How to Garble RAM Progranis

Steve LU Rafail Ostrovsky

Abstract

Assuming solely the existence of one-way functions, we show to construct Garbled RAM Pro-
grams (GRAM) where its size only depends on fixed polynonmahie security parameter times the
program running time. We stress that we avoid convertingRA® programs into circuits. As an ex-
ample, our techniques implies the first garbléalary searchprogram (searching over sorted encrypted
data stored in a cloud) which is poly-logarithmic in the dsit® instead of linear. Our result requires the
existence of one-way function and enjoys the same nonaictiee properties as Yao’s original garbled
circuits.

Keywords: Secure Computation, Oblivious RAM, Garbled Circuits.

*Patent Pending

fStealth Software Technologies, Inc. E-mail: steve@stsaftwareinc.com

tDepartment of Computer Science and Department of MathesjatiCLA. Work done while consulting for Stealth Software
Technologies, Inc. E-mail: rafail@cs.ucla.edu

1 Introduction

Often times, such as in cloud computation, one party wanssai@ some data remotely and then have the
remote server perform computations on that data. If thetctlees not wish to reveal this data or the nature
of the computation and the results of the computation to ¢meote server, then one must resort to using
secure computation methods in order to process this reynsteted data. In other words, suppose two
parties want to compute some progranon their private inputs without revealing to each other (gst]
one party) anything but the output. The earliest researdeaure two-party computation modeledas

a circuit and was accomplished under Yao’s Garbled Cir¢did$ or the Goldreich-Micali-Wigderson [14]
paradigm. Both of these approaches require the progrémbe converted to a circuit. Even the recent work
of performing secure computation via fully homomorphic rption requires representing the program
as a circuit. However, many algorithms are more naturally @mpactly represented as RAM programs,
and converting these into circuits may lead to a huge blowypagram size and its running time.

Of course, there are known polynomial transformations betwtime-bounded RAM programs, time-
bounded Turing Machines and circuits [11] 32]: Givefdime RAM program, [[111] shows how one can
transform it into aO(73)-time TM, and [32] shows how to transformZatime TM into circuits of size
O(T'log T)), which results in & (73 log T') blowup. Our work aims atircumventingthese transformation
costs and executing RAM programs directly in a private manaile retaining the same noninteractive
properties as Yao's Garbled circuits. This goal is esplcialiportant for the case of complex real-world
RAM programs with running time that is much larger than thauirsize. Unrolling these complicated RAM
programs with multiple execution paths, recursion, midtipops, etc. into a circuit makes the circuit size
polynomially larger and often prohibitive.

It should be noted that our work is also important in prattigaplications where the sizes of the inputs
are vastly different, such as database search, or wher@haujtieries against the same large data-set must
be executed. When compiling a RAM program into a circuit, ¢bmpiled circuit must inherently be able
to compute all execution paths of the RAM program. Thus, trmuit itself must be at least be as large as
the input size, which in some applications may be is expdaalgntarger than execution path of the insecure
solution (e.g. consider a binary search). One can argueteat if the circuit is large, we can “charge” the
large circuit cost to the large input size, but in many cabkesis unacceptable: consider the case where a
large data is encrypted and upload#tiine, such as a large database, and multiple encrypted queees ar
madeon-ling, where the insecure execution path is, for example, pagfithmic in the database size and
we do not want to “pay” an on-line cost of circuit size whicHiiear in the database size.

An alternative approach for secure conversion of RAM progranto circuits is dynamic evaluation:
even if the resulting circuit is large and the total size @f ihresulting circuit is prohibitive, one can execute
and even compile the large circuit dynamically and inteltitfy evaluate only parts of the circuit so as to
“prune off” dead paths (e.g. short-circuiting techniguesjnake the evaluation efficient, even in the case
of large inputs. However, until now it was not known how to wert RAM programs into circuits which
result in an efficient secure non-interactive executionweg that does not reveal the execution path of the
compiled RAM program. Naturally, using interaction, ona aese the Goldreich-Micali-Wigdersoh [14]
paradigm along with revealing bits along the way to help prand determine execution path — however our
ultimate goal is to explore the non-interactive garblintugons for RAM programs without revealing the
execution path.

Another alternative method for computing RAM programs withfirst converting them to circuits was
proposed by Ostrovsky and Sholp|[30] which used Obliviou/R25] as a building block. The Ostrovsky-
Shoup compiler allows parties to execute Oblivious RAM paogs directly, i.e., without first unrolling

it into a circuit, which provided an alternative approachsexzure RAM computation. The method was
further improved by Gordon et al._[20] in order to perform lindear amortized database search. Lu and
Ostrovsky [25] considered two-server Oblivious RAM insitie Ostrovsky-Shoup compiler, which led to
logarithmic overhead in both the computation and the comication complexity. Note that these three
works allow secure RAM evaluation without having to unrdietprogram into a circuit and represent a
different way to perform secure computation that revealg the program running time. Among these, [25]
is the best result for programs (instead of circuits) in feohcomputation complexitgndcommunication
complexity However, in terms ofound complexitythese papers leave much to be desired: they all require
at least logarithmic rounds faachCPU computation step. Even “non-interactive” ORAMI[36] uegs at
least one round of interaction for each read and write. T$inse the running time of CPU is at leastteps

for programs that run in timg this leads td2(¢) round complexity using all previous methods. In contrast,
in this paper we show how to retain poly-log overhead in comigation and computation, and make the
entire computation completely non-interactive in the @biid model, just like Yao.

1.1 The Blueprint for RAM Program Garbling

We describe our approach at a high level: we start with an ORAMpiler (with certain properties which
we will describe later) that takes a program and convert#dtan oblivious one. We call this new program
the “ORAM CPU” because it can be thought of as a client runaifigPU that performs a local computation
followed by reading or writing something on the remote serv&s a conceptual segue, consider the fol-
lowing change: instead of the ORAM CPU locally performing domputation, it creates a garbled circuit
representing that computation, and also garbles all thaeténfor that computation (the inputs are just the
client state and the last fetched item, possibly with soméeamness) and sends it to the server who then
evaluates the circuit. The output of this computation i$ flae next state and the next read/write query, and
the server preforms the read/write query locally, and seadk the result of the read/write query along with
the state to the ORAM CPU. We emphasize that this is just aeginal intermediate step, since this step
does not actually give us any savings and possibly intesferth the security of the ORAM CPU by having
its state revealed to the server.

Next, we change where the ORAM CPU state is stored: insteéttifg the client hold it, it is stored
on the server in garbled format. That is to say, the garblezlitithat the client sends to the server now
outputs a garbled state instead of a regular state, whiclthesinbe used as input for the next ORAM CPU
step. As long as the garbled circuit for the next CPU step teesame input encoding as the one generated
by our current CPU step, then the client does not need toaicttevith the server. However, the garbled
CPU also performs read/write operations into ORAM memoay tieed to be carefully interleaved with our
computations. We need to describe how this is done next.

Let us suppose that the ORAM compiler had the property tr@GRAM CPU knows exactly when
the contents of a memory location that it wants to read nestlast written to (which is the case for many
ORAM schemes). We attempt to perform the same strategy asdweitth garbling the state: whenever
the ORAM CPU wants to write something to memory. We store nrgrbits as Yao's garbled keys, based
on the actual location, and the time last written. Thus, thetbred in some particular location has one of
the two garbled keys. However, this does not immediatelykywoecause if each memory location uses a
different encoding, the CPU circuit does not know which etliieg to use when reading at some future time.

In order to resolve this, we construct a circuit that assistl this transition: the circuit takes as input
a time step and memory location computes (in a garbled forno)possible encodings for 0/1 encoded in
this location and outputs a garbled circuit encoded for tina¢ step to “translate” keys stored in memory
to keys needed by the CPU. Since this circuit does not retjuir&nowledge of the memory location ahead

3

of time, the client can generate as many of these as needkd sttt of the computation. Indeed, if the
ORAM program runs irt steps, the client can generatef these circuits, garble them, and send them all to
the server, non-interactively.

Note that we need Oblivious RAM with poly-log overhead whtre clientsizeis at most some fixed
polynomial in the security parameter times some poly-lagdiain n. This is because for every ORAM
fetch operation, we also need to emulate the client’s ialecomputation of the Oblivious RAM using
garbled circuit, which incurs a multiplicative overheadhe size and the running time of the client. Thus,
the smaller the client of Oblivious RAM, the more efficientr @olution is: in order to achieve poly-log
overhead, all Oblivious RAM schemes where client memonraigdr than poly-logarithmic (e.d. [13], 7])
is not useful for our purposes. We expand on the intuitioneot®n[3.1. In Sectiohl3 we give the main
construction for garbled RAM programs. When combined wilivious transfer, this gives a one-round
secure two-party RAM program computation in the semi-hbnasdel (which can be extended to multi-
party using the Beaver-Micali-Rogaway paradigm][3]), vihige discuss in Sectidd 4. In Appendix B, we
give a direct construction for a single-round ORAM. Thidduals from our general result, but in case where
only single read/write is needed this gives a more direcsttantion which may be useful in some of the
applications.

