
How to Garble RAM Programs∗

Steve Lu† Rafail Ostrovsky‡

Abstract

Assuming solely the existence of one-way functions, we showhow to construct Garbled RAM Pro-
grams (GRAM) where its size only depends on fixed polynomial in the security parameter times the
program running time. We stress that we avoid converting theRAM programs into circuits. As an ex-
ample, our techniques implies the first garbledbinary searchprogram (searching over sorted encrypted
data stored in a cloud) which is poly-logarithmic in the datasize instead of linear. Our result requires the
existence of one-way function and enjoys the same non-interactive properties as Yao’s original garbled
circuits.

Keywords: Secure Computation, Oblivious RAM, Garbled Circuits.

∗Patent Pending
†Stealth Software Technologies, Inc. E-mail: steve@stealthsoftwareinc.com
‡Department of Computer Science and Department of Mathematics, UCLA. Work done while consulting for Stealth Software

Technologies, Inc. E-mail: rafail@cs.ucla.edu

1

1 Introduction

Often times, such as in cloud computation, one party wants tostore some data remotely and then have the
remote server perform computations on that data. If the client does not wish to reveal this data or the nature
of the computation and the results of the computation to the remote server, then one must resort to using
secure computation methods in order to process this remotely stored data. In other words, suppose two
parties want to compute some programπ on their private inputs without revealing to each other (or just
one party) anything but the output. The earliest research insecure two-party computation modeledπ as
a circuit and was accomplished under Yao’s Garbled Circuits[40] or the Goldreich-Micali-Wigderson [14]
paradigm. Both of these approaches require the programπ to be converted to a circuit. Even the recent work
of performing secure computation via fully homomorphic encryption requires representing the programπ
as a circuit. However, many algorithms are more naturally and compactly represented as RAM programs,
and converting these into circuits may lead to a huge blowup in program size and its running time.

Of course, there are known polynomial transformations between time-bounded RAM programs, time-
bounded Turing Machines and circuits [11, 32]: Given aT -time RAM program, [11] shows how one can
transform it into aO(T 3)-time TM, and [32] shows how to transform aT -time TM into circuits of size
O(T log T), which results in aO(T 3 log T) blowup. Our work aims atcircumventingthese transformation
costs and executing RAM programs directly in a private manner, while retaining the same noninteractive
properties as Yao’s Garbled circuits. This goal is especially important for the case of complex real-world
RAM programs with running time that is much larger than the input size. Unrolling these complicated RAM
programs with multiple execution paths, recursion, multiple loops, etc. into a circuit makes the circuit size
polynomially larger and often prohibitive.

It should be noted that our work is also important in practical applications where the sizes of the inputs
are vastly different, such as database search, or where multiple queries against the same large data-set must
be executed. When compiling a RAM program into a circuit, thecompiled circuit must inherently be able
to compute all execution paths of the RAM program. Thus, the circuit itself must be at least be as large as
the input size, which in some applications may be is exponentially larger than execution path of the insecure
solution (e.g. consider a binary search). One can argue thateven if the circuit is large, we can “charge” the
large circuit cost to the large input size, but in many cases this is unacceptable: consider the case where a
large data is encrypted and uploadedoff-line, such as a large database, and multiple encrypted queries are
madeon-line, where the insecure execution path is, for example, poly-logarithmic in the database size and
we do not want to “pay” an on-line cost of circuit size which islinear in the database size.

An alternative approach for secure conversion of RAM programs into circuits is dynamic evaluation:
even if the resulting circuit is large and the total size of the is resulting circuit is prohibitive, one can execute
and even compile the large circuit dynamically and intelligently evaluate only parts of the circuit so as to
“prune off” dead paths (e.g. short-circuiting techniques)to make the evaluation efficient, even in the case
of large inputs. However, until now it was not known how to convert RAM programs into circuits which
result in an efficient secure non-interactive execution in away that does not reveal the execution path of the
compiled RAM program. Naturally, using interaction, one can use the Goldreich-Micali-Wigderson [14]
paradigm along with revealing bits along the way to help prune and determine execution path – however our
ultimate goal is to explore the non-interactive garbling solutions for RAM programs without revealing the
execution path.

Another alternative method for computing RAM programs without first converting them to circuits was
proposed by Ostrovsky and Shoup [30] which used Oblivious RAM [15] as a building block. The Ostrovsky-
Shoup compiler allows parties to execute Oblivious RAM programs directly, i.e., without first unrolling

2

it into a circuit, which provided an alternative approach tosecure RAM computation. The method was
further improved by Gordon et al. [20] in order to perform sublinear amortized database search. Lu and
Ostrovsky [25] considered two-server Oblivious RAM insidethe Ostrovsky-Shoup compiler, which led to
logarithmic overhead in both the computation and the communication complexity. Note that these three
works allow secure RAM evaluation without having to unroll the program into a circuit and represent a
different way to perform secure computation that reveals only the program running time. Among these, [25]
is the best result for programs (instead of circuits) in terms of computation complexityandcommunication
complexity. However, in terms ofround complexity, these papers leave much to be desired: they all require
at least logarithmic rounds foreachCPU computation step. Even “non-interactive” ORAM [36] requires at
least one round of interaction for each read and write. Thus,since the running time of CPU is at leastt steps
for programs that run in timet, this leads toΩ(t) round complexity using all previous methods. In contrast,
in this paper we show how to retain poly-log overhead in communication and computation, and make the
entire computation completely non-interactive in the OT-hybrid model, just like Yao.

1.1 The Blueprint for RAM Program Garbling

We describe our approach at a high level: we start with an ORAMcompiler (with certain properties which
we will describe later) that takes a program and converts it into an oblivious one. We call this new program
the “ORAM CPU” because it can be thought of as a client runninga CPU that performs a local computation
followed by reading or writing something on the remote server. As a conceptual segue, consider the fol-
lowing change: instead of the ORAM CPU locally performing its computation, it creates a garbled circuit
representing that computation, and also garbles all the inputs for that computation (the inputs are just the
client state and the last fetched item, possibly with some randomness) and sends it to the server who then
evaluates the circuit. The output of this computation is just the next state and the next read/write query, and
the server preforms the read/write query locally, and sendsback the result of the read/write query along with
the state to the ORAM CPU. We emphasize that this is just a conceptual intermediate step, since this step
does not actually give us any savings and possibly interferes with the security of the ORAM CPU by having
its state revealed to the server.

Next, we change where the ORAM CPU state is stored: instead ofletting the client hold it, it is stored
on the server in garbled format. That is to say, the garbled circuit that the client sends to the server now
outputs a garbled state instead of a regular state, which canthen be used as input for the next ORAM CPU
step. As long as the garbled circuit for the next CPU step usesthe same input encoding as the one generated
by our current CPU step, then the client does not need to interact with the server. However, the garbled
CPU also performs read/write operations into ORAM memory that need to be carefully interleaved with our
computations. We need to describe how this is done next.

Let us suppose that the ORAM compiler had the property that the ORAM CPU knows exactly when
the contents of a memory location that it wants to read next was last written to (which is the case for many
ORAM schemes). We attempt to perform the same strategy as we did with garbling the state: whenever
the ORAM CPU wants to write something to memory. We store memory bits as Yao’s garbled keys, based
on the actual location, and the time last written. Thus, the bit stored in some particular location has one of
the two garbled keys. However, this does not immediately work, because if each memory location uses a
different encoding, the CPU circuit does not know which encoding to use when reading at some future time.

In order to resolve this, we construct a circuit that assistswith this transition: the circuit takes as input
a time step and memory location computes (in a garbled form) two possible encodings for 0/1 encoded in
this location and outputs a garbled circuit encoded for thattime step to “translate” keys stored in memory
to keys needed by the CPU. Since this circuit does not requirethe knowledge of the memory location ahead

3

of time, the client can generate as many of these as needed at the start of the computation. Indeed, if the
ORAM program runs int steps, the client can generatet of these circuits, garble them, and send them all to
the server, non-interactively.

Note that we need Oblivious RAM with poly-log overhead wherethe clientsizeis at most some fixed
polynomial in the security parameter times some poly-log factor in n. This is because for every ORAM
fetch operation, we also need to emulate the client’s internal computation of the Oblivious RAM using
garbled circuit, which incurs a multiplicative overhead inthe size and the running time of the client. Thus,
the smaller the client of Oblivious RAM, the more efficient our solution is: in order to achieve poly-log
overhead, all Oblivious RAM schemes where client memory is larger than poly-logarithmic (e.g. [13, 7])
is not useful for our purposes. We expand on the intuition in Section 3.1. In Section 3 we give the main
construction for garbled RAM programs. When combined with oblivious transfer, this gives a one-round
secure two-party RAM program computation in the semi-honest model (which can be extended to multi-
party using the Beaver-Micali-Rogaway paradigm[3]), which we discuss in Section 4. In Appendix B, we
give a direct construction for a single-round ORAM. This follows from our general result, but in case where
only single read/write is needed this gives a more direct construction which may be useful in some of the
applications.

