lated. Therefore, all cryptographic protocols based on group law and the
discrete logarithm problem can be implemented on this representation.



4.1 Factor 2

We show decompression from (i, Try/1(g)) € {0, 1} xFpm to g € To(Fym) C
F(pm)2. An important idea is solving condition of the element belongs to
the algebraic torus and distinguishing two solutions by using additional
information. The point is that we solve the condition for the element
in the algebraic torus and distinguish the two solutions by using addi-
tional information. We explain the idea in detail. The finite field Fi,m >
is constructed as follows: F(,m )2 is constructed as follows:

]F(pm)2 = Fym [z]/ fa(), f2(z) = z? — c, ccE IF;m.

When, g = go + g1z we obtain T'ry,;(g) = 2go. Note that 2P = g If
g € Ty(Fym) then gP" 1 = 1. A degree-2 equation cg? — g2 + 1 = 0 is
led from (go — g12)(go + g1z) = 1. Solutions of the above equation are
g1 = £1/(g2 — 1)/cin Fym . We obtain {g,¢"" } = {go++/(92 — 1)/cz, go—
V/ (g2 — 1)/cz}. Therefore, LUC with 1 bit of information added is decom-
pressed for embedding in F(,m )2 as follows:

(0. Tra/1(9)) = Traji(9)/2 +1/(Trayi (9)2/4 = 1) ca,
(1,Try1(9)) = Trop(9)/2 — \/(TT2/1(9)2/4 —1)/cz.

In the above discussion, g; is identified by root and sign temporarily.

4.2 Factor 4

We show decompression from (i,Tr4/1(g)) € {0, 1}2 x Fym to g € G- C
T4(Fpm) C Fipmys. Firstly, we find equations to obtain four possible so-
lutions by T'ry/1(g). Secondly, we distinguish the conjugates by the addi-
tional information i. The finite field F(,m )« is constructed as follows:

— primitive polynomi%l: ¢5($2 =zt + 3+t + 41,
— basis: {z,zP?",z®")" ")V = (g 22 2t 23}

We use p" mod5=2,z =z +2P" andy =z + 2(P™)* . One can also use
p™ mod 5 = 3.

Theorem 2. Suppose p =2, m is odd, t = \/2p™ and G_ is a group of
order p™ —t 41, then there exist the compression map C described by eq.
(8) and the decompression map D described by eq. (4).

C:G_\{1} = {0,1}* x Fym
(3)

h )
e (4, Try1(9))



D:{0,1}* x Fym — G_\{1}

4
Tl > 22 ()

Where, the projective representation of g is WL'“)” h € Fymy1, and the Ty

affine representation of g is J”r};(%’ f =261y +dyP" € Fipymy2 for some
01, 02 € Fym . Let i be a tuple of the least bits in the vector representation

of 61 and 0s.

Proof. The decompression map D is calculated by solving eq. (5) in
Lemma 2 and eq. (6) in Lemma 3. The following Lemma 1 is condition for
the element in the subgroup of the algebraic torus, and leads to Lemma,
2 and 3. Lemma 4 shows why ¢ distinguishes the four solutions. O

Calculations of the compression map C and the decompression map D are
shown in Algorithm 1 and 2.

Algorithm 1 Factor-4 compression C

Input: the projective representation —s—y = —hH0FMZ_ for ¢

R(P™)2 ho+hyz(®™)?2
Output: (i, Trs/1(g))

f:(51y+52yp (—ho/hl
i1 + the least bit of §; in the vector representation
i3 < the least bit of J2 in the vector representation
74— (il, ig)

52465481 +82+1
Trayi(g) < 5T 10762 104105168 +0102 100102 +1

Algorithm 2 Factor-4 decompression D

Input: (i;TT4/1(9))
Output: the T affine representation fT%’ f=08iy+ 02047 forg

1: solve D* + D +1 = {Tr4/1(g)}pm_t for D and obtain a solution D with the least
bit i1 + 72 in the vector representation

2: solve 03 + 0> = D? + {Tr4/1(g9)}"" ~'D! for §> and obtain d. with the least bit 4»
in the vector representation

3: 01«02+ D

Lemma 1. Use the notation in Theorem 2. Let g = —t2_ e G_\{1}.
f—|—z(p )
When t mod b = 2, §; and 05 satisfy

(61 4 o) = 6 + 65 + 1.
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Proof. The condition ¢ € G_\{1} leads to g?"*! = g'. We substitute

g= H_J;% in the above equation, and then

{0771 + 6105 + 01 + (67 + 6162 + 63 + 61 + 63) }y
+ {05 4 8185 + 63 + 1+ (07 + 6105 + 6% + 01 + 55) }y?" = 0.