1.2 Related Work on Oblivious RAMs and Secure RAM Computatian.

Oblivious RAM was introduced in the context of software paiion by Goldreich and Ostrovsky [15]. In
the original work by GoldreicH [13], a solution was givenvi?(,/n) and communication overhead where
lookups could be done in a single round aB@Vv'°e"eloe™) communication overhead for a recursive
solution. Subsequently, Ostrovsky [28] 29] gave a solutitth only poly-log overhead and constant client
memory (the so-called “hierarchical solution”). This g@ua, and most other subsequent solutions (except
for two exceptions described below) require a logarithmimber of rounds per query. Let us consider a
single round solutions only:

e The original single-round solution of Goldreich [13] rems/n client's memory.

e Recently, Boneh et al. [7] extended Goldreich solution tokaan larger blocks, but also requiring
\/n client's memory.

e Williams [37] and Williams and Sior [36], presented a singleand Oblivious RAM that has loga-
rithmic overhead, logarithmic client storage and usesrlditiers.

e Even more recently, Gentry et all__[12] proposed an extensidion-Williams scheme [36] that is
also one-round.

In contrast to all of the above works, we propose the firsttemidfor single-round ORAM solution that
makes use of Yao's Garbled Circuits, is based on any one-watibn (or any block cipher), using constant
client memory in the security parameter and poly-logarithaverhead.

Subsequent to Goldreich and Ostrovskyi [28, 29[13, 15], svorkOblivious RAM (e.g.[[38, 36, 39, B1,
17,18/ 33, 19, 22, 34]) looked at improving the concrete aydgtotic parameters of Oblivious RAM. The
works of Ajtai [1] and Damgard et al. [10] show how to constrablivious RAM with information-theoretic
security with poly-logarithmic overhead in the restricteddel where the adversary cannot read memory
contents. That is, these results work in a model where arrsatyeonly sees the sequence of accesses and
not the data. The notion d¥rivate Information Storagéntroduced by Ostrovsky and Shoup [30] allows

for private storage and retrieval of data, and was prima&alycentrated in the information theoretic setting.
This model differs from Oblivious RAM in the sense that, vehthe communication complexity of the
scheme is sub-linear, the server perfornim@ar amount of work on the database. The work of Ostrovsky
and Shoup([30] gives a multi-server solution to this probleroth the computational and the information-
theoretic setting and introduces the Ostrovsky-Shoup demgf transforming Oblivious RAM into secure
RAM computation. The notion of single-server “PIR Writing/as subsequently formalized in Boneh,
Kushilevitz, Ostrovsky and Skeithl[6] where they provideirmgke-server solution. The case of amortized
“PIR Writing” of multiple reads and writes was considered8h

With regard to secure computation for RAM programs, the iogpions of the Ostrovsky-Shoup com-
piler was explored in the work of Naor and Nissim[27] whictosis how to convert RAM programs into
so-called circuits with “lookup tables” (LUT). The OstrdysShoup compiler was further explored in the
work of Gordon et al.[[20] in the case of amortized programamily, consider a client that holds a small
input z, and a server that holds a large datab&seand the client wishes to repeatedly perform private
queriesf (z, D). In this model, an expensive initialization (dependingyam D) is first performed. After-
wards, if f can be computed in tin& with spaceS with a RAM machine, then there is a secure two-party
protocol computingf in time O(T') - polylog(.S) with the client using)(log S) space and the server using
O(S - polylog(S)) space. The secure RAM computation solution of Lu and Osksof&5] can be viewed
as a generalization of the [30] model where servers mustoadorm sublinear work.

1.3 Our Results

In this paper, we show how to garble any Random Access MadRAd) Programm; that runs in time
upper bounded bywhile keeping all the non-interactive advantages of thesv@arbled Circuit approach.
More specifically, we present a program garbling method wiziensists of a triple of polynomial-time
algorithms (G, GI,GE). G takes as input any RAM program; that includes an upper bouridon its
running time and a pseudorandom function (PRF) fankilyand a seed for PRF of sizek (a security
parameter) and outputs a garbled progrEm= G(m,t, F,s), where all inputs are polynomial in the
security parameter. Just like gabled circuits, we provideag to garble any input for 7, into Garbled
Input X = GI(x,s), and an algorithm to evaluate a garbled program on garbleatsr £ (I, ¢, X).
The correctness requirement is that for any, F, s it holds thatm,(z) = GE(G(my,t, F,s),GI(z, s))
with the security guarantee that nothing abous revealed except its running tinmeexpressed in terms of
computational indistinguishability~) between the simulatdim and garbled outputs. So far, the above
description matches Yao'’s garbled circuit description.e Tifference is both in the running time and the
size of garbled program for our new garbling method.

Main Theorem Assume one-way functions exist, and let the security pasarbe & and letF' be a PRF
family based on the one-way function. Then, there exist®grBm Garbling triple of poly-time algorithms
G, GI, GE such that for any any; and any inputz of lengthn we have the following.
Correctness:Vx, my, F, s: m(x) = GE [G(my,t, F, s), GI(z, s)].
Security: 3 poly-time simulatorSim, such thatvr, ¢, z, s, where|s| = k,

[G(m,t, F,s), GI(z, s)] & Sim [1%,t, ||, m(2)].
Garbled Program Size: The size of the garbled program

|G(my,t, F,5)| = O ((|r| +t)- kOD) . polylog(n)).
Garbled Input Size: Let|z| = n and|s| = k. Vz, s the garbled input size

|GI(z,s)| = O (n- k%W - polylog(n)).

1.4

Our main construction is a garbled program based on any @ayefumction (or a block-cipher), and is
time-compact in the sense that if the original program rartstime and has size, our garbled RAM runs
in O(t - poly(k,logn)).

Remarks

Making programs and outputs private. We note that similar to Yao, we can makgto be a time-
boundeduniversal program w;, (i.e., an interpreter) and = (7}, y) include both time-bounded
programs; and inputy, so thatu;(x) = m}(y). Part of the specification of, may also include
masking its output — i.e. to have output blinded (XORed) véitrandom string. That allows, just
like Yao, to keep both the program and the output hidden framaahine that evaluates the garbled
program. Such a modification has been utilized in the liteeasee, e.gl [2]).

Reactive functionalities. Our result shows that we can first garble a large ingut:| = » with gar-
bled input size equal t0(|z|-k“(!)-polylog(n)) so that later, given private programy , ..., 7., . ..

for polynomially many programs where prograrhruns in timet; and potentially modifies, (e.g.,
database updates) we can garble and execute all of thesampgist revealing running times and
nothing else. The size of each garbled program rem@if@r’| + t;) - k). polylog(n)). Itis also
easy to handle the case where the length ochanges, provided that an upper bound by how much
each program changes the lengthca$ known prior to garbling of next program.

Cloud computing. As an example of the power of our result we outline secureccloomputa-
tion/delegation. In this simple application one party hasrgput and wants to store it remotely and
then repeatedly run different private programs on this.da&active functionalities allow us to do this
with one important restriction: we do not give the server aioh in adaptively selecting the inputs:
but this is not an issue as the server itself has no inputstpribigram. The other possible problem is
if the programs themselves are contrived and circularlgregfce the code for the garbling algorithm.
Such programs would be highly unnatural to run on data andesdisallow them in our setting.

Two-party computation. Note that just like in Yao’s garbled circuits, in order tortsanit the garbled
inputs corresponding to input bits held by a different pdotythe sake of secure two-party computa-
tion, one relies on Oblivious Transfer (OT) that can be dameinteractively in the OT-hybrid model.
Here, we insist that the OT-selected inputs to our garblednam are committed to prior to receiving
the RAM garbled program, i.e. non-adaptively [4].