1.2 Related Work on Oblivious RAMs and Secure RAM Computation.

Oblivious RAM was introduced in the context of software protection by Goldreich and Ostrovsky [15]. In
the original work by Goldreich [13], a solution was given with O(

√
n) and communication overhead where

lookups could be done in a single round andO(2
√

log n log log n) communication overhead for a recursive
solution. Subsequently, Ostrovsky [28, 29] gave a solutionwith only poly-log overhead and constant client
memory (the so-called “hierarchical solution”). This solution, and most other subsequent solutions (except
for two exceptions described below) require a logarithmic number of rounds per query. Let us consider a
single round solutions only:

• The original single-round solution of Goldreich [13] requires
√

n client’s memory.

• Recently, Boneh et al. [7] extended Goldreich solution to work on larger blocks, but also requiring√
n client’s memory.

• Williams [37] and Williams and Sion [36], presented a single-round Oblivious RAM that has loga-
rithmic overhead, logarithmic client storage and uses bloom filters.

• Even more recently, Gentry et al. [12] proposed an extensionof Sion-Williams scheme [36] that is
also one-round.

In contrast to all of the above works, we propose the first solution for single-round ORAM solution that
makes use of Yao’s Garbled Circuits, is based on any one-way function (or any block cipher), using constant
client memory in the security parameter and poly-logarithmic overhead.

Subsequent to Goldreich and Ostrovsky [28, 29, 13, 15], works on Oblivious RAM (e.g. [38, 36, 39, 31,
17, 18, 33, 19, 22, 34]) looked at improving the concrete and asymptotic parameters of Oblivious RAM. The
works of Ajtai [1] and Damgård et al. [10] show how to construct oblivious RAM with information-theoretic
security with poly-logarithmic overhead in the restrictedmodel where the adversary cannot read memory
contents. That is, these results work in a model where an adversary only sees the sequence of accesses and
not the data. The notion ofPrivate Information Storageintroduced by Ostrovsky and Shoup [30] allows

4

for private storage and retrieval of data, and was primarilyconcentrated in the information theoretic setting.
This model differs from Oblivious RAM in the sense that, while the communication complexity of the
scheme is sub-linear, the server performs alinear amount of work on the database. The work of Ostrovsky
and Shoup [30] gives a multi-server solution to this problemin both the computational and the information-
theoretic setting and introduces the Ostrovsky-Shoup compiler of transforming Oblivious RAM into secure
RAM computation. The notion of single-server “PIR Writing”was subsequently formalized in Boneh,
Kushilevitz, Ostrovsky and Skeith [6] where they provide a single-server solution. The case of amortized
“PIR Writing” of multiple reads and writes was considered in[8].

With regard to secure computation for RAM programs, the implications of the Ostrovsky-Shoup com-
piler was explored in the work of Naor and Nissim [27] which shows how to convert RAM programs into
so-called circuits with “lookup tables” (LUT). The Ostrovsky-Shoup compiler was further explored in the
work of Gordon et al. [20] in the case of amortized programs. Namely, consider a client that holds a small
input x, and a server that holds a large databaseD, and the client wishes to repeatedly perform private
queriesf(x,D). In this model, an expensive initialization (depending only on D) is first performed. After-
wards, iff can be computed in timeT with spaceS with a RAM machine, then there is a secure two-party
protocol computingf in timeO(T) · polylog(S) with the client usingO(log S) space and the server using
O(S · polylog(S)) space. The secure RAM computation solution of Lu and Ostrovsky [25] can be viewed
as a generalization of the [30] model where servers must alsoperform sublinear work.

1.3 Our Results

In this paper, we show how to garble any Random Access Machine(RAM) Programπt that runs in time
upper bounded byt while keeping all the non-interactive advantages of the Yao’s Garbled Circuit approach.
More specifically, we present a program garbling method which consists of a triple of polynomial-time
algorithms(G,GI,GE). G takes as input any RAM programπi that includes an upper boundt on its
running time and a pseudorandom function (PRF) familyF and a seeds for PRF of sizek (a security
parameter) and outputs a garbled programΠt = G(πt, t, F, s), where all inputs are polynomial in the
security parameter. Just like gabled circuits, we provide away to garble any inputx for πt into Garbled
Input X = GI(x, s), and an algorithm to evaluate a garbled program on garbled inputs GE(Πt, t,X).
The correctness requirement is that for anyx, πt, F, s it holds thatπt(x) = GE(G(πt, t, F, s), GI(x, s))
with the security guarantee that nothing aboutx is revealed except its running timet, expressed in terms of
computational indistinguishability (≈) between the simulatorSim and garbled outputs. So far, the above
description matches Yao’s garbled circuit description. The difference is both in the running time and the
size of garbled program for our new garbling method.

Main Theorem Assume one-way functions exist, and let the security parameter bek and letF be a PRF
family based on the one-way function. Then, there exists a Program Garbling triple of poly-time algorithms
G,GI,GE such that for anyt anyπt and any inputx of lengthn we have the following.
Correctness:∀x, πt, F, s: πt(x) = GE [G(πt, t, F, s), GI(x, s)].
Security: ∃ poly-time simulatorSim, such that∀π, t, x, s, where|s| = k,

[G(πt, t, F, s), GI(x, s)] ≈ Sim
[

1k, t, |x|, πt(x)
]

.
Garbled Program Size:The size of the garbled program

|G(πt, t, F, s)| = O ((|π|+ t)· kO(1) · polylog(n)
)

.
Garbled Input Size: Let |x| = n and |s| = k. ∀x, s the garbled input size

|GI(x, s)| = O
(

n · kO(1) · polylog(n)
)

.

5

Our main construction is a garbled program based on any one-way function (or a block-cipher), and is
time-compact in the sense that if the original program runs in t time and has sizen, our garbled RAM runs
in O(t · poly(k, log n)).

1.4 Remarks

• Making programs and outputs private. We note that similar to Yao, we can makeπt to be a time-
boundeduniversal program ut, (i.e., an interpreter) andx = (π′

t, y) include both time-bounded
programπ′

t and inputy, so thatut(x) = π′
t(y). Part of the specification ofπ′

t may also include
masking its output – i.e. to have output blinded (XORed) witha random string. That allows, just
like Yao, to keep both the program and the output hidden from amachine that evaluates the garbled
program. Such a modification has been utilized in the literature (see, e.g. [2]).

• Reactive functionalities.Our result shows that we can first garble a large inputx, |x| = n with gar-
bled input size equal toO(|x|·kO(1) ·polylog(n)) so that later, given private programsπ1

t1
, . . . , π

j
tj

, . . .

for polynomially many programs where programπj runs in timetj and potentially modifiesx, (e.g.,
database updates) we can garble and execute all of these programs just revealing running timesti, and
nothing else. The size of each garbled program remainsO

(

(|πi|+ ti) · kO(1)· polylog(n)). It is also
easy to handle the case where the length ofx changes, provided that an upper bound by how much
each program changes the length ofx is known prior to garbling of next program.

• Cloud computing. As an example of the power of our result we outline secure cloud computa-
tion/delegation. In this simple application one party has an input and wants to store it remotely and
then repeatedly run different private programs on this data. Reactive functionalities allow us to do this
with one important restriction: we do not give the server a choice in adaptively selecting the inputs:
but this is not an issue as the server itself has no inputs to the program. The other possible problem is
if the programs themselves are contrived and circularly reference the code for the garbling algorithm.
Such programs would be highly unnatural to run on data and so we disallow them in our setting.

• Two-party computation. Note that just like in Yao’s garbled circuits, in order to transmit the garbled
inputs corresponding to input bits held by a different partyfor the sake of secure two-party computa-
tion, one relies on Oblivious Transfer (OT) that can be done non-interactively in the OT-hybrid model.
Here, we insist that the OT-selected inputs to our garbled program are committed to prior to receiving
the RAM garbled program, i.e. non-adaptively [4].