We obtain the desired equation from the sum of coefficients for y and

m

yP . O
Lemma 2. Use the notation in Theorem 2. D = 61 + 6o € Fpym satisfies

D?+D+1={Try,(g)}"" " (5)
Proof. Lemma 1 leads to

67 + 0y = (64 + 68)(6F + 05 + 61 + 62 + 1),
61462 = (6 + 6L +1)(62 + 02 + 61 + d2 + 1) + 1.

We substitute the above equations to the trace value

62 +02+01+62+1
+ 0303 + 054 03 + 05 + 6102 + 05 + 02 + 1

1
and then we obtain
(07 + 05 + 01 + 0 + 1) =Ty i (9) 7"
Where t? = 2p™ and 6, d2,Try1(g) € Fym , we obtain
07 405 4+ 61+ 02+ 1= {Tryi (9)}7" .
0
Note that the characteristic is 2, and square is calculated by the Frobenius
map involving rotation of elements in the normal basis. We obtain two
solutions Dy and D; of eq. (5) immediately.

Lemma 3. Use the notation in Theorem 2. The element do satisfies

05 + 8y = D* +{Trypn(9)}"" ' D". (6)
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Proof. Lemma 1 leads to
02 + 0y = (68 + 65) (62 4+ 62 + 61 4 02 + 1).

We show how to transform the equation of Lemma 1 to the above equation
later. The left-hand side of the above equation is (D + §3)% + o = D? +
62 + 0y, and then we obtain eq.(6).

Where t? = 2p™ and 61,82 € Fym, the equation of Lemma 1 to the
power of (t — 1) is

(61 4+ 02) = (8% + 92 + 1)1
and then we obtain
(01 + 82) (64 + 02 + 1) = 67 + 65 + 1.
We add 6! + 0% to the equation of Lemma 1 multiplied by &; + d3 + 1,
(0% 4+ 05)(0F + 03 + 61 + d2 + 1) = (61 + 62) (6% + J2 + 1) + 65 + d2 + 1.

We substitute (61 + d2) (6% + da + 1) = 62 + 65 + 1 to the above equation,
and then we obtain the first equation in this proof. O

We obtain two dy by solving eq. (6) with fixed D. Therefore, we obtain
four solutions for (41, d2).

Lemma 4. Use the notation in Theorem 2. The least bits in the vector
representation of 01 and s identify g € G_\{1} from solutions of eq. (5)
and (6).

Proof. The element g changes by p™ power: (01,d2) — (d2 + 1,81) —
(51+1,52+1) — ((52-’-1,51). O

4.3 Factor 6

We show decompression from (z,7r(g)) € {0,1} x {0,1,2} x Fym to g €
G_ C Tg(Fpm) C F(pmys. Firstly, we find equations to obtain six possible
solutions by Trg/1(g). Secondly, we distinguish the conjugates by the
additional information 7. The finite field F(,m s is constructed as follows:

— primitive polynomlal D7 ( m =28 + 2% + 2* + 23 —i—x +z+4+1,
— basis: {z, 27", 2@’ 20" 0™ 0™} = (g 25 24, 25, 22, 2.

Weusepmm0d7:5,z:$+$(p g™t and y = z 4+ (" )*. One
can also use p mod 7 = 3.
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Theorem 3. Suppose p =3, m is odd, t = \/3p™ and G_ is a group of
order p™ —t + 1, then there exist the compression map C described by eq.
(7) and the decompression map D described by eq. (8).

C:G_\{1} = {0,1} x {0,1,2} x Fpm

7

s (T (9)) "
D:{0,1} x {0,1,2} x Fym — G_\{1}

z 8

. Trop (o)) L2 o

Where, the projective representation of g is WLW)?” h € Fpmys, and the Ty

affine representation of g is f_{':;m , f =01y + SoP" + 53y(7”m)2 € Fpymys

for some 01, 02, 63 € Fym. The bit {1,0} is transformed from {1,2} of a
trit in A™! for A = 6, + 62 + 03. The trit is in B’ calculated from &s.

Proof. The decompression map D is calculated by solving eq. (9) in
Lemma 6 and eq. (10) in Lemma 7. The following Lemma 5 is condi-
tion for the element in the subgroup of the algebraic torus, and leads to
Lemma 6, 7 and 8. Lemma 9 shows why 7 distinguishes the six solutions.