Optimizations. We remark that step two of our blueprint is applicable to atal ORAM schemes
with small CPU as follows: instead of collapsing in the hiehécal Oblivious RAMs multiple rounds
of a single read/write to a single round, we can implementstep 2 directly for each round of each
read/write (e.g. even inside a single read/write simutatib Oblivious RAM that requires multiple
rounds) of the underlying Oblivious RAM: by implementing aracle call for each Oblivious RAM
CPU read/write using our method of compiling memory fetch the fly” into garbled circuits. Any
Oblivious RAM where the CPU can tell precisely when any megmocation was overwritten last
can be complied using our approach. (We call such OblivioAMR “predictive memory” RAMs
and explore this further in the full version.) For examples property holds for[[22] ORAM. It also
allows a generic method to “collapse” all multi-round ptiie memory Oblivious RAM with small
CPU into a single round. Observe that the overall compldwityarbling programs depends both on
the CPU complexity and the ORAM read/write complexity.

e Tighter Input Compactness. Using an ORAM scheme that has small input encoding and small
size CPU (such as [22]) we can also make Input Compactnessr imain theorem tighter: for all
programs we can make garbled inputs taek), where recall that is the input size and is the
security parameter. We remark that if we wish to garble okdyge” programs that run time at least
Q(n -logn - K°M), we can make Input Compactness even better under the assartigt one can
encode inputs to garbled circuits to be of si2zé: + k) and have the garbled program “unpack” the
inputs to the fullO(nk) size. Such packing techniques for have been recently deselfor garbling
the inputs of garbled circuits by Ishai and Kushilevitz|[21]

e Stronger Adversarial models. As already mentioned we describe the scheme in the honest-bu
curious model based on honest-but-curious Yao, and onheimbn-adaptively secure setting (se€e [4]
for further discussion of adaptivity.) There is a plethofavorks that convert Yao'’s garbled circuits
from honest-but-curious to malicious setting, as wellrggthening its security in various settings.
Since our machinery is build on top of Yao's garbled circ#ad Obvious RAMs that work in the
fully adaptive setting), many of these techniques for gfewnguarantees for Yao’s garbled circuit
apply in a straightforward manner to our setting as well. \Wgtpone description of malicious models
to the full version.

2 Preliminaries

2.1 Oblivious RAM

We work in the RAM model with stored programs, where thereG#4&J that can run a program that performs
a sequence of reads or writes to locations stored on a largeonge This machine, which we will refer to
as the CPU or the client, can be viewed as a st&@‘mcessor with only a few special data registers that
store program counters, query counters, and cryptogralyie (primarily a seed for a PRF) and tliaPU

can run small programs which model a single CPU step. GiveilC®PU stat&: and the most recently read
elementr, CPU (X, x) does simple operations such as addition, multiplicatigmiating program counter,
or executing PRF followed by producing the next read/wrdemmand as well as updating to the next state
Y.

Because we wish to hide the type of access performed by thietclive unify both types of accesses
into a operation known as@uery. A sequence of queries can be viewed as a list of (memory location,
data) pairdvy, 1), ..., (vn, z,), along with a sequence of operations,, . . . , op,,, whereop; is a READ
or WRITE operation. In the case ofERD operations, the correspondingvalue is ignored. The sequence
of queries, including both the memory location and the dag¢aiormed by a client is known as tlecess
pattern

In our model, we wish to obliviously simulate the RAM machingh a client, which can be viewed
as having limited storage, that has access to a server. Howine server is untrusted and assumed to
malicious. An oblivious RAM issecureif the view of a any malicious server can be simulated in gohe
in a way that is indistinguishable from the view of the semhering a real execution.

Concretely, we focus on the hierarchical Oblivious RAM sukeof Ostrovsky([28, 29]. There is a data
structure that consists of a sequence of bufféysBy 1, ..., B of geometrically increasing sizes, eB;
is of size2?. Typically k = O(1) (the first buffer is of constant size) ard= log n (the last buffer may

We can consider statelessersion where all registers are stored in memory. For easgmafsition, we let the client hold local
state.

contain alln elements), where is the total number of memory locations. For ease of exositive set
k = 1 in the sequel. These buffers are standard bucketed hags tatthere eact; consists of, say’,
buckets, each of size To read or write to a memory locatianfrom the hierarchical data-structure, we
wish to hide the identity of the buffer from which the elemarats found. Specifically, we start by reading
the top (smallest) buffeB; in its entirety; then, for each < i < L, we computej = h;(v) (whereh;(-)
is a hash function implemented as a PRF with appropriate oloarad range for each level) and read the
entire j-th bucket § elements) of that buffer. This alone is not sufficient, asdf mvake identical queries,
the same locations will be scanned. Thus, once eleménfound at some level, we search upon random
dummy locations from subsequent (bigger) level buffersaddition, at the end of this process, we re-insert
elementr (overwriting it in case of a write) into the top buffer of thatd-structure. This, together with the
re-shuffling procedure described below, guarantees thahwekecuting future operations with the same
independent locations will be read from each buffer. Finalle remark that even if elementwas not in
any buffer before the operation, it will be inserted into tbe buffer.

After every2' insertions, bufferB; is considered “full” and its contents are moved into the rexter
B;,1. More precisely, we do the following: aften = 2 - ¢ reads or writes{ odd, wherem is divisible
by 2¢ but not by2i*+!, we move all the elements from buffefs, ..., B; into buffer B, (at such time
step, B, itself is empty). For this, we pick a fresh pseudo-randomhhaaction for B;,; (which can be
modeled using a PRF). Finally, there is a process callediobk hashing which we will use in detail later
that removes any correlation between the new locationseoélments irB;; and their old locations.

2.2 Yao's Garbled Circuits

Garbled circuits were introduced by Yao [40]. A series of kedlooked at proving the security and formal-
izing the notions of garbled circuits, including LindelldaRinkas[[23], and recently, the work of Bellare et
al. [5]. We refer the reader to the latter work for more dstaihd we briefly summarize the key properties.

A circuit garbling scheme we view as a triple of algorithfds GI, GE) whereG (1%, C) takes as input
a security parameter and circuitC' and outputs some garbled circliitand garbling keysk. GI(z, gsk)
converts an input: and agsk into a garbled inputX, and GE(T', X) evaluates a garbled circuit on an
garbled input.

We also paraphrase a summary of garbled circuits given in €hal. [S] which uses a point-and-
permute variant due to Malkhi et al. [26]. Consider a circuiand a CPA-secure symmetric encryption
scheme K eyGen, Enc, Dec). For each wire € C, we generate two random keys, w} and a random
bit “flip” indicator ;. We associate? with \? = b®7; and call the paitw?||A?, w}||A}) the 0 and 1 labels
for wire i respectively (the\ will be henceforth omitted in following sections). For edah-in 2 gatey with
input wiresi, j and output wirek, we associate a garbled table to the gate consisting of tleeving four
ciphertexts:

EnC,x (E nC,s (wl ™™ llm @ g,))>
K J

Encwm <Encwﬁﬂj <’wi(mﬁﬂj) |7 @ g(mi, _‘7rj)>>
3 J

EnC,,-m (EnCwU A LEICL)>>
2 J

EnC, - <Encwi"j <wg(ﬁmﬁﬂj)||ﬂ-k @ g(_‘ﬂ'i,_‘ﬂ-j))> '
7 J

Given this garbled table and labels for the witesid; (w? || A% andw?j ||)\3’7 respectively), a party can

decrypt the row corresponding kﬁi,)\? to obtain the proper label for the output Wirzeg(b“bj) | |)\2’€. If the
labels to the input wires are given, then one can recursaxjuate all gates of the circuit. Suppose now the
two parties wish to securely evaluatéon input(z,y) where the circuit generator holdsand the circuit
evaluator holdg. The circuit generator sends the labels for the wires cpomding to the proper bits af,

and the labels for the input wires corresponding to the prbjie of y can be sent using oblivious transfer.
The circuit evaluator at the end will receive a bunch of lalmgintaining the\, for all the output wires.

We use a variant of Yao'’s garbled circuits in which some ofdbgput wires are revealed to the circuit
evaluator immediately in the clear and some are not revedRmlealing output wires in the clear is the
standard way of viewing garbled circuits. For output witggttare not revealed, they are either represented
as internal garbled keys (that can be used as inputs for otfoelits) or XORed with pseudo-random pads
that can later be revealed. It will be clear from the contelich representation of various outputs we use.

We first make an observation that the labels (keys) on a givemwsed in a garbled circuit can be re-
used in additional newly generated gates, as long as the dakes not change between the uses and it is not
revealed whether this label represents 0 or 1. (For exarapgeime that garbled circuit evaluator is given a
label on some input wire, which is a key representing a 0 or\&@e claim that the same key can be used as
input key for other garbled circuits that are generated.)afehis observation allows us to execute garbled
circuits in “parallel” or “sequentially” where some labelee re-used. Indeed, this observation is implicitly
used in classic garbled circuits in gates where the fansogitgater than 1: all outgoing wires share the same
labels (see e.g. Footnote 8 in Lindell-Pinkas| [23]).