• Optimizations. We remark that step two of our blueprint is applicable to almost all ORAM schemes
with small CPU as follows: instead of collapsing in the hierarchical Oblivious RAMs multiple rounds
of a single read/write to a single round, we can implement ourstep 2 directly for each round of each
read/write (e.g. even inside a single read/write simulation of Oblivious RAM that requires multiple
rounds) of the underlying Oblivious RAM: by implementing anoracle call for each Oblivious RAM
CPU read/write using our method of compiling memory fetch “on the fly” into garbled circuits. Any
Oblivious RAM where the CPU can tell precisely when any memory location was overwritten last
can be complied using our approach. (We call such Oblivious RAMs “predictive memory” RAMs
and explore this further in the full version.) For example, this property holds for [22] ORAM. It also
allows a generic method to “collapse” all multi-round predictive memory Oblivious RAM with small
CPU into a single round. Observe that the overall complexityfor garbling programs depends both on
the CPU complexity and the ORAM read/write complexity.

6

• Tighter Input Compactness. Using an ORAM scheme that has small input encoding and small
size CPU (such as [22]) we can also make Input Compactness in our main theorem tighter: for all
programs we can make garbled inputs to beO(nk), where recall thatn is the input size andk is the
security parameter. We remark that if we wish to garble only “large” programs that run time at least
Ω(n · log n · kO(1)), we can make Input Compactness even better under the assumption that one can
encode inputs to garbled circuits to be of sizeO(n + k) and have the garbled program “unpack” the
inputs to the fullO(nk) size. Such packing techniques for have been recently developed for garbling
the inputs of garbled circuits by Ishai and Kushilevitz [21].

• Stronger Adversarial models. As already mentioned we describe the scheme in the honest-but-
curious model based on honest-but-curious Yao, and only in the non-adaptively secure setting (see [4]
for further discussion of adaptivity.) There is a plethora of works that convert Yao’s garbled circuits
from honest-but-curious to malicious setting, as well strengthening its security in various settings.
Since our machinery is build on top of Yao’s garbled circuits(and Obvious RAMs that work in the
fully adaptive setting), many of these techniques for stronger guarantees for Yao’s garbled circuit
apply in a straightforward manner to our setting as well. We postpone description of malicious models
to the full version.

2 Preliminaries

2.1 Oblivious RAM

We work in the RAM model with stored programs, where there is aCPU that can run a program that performs
a sequence of reads or writes to locations stored on a large memory. This machine, which we will refer to
as the CPU or the client, can be viewed as a stateful1 processor with only a few special data registers that
store program counters, query counters, and cryptographickeys (primarily a seed for a PRF) and thatCPU

can run small programs which model a single CPU step. Given the CPU stateΣ and the most recently read
elementx, CPU(Σ, x) does simple operations such as addition, multiplication, updating program counter,
or executing PRF followed by producing the next read/write command as well as updating to the next state
Σ′.

Because we wish to hide the type of access performed by the client, we unify both types of accesses
into a operation known as aquery. A sequence ofn queries can be viewed as a list of (memory location,
data) pairs(v1, x1), . . . , (vn, xn), along with a sequence of operationsop1, . . . , opn, whereopi is a READ

or WRITE operation. In the case of READ operations, the correspondingx value is ignored. The sequence
of queries, including both the memory location and the data,performed by a client is known as theaccess
pattern.

In our model, we wish to obliviously simulate the RAM machinewith a client, which can be viewed
as having limited storage, that has access to a server. However, the server is untrusted and assumed to
malicious. An oblivious RAM issecureif the view of a any malicious server can be simulated in poly-time
in a way that is indistinguishable from the view of the serverduring a real execution.

Concretely, we focus on the hierarchical Oblivious RAM scheme of Ostrovsky [28, 29]. There is a data
structure that consists of a sequence of buffersBk, Bk+1, . . . , BL of geometrically increasing sizes, e.g.Bi

is of size2i. Typically k = O(1) (the first buffer is of constant size) andL = log n (the last buffer may

1We can consider astatelessversion where all registers are stored in memory. For ease ofexposition, we let the client hold local
state.

7

contain alln elements), wheren is the total number of memory locations. For ease of exposition, we set
k = 1 in the sequel. These buffers are standard bucketed hash tables, where eachBi consists of, say2i,
buckets, each of sizeb. To read or write to a memory locationv from the hierarchical data-structure, we
wish to hide the identity of the buffer from which the elementwas found. Specifically, we start by reading
the top (smallest) bufferB1 in its entirety; then, for each1 ≤ i ≤ L, we computej = hi(v) (wherehi(·)
is a hash function implemented as a PRF with appropriate domain and range for each level) and read the
entirej-th bucket (b elements) of that buffer. This alone is not sufficient, as if we make identical queries,
the same locations will be scanned. Thus, once elementv is found at some level, we search upon random
dummy locations from subsequent (bigger) level buffers. Inaddition, at the end of this process, we re-insert
elementr (overwriting it in case of a write) into the top buffer of the data-structure. This, together with the
re-shuffling procedure described below, guarantees that when executing future operations with the samev,
independent locations will be read from each buffer. Finally, we remark that even if elementv was not in
any buffer before the operation, it will be inserted into thetop buffer.

After every2i insertions, bufferBi is considered “full” and its contents are moved into the nextbuffer
Bi+1. More precisely, we do the following: afterm = 2i · ℓ reads or writes,ℓ odd, wherem is divisible
by 2i but not by2i+1, we move all the elements from buffersB1, . . . , Bi into buffer Bi+1 (at such time
step,Bi+1 itself is empty). For this, we pick a fresh pseudo-random hash function forBi+1 (which can be
modeled using a PRF). Finally, there is a process called oblivious hashing which we will use in detail later
that removes any correlation between the new locations of the elements inBi+1 and their old locations.

2.2 Yao’s Garbled Circuits

Garbled circuits were introduced by Yao [40]. A series of works looked at proving the security and formal-
izing the notions of garbled circuits, including Lindell and Pinkas [23], and recently, the work of Bellare et
al. [5]. We refer the reader to the latter work for more details, and we briefly summarize the key properties.

A circuit garbling scheme we view as a triple of algorithms(G,GI,GE) whereG(1k, C) takes as input
a security parameterk and circuitC and outputs some garbled circuitΓ and garbling keygsk. GI(x, gsk)
converts an inputx and agsk into a garbled inputX, andGE(Γ,X) evaluates a garbled circuit on an
garbled input.

We also paraphrase a summary of garbled circuits given in Choi et al. [9] which uses a point-and-
permute variant due to Malkhi et al. [26]. Consider a circuitC and a CPA-secure symmetric encryption
scheme(KeyGen,Enc,Dec). For each wirei ∈ C, we generate two random keysw0

i , w
1
i and a random

bit “flip” indicator πi. We associatewb
i with λb

i = b⊕πi and call the pair(w0
i ||λ0

i , w
1
i ||λ1

i) the 0 and 1 labels
for wire i respectively (theλ will be henceforth omitted in following sections). For eachfan-in 2 gateg with
input wiresi, j and output wirek, we associate a garbled table to the gate consisting of the following four
ciphertexts:

EnCwπi
i

(

EnC
w

πj
j

(

w
g(πi,πj)
k ||πk ⊕ g(πi, πj)

)

)

EnCwπi
i

(

EnC
w

¬πj
j

(

w
g(πi,¬πj)
k ||πk ⊕ g(πi,¬πj)

)

)

EnCw¬πi
i

(

EnC
w

πj
j

(

w
g(¬πi,πj)
k ||πk ⊕ g(¬πi, πj)

)

)

EnCw¬πi
i

(

EnC
w

¬πj
j

(

w
g(¬πi,¬πj)
k ||πk ⊕ g(¬πi,¬πj)

)

)

.

8

Given this garbled table and labels for the wiresi andj (wbi

i ||λbi

i andw
bj

j ||λ
bj

j respectively), a party can

decrypt the row corresponding toλbi

i , λ
bj

j to obtain the proper label for the output wire:w
g(bi,bj)
k ||λbk

k . If the
labels to the input wires are given, then one can recursivelyevaluate all gates of the circuit. Suppose now the
two parties wish to securely evaluateC on input(x, y) where the circuit generator holdsx and the circuit
evaluator holdsy. The circuit generator sends the labels for the wires corresponding to the proper bits ofx,
and the labels for the input wires corresponding to the proper bits of y can be sent using oblivious transfer.
The circuit evaluator at the end will receive a bunch of labels containing theλo for all the output wireso.

We use a variant of Yao’s garbled circuits in which some of theoutput wires are revealed to the circuit
evaluator immediately in the clear and some are not revealed. Revealing output wires in the clear is the
standard way of viewing garbled circuits. For output wires that are not revealed, they are either represented
as internal garbled keys (that can be used as inputs for othercircuits) or XORed with pseudo-random pads
that can later be revealed. It will be clear from the context which representation of various outputs we use.