0

Calculations of the compression map C and the decompression map D are
shown in Algorithm 3 and 4.

Algorithm 3 Factor-6 compression C

. . . ho+hiz
Input: the. projective representation h(P}:")Z = hof_:lzlpm
Output: (i, Tre/1(g))

F=61y+6y"" + 63y ho/ln
a<—51—1

B+ d2—1

7(—(53—1

A a+B+~(=0 + 0+ 03)

B+ af® + By? 4+ ya?

C + apy

i1 < a; mod 2 for a; that is the smallest nonzero trit of A~! in the vector rep.
’ AtF34 4241

B aFTear oo ap

: iy < the least trit of 4" in the vector representation

D (il,ig)

. A

t Tre/i(9) ¢ gre-a5—a

for g

—_
N = o ©
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Algorithm 4 Factor-6 decompression D
Input: (i,Trs/1(g))

Output: the T affine representation ﬂ%’ f =061y +6y” + ng(”m)z for g

1: solve A™% = —[{Trs;1(g9)}' ™%+ 1] for A" and obtain solutions Ay "', A;"

2: if i1 =1 then

3 select A7' with a; = 1 for the least nonzero trit a; in the vector representation
4: else if 7y = 0 then

5: select AO_1 with a; = 2 for the least nonzero trit a; in the vector representation
6: end if
7
8
9
0

: solve g — ' — (% + 1) = 0 and obtain a solution 3’ with the least trit i-
2 —

B A AL 41— A7)

oty —(L4+ A"2)A~E — 47!

te — A% — Aty + A Yy —t7 — A7

10:
. (1=A=*)B%+t,8—tc
Wy & Sopia-aos

Lemma 5. Use the notation in Theorem 3. Let g = ff:;zm . Note 2(P™)* =
2P" . When m mod 12 = 5, 61, 0 and 3 satisfy

6L (03 — 02) + 0L(81 + 09 4 03) + 20361 + 6105 + 0% + 65 — b3 = 2,
08(81 — 03) + 0L(81 + 0o + 03) + 20109 + 0203 + 03 + 03 — 01 = 2,
4 (69 — 01) + 05(81 + b9 + 03) + 20203 + 6301 + 03 + 67 — Jy = 2.

Proof. g € G_\{1} leads to g?"*' = g'. We substitute g = f‘i“};(% in
g?" Tl = ¢*, and then we obtain the desired equations from coefficients
for y, y?" and y(pm)2. O

Lemma 6. Use the notation in Theorem 3. Let a« = § — 1, f = 09 — 1,
y=03—-1, A=a+ B+, B=af?+ py>+va® and C = affy, where,
a,B,v,A,B,C € Fpym. A satisfies

A2 = —[{Trep(9)} 2 +1]. (9)
Where B = ((—=1 — A%)JAY) — A and C = A®> — B + (AB — B2 — 1)/A3.

Proof. We substitute the equations of Lemma 5 to the trace value

A

and then we obtain eq. (9). O

Two solutions Ay and Ay of eq. (9) are calculated by square root.
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Lemma 7. Use the notation in Theorem 3. The element B satisfies
B — AB* — (A2 - 1) —-C =0. (10)

Proof. g € Ta(Fpmy3) leads a? + % +~% = 1. Eq. (10) is obtained from
the above equation, B = ((—1 — A?)/A') — A and C = A®> — B+ (AB —
B? —1)/A3. O

We obtain three 8 by solving eq. (10).

Lemma 8. Use the notation in Theorem 3. The element v satisfies
(—AB*+ (A2 —1)B)y + (—A*+1)B* = BB+ AC =0.  (11)

Proof. Eq. (11) is obtained from o? 4+ % ++2% = 1.

We obtain 7 by solving eq. (11). Therefore we obtain six solutions for
(517 527 53) .

Lemma 9. Use the notation in Theorem 3. The additional information

i = (i1,12) identify g € G_\{1} from solutions of eq. (9) and eq. (10).

Let i1 = a; mod 2 for the least nonzero trit a; of A~', and iy be the least
t+3 2

trit of B! = % in the vector representation.

Proof. A trit of A L and a trit of A;l in the same place are different

unless the trit is zero because of Afl = —Ay L. Solutions of the degree-3
equation are {3, 5} + 1,5, — 1}, and then trits of these solutions are
different in all places. O

5 Performance

In this section, we compare costs of compression, decompression and ex-
ponentiation in our representation with existing schemes using the affine
representation. We summarize our findings first and then present the de-
tailed calculations.