Lemma 1. Suppos& and(C’ are two circuits and suppose there is some inpédr which we want to com-
puteC(z) andC’(z) (resp.C(C'(z))). Suppose the wirasy, . .. ,w, in C represent the input wires far and
similarly definewy, ..., w;, represent the input wires afin C’ (resp. vy, . .., v}, be the output wires at’).
Let k{’ui represent the label indicating wire; = b, and letC' and C’ be randomly garbled int6:C'(C) and
GC(C') under the restriction that?, = k°, (resp.k?, = k%). Then the tupléGC(C), GC(C"), {k%i }1p)
can be computationally simulated. 7' 7'

Proof. Consider the composite circuld = C||C’ (resp. E = C o (') which is just a copy of and a
copy ofC’ in parallel (resp. sequence). Then every garblingahduces a garbling of andC’ with the
restriction exactly as above. By the security of garbleduiis, there exists a simulator that can simulate
(GC(D), {ki }i—y)- We can construct a simulator for our lemma by simply taking simulator and taking
the output and separate aditC'(C) andGC(C'), as the lemma requires. O

Remark: If the data is encrypted bit by bit using Yao’s keys, Lenimalaved us to run arbitrary garbled
circuits on this data, akin to general purpose “functionsiion” on encrypted data. This observation itself
has a number of applications, we describe these in the frdlo of the paper.

3 Non-interactive Garbled RAM Programs

3.1 Informal description of main ideas

We consider the RAM model of computation as in the works of [P%[29] where a RAM program along
with data is stored in memory, and a small, stateful CPU with(&) instruction set that can stor@(1)
words that can be of sizpolylog(n) = poly(k) wherek is the security parameter. Our starting point
is a ORAM model that can tolerate fully maliciotsmperingadversary (see [29, 15]). Each step of the

CPU is simply a read/write call to main memory followed by @xting its next CPU instruction. We now
summarize our ideas for building Garbled RAM programs fran©édlivious RAM program.

In order to garble a RAM program;,, we consider the two fundamental operations separatelglama
how to mesh them together:

1. Read/Writg(v,) from/to memory.

2. Execute an instruction step to update state and produteaael/write query>’, READ/WRITE(v/, 2') «—
CPU(%, x). Updating the state can include updating local registaseimenting program counters
and query counters, and updating cryptographic keys.

Our goal is to transform this into @on-interactiveprocess by letting the client send the server enough
garbled information to evaluate the program up steps, where upper bounds the RAM program running
time. We give some intuition as to how to construct a cirooiitdach step, and then how to garble them. The
first part will be modeled as the circutbr 457, and the second part will be modeled as the cir€diby.

The circuits satisfy a novel property: tipdain circuit Cor s €emulates a query for the ORAM client and
outputs a bit representation of a garbled circeifor 42s. ThisGCoranr has output encodings that will be
compatible with thegarbled circuitGC (Ccpry) to evaluate a garbled the CPU's next step. We remark that
GCoranm actually contains several sub-circuits, but is written aimgle object for ease of exposition. If we
generate of these garbled circuits, then a party can evaludtéirae garbled RAM program by consuming
one garbleor s and one garbledcpy; per time step.

We first consider the circui€-pr;, which is straightforward to describe. This circuit takesi@put
3] representing the internal state of the CPU, anithe last memory contents read. Recall that the CPU
performs a ste@'PU (X, z) and updates the state ¥ and gives the next read/write query to memory
locationv’ and contents’. In order to turn this into a circuit, we can sacrifice somecifficy and have
a “universal” instruction in which we ruaveryatomic instruction (from its constant sized instructiot) se
and simply multiplex the actual results using the instrcpcode. This universal instruction is modeled
as a circuit which is of siz&°(!). We remark that although this circuit is simple, the comitjearises
from when we want to garble this circuit: the garbling mustibee in a way so that the garbled inputs and
outputs are compatible wWithCoraas-

The circuitCoraps must emulate the client in Oblivious RAM (we can think of it lasing a non-
interactive client either by breaking out each individugipsas a separate circuit, or using a hon-interactive
ORAM). The input of the circuit is just an ORAM read/write gqu& and the output of the circuit ia bit
representation that describes a set of garbled circuits, agvalent to what would have been produced
via the ORAM client which we Ca”GCORAMB We give full details on the construction in Sectionl3.2.
It is important that we argue that the result of this fetch barcombined with the evaluation of the CPU
step. Observe that since the labels in our single-round ORAMyenerated as pseudo-random time-labeled
encodings, so we know ahead of time only the encoding of thub(but know neither the input nor output)
of thei-th invocation of the single-round ORAM. Thus when garblikgby/, the input encodings use exactly
the output encodings from the respective outputs of the ORR&tall in our single-round ORAM protocol
the server sends back the encoded output to the client; Wwerdo notsend it back, and instead keep the
result and use it as input in the next CPU step (which is semdecorrect via Lemmia 1).

2Since the ORAM client uses randomness as well as time-ldleeleodings (which are outputs of the PRF), we will allow ¢hes
to beinputsto Corans, SO that they may be pre-computed “for free” rather than agegbvia the circuit. The circuit consumes
these inputs in order to generate the output garbled ciwdgtlibut having to evaluate these itself. The only thing the circoiesl
not have ahead of time is the hash of the location of the quesgich level, so our circuito r.aa must use PRFs to compute them.

3GCoranm consists of a set 4B | + 2L — 2 garbledGC (Crnater), corresponding garble@C (Cret), a garbledFC(Curite),
and all necessary time-dependent upd&6€¥C.,,4qtc) as in Theorerf]2.

10

Then, putting it all together, to garble a RAM programthat runs in timet, the program garbling
algorithmG generateg garbledCor Ay andCe py circuits, and also encodes the initial statgof the CPU
with the program initialized, counters set to zero, and viriélsh cryptographic keys. The full construction
of G is given the next section, Sectibn3.2.

Looking ahead, in the context of secure two-party companatihis garbled program can be sent to the
server in a single round, whereupon the server can evaloatprogram by itself. The result is sent back
to the client, and since the labels were all generated psermtomly, the client can determine whether the
output bits are zero or one. In the case where the server atsmputs, the client can generate the pseudo-
random labels and then the server uses Oblivious Transfamléat the ones corresponding to its input. We
mention that in the OT-hybrid model, this is a non-interaetprotocol, we can avoid adaptivity issues by
requiring the server to provide its inputs upfront at the sdaime the client sends its garbled program, i.e.
this can be viewed as just a one-step process where the digntalgram is sent “along” with the garbled
inputs via the OT functionality.

3.2 Main Construction of Garbled Programs

We first describe how to construct the algorithisGI, GE. Given a programr; running in timet, we
describe the algorithnd that converts it into a garbled program. In order to do so, we follow the two
steps outlined above and we consider the construction ataicthat performs an ORAM que§ora
and a circuit that runs one CPU stéppy;.

Our garbling algorithm will provide enough garbled circuits to executsteps of a program;. Each
step is a garbled RAM query (done obliviously via our singiand ORAM) followed by a garbled CPU
computation. It starts with a garbled encoding of the ihisiate ¥ of the CPU with the program,
initialized, counters set to zero, and with fresh cryptpbie keys. For each of thetime steps, it creates a
garbledGC(Coranr) for a read/write of that time step, then a garb&d'(Coprr) to perform a CPU step.
We show how to construcior4as andCepy such that they can be garbled and interleaved. We will show
that this garbling is independent of the actual program,patiardless of what memory locations have been
fetched, and is correct and secure.

First, we describ&€orays to mimic an oblivious read/write access to main memory. k@, tit can
just perform the steps in our single-round Oblivious RAMthwbne difference:G does not know ahead
of time which memory location will be used. Hence, in ordeot@rcome this, the circufpor 4, must
take a memory locatioas inputand internally formulate what the ORAM client computégs.z 4, outputs
what the “virtual” ORAM client would have sent to the servargarbled circuitzCorays representing a
read/write query. The novelty in this construction is thétew we feed a memory locatianinto Cor s,
the output precisely is a garbled ORAM read/write querytiadato that memory location. In order to hide
v, bothCoran andv are garbled intd7C(Coranr) andV respectively, and by the correctness of garbled
evaluation, the output is stittCorans. By the security of the underlying ORAM, this outpGCor AN
can actually be simulated.

Although it is a circuit that outputs another circuit, théseno circularity in this construction: given a
guery location and some fixed randomness, the behavior dB®M client is completely deterministic,
straight-line, and takek®") - polylog(n) steps, so the output can be represented by a circuit als@bf th
size. This ORAM client is independent of the main program Gitich only uses ORAM as an “oracle”.
We emphasize this again, becausewill most likely be ran by a client(z does not play the role of the
ORAM client but ratheemulateghe ORAM client viaCor 4, SO this isnota client attempting to capture
its own logic in a circuit. We provide a pseudocode desaiptfCoraas in Figured.