We first make an observation that the labels (keys) on a given wire used in a garbled circuit can be re-
used in additional newly generated gates, as long as the value does not change between the uses and it is not
revealed whether this label represents 0 or 1. (For example,assume that garbled circuit evaluator is given a
label on some input wire, which is a key representing a 0 or a 1.We claim that the same key can be used as
input key for other garbled circuits that are generated later.) This observation allows us to execute garbled
circuits in “parallel” or “sequentially” where some labelsare re-used. Indeed, this observation is implicitly
used in classic garbled circuits in gates where the fan-out is greater than 1: all outgoing wires share the same
labels (see e.g. Footnote 8 in Lindell-Pinkas [23]).

Lemma 1. SupposeC andC′ are two circuits and suppose there is some inputx for which we want to com-
puteC(x) andC′(x) (resp.C(C′(x))). Suppose the wiresw0, . . . , wn in C represent the input wires forx and
similarly definew′

0, . . . , w
′
n represent the input wires ofx in C′ (resp.v′0, . . . , v

′
n be the output wires ofC′).

Letkb
wi

represent the label indicating wirewi = b, and letC andC ′ be randomly garbled intoGC(C) and
GC(C′) under the restriction thatkb

wi
= kb

w′
i

(resp.kb
wi

= kb
v′i

). Then the tuple(GC(C), GC(C′), {kxi
wi
}ni=0)

can be computationally simulated.

Proof. Consider the composite circuitD = C||C′ (resp. E = C ◦ C′) which is just a copy ofC and a
copy ofC′ in parallel (resp. sequence). Then every garbling ofD induces a garbling ofC andC′ with the
restriction exactly as above. By the security of garbled circuits, there exists a simulator that can simulate
(GC(D), {kxi

wi
}ni=0). We can construct a simulator for our lemma by simply taking this simulator and taking

the output and separate outGC(C) andGC(C′), as the lemma requires.

Remark: If the data is encrypted bit by bit using Yao’s keys, Lemma 1 allows us to run arbitrary garbled
circuits on this data, akin to general purpose “function evaluation” on encrypted data. This observation itself
has a number of applications, we describe these in the full version of the paper.

3 Non-interactive Garbled RAM Programs

3.1 Informal description of main ideas

We consider the RAM model of computation as in the works of [15, 28, 29] where a RAM program along
with data is stored in memory, and a small, stateful CPU with aO(1) instruction set that can storeO(1)
words that can be of sizepolylog(n) = poly(k) wherek is the security parameter. Our starting point
is a ORAM model that can tolerate fully malicioustamperingadversary (see [29, 15]). Each step of the

9

CPU is simply a read/write call to main memory followed by executing its next CPU instruction. We now
summarize our ideas for building Garbled RAM programs from an Oblivious RAM program.

In order to garble a RAM programπt, we consider the two fundamental operations separately andshow
how to mesh them together:

1. Read/Write(v, x) from/to memory.

2. Execute an instruction step to update state and produce next read/write query:Σ′, READ/WRITE(v′, x′)←
CPU(Σ, x). Updating the state can include updating local registers, incrementing program counters
and query counters, and updating cryptographic keys.

Our goal is to transform this into anon-interactiveprocess by letting the client send the server enough
garbled information to evaluate the program up tot steps, wheret upper bounds the RAM program running
time. We give some intuition as to how to construct a circuit for each step, and then how to garble them. The
first part will be modeled as the circuitCORAM , and the second part will be modeled as the circuitCCPU .
The circuits satisfy a novel property: theplain circuit CORAM emulates a query for the ORAM client and
outputs a bit representation of a garbled circuitGCORAM . ThisGCORAM has output encodings that will be
compatible with thegarbled circuitGC(CCPU) to evaluate a garbled the CPU’s next step. We remark that
GCORAM actually contains several sub-circuits, but is written as asingle object for ease of exposition. If we
generatet of these garbled circuits, then a party can evaluate at-time garbled RAM program by consuming
one garbledCORAM and one garbledCCPU per time step.

We first consider the circuitCCPU , which is straightforward to describe. This circuit takes as input
Σ representing the internal state of the CPU, andx the last memory contents read. Recall that the CPU
performs a stepCPU(Σ, x) and updates the state toΣ′ and gives the next read/write query to memory
locationv′ and contentsx′. In order to turn this into a circuit, we can sacrifice some efficiency and have
a “universal” instruction in which we runeveryatomic instruction (from its constant sized instruction set)
and simply multiplex the actual results using the instruction opcode. This universal instruction is modeled
as a circuit which is of sizekO(1). We remark that although this circuit is simple, the complexity arises
from when we want to garble this circuit: the garbling must bedone in a way so that the garbled inputs and
outputs are compatible withGCORAM .

The circuit CORAM must emulate the client in Oblivious RAM (we can think of it asbeing a non-
interactive client either by breaking out each individual step as a separate circuit, or using a non-interactive
ORAM). The input of the circuit is just an ORAM read/write query2, and the output of the circuit isa bit
representation that describes a set of garbled circuits, equivalent to what would have been produced
via the ORAM client which we callGCORAM .3 We give full details on the construction in Section 3.2.
It is important that we argue that the result of this fetch canbe combined with the evaluation of the CPU
step. Observe that since the labels in our single-round ORAMare generated as pseudo-random time-labeled
encodings, so we know ahead of time only the encoding of the output (but know neither the input nor output)
of thei-th invocation of the single-round ORAM. Thus when garblingCCPU , the input encodings use exactly
the output encodings from the respective outputs of the ORAM. Recall in our single-round ORAM protocol
the server sends back the encoded output to the client; here,we do notsend it back, and instead keep the
result and use it as input in the next CPU step (which is secureand correct via Lemma 1).

2Since the ORAM client uses randomness as well as time-labeled encodings (which are outputs of the PRF), we will allow these
to be inputs to CORAM , so that they may be pre-computed “for free” rather than computed via the circuit. The circuit consumes
these inputs in order to generate the output garbled circuitwithout having to evaluate these itself. The only thing the circuit does
not have ahead of time is the hash of the location of the query at each level, so our circuitCORAM must use PRFs to compute them.

3
GCORAM consists of a set of|B1|+2L−2 garbledGC(Cmatch), corresponding garbledGC(Cnext), a garbledGC(Cwrite),

and all necessary time-dependent updatesGC(Cupdate) as in Theorem 2.

10

Then, putting it all together, to garble a RAM programπt that runs in timet, the program garbling
algorithmG generatest garbledCORAM andCCPU circuits, and also encodes the initial stateΣ0 of the CPU
with the program initialized, counters set to zero, and withfresh cryptographic keys. The full construction
of G is given the next section, Section 3.2.

Looking ahead, in the context of secure two-party computation, this garbled program can be sent to the
server in a single round, whereupon the server can evaluate the program by itself. The result is sent back
to the client, and since the labels were all generated pseudo-randomly, the client can determine whether the
output bits are zero or one. In the case where the server also has inputs, the client can generate the pseudo-
random labels and then the server uses Oblivious Transfer toselect the ones corresponding to its input. We
mention that in the OT-hybrid model, this is a non-interactive protocol, we can avoid adaptivity issues by
requiring the server to provide its inputs upfront at the same time the client sends its garbled program, i.e.
this can be viewed as just a one-step process where the garbled program is sent “along” with the garbled
inputs via the OT functionality.

3.2 Main Construction of Garbled Programs

We first describe how to construct the algorithmsG,GI,GE. Given a programπt running in timet, we
describe the algorithmG that converts it into a garbled programΠt. In order to do so, we follow the two
steps outlined above and we consider the construction of a circuit that performs an ORAM queryCORAM

and a circuit that runs one CPU stepCCPU .
Our garbling algorithmG will provide enough garbled circuits to executet steps of a programπt. Each

step is a garbled RAM query (done obliviously via our single-round ORAM) followed by a garbled CPU
computation. It starts with a garbled encoding of the initial stateΣ0 of the CPU with the programπt

initialized, counters set to zero, and with fresh cryptographic keys. For each of thet time steps, it creates a
garbledGC(CORAM) for a read/write of that time step, then a garbledGC(CCPU) to perform a CPU step.
We show how to constructCORAM andCCPU such that they can be garbled and interleaved. We will show
that this garbling is independent of the actual program path, regardless of what memory locations have been
fetched, and is correct and secure.