Table 2 shows that compression and decompression costs are com-
parable. Note that the cost of solving the equation X? £ X + C = 0 is
negligible, where X, C' € Fm, C' is constant. Exponentiation costs are the
same, because we can use the projective representation and store precom-
puted information in the Ty affine representation. In the future, there is
hope to improve upon naive exponentiation in the trace representation
by using precomputation. The size of the additional information is com-
parable. We consider the computations of our representation with the
compression factor of 4 and 6 in detail.
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Table 2. costs: let Mg = 18M1, My = 9My, M3 = 6 M1, M>» = 3M; (by Karatsuba’s
method), S6 = Mﬁ, Sl = M1 (fOI‘ SimpllClty) 13 = 11 —+ 3M3 and [2 = 11 =+ 2M2 (by
Itoh-Tsujii’s method [8]). SqRt = {log, 251 + HW (Z5-1)} My + Sy [12].

class the affine representation the trace representation
name Karabina Karabina this work this work

factor 4 6 4 6

comp. I +9M, I, + 24M;y 21, + 16M, |21 + 44 M,
decomp. 3M1 11 + 9M1 11 + 3M1 4[1 =+ Sth + 15M1
exp. w+1 log, M, 2w+1 logs M, w+1 log, M, 2w+1 logs r My
added info.|1 bit 1 trit 2 bits 1 bit and 1 trit

Factor 4. The compression map C described by eq. (3) costs I+ I1 + My+
4M; to calculate f for ¢ and T'ry/;. Alternatively, we can also calculate
T'ry1 using h rather than f. In this case, C costs I + My + Sy + 4 M +
6M; ~ I, + 42M;. The decompression map D described by eq. (4) costs
Iy + 2M; + S; to calculate the coefficient of eq. (5) and eq. (6).

Because the image of the decompression map is in the projective repre-
sentation in both cases of the affine representation and our representation,
operations are calculated similarly. There is an exponentiation formula for
the trace representation [12]. Its cost is estimated to be (4M;+1S57) log, r,
which is efficient compared with cost of simple square and multiplying
(M4 + S4) log, r. However, this is inefficient compared with cost of width-
w NAF in the projective representation.

Factor 6. The compression map C described by eq. (7) costs I3+ 11+ Msz+
18 M +285 to calculate f and A~ for i and also to calculate T'rg/ . Where,
A7 LAY (A2 —1— AB)} ! and (B + C — A3 — A)~! can be calculated
by one inversion of the product A-{A*1(A%2-1—-ApB)}-(B+C — A% - A)
in Algorithm 3. The decompression map D described by eq. (8) costs
41+ SqRt+10M1 455 to perform the following calculations: to calculate
the coefficient of eq. (9) and the square root, to solve degree-3 equation,
to transform the solution and to calculate y. We explam solving degree-3
equation in detail. Let 8 = —A{(% + l)ﬁ, + Azl} then eq. (10) is
written g — g’ — (% +1) = 0 by using 3. Note that the characteristic
is 3, cubing is calculated by the Frobenius map involving rotation of
elements in the normal basis. We obtain three solutions 3’ of the above
equation immediately. One calculates the coefficient of the above equation
and the transformation from 3’ for j.

The cost of an exponentiation formula for the trace representation [12]
is estimated to be (23M; + Si)logs r, which is efficient compared with
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cost of simple cubing and multiplying (2Ms + C¢) logs r. However, this is
inefficient compared with cost of width-w radix-3 NAF in the projective
representation.

6 Conclusion

In this paper, we proposed the factor-4 and 6 decompressible trace rep-
resentation with additional information for the characteristics 2 and 3,
respectively. This representation has an efficient decompression map for
the trace representation distinguishing conjugates by using the additional
information. Since this representation permits decompression, we succeed
in introducing multiplication in the trace representation for the first time.
Practically, this representation is not worse than the affine representa-
tion. Although compression and decompression incur some extra field
inversions in comparison with the affine representation, this fact is not a
serious disadvantage of the proposed representation because the costs of
compression and decompression is much smaller than the costs of encryp-
tion and decryption. It is clear that the cost of inversion in the base field
is much smaller than the cost of exponentiation in the embedding field.
In future work, we intend to improve the compression factor and reduce
costs for the exponentiation, the compression and the decompression.
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A The Affine Representation

Compression and decompression costs of the affine representation [13] are
calculated as follows.