Looking ahead(will garble this circuit and ensure that the output of an ORAlery has the same

11

Inputs: An ORAM query to read/writév,) and a query numbet This circuit interprets the client
performing the/-th ORAM query, which uses randomness and time-labeleddings based oA. As
such, this circuit also takes these randomness bits andgon@uted encodings as inputs.

Output: A garbled circuitGCoraps representing a read/write ORAM query.

Circuit Description: We describe the functionality of the circd@ib g 4,. We recall our algorithm for a
ORAM query. Using time-labeled encodings via PRFs, it gatesra set ofB;| + 2L — 2 garbled
GC(Cater) Which has hard-coded location information built into itthveorresponding garbled
GC(Cpeqt) circuits, and one finalzC'(Cy,rite) garbled circuit for writing the element back to the top level
(and possibly an update circuit). Although the ORAM clievaleiates these PRFs internally, de not
encode this as part of our circdlp p 457, but rather we “consume” them as input. Similarly, the ORAM
client must use randomness, which we also consume from i @iCoras. Since the circuit itself
emulates the ORAM client during a query, it appears simédahe construction in Figufg 5, but with the|
key difference that the encodings/PRFs are fed as inputs.

1. For the top levelB;, for each bucketCorans creates a time-labeled garbled ciroGi€ (Cqtcn)
consuming the input encodings to be used as garbled labels.

2. For subsequent levels=2... L:
(@) The circuitCoran computes;? = h;(v) and consumesg; from the input (the input itself is

uniformly random)

(b) Consume two secret keys for encryptiokf andsk! from the input and create a garbled
circuit GC'(Cpext)

(c) Create two time-labeled garbled circult€’(C,,q:.1), One that searches farin bucketq?
encrypted undesk?, and one that searches forin bucketq; encrypted undesk}, again
consuming the encoding from the input@@r .-

3. Coranm also creates a garblegC'(C,,itc) that writes the result back to the first empty position the
top level bufferBy.

4. If ¢ is a multiple of| By |, then a reshuffle step is performed using the time-labeledeghupdate
circuit GC(Cupdate)-

5. The combined set of garbled circuits is referred t6:6% r ;.

We point out that throughout this entire process, every imeery circuit is created; increments in
order to keep track of the time-labeled encodings requieth®Co g4 Circuits.

Figure 1: The ORAM Client Circui€orans

encoding as that used to garldlep;. The algorithmG can then garble botf-py andCorans ahead of
time, without having to know the memory location.

Next, we consider building the circuit which performs a #nGPU step in the RAM prograntc py
that is supposed to perfor®f, READ/WRITE(v', 2’) «— CPU(X, z). In order to hide which instruction is
being executed, we build the circuit to take an instructiponaale and we run every single-step instruction
from its constant sized instruction set (not all possiblegoam pathspf the CPU. The circuit multiplexes

12

the actual results using the instruction opcode. This usalénstruction is modeled as a circuit which is of
sizek®™M) and is independent of the ORAM circuit, independent of therigual locations, and independent
of the current running time.

of it?

The answer is that whe@ garblesCqpy, the encoding will depend on the output@r 4, in the
previous time-step. Note that this construction is notularc as each garbling only depends on the pre-
vious one, leading up to a total oftime steps. This can be done becats&nows the encoding of the
output encodingbut not the output) of the Oblivious RAM query, whidwoes not dependn the location
queried. This output encoding is then used for the inputrpatar encoding fo&C (Ccprr). We provide a
pseudocode description 6fin Figurel2.

Inputs: A programm, with an upper bound on running timeand a pseudo-random function famity
along with a keys.

Algorithm Description: The algorithmG is performed as follows. It creates an encoding of the initia
state of the CPUx(with the programr; initialized. It also encodes an initial program counter and
cryptographic keys. We show how to constrdeir 41 andCe py such that they can be garbled and
interleaved acrosstime steps. We must argue that this garbling is independdheactual program
path, regardless of what memory locations have been fetemelis correct and secure.

For each time step=1...t, G creates:

1. A garbled read/write query circuitC'(Coranr) for performing query numberon some (unknown
variable) garbled locatioly; (and.X; in the case of a write)7 pre-computes randomness and PRF
evaluations and hardwires them. Althoug@hdoes not know the eventual output, it knows the
encodingof it, which isindependent of the queried locatiok uses this encoding for the following:

2. A garbled instruction circuiGC(Ccprr) with input wires of X; using the encoding from above, and
the input wires of; using the output encoding from the previous CPU step. Theubug a garbled
locationV;;1 (and X1 in the case of a write) to be used in the next read/write quedyas
garbled updated stade; , ;.

Figure 2: Program Garbling Algorithi&

The algorithmG1 for garbling an input of size is just the time-labeled encodings starting from wher-
ever the RAM program expects the inputs to be located.

The algorithmG E used to evaluate a garbled progréinon garbled inputs evaluates the garbled circuit
GC(Coram), then executing the garbled instructiahC (Ccpry) one at a time, up totimes. The process
is precisely performing the same stepstaexcept evaluating garbled circuits instead of generatiegnt
In addition, once it gets the garbled ORAM query, it must @sgecute it as well. We provide a pseudocode
description ofG in Figurel3.

3.3 Main Result

We now state our main result:

Theorem 1. Assume one-way functions exist, and let the security pdeanbe & and let F' be a PRF
family based on the one-way function. Then, there existdfimieat Program Garbling triple of algorithms
G,GI, GE such that for anyr; anyt and any inputz of lengthn, we have the following.

13

Inputs: A garbled progranil; with garbled inputX.
Algorithm Description: The algorithmG E is performed as follows. It first stores the initial encoded
program state and inputs into memory. Then, for each timeistel ... ¢, GE performs:

1. Evaluate the garbled query circ@C (Coranr) On a garbled memory locatidri. The output is
GCoranm Which itself is a garbled circuit that represents a readéagiery in our single-round
ORAM protocol. Execute the query playing the role of the sete obtain some garbled outpii
which is kept locally instead of sent to the client.

2. Evaluate the garbled instruction circGtC (Ccprr) on garbled inputs(; andy;. Obtain a new
read/write query; 1.

After t steps, output the final valug, .

Figure 3: Garbled Program Evaluation AlgorithiE

Correctness:Vz, my, F) s:

m(x) = GE [G(my,t, F, s), GI(z, s)].

Security: 3 poly-time simulatotSim, such thatvr, ¢, z, s, where
|s| = k [G(m, t, F,), GI(z, s)] & Sim [1%,, ||, m (2)].
Program Size:The size of the garbled program

|G (7,1, F,s)| = O ((|7] +t) - k1) - polylog(n)).

Input Size: Let|x| = n and|s| = k. Vz, s the garbled input size
|GI(z,s)| = O (n- k% - polylog(n)).

Proof.

Correctness.This construction is correct due to the correctness of tlierying single-round Oblivious
RAM scheme in Theoreml 2 and the correctness of garbled tsrclm addition, we need to verify that
when interleaving the garbled instruction execution along with the ORAM fetgleries, the ability to
properly decrypt and evaluate the garbled circuits is na@et. Becausé' generates a garbled circuit
GC(Coram) to simulate the fetching client inside the ORAM, the outpoteding is chosen so that it
matches the input encoding 6fC (Copy). Thus, sincgs generates sufficiently many circuits for ORAM
fetches corresponding to thieth instruction executed (with respect to time, regardiafsthe ordering of
the actual instructions ifr), the GE algorithm evaluating the garbled circuits can properlyleste the
instruction and throw away any unused fetches correspgridithei-th step.

Security. In order to show security, we must show that there exists alabor Sim that can simulate the
garbled execution given only the running time and programputu In order to do so, we consider what a
server running the algorithi@ E does during the execution of the garbled program.

It first stores the initial encoded program state and inptis inemory. Then, for each time stéep=
1...t, GE performs: In each CPU step of the garbled program executierserver performs the following:

1. Evaluate the garbled query circ@itC(Coranr) on a garbled memory locatior;. The output is
GCorapm Which itself is a garbled circuit that represents a readéwguery in our single-round
ORAM protocol.

2. Execute the garbled ORAM queyCorans playing the role of the server to obtain some garbled

outputX; which is kept locally instead of sent to the client.

14

3. Evaluate the garbled instruction circ@itC'(Ccpyy) on garbled inputsX; and ¥;. Obtain a new
read/write query; .

By Theorem 2, the underlying single-round Oblivious RAM exgre and uses time-labeled garbled
circuits and encodings and can be simulate®byor 4. Furthermore, the underlying Yao’s garbled cir-
cuits are secure, and can be simulated®sbyy,,. Thus, the access pattern of the ORAM can be simulated
even for tampering adversary, and we need only show thatah#egl circuit emulating the ORAM client
GC(Coranm) and garbled instructionSC (Ccprr) can also be simulated. The garbled circuits can be inter-
leaved securely due to Lemrh 1, and the time-labeled ergodiemselves are just outputs of a PRF. By
the security of Yao’s garbled circuits and the underlying-PtRese can be simulated securely.