First, we describeCORAM to mimic an oblivious read/write access to main memory. For this, it can
just perform the steps in our single-round Oblivious RAM, with one difference:G does not know ahead
of time which memory location will be used. Hence, in order toovercome this, the circuitCORAM must
take a memory locationas inputand internally formulate what the ORAM client computes.CORAM outputs
what the “virtual” ORAM client would have sent to the server:a garbled circuitGCORAM representing a
read/write query. The novelty in this construction is that when we feed a memory locationv into CORAM ,
the output precisely is a garbled ORAM read/write query relative to that memory location. In order to hide
v, bothCORAM andv are garbled intoGC(CORAM) andV respectively, and by the correctness of garbled
evaluation, the output is stillGCORAM . By the security of the underlying ORAM, this outputGCORAM

can actually be simulated.
Although it is a circuit that outputs another circuit, thereis no circularity in this construction: given a

query location and some fixed randomness, the behavior of theORAM client is completely deterministic,
straight-line, and takeskO(1) · polylog(n) steps, so the output can be represented by a circuit also of that
size. This ORAM client is independent of the main program CPUwhich only uses ORAM as an “oracle”.
We emphasize this again, becauseG will most likely be ran by a client,G does not play the role of the
ORAM client but ratheremulatesthe ORAM client viaCORAM , so this isnot a client attempting to capture
its own logic in a circuit. We provide a pseudocode description ofCORAM in Figure 1.

Looking ahead,G will garble this circuit and ensure that the output of an ORAMquery has the same

11

Inputs: An ORAM query to read/write(v, x) and a query numberℓ. This circuit interprets the client
performing theℓ-th ORAM query, which uses randomness and time-labeled encodings based onℓ. As
such, this circuit also takes these randomness bits and pre-computed encodings as inputs.
Output: A garbled circuitGCORAM representing a read/write ORAM query.
Circuit Description: We describe the functionality of the circuitCORAM . We recall our algorithm for a
ORAM query. Using time-labeled encodings via PRFs, it generates a set of|B1|+ 2L− 2 garbled
GC(Cmatch) which has hard-coded location information built into it, with corresponding garbled
GC(Cnext) circuits, and one finalGC(Cwrite) garbled circuit for writing the element back to the top level
(and possibly an update circuit). Although the ORAM client evaluates these PRFs internally, wedo not
encode this as part of our circuitCORAM , but rather we “consume” them as input. Similarly, the ORAM
client must use randomness, which we also consume from the input ofCORAM . Since the circuit itself
emulates the ORAM client during a query, it appears similar to the construction in Figure 5, but with the
key difference that the encodings/PRFs are fed as inputs.

1. For the top level,B1, for each bucket,CORAM creates a time-labeled garbled circuitGC(Cmatch)
consuming the input encodings to be used as garbled labels.

2. For subsequent levelsi = 2 . . . L:

(a) The circuitCORAM computesq0
i = hi(v) and consumesq1

i from the input (the input itself is
uniformly random)

(b) Consume two secret keys for encryptionsk0
i andsk1

i from the input and create a garbled
circuit GC(Cnext)

(c) Create two time-labeled garbled circuitsGC(Cmatch), one that searches forw in bucketq0
i

encrypted undersk0
i , and one that searches forw in bucketq1

i encrypted undersk1
i , again

consuming the encoding from the input toCORAM .

3. CORAM also creates a garbledGC(Cwrite) that writes the result back to the first empty position the
top level bufferBk.

4. If ℓ is a multiple of|B1|, then a reshuffle step is performed using the time-labeled garbled update
circuit GC(Cupdate).

5. The combined set of garbled circuits is referred to asGCORAM .

We point out that throughout this entire process, every timea query circuit is created,G incrementsℓ in
order to keep track of the time-labeled encodings required by theCORAM circuits.

Figure 1: The ORAM Client CircuitCORAM

encoding as that used to garbleCCPU . The algorithmG can then garble bothCCPU andCORAM ahead of
time, without having to know the memory location.

Next, we consider building the circuit which performs a single CPU step in the RAM program,CCPU

that is supposed to performΣ′, READ/WRITE(v′, x′) ← CPU(Σ, x). In order to hide which instruction is
being executed, we build the circuit to take an instruction opcode and we run every single-step instruction
from its constant sized instruction set (not all possible program paths)of the CPU. The circuit multiplexes

12

the actual results using the instruction opcode. This universal instruction is modeled as a circuit which is of
sizekO(1) and is independent of the ORAM circuit, independent of the queried locations, and independent
of the current running time.

One may ask the question: How can this circuit be interleavedwith theCORAM circuit if it is independent
of it?

The answer is that whenG garblesCCPU , the encoding will depend on the output ofCORAM in the
previous time-step. Note that this construction is not circular as each garbling only depends on the pre-
vious one, leading up to a total oft time steps. This can be done becauseG knows the encoding of the
output encoding(but not the output) of the Oblivious RAM query, whichdoes not dependon the location
queried. This output encoding is then used for the input parameter encoding forGC(CCPU). We provide a
pseudocode description ofG in Figure 2.

Inputs: A programπt with an upper bound on running timet, and a pseudo-random function familyF

along with a keys.
Algorithm Description: The algorithmG is performed as follows. It creates an encoding of the initial
state of the CPU,Σ0 with the programπt initialized. It also encodes an initial program counter and
cryptographic keys. We show how to constructCORAM andCCPU such that they can be garbled and
interleaved acrosst time steps. We must argue that this garbling is independent of the actual program
path, regardless of what memory locations have been fetched, and is correct and secure.
For each time stepi = 1 . . . t, G creates:

1. A garbled read/write query circuitGC(CORAM) for performing query numberi on some (unknown
variable) garbled locationVi (andXi in the case of a write).G pre-computes randomness and PRF
evaluations and hardwires them. AlthoughG does not know the eventual output, it knows the
encodingof it, which is independent of the queried location. It uses this encoding for the following:

2. A garbled instruction circuitGC(CCPU) with input wires ofXi using the encoding from above, and
the input wires ofΣi using the output encoding from the previous CPU step. The output is a garbled
locationVi+1 (andXi+1 in the case of a write) to be used in the next read/write query and an
garbled updated stateΣi+1.

Figure 2: Program Garbling AlgorithmG

The algorithmGI for garbling an input of sizen is just the time-labeled encodings starting from wher-
ever the RAM program expects the inputs to be located.

The algorithmGE used to evaluate a garbled programΠt on garbled inputs evaluates the garbled circuit
GC(CORAM), then executing the garbled instructionGC(CCPU) one at a time, up tot times. The process
is precisely performing the same steps asG except evaluating garbled circuits instead of generating them.
In addition, once it gets the garbled ORAM query, it must alsoexecute it as well. We provide a pseudocode
description ofG in Figure 3.

3.3 Main Result

We now state our main result:

Theorem 1. Assume one-way functions exist, and let the security parameter be k and let F be a PRF
family based on the one-way function. Then, there exists an efficient Program Garbling triple of algorithms
G,GI,GE such that for anyπt anyt and any inputx of lengthn, we have the following.

13

Inputs: A garbled programΠt with garbled inputX.
Algorithm Description: The algorithmGE is performed as follows. It first stores the initial encoded
program state and inputs into memory. Then, for each time step i = 1 . . . t, GE performs:

1. Evaluate the garbled query circuitGC(CORAM) on a garbled memory locationVi. The output is
GCORAM which itself is a garbled circuit that represents a read/write query in our single-round
ORAM protocol. Execute the query playing the role of the server to obtain some garbled outputXi

which is kept locally instead of sent to the client.

2. Evaluate the garbled instruction circuitGC(CCPU) on garbled inputsXi andΣi. Obtain a new
read/write queryVi+1.

After t steps, output the final valueXt+1.

Figure 3: Garbled Program Evaluation AlgorithmGE

Correctness:∀x, πt, F, s:
πt(x) = GE [G(πt, t, F, s), GI(x, s)].
Security: ∃ poly-time simulatorSim, such that∀π, t, x, s, where
|s| = k [G(πt, t, F, s), GI(x, s)] ≈ Sim

[

1k, t, |x|, πt(x)
]

.
Program Size:The size of the garbled program

|G(πt, t, F, s)| = O
(

(|π|+ t) · kO(1) · polylog(n)
)

.
Input Size: Let |x| = n and |s| = k. ∀x, s the garbled input size

|GI(x, s)| = O
(

n · kO(1) · polylog(n)
)

.

Proof.

Correctness.This construction is correct due to the correctness of the underlying single-round Oblivious
RAM scheme in Theorem 2 and the correctness of garbled circuits. In addition, we need to verify that
when interleaving the garbled instruction execution along with the ORAM fetchqueries, the ability to
properly decrypt and evaluate the garbled circuits is maintained. BecauseG generates a garbled circuit
GC(CORAM) to simulate the fetching client inside the ORAM, the output encoding is chosen so that it
matches the input encoding ofGC(CCPU). Thus, sinceG generates sufficiently many circuits for ORAM
fetches corresponding to thei-th instruction executed (with respect to time, regardlessof the ordering of
the actual instructions inπ), the GE algorithm evaluating the garbled circuits can properly evaluate the
instruction and throw away any unused fetches corresponding to thei-th step.