Factor 4. The point is that the condition for the element in the subgroup
of the algebraic torus T, (F,=) is solved and n/2 solutions are distin-
guished by using additional information in the T9 affine representation.
The order of the subgroups is #G+ = p™ +t+1,t = /2p™, where, p = 2,
m is odd.

The compression map C is described by eq. (12) and the decompression

map D is described by eq. (13). Where, G € {G_,G4}.

C: G\{1} = {0,1} x Fym

af;(fi 5y 7 -b) "
D:{0,1} x Fym — G\{1}
(i.5) = (a +bw)+o (13)

(a+bw)+1+0
Let F(pm)ll = F(pm)Q(O'), ]F(pm)Q = Fpm (w), (S ]F(pm)ll, w e F(pm)Q. We

obtain a,b € Fym by a/f = a+bw from o, f € F(pm)2. We calculate roots
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of polynomial Pi(z,b) = ! + 2 + u(b) € Fym[z] led by g?P" "+t =1 in
order to obtain a from b. If the above polynomial Pj(z) has two distinct
roots ag and a1, then a1 = ag + 1. Note that if the characteristic is 2,
solving P (z) = 0 is easy. The additional information ¢ is a bit of a in the
vector representation.

The compression map C described by eq. (12) costs Io+ M, to calculate
a/f =a+bw,ab e Fym from o, € F(pmy2. The decompression map D
described by eq. (13) costs 3M; to calculate u(b). Because u(b) is

w(b) = b 4 (ug + ug )bt + (ug + uz + 1)b + (uguz + ug + ug) for G_
w(b) = b1 + (ug + uqg)bt + (ug + uz + 1)b + (uous + ug + ug + 1) for G4

where ug, u2, u3, u4,us € Fpym are precomputable parameters.

We recall an estimation of exponentiation cost [13]. We determine
the width-w NAF representation of the power r, and then it contains on
average log, r/(w 4 1) nonzero digits. After precomputing g; = ¢,i €
{£1,43, 45, , £2¥=1 — 1}, it costs logy 7Sy + logy 7/ (w + 1) My to cal-
culate ¢" on average. If we calculate in the projective representation and
store results of precomputation in the To affine representation, then we
can replace My with 2My = 6 M.

Factor 6. Let #G4 =p™ £t + 1,t = /3p™,p = 3 and m be odd.
The compression map C is described by eq. (14) and the decompression
map D is described by eq. (15).

C:G_\{1} = {0,1,2} x Fpm

14
ngZH(i,C) (14)

D:{0,1,2} x Fym — G_\{1}
(i,¢) > (a+bw+ cw?) + o (15)
he (a+bw+cw?) —o

Let F(pm)a = F(pm)3(0'), F(pm)3 = Fpm (w), o € F(pm)6,w € F(pm)g.
We obtain a,b,c € Fym by a/f = a + bw + cw? from «, 8 € Fipmys. We
calculate roots of Ps(z,c) = 23+2c*z+C(c) € Fym [z] led by g?" ~1*! =1
. . (B340 ])
in order to obtain a,b from c. Where, C(c) = =—————. The above
polynomial Ps(z) has roots {¢!R, c!(R+1),c!(R—1)} as b'. R is a solution
of 22 —x+ D(c) = 0. Note that if the characteristic is 3, solving the above
equation is easy. a' is a root of degree-1 polynomial Py(z) € Fym[z].
Therefore, three solutions are {(a, b, ¢), (a—b+c, b+c, c), (a+b+c,b—c,c)}.
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The additional information 7 is a trit of b in the vector representation.
The place is the same for the least nonzero trit of c.

The compression map C described by eq. (14) costs Is+ M3 to calculate
a/B = a+bw + cw?, a,b,c € Fpm from a, B € Fymys. The decompression
map D described by eq. (15) costs Iy + 7TM; + 2S5; to calculate

2(C3t+3 +02t 4 1)

D(e) = B33

and to solve the following degree-1 polynomial
Py(z) = z + 20273 4 267 4 b3 4 2B 4 2ch € Fym [).

We recall an estimation of exponentiation cost [13]. We determine the
width-w radix-3 NAF representation of the power r, and then it contains
on average 2 logs /(2w + 1) nonzero digits. After precomputation, it costs
logs rCs + 2logs /(2w + 1) Mg to calculate g" on average. If we use the
projective representation and the Ty affine representation, then we replace
M6 with 2M3 = 12M1.