Program Size.We analyze the cost of garbling a program. First, to gartbkhalinstructions of the program,

we incur a cost 0D (|| - k() - polylog(n)). Furthermore, because the overhead of our underlying ORAM
is K21 . polylog(n)) and since at each time step, the client must prepare “CPLlat&mn” circuits which
include some constant number of ORAM queries, we incur amadt - k°() . polylog(n)). Overall this
leads to the garbled program being of si2€(|7| + t) - k°V - polylog(n)).

Input Size. We analyze the cost of garbling an input of sizeEach bit of the input is encoded and stored

in the ORAM hierarchy which incurs @(k°() - polylog(n)) multiplicative overhead, the total size of the
garbled input is therefor®(n - k() - polylog(n)).
]

4 Application to Secure RAM Computation

We give an example application in which only one party hasiirgnd wants to repeatedly run programs
on this data. Such is the case of secure cloud computing,.endoeneone stores data in the cloud and then
later runs computations against that data. We emphasizénttids setting, there is no issue of adaptivity
because the server has no inputs. In the typical setting @fvty secure computation, we deal with this
by making the server first perform OTs to retrieve its infugforethe client sends the garbled program. In
the multi-party setting, the technique can be utilized e Beaver-Micali-Rogaway paradigim [3] to achieve
constant-round MPC with the same approach aslin [3] but véatblgd RAM programs.

That is to say, in this application, a client wishes to stanme datar on a remote server and then run
various RAM programs om without the server learning the results of the programsitself. Of course, the
client could always ignore the server altogether and ruthalprograms on: locally, so we are envisioning
a scenario in which the client does not want to carry arouhdfats data locally and wants to only store
a few cryptographic keys or counters. To apply Garbled RAbgpams to this application, the client first
garbles the input to getX = GI(z) and sends it to the server. Then for each program the clientswa
to run, it recalls the encoding of the previous output an@te®a garbled program using the labels of the
previous output as inputs for the current program.

5 Conclusions and Open Problems

Recently, Goldwasser at. al._[16] have shown how to consttiueusableGarbled Yao. It is tempting to

plug it into our construction to achieve reusable GRAM witimpactness proportional to program size and
independent of its running time. The idea is to compute poeany iterations of the CPU computation using
reusable Yao (instead of sending fresh garbled circuit &mheCPU step) where CPU computes its own

15

garbled keys for each step. This is possible only if therstexpoly-time reusable circular-secure Garbled
Yao with input encoding of size independent of the circuiesiConstructing such a gadget is an interesting
open problem even under non-standard assumptions.

6 Acknowledgements

We thank Oded Goldreich and Daniel Wichs for very helpfutdssions and the anonymous reviewers for
their comments.

References

[1] Miklos Ajtai. Oblivious RAMs without cryptogrpahic asmptions. I'5TOG pages 181-190, 2010.

[2] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Fr@ecrecy to soundness: Efficient verifica-
tion via secure computation. ICALP (1), pages 152-163, 2010.

[3] Donald Beaver, Silvio Micali, and Phillip Rogaway. Theund complexity of secure protocols (ex-
tended abstract). IBTOG pages 503-513, 1990.

[4] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Aatavely secure garbling with applications
to one-time programs and secure outsourcingASMACRYPTpages 134-153, 2012.

[5] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Fulations of garbled circuits. |IACM
Conference on Computer and Communications Secyréiiges 784—796, 2012.

[6] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and Wéth E. Skeith Ill. Public key encryption that
allows PIR queries. ICRYPTQpages 50-67, 2007.

[7] Dan Boneh, David Mazieres, and Raluca Ada Popa. Remdteimis storage: Making oblivious
RAM practical. CSAIL Technical Report, MIT-CSAIL-TR-201018, 2011.

[8] Nishanth Chandran, Rafail Ostrovsky, and William E. i#kdéll. Public-key encryption with efficient
amortized updates. IBCN pages 17-35, 2010.

[9] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, antgFgheng Zhou. On the security of the
"free-xor” technique. INTCC, pages 39-53, 2012.

[10] Ivan Damgard, Sigurd Meldgaard, and Jesper Buus &lel®erfectly secure oblivious RAM without
random oracles. ITCC, pages 144-163, 2011.

[11] Stephen A. Cook and Robert A. Reckhow. Time boundedaamdccess machinesournal of Com-
puter and System Scienc&$4):354—-375, 1973.

[12] Craig Gentry. Personal communication, 2012.

[13] Oded Goldreich. Towards a theory of software protectimd simulation by oblivious RAMs. In
STOC pages 182-194, 1987.

[14] Oded Goldreich, Silvio Micali, and Avi Wigderson. How play any mental game or a completeness
theorem for protocols with honest majority. 8BTOC pages 218-229, 1987.

16

[15] Oded Goldreich and Rafail Ostrovsky. Software pratectand simulation on oblivious RAMsJ.
ACM, 43(3):431-473, 1996.

[16] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinok¥aianathan, and Nickolai Zeldovich. Suc-
cinct functional encryption and applications: Reusabibigal circuits and beyond. Cryptology ePrint
Archive, Report 2012/733, 2012.

[17] Michael T. Goodrich and Michael Mitzenmacher. Privgugserving access of outsourced data via
oblivious RAM simulation. INCALP, pages 576-587, 2011.

[18] Michael T. Goodrich, Michael Mitzenmacher, Olga Oheinko, and Roberto Tamassia. Oblivious
RAM simulation with efficient worst-case access overheadCCSW pages 95-100, 2011.

[19] Michael T. Goodrich, Michael Mitzenmacher, Olga Oheinko, and Roberto Tamassia. Privacy-
preserving group data access via stateless oblivious raniaion. INSODA pages 157-167, 2012.

[20] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, f@mndo Krell, Tal Malkin, Mariana Raykova,
and Yevgeniy Vahlis. Secure two-party computation in swddr (amortized) time. IACM Conference
on Computer and Communications Secunigges 513-524, 2012.

[21] Yuval Ishai and Eyal Kushilevitz. Personal communimat 2012.

[22] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. Oie tfin)security of hash-based oblivious RAM
and a new balancing scheme.30©DA pages 143-156, 2012.

[23] Yehuda Lindell and Benny Pinkas. A proof of security afjs protocol for two-party computatiod.
Cryptology 22(2):161-188, 2009.

[24] Steve Lu and Rafail Ostrovsky. How to garble RAM progeanCryptology ePrint Archive, Report
2012/601, 2012.

[25] Steve Lu and Rafail Ostrovsky. Distributed obliviowsr for secure two-party computation. T€C,
pages 377-396, 2013.

[26] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron &efairplay - secure two-party computation
system. INUSENIX Security Symposiypages 287-302, 2004.

[27] Moni Naor and Kobbi Nissim. Communication preservinmgtpcols for secure function evaluation. In
STOCG pages 590-599, 2001.

[28] Rafail Ostrovsky. Efficient computation on oblivioug\RIs. In STOC pages 514-523, 1990.

[29] Rafail Ostrovsky.Software Protection and Simulation On Oblivious RAMBD thesis, Massachusetts
Institute of Technology, Dept. of Electrical EngineeringdaComputer Science, June 1992.

[30] Rafail Ostrovsky and Victor Shoup. Private informatistorage (extended abstract). SmOGC pages
294-303, 1997.

[31] Benny Pinkas and Tzachy Reinman. Oblivious RAM reeitinCRYPTQ pages 502-519, 2010.

[32] Nicholas Pippenger and Michael J. Fischer. Relatiomorag complexity measures.J. ACM
26(2):361-381, 1979.

17

[33] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Migigfi. Oblivious RAM with O((log N)?)
worst-case cost. IASIACRYPTpages 197-214, 2011.

[34] Emil Stefanov, Elaine Shi, and Dawn Song. Towards [catbblivious RAM. INNDS$ 2012.
[35] Daniel Wichs.Personal CommunicatiorMarch 2013.

[36] Peter Williams and Radu Sion. Single round access gyiwm outsourced storage. ACM CCS$S
pages 293-304, 2012.

[37] Peter Williams. Oblivious Remote Data Access Made Practic®hD thesis, SUNY Stony Brook,
Dept. of Computer Science, 2012.

[38] Peter Williams and Radu Sion. Usable PIRNDSS 2008.

[39] Peter Williams, Radu Sion, and Bogdan Carbunar. Buogdiastles out of mud: practical access pattern
privacy and correctness on untrusted storaged@M Conference on Computer and Communications
Security pages 139-148, 2008.