Security. In order to show security, we must show that there exists a simulator Sim that can simulate the
garbled execution given only the running time and program output. In order to do so, we consider what a
server running the algorithmGE does during the execution of the garbled program.

It first stores the initial encoded program state and inputs into memory. Then, for each time stepi =
1 . . . t, GE performs: In each CPU step of the garbled program execution,the server performs the following:

1. Evaluate the garbled query circuitGC(CORAM) on a garbled memory locationVi. The output is
GCORAM which itself is a garbled circuit that represents a read/write query in our single-round
ORAM protocol.

2. Execute the garbled ORAM queryGCORAM playing the role of the server to obtain some garbled
outputXi which is kept locally instead of sent to the client.

14

3. Evaluate the garbled instruction circuitGC(CCPU) on garbled inputsXi and Σi. Obtain a new
read/write queryVi+1.

By Theorem 2, the underlying single-round Oblivious RAM is secure and uses time-labeled garbled
circuits and encodings and can be simulated bySimORAM . Furthermore, the underlying Yao’s garbled cir-
cuits are secure, and can be simulated bySimY ao. Thus, the access pattern of the ORAM can be simulated
even for tampering adversary, and we need only show that the garbled circuit emulating the ORAM client
GC(CORAM) and garbled instructionsGC(CCPU) can also be simulated. The garbled circuits can be inter-
leaved securely due to Lemma 1, and the time-labeled encodings themselves are just outputs of a PRF. By
the security of Yao’s garbled circuits and the underlying PRF, these can be simulated securely.

Program Size.We analyze the cost of garbling a program. First, to garble all the instructions of the program,

we incur a cost ofO(|π| ·kO(1) ·polylog(n)). Furthermore, because the overhead of our underlying ORAM
is kO(1) · polylog(n)) and since at each time step, the client must prepare “CPU instruction” circuits which
include some constant number of ORAM queries, we incur another O(t · kO(1) · polylog(n)). Overall this
leads to the garbled program being of sizeO((|π|+ t) · kO(1) · polylog(n)).

Input Size. We analyze the cost of garbling an input of sizen. Each bit of the input is encoded and stored

in the ORAM hierarchy which incurs aO(kO(1) · polylog(n)) multiplicative overhead, the total size of the
garbled input is thereforeO(n · kO(1) · polylog(n)).

4 Application to Secure RAM Computation

We give an example application in which only one party has input and wants to repeatedly run programs
on this data. Such is the case of secure cloud computing, where someone stores data in the cloud and then
later runs computations against that data. We emphasize that in this setting, there is no issue of adaptivity
because the server has no inputs. In the typical setting of two-party secure computation, we deal with this
by making the server first perform OTs to retrieve its inputsbeforethe client sends the garbled program. In
the multi-party setting, the technique can be utilized in the Beaver-Micali-Rogaway paradigm [3] to achieve
constant-round MPC with the same approach as in [3] but with garbled RAM programs.

That is to say, in this application, a client wishes to store some datax on a remote server and then run
various RAM programs onx without the server learning the results of the programs orx itself. Of course, the
client could always ignore the server altogether and run allthe programs onx locally, so we are envisioning
a scenario in which the client does not want to carry around all of its data locally and wants to only store
a few cryptographic keys or counters. To apply Garbled RAM programs to this application, the client first
garbles the inputx to getX = GI(x) and sends it to the server. Then for each program the client wants
to run, it recalls the encoding of the previous output and creates a garbled program using the labels of the
previous output as inputs for the current program.

5 Conclusions and Open Problems

Recently, Goldwasser at. al. [16] have shown how to construct a reusableGarbled Yao. It is tempting to
plug it into our construction to achieve reusable GRAM with compactness proportional to program size and
independent of its running time. The idea is to compute poly-many iterations of the CPU computation using
reusable Yao (instead of sending fresh garbled circuit for each CPU step) where CPU computes its own

15

garbled keys for each step. This is possible only if there exists poly-time reusable circular-secure Garbled
Yao with input encoding of size independent of the circuit size. Constructing such a gadget is an interesting
open problem even under non-standard assumptions.

6 Acknowledgements

We thank Oded Goldreich and Daniel Wichs for very helpful discussions and the anonymous reviewers for
their comments.

References

[1] Miklós Ajtai. Oblivious RAMs without cryptogrpahic assumptions. InSTOC, pages 181–190, 2010.

[2] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient verifica-
tion via secure computation. InICALP (1), pages 152–163, 2010.

[3] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (ex-
tended abstract). InSTOC, pages 503–513, 1990.

[4] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applications
to one-time programs and secure outsourcing. InASIACRYPT, pages 134–153, 2012.

[5] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. InACM
Conference on Computer and Communications Security, pages 784–796, 2012.

[6] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith III. Public key encryption that
allows PIR queries. InCRYPTO, pages 50–67, 2007.

[7] Dan Boneh, David Mazieres, and Raluca Ada Popa. Remote oblivious storage: Making oblivious
RAM practical. CSAIL Technical Report, MIT-CSAIL-TR-2011-018, 2011.

[8] Nishanth Chandran, Rafail Ostrovsky, and William E. Skeith III. Public-key encryption with efficient
amortized updates. InSCN, pages 17–35, 2010.

[9] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the security of the
”free-xor” technique. InTCC, pages 39–53, 2012.

[10] Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure oblivious RAM without
random oracles. InTCC, pages 144–163, 2011.

[11] Stephen A. Cook and Robert A. Reckhow. Time bounded random access machines.Journal of Com-
puter and System Sciences, 7(4):354–375, 1973.

[12] Craig Gentry. Personal communication, 2012.

[13] Oded Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In
STOC, pages 182–194, 1987.

[14] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. InSTOC, pages 218–229, 1987.

16

[15] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.J.
ACM, 43(3):431–473, 1996.

[16] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich. Suc-
cinct functional encryption and applications: Reusable garbled circuits and beyond. Cryptology ePrint
Archive, Report 2012/733, 2012.

[17] Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of outsourced data via
oblivious RAM simulation. InICALP, pages 576–587, 2011.

[18] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia. Oblivious
RAM simulation with efficient worst-case access overhead. In CCSW, pages 95–100, 2011.

[19] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia. Privacy-
preserving group data access via stateless oblivious ram simulation. InSODA, pages 157–167, 2012.

[20] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana Raykova,
and Yevgeniy Vahlis. Secure two-party computation in sublinear (amortized) time. InACM Conference
on Computer and Communications Security, pages 513–524, 2012.

[21] Yuval Ishai and Eyal Kushilevitz. Personal communication, 2012.

[22] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based oblivious RAM
and a new balancing scheme. InSODA, pages 143–156, 2012.

[23] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party computation.J.
Cryptology, 22(2):161–188, 2009.

[24] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. Cryptology ePrint Archive, Report
2012/601, 2012.

[25] Steve Lu and Rafail Ostrovsky. Distributed oblivious ram for secure two-party computation. InTCC,
pages 377–396, 2013.

[26] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure two-party computation
system. InUSENIX Security Symposium, pages 287–302, 2004.

[27] Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function evaluation. In
STOC, pages 590–599, 2001.

[28] Rafail Ostrovsky. Efficient computation on oblivious RAMs. In STOC, pages 514–523, 1990.

[29] Rafail Ostrovsky.Software Protection and Simulation On Oblivious RAMs.PhD thesis, Massachusetts
Institute of Technology, Dept. of Electrical Engineering and Computer Science, June 1992.

[30] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract). InSTOC, pages
294–303, 1997.

[31] Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. InCRYPTO, pages 502–519, 2010.

[32] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures.J. ACM,
26(2):361–381, 1979.

17

[33] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with O((log N)3)
worst-case cost. InASIACRYPT, pages 197–214, 2011.

[34] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious RAM. InNDSS, 2012.

[35] Daniel Wichs.Personal Communication. March 2013.

[36] Peter Williams and Radu Sion. Single round access privacy on outsourced storage. InACM CCS,
pages 293–304, 2012.

[37] Peter Williams. Oblivious Remote Data Access Made Practical. PhD thesis, SUNY Stony Brook,
Dept. of Computer Science, 2012.

[38] Peter Williams and Radu Sion. Usable PIR. InNDSS, 2008.

[39] Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of mud: practical access pattern
privacy and correctness on untrusted storage. InACM Conference on Computer and Communications
Security, pages 139–148, 2008.

[40] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). InFOCS, pages 160–
164, 1982.