[40] Andrew Chi-Chih Yao. Protocols for secure computatigextended abstract). FOCS pages 160—
164, 1982.

A Glossary of Circuits

Circuit Description

Coru Circuit for evaluating a CPU step.

CorAM Mimics an ORAM client query, outputting garbled versiongtad above circuits.
GCoranm | Garbled circuit that is the output 6br4as. Consists of garbled circuits used in single-round ORAN

Crnatch Matches a memory location in a bucket.

Crext Outputs next bucket to probe depending on found/not found.
Cupdate Performs oblivious hashing for ORAM update.

Cuwrite Writes output to top level buffer.

Figure 4: Glossary of Circuits

B Single-Round Oblivious RAM From Any One-way Function

B.1 Informal Description of Main Ideas

As a starting point, we consider the hierarchical ORAM ofr@gtky [28] 29] and use the same terminology
as in Ostrovsky’s Ph.D. thesis [29]. In this scheme, the dagacrypted (under semantically secure private-
key encryption) and stored in hierarchical levels that uéfh and move into larger levels as they fill up.
To keep track of the movement, each level is temporally éithto different time periods callegpochs
based on how many queries the client has already perforntegiclient only needs to keep track of the keys
corresponding to the latest epoch for each level, whichrm tunly depends on the total number of queries
that so far have been performed.

18

In our new solution, we maintain the same hierarchical Evelit encrypt all bits within the level dif-
ferently. To explain our encryption method, we first geneeaPseudo-Random Functions (PRF) into a
multi-argument PRE(x1, z9, ..., zx_1, 1) Which is computationally indistinguishable from a trulynra
dom multi-argument function. Our multi-argument PRF,éast of outputting a single bit, outputs a pseudo-
random key of length proportional to the security parameter a sufficiently long key for a private-key
encryption scheme. Such a multi-argument PRF can be tyidahstructed from any standard PRF.

We now describe the encoding of each bit in the hierarchiclitisn of Oblivious RAM that we use.
For each bit in each buffer of some level we can uniquely definéocation by epoch number, level
number, bucket number within the level and address withinlihicket. Let us call these specifications
x1,...,2r_1 (Where the details of the encoding will be specified laterdgwiNve define two keys for each
such bit: Fs(z1,...,25-1,0) and Fs(z1,...,2r_1,1). One key corresponds to “encoding of zero” and
the other corresponds to “encoding of one”. Jumping aheadwilV use these encodings inside multiple
Yao's garbled circuits repeatedly using Leminha 1. More djwediy, for every buffer bith we encode it as
Fy(z1,...,2r_1,b) and write this key into the buffer as the encryption of this MWe remark that since
keys are generated pseudo-randomly, the client will notl ieeemember anything except the PRF keys
used to generate the labels and the current epoch. We destrébhigh level how an ORAM read/write is
performed in a single round, and how a re-shuffle is performed

Recall that in the hierarchical ORAM scheme, to fetch a il memory location, the client first scans
the entire top buffe3; in its entirety, then, untib is found in some bucket, computes the hgsh h;(v)
and looks up bucket for each subsequent levBl for i < L. Oncew is found, the client retrieves a random
bucket; in subsequent levels. If we lgt denote the bucket that is fetched at levébr &k +1 < i < L,
then the important observation [n [37/36] is that there aitg two “choices” forg;: h;(v) or random. Thus,
even though the choice of which to use is done interactively, the client can pre-computstafi2L — 2
buffer addresses (two for each level, except the smallestiével which is accessed in its entirety) of the
form ((ho(v),72),..., (hp(v),rL)).

The way we encode all values within each buffer allow us tpare2 . — 2 garbled circuits that operate
as follows. We prepare a circuit that reads the smallest,lswee the inputs are keys to the garbled circuit.
The circuit checks if the value is there or not, and dependiiigs found or not “decrypts” one of the two
circuits for the next level, which also indicates which lenfin the next level the circuit is prepared for. That
is, for each level we prepare two garbled circuits, one t@secandom buffer (if the value already found)
and one to access the location where value could be locatedenéfypt both circuits using private key
encryption. Each circuit outputs a decryption key for thetreércuit, as well as the buffer number that the
just-decrypted circuit is prepared for. The circuit thade the smallest level is given un-encrypted.

Additional book-keeping is done to pass information betwdiferent circuits and to execute the last
circuit that re-writes the top-level buffer. We stress ttreg labels in those garbled circuits are generated
pseudo-randomly and depend only on the epoch as well as fonmets. When evaluating the ORAM
guery, the server evaluates a garbled circuit for each leviie hierarchy in turn, which allows him to
decrypt the next circuit and tells it the location to applythe next level buffer the just decrypted circuit.

Finally, we observe that oblivious updates/re-shuffling ba done through garbled circuits implement-
ing sorting networks, where this can be done through seumratations of the sorting network. We now
proceed to give a more detailed description.

Toward this end, we give two definitions which will help in atonstruction. We recall the notion of a
time-labeled RAM simulation due to Ostrovsky [28] 29]: af@y number of queries-so-far, there exists a
way for the client to efficiently compute the number of timisds previously accessed a particular memory
location. As briefly explained above, we define the notion gbecalledtime-labeled encodindvia Yao

19

garbling) so that whatever is stored in memory, the clientefficiently compute the encoding of it.

Definition 1. Suppose some elemént x) was stored in leveB; in bucket;j in some positiorf inside the
bucket during epoch. We define théme-labeled encodingf (v, x) to be a bit-by-bit encoding where the
b-th bit of (v, z) is encoded ag(i, j, ¢, e,b) whereF is a multi-argument PRF with output being a random
element in the keyspace of our symmetric-key encrypti

Next, consider how the client will build a garbled circuit @ge input is in some specific buffer in
the memory hierarchy. If the stored information is a timeeled encoding, the client can compute two
pseudorandom keys for each bit stored in the buffer, wheeeobthe keys is a “zero” key and another key is
a “one” key. The client knows that one of the two keys is stangtie buffer representing either the encoding
of zero bit or one bit in that location. Hence, one can comstigarbled circuit operating on the buffer using
Lemmdl. The client prepares two garbled circuits for eachl las described before. It also encrypts both
circuits with a private-key encryption where exactly ong ell be revealed depending on whether or not
v has been found already or not. We keep track if the item has fueend or not and depending on this
variable, we release to the server a decryption key for ortheofwo circuits for the larger level, together
with is buffer address. Finally, we need to write the fourehetnt back to the top level buffer, and possibly
perform a hierarchy update.

Definition 2. Suppose some elemént x) was stored in leveB; in bucket;j in some positiorf inside the
bucket during epoch. LetC be a circuit operating on this bucket. L&t be a secret key to some encryption
scheme. We define thime-labeled garbling of’ to be a garbled circuitzC(C') with special encodings of
the wiresin which the labels corresponding to the wires of the hastkétscare precisely the time-labeled
encoding of elements in the buckets. The entire circuitdes #ncrypted undesk.

B.2 Single-Round Oblivious RAM Construction

As building blocks for our construction, we give details ¢ tcircuits which we described above. The
circuits are building blocks to perform the following prolcges: We have one circuit searches for a memory
location in a bucket and returns the memory contents andskeagk of whether or not it is found. We have
one circuit that tells the server where to look in the nexelevt returns either the real hash location or
a random location (and the corresponding decryption kegedéing on the found variable. We have one
circuit that writes the final answer to the top level buffere Wave one circuit to update the ORAM hierarchy.

Here in the details, we highlight a key difference betweenutility of C,,,4:r, @andC,,..¢: the output of
the first circuit, when garbled, will be encoded and obscirenh the server, but the output of the second
circuit,when garbled, will be released to the server in tlearcsince it must fetch and decrypt. It will be
convenient to refer to them by name, so we describe them i metail. More formally, the logic of the
circuits are given as:

1. Chhaten: It takes as input an some hash locatjoim level B;, a (virtual) memory locationw that the
client is searching for, a storage varialeand an indicator bitfound. The logic is that ifw has
already been found, do nothing, otherwise attempt to fing) wherew = v and store it intqy. It
outputsy’ and found’ with the following behavior:

4Specifically, from any one-way function, one can build PRRg &PA-secure symmetric-key encryption scheme that gatisf
this requirement.

20

y, found =1 if found =1;
z, found =1 if found = 0 and there is somg, z) in the bucket such that = w;
y, found =0 otherwise

y/
y/
y/

2. Cpeqt:It takes as input an indicator bfbund, some levet and two bucket locationg’ andg' on level
B;, and two secret keys for encryptieh, andsk;. It outputsg/ownd andsk:fgundﬁ

3. Curite: Given a memory locationv and memory contents, it encodes(w, y) relative to the first
empty slot in the top level buffer.

4. Cupdate: Although oblivious hashing is described as an interagbnacess in most ORAM schemes,
observe that in many cases (again, €.gl [15]) it ultimateipants to performing many steps of a
large parallel sorting and re-labeling algorithm wherdia €lements need to be retrieved, decrypted,
and re-encrypted. Instead, we can represent this as a larghep circuit, using sorting networks to
perform the sorting, and using time-labeled encodingsatstof encryption. (More generally, the
updates have fixed memory access that can be revealed ta¢hé evaluator and are executed in
strait-line. Any such program can be converted to garbludidirectly.)

We describe our construction relative to any hierarchic®IA® scheme that uses hash tables, though
concretely one can think of the Goldreich-Ostrovsky [15lesue. For a client to read/write to a memory lo-
cationw, the client computes garbled buffer search circuits (€'(C,q:c1)) for the top levelB;. Then the

client pre-computes the hashwffor each of the level®s, ..., By, i.e. it sets;) = h;(w). It also generates
L — 1 random locationg; = r; for each level. This gives the client a list bf— 1 pairs of bucket locations,
2 for each level (one real, one randort4d, ¢3), - - -, (¢%,¢})) = ((ha(w),72), ..., (hr(w),rL)).

For each of theseL — 2 locations, the client makes a time-labeled garbled cirthdt searches for
w (i.e. it creates7C (Cruater) for those locations) and encrypts them under brand new @oeseandomly
generated) encryption kefyc{ . It is the case that onlykff decrypts the garbled circuit for Iocatio;ﬁ. In
order to ensure that the server only gets the correct latatid key to go from a level to the next (depending
on found/not found), we must rely on the circdijt..; that produces exactly one out of the two location/key
pairs for each level. In order to do so, the client hardwicestionsg?, ¢! and keyssk?, sk! into generates a
garbledGC(C,.e.¢) that outputs where to go depending on found/not found aryjtbalcorrectskg. Finally,
the client creates a time-labeled garbled cir€ut(C,,,i1.) that "writes” a time-labeled encoding ¢fv,)
back to the top level buffeB; (i.e. it re-writes the entire top level). To perform hiefayaipdates, it uses a
garbledGC (Cypaate)- The full client and server construction is given in Figure 5

B.3 Analysis

The goal of this section is to show the following theorem:

Theorem 2. Assume one-way functions exist. Then the constructiorvefgn Figure b is a secure single-
round Oblivious RAM wittpolylog(n) - kK°(1) overhead with client only needirig’") memory to store the
cryptographic keys.

®This can be thought of as a circuit for obliviously transfegrone-out-of-two of the locations and keys.

21

Client performing a read/write to memory locatianwith the read/written value being

1

As for the server, it performs the following steps:

N B

. For each bucket in the top levé}; , the client creates a time-labeled garbled cir€t (C,,.qtcn)

that searches fap. The circuits are constructed so that the output encodirashmas the input
encodings in the subsequent circuit (i.e. circuit chairdagn Lemmall).

Pre-compute all hash locatiog$ = h,;(w) and and random locationg < 0...|B;| for levels
i =2... L. Pseudo-randomly generate secret keys for encrypfifrandsk:; .

For subsequent levels=2... L:

(a) Create a time-labeled garbl&t (Cy.e.+) by hardwiringq?, ¢}, sk?, andsk} as inputs, the
only free variable being th¢ound flag. The outputs arenencodedThe labels forfound
should match the¢ ound output from the previous leveél— 1.

(b) Create two time-labeled garblét” (C,,.q:c1) Circuits, one that searches farin bucketq? and
one that searches far in bucketg!. Encrypt the first under undek?, and encrypt the secon
undersk;}.

Create atime-labeled garbléd” (C,,,i+.) that takes the final outpyt (or y from the write query)
and writes it back to the first empty position the top levefbuB; .

y and decodes it.

The client increments the local query couritelf ¢ is a multiple of| By |, then a reshuffle step is
performed using the time-labeled garbled update CitGGYC,pqazc)-

. Receive all the garbled circuits from the client.
. It evaluates7C' (Cnaten) for every bucket in the top leves; .
For subsequent levels= 2. .. L:

(a) Evaluate57C(Cpeqt) With the garbled found/not found flag from the previous level1 and
obtain in the clear a locatioy and a keysk;.

(b) On bucket;, decrypt theGC (C,qten) USINg sk; and evaluate it, keeping track of the garble
found' flag and garbled memory contents

Evaluate the last garbled circ@C'(C,,izc) Which outputs some time-labeled encoding of y)
and store it in the first empty position 8, and send the encoded outputo the client.

In case of an update, evalugt€'(C,,qq:) and rewrite the relevant levels of the hierarchy with tk

The client in one round sends all these circuits to thessetlren the client receives the final output

o

jon

e

corresponding time-labeled output.

Figure 5: Single-Round ORAM

22

Proof.

Correctness.This construction is correct due to the correctness of tlierdying ORAM scheme and the
correctness of garbled circuits. The only additional stepn&ed to check is that the output of one circuit
correctly feeds into the input of the other. Because thdddbe the relevant wires are actually time-labeled
encodings, they are correct by the way they are constructedadLemmall.

Cost Analysis.We analyze the cost in terms of communication, computatiad,rounds for both the client
and the server. The round complexity is clearly 1. The clienst creatd B;| + 2(L — 1) = O(logn)
garbled circuits foiC,,.:.n aNdCye.+ and one final garbled circuit for writing the element backhe top
level. The sizes of,,4tch, @aNdCre,: are bothO(polylog(n)). It must also garbl€,,, .. which is of size
O(|B;| - polylog(n)) every |B;| steps. Each element of the underlying ORAM scheme is nowdstto
bit-by-bit where each bit now turns inid’(") bits which is size of the output of our multi-argument PRF.
The PRF is evaluated at most twice per wire of each garbleditiand the underlying encryption scheme
is evaluated at most eight times per gate of each circuit)y eithese invocations run ik°"). Since the
underlying ORAM scheme only has poly-log overhead, theaVeomputation and communication for the
client amounts tgolylog(n) - k() per query. The server has the same communication complexity
the computation is just the evaluation of the garbled cisguvhich amounts to at most four decryptions per
garbled gate, thus also resultinggalylog(n) - k().

Security. In order to show security, we must show that there exists alabor Sim that generates the view
of the server for a sequence of polynomially sizeglieries. First, we generate a simulated garbled circuit
for the top level. By the security of garbled circuits, therésts some simulat@imy, that simulates these
garbled circuits (except we use the time-labeled encodifitfee inputs and outputs in the simulation, which
can further be simulated by true randomness due to the seofiour PRF).

Next, we describe how to create a good simulation of the sjues# levels.Sim has to simulat@L —
2 (encrypted)GC (Cpater) Circuits which produce garbled outputs, and more problealét, Sim must
simulateGC(Cy.4¢) circuits which produces outputs the clear In order to do so, we rely on the fact that
the locations given in the clear can be simulated in turnedut] by the security of our underlying ORAM,
there exists a simulat@imor 457 that generates the access pattern of the ORAM acrosgjadiries. This
access pattern gives us a list of locations in the intermediaffers¢;, € Bs,...,¢: € By, for each query
i = 1...t. Our simulatorSim will use these locations as the simulated outputs of thelg@d®C (C,,c.¢)
circuits. To simulate the view of the server seeing the dutbuGC (Cpe.t) (0N thej-th level in thei-th
query), we set it to be the simulated Iocatié]?nand a randomly chosen secret k€l which can only
decrypt the proper circuit in the next level. These we sineulda Simy-,, given only the output?, sk;.
Also, because the encrypted garb@&d'(C,,..:c1) circuits for these locations will be decrypted, we can also
simulate them vi&imy,,. For the remaining locations that won't be decrypted, ommuatorSim encrypts
the “all-zeroes” string, which is computationally indigguishable from a good encryption.

Finally, by Lemmdl, we can reuse the encodings as inputseeetwlifferent invocations while still
being able to simulate.

]

23

	Introduction
	The Blueprint for RAM Program Garbling
	Related Work on Oblivious RAMs and Secure RAM Computation.
	Our Results
	Remarks

	Preliminaries
	Oblivious RAM
	Yao's Garbled Circuits

	Non-interactive Garbled RAM Programs
	Informal description of main ideas
	Main Construction of Garbled Programs
	Main Result

	Application to Secure RAM Computation
	Conclusions and Open Problems
	Acknowledgements
	Glossary of Circuits
	Single-Round Oblivious RAM From Any One-way Function
	Informal Description of Main Ideas
	Single-Round Oblivious RAM Construction
	Analysis