A Glossary of Circuits

Circuit Description
CCPU Circuit for evaluating a CPU step.
CORAM Mimics an ORAM client query, outputting garbled versions ofthe above circuits.
GCORAM Garbled circuit that is the output ofCORAM . Consists of garbled circuits used in single-round ORAM:
Cmatch Matches a memory location in a bucket.
Cnext Outputs next bucket to probe depending on found/not found.
Cupdate Performs oblivious hashing for ORAM update.
Cwrite Writes output to top level buffer.

Figure 4: Glossary of Circuits

B Single-Round Oblivious RAM From Any One-way Function

B.1 Informal Description of Main Ideas

As a starting point, we consider the hierarchical ORAM of Ostrovsky [28, 29] and use the same terminology
as in Ostrovsky’s Ph.D. thesis [29]. In this scheme, the datais encrypted (under semantically secure private-
key encryption) and stored in hierarchical levels that reshuffle and move into larger levels as they fill up.
To keep track of the movement, each level is temporally divided into different time periods calledepochs,
based on how many queries the client has already performed. The client only needs to keep track of the keys
corresponding to the latest epoch for each level, which in turn only depends on the total number of queries
that so far have been performed.

18

In our new solution, we maintain the same hierarchical levels, but encrypt all bits within the level dif-
ferently. To explain our encryption method, we first generalize Pseudo-Random Functions (PRF) into a
multi-argument PRFFs(x1, x2, ..., xk−1, xk) which is computationally indistinguishable from a truly ran-
dom multi-argument function. Our multi-argument PRF, instead of outputting a single bit, outputs a pseudo-
random key of length proportional to the security parameter, i.e. a sufficiently long key for a private-key
encryption scheme. Such a multi-argument PRF can be trivially constructed from any standard PRF.

We now describe the encoding of each bit in the hierarchical solution of Oblivious RAM that we use.
For each bit in each buffer of some level we can uniquely defineits location by epoch number, level
number, bucket number within the level and address within the bucket. Let us call these specifications
x1, . . . , xk−1 (where the details of the encoding will be specified later). Now we define two keys for each
such bit: Fs(x1, . . . , xk−1, 0) andFs(x1, . . . , xk−1, 1). One key corresponds to “encoding of zero” and
the other corresponds to “encoding of one”. Jumping ahead, we will use these encodings inside multiple
Yao’s garbled circuits repeatedly using Lemma 1. More specifically, for every buffer bitb we encode it as
Fs(x1, . . . , xk−1, b) and write this key into the buffer as the encryption of this bit. We remark that since
keys are generated pseudo-randomly, the client will not need to remember anything except the PRF keys
used to generate the labels and the current epoch. We describe at a high level how an ORAM read/write is
performed in a single round, and how a re-shuffle is performed.

Recall that in the hierarchical ORAM scheme, to fetch a (virtual) memory locationv, the client first scans
the entire top bufferB1 in its entirety, then, untilv is found in some bucket, computes the hashj = hi(v)
and looks up bucketj for each subsequent levelBi for i ≤ L. Oncev is found, the client retrieves a random
bucketj in subsequent levels. If we letqi denote the bucket that is fetched at leveli for k + 1 ≤ i ≤ L,
then the important observation in [37, 36] is that there are only two “choices” forqi: hi(v) or random. Thus,
even though the choice of whichqi to use is done interactively, the client can pre-compute a list of 2L − 2
buffer addresses (two for each level, except the smallest first level which is accessed in its entirety) of the
form ((h2(v), r2), . . . , (hL(v), rL)).

The way we encode all values within each buffer allow us to prepare2L−2 garbled circuits that operate
as follows. We prepare a circuit that reads the smallest level, since the inputs are keys to the garbled circuit.
The circuit checks if the value is there or not, and dependingif it is found or not “decrypts” one of the two
circuits for the next level, which also indicates which buffer in the next level the circuit is prepared for. That
is, for each level we prepare two garbled circuits, one to access random buffer (if the value already found)
and one to access the location where value could be located. We encrypt both circuits using private key
encryption. Each circuit outputs a decryption key for the next circuit, as well as the buffer number that the
just-decrypted circuit is prepared for. The circuit that reads the smallest level is given un-encrypted.

Additional book-keeping is done to pass information between different circuits and to execute the last
circuit that re-writes the top-level buffer. We stress thatthe labels in those garbled circuits are generated
pseudo-randomly and depend only on the epoch as well as former inputs. When evaluating the ORAM
query, the server evaluates a garbled circuit for each levelin the hierarchy in turn, which allows him to
decrypt the next circuit and tells it the location to apply inthe next level buffer the just decrypted circuit.

Finally, we observe that oblivious updates/re-shuffling can be done through garbled circuits implement-
ing sorting networks, where this can be done through severalinvocations of the sorting network. We now
proceed to give a more detailed description.

Toward this end, we give two definitions which will help in ourconstruction. We recall the notion of a
time-labeled RAM simulation due to Ostrovsky [28, 29]: after any number of queries-so-far, there exists a
way for the client to efficiently compute the number of times it has previously accessed a particular memory
location. As briefly explained above, we define the notion of aso-calledtime-labeled encoding(via Yao

19

garbling) so that whatever is stored in memory, the client can efficiently compute the encoding of it.

Definition 1. Suppose some element(v, x) was stored in levelBi in bucketj in some positionℓ inside the
bucket during epoche. We define thetime-labeled encodingof (v, x) to be a bit-by-bit encoding where the
b-th bit of (v, x) is encoded asFs(i, j, ℓ, e, b) whereF is a multi-argument PRF with output being a random
element in the keyspace of our symmetric-key encryption scheme.4

Next, consider how the client will build a garbled circuit whose input is in some specific buffer in
the memory hierarchy. If the stored information is a time-labeled encoding, the client can compute two
pseudorandom keys for each bit stored in the buffer, where one of the keys is a “zero” key and another key is
a “one” key. The client knows that one of the two keys is storedin the buffer representing either the encoding
of zero bit or one bit in that location. Hence, one can construct a garbled circuit operating on the buffer using
Lemma 1. The client prepares two garbled circuits for each level as described before. It also encrypts both
circuits with a private-key encryption where exactly one key will be revealed depending on whether or not
v has been found already or not. We keep track if the item has been found or not and depending on this
variable, we release to the server a decryption key for one ofthe two circuits for the larger level, together
with is buffer address. Finally, we need to write the found element back to the top level buffer, and possibly
perform a hierarchy update.

Definition 2. Suppose some element(v, x) was stored in levelBi in bucketj in some positionℓ inside the
bucket during epoche. LetC be a circuit operating on this bucket. Letsk be a secret key to some encryption
scheme. We define thetime-labeled garbling ofC to be a garbled circuitGC(C) with special encodings of
the wiresin which the labels corresponding to the wires of the hash buckets are precisely the time-labeled
encoding of elements in the buckets. The entire circuit is then encrypted undersk.

B.2 Single-Round Oblivious RAM Construction

As building blocks for our construction, we give details on the circuits which we described above. The
circuits are building blocks to perform the following procedures: We have one circuit searches for a memory
location in a bucket and returns the memory contents and keeps track of whether or not it is found. We have
one circuit that tells the server where to look in the next level: it returns either the real hash location or
a random location (and the corresponding decryption key) depending on the found variable. We have one
circuit that writes the final answer to the top level buffer. We have one circuit to update the ORAM hierarchy.

Here in the details, we highlight a key difference between the utility of Cmatch andCnext: the output of
the first circuit, when garbled, will be encoded and obscuredfrom the server, but the output of the second
circuit,when garbled, will be released to the server in the clear since it must fetch and decrypt. It will be
convenient to refer to them by name, so we describe them in more detail. More formally, the logic of the
circuits are given as:

1. Cmatch: It takes as input an some hash locationj in level Bi, a (virtual) memory locationw that the
client is searching for, a storage variabley and an indicator bitfound. The logic is that ifw has
already been found, do nothing, otherwise attempt to find(v, y) wherew = v and store it intoy. It
outputsy′ andfound′ with the following behavior:

4Specifically, from any one-way function, one can build PRFs and CPA-secure symmetric-key encryption scheme that satisfy
this requirement.

20

y′ = y, found′ = 1 if found = 1;
y′ = x, found′ = 1 if found = 0 and there is some(v, x) in the bucket such thatv = w;
y′ = y, found′ = 0 otherwise.

2. Cnext:It takes as input an indicator bitfound, some leveli and two bucket locationsq0 andq1 on level
Bi, and two secret keys for encryptionsk0 andsk1. It outputsqfound andskfound.5

3. Cwrite: Given a memory locationw and memory contentsy, it encodes(w, y) relative to the first
empty slot in the top level buffer.

4. Cupdate: Although oblivious hashing is described as an interactiveprocess in most ORAM schemes,
observe that in many cases (again, e.g. [15]) it ultimately amounts to performing many steps of a
large parallel sorting and re-labeling algorithm wherein the elements need to be retrieved, decrypted,
and re-encrypted. Instead, we can represent this as a large parallel circuit, using sorting networks to
perform the sorting, and using time-labeled encodings instead of encryption. (More generally, the
updates have fixed memory access that can be revealed to the circuit evaluator and are executed in
strait-line. Any such program can be converted to garble circuit directly.)

We describe our construction relative to any hierarchical ORAM scheme that uses hash tables, though
concretely one can think of the Goldreich-Ostrovsky [15] scheme. For a client to read/write to a memory lo-
cationw, the client computes garbled buffer search circuits (i.e.GC(Cmatch)) for the top levelB1. Then the
client pre-computes the hash ofw for each of the levelsB2, . . . , BL, i.e. it setsq0

i = hi(w). It also generates
L− 1 random locationsq1

i = ri for each level. This gives the client a list ofL− 1 pairs of bucket locations,
2 for each level (one real, one random):((q0

2 , q
1
2), . . . , (q

0
L, q1

L)) = ((h2(w), r2), . . . , (hL(w), rL)).
For each of these2L − 2 locations, the client makes a time-labeled garbled circuitthat searches for

w (i.e. it createsGC(Cmatch) for those locations) and encrypts them under brand new (pseudo-randomly
generated) encryption keyskj

i . It is the case that onlyskj
i decrypts the garbled circuit for locationqj

i . In
order to ensure that the server only gets the correct location and key to go from a level to the next (depending
on found/not found), we must rely on the circuitCnext that produces exactly one out of the two location/key
pairs for each level. In order to do so, the client hardwires locationsq0

i , q
1
i and keyssk0

i , sk
1
i into generates a

garbledGC(Cnext) that outputs where to go depending on found/not found and only the correctskj
i . Finally,

the client creates a time-labeled garbled circuitGC(Cwrite) that ”writes” a time-labeled encoding of(w, y)
back to the top level bufferB1 (i.e. it re-writes the entire top level). To perform hierarchy updates, it uses a
garbledGC(Cupdate). The full client and server construction is given in Figure 5.

B.3 Analysis

The goal of this section is to show the following theorem:

Theorem 2. Assume one-way functions exist. Then the construction of given in Figure 5 is a secure single-
round Oblivious RAM withpolylog(n) · kO(1) overhead with client only needingkO(1) memory to store the
cryptographic keys.

5This can be thought of as a circuit for obliviously transferring one-out-of-two of the locations and keys.

21

Client performing a read/write to memory locationw with the read/written value beingy:

1. For each bucket in the top level,B1, the client creates a time-labeled garbled circuitGC(Cmatch)
that searches forw. The circuits are constructed so that the output encodings matches the input
encodings in the subsequent circuit (i.e. circuit chainingas in Lemma 1).

2. Pre-compute all hash locationsq0
i = hi(w) and and random locationsq1

i ← 0 . . . |Bi| for levels
i = 2 . . . L. Pseudo-randomly generate secret keys for encryptionsk0

i andsk1
i .

3. For subsequent levelsi = 2 . . . L:

(a) Create a time-labeled garbledGC(Cnext) by hardwiringq0
i , q1

i , sk0
i , andsk1

i as inputs, the
only free variable being thefound flag. The outputs areunencoded. The labels forfound

should match thefound output from the previous leveli− 1.

(b) Create two time-labeled garbledGC(Cmatch) circuits, one that searches forw in bucketq0
i and

one that searches forw in bucketq1
i . Encrypt the first under undersk0

i , and encrypt the second
undersk1

i .

4. Create a time-labeled garbledGC(Cwrite) that takes the final outputy (or y from the write query)
and writes it back to the first empty position the top level buffer B1.

5. The client in one round sends all these circuits to the server, then the client receives the final output
y and decodes it.

6. The client increments the local query countert. If t is a multiple of|B1|, then a reshuffle step is
performed using the time-labeled garbled update circuitGC(Cupdate).

As for the server, it performs the following steps:

1. Receive all the garbled circuits from the client.

2. It evaluatesGC(Cmatch) for every bucket in the top levelB1.

3. For subsequent levelsi = 2 . . . L:

(a) EvaluateGC(Cnext) with the garbled found/not found flag from the previous leveli− 1 and
obtain in the clear a locationqi and a keyski.

(b) On bucketqi, decrypt theGC(Cmatch) usingski and evaluate it, keeping track of the garbled
found′ flag and garbled memory contentsy′.

4. Evaluate the last garbled circuitGC(Cwrite) which outputs some time-labeled encoding of(w, y)
and store it in the first empty position inBk and send the encoded outputy to the client.

5. In case of an update, evaluateGC(Cupdate) and rewrite the relevant levels of the hierarchy with the
corresponding time-labeled output.

Figure 5: Single-Round ORAM

22

Proof.

Correctness.This construction is correct due to the correctness of the underlying ORAM scheme and the
correctness of garbled circuits. The only additional step we need to check is that the output of one circuit
correctly feeds into the input of the other. Because the labels for the relevant wires are actually time-labeled
encodings, they are correct by the way they are constructed due to Lemma 1.

Cost Analysis.We analyze the cost in terms of communication, computation,and rounds for both the client
and the server. The round complexity is clearly 1. The clientmust create|B1| + 2(L − 1) = O(log n)
garbled circuits forCmatch andCnext and one final garbled circuit for writing the element back to the top
level. The sizes ofCmatch andCnext are bothO(polylog(n)). It must also garbleCupdate which is of size
O(|Bi| · polylog(n)) every |Bi| steps. Each element of the underlying ORAM scheme is now encoded
bit-by-bit where each bit now turns intokO(1) bits which is size of the output of our multi-argument PRF.
The PRF is evaluated at most twice per wire of each garbled circuit, and the underlying encryption scheme
is evaluated at most eight times per gate of each circuit, each of these invocations run inkO(1). Since the
underlying ORAM scheme only has poly-log overhead, the overall computation and communication for the
client amounts topolylog(n) · kO(1) per query. The server has the same communication complexity, and
the computation is just the evaluation of the garbled circuits, which amounts to at most four decryptions per
garbled gate, thus also resulting inpolylog(n) · kO(1).

Security. In order to show security, we must show that there exists a simulatorSim that generates the view
of the server for a sequence of polynomially sizedt queries. First, we generate a simulated garbled circuit
for the top level. By the security of garbled circuits, thereexists some simulatorSimY ao that simulates these
garbled circuits (except we use the time-labeled encodingsof the inputs and outputs in the simulation, which
can further be simulated by true randomness due to the security of our PRF).

Next, we describe how to create a good simulation of the subsequent levels.Sim has to simulate2L −
2 (encrypted)GC(Cmatch) circuits which produce garbled outputs, and more problematically, Sim must
simulateGC(Cnext) circuits which produces outputsin the clear. In order to do so, we rely on the fact that
the locations given in the clear can be simulated in turn. Indeed, by the security of our underlying ORAM,
there exists a simulatorSimORAM that generates the access pattern of the ORAM across allt queries. This
access pattern gives us a list of locations in the intermediate buffersℓi

2 ∈ B2, . . . , ℓ
i
L ∈ BL for each query

i = 1 . . . t. Our simulatorSim will use these locations as the simulated outputs of the garbled GC(Cnext)
circuits. To simulate the view of the server seeing the output of GC(Cnext) (on thej-th level in thei-th
query), we set it to be the simulated locationℓi

j and a randomly chosen secret keyski which can only
decrypt the proper circuit in the next level. These we simulate via SimY ao given only the outputℓi

j , ski.
Also, because the encrypted garbledGC(Cmatch) circuits for these locations will be decrypted, we can also
simulate them viaSimY ao. For the remaining locations that won’t be decrypted, our simulatorSim encrypts
the “all-zeroes” string, which is computationally indistinguishable from a good encryption.

Finally, by Lemma 1, we can reuse the encodings as inputs between different invocations while still
being able to simulate.

23

	Introduction
	The Blueprint for RAM Program Garbling
	Related Work on Oblivious RAMs and Secure RAM Computation.
	Our Results
	Remarks

	Preliminaries
	Oblivious RAM
	Yao's Garbled Circuits

	Non-interactive Garbled RAM Programs
	Informal description of main ideas
	Main Construction of Garbled Programs
	Main Result

	Application to Secure RAM Computation
	Conclusions and Open Problems
	Acknowledgements
	Glossary of Circuits
	Single-Round Oblivious RAM From Any One-way Function
	Informal Description of Main Ideas
	Single-Round Oblivious RAM Construction
	Analysis

