
Balancing Output Length and Query Bound in Hardness

Preserving Constructions of Pseudorandom Functions∗

Nishanth Chandran† Sanjam Garg‡

Abstract

We revisit hardness-preserving constructions of a pseudo-random function (PRF) from any length
doubling pseudo-random generator (PRG) when there is a non-trivial upper bound q on the number of
queries that the adversary can make to the PRF. Very recently, Jain, Pietrzak, and Tentes (TCC 2012)
gave a hardness-preserving construction of a PRF that makes only O(log q) calls to the underlying PRG
when q = 2n

ε

and ε ≥ 1
2
. This dramatically improves upon the efficiency of the construction of Goldreich,

Goldwasser, and Micali (FOCS 1984). However, they explicitly left open the question of whether such
constructions exist when ε < 1

2
. In this work, we give constructions of PRFs that make only O(log q) calls

to the underlying PRG when q = 2n
ε

, for 0 < ε < 1; our PRF outputs O(n2ε) bits (on every input), as
opposed to the construction of Jain et al. that outputs n bits. That is, our PRF is not length preserving;
however it outputs more bits than the PRF of Jain et al. when ε > 1

2
. We obtain our construction

through the use of information-theoretic tools such as almost α-wise independent hash functions coupled
with a novel proof strategy.

1 Introduction

Pseudo-random functions. Goldreich, Goldwasser, and Micali introduced the fundamental notion of
pseudo-random functions in their seminal paper [12]. A pseudo-random function (PRF) is a keyed function
F : {0, 1}` × {0, 1}n → {0, 1}m (with key length ` and input length u) such that no efficient adversary, that
can make adaptive oracle queries to F, can distinguish between the outputs of F and a uniformly random
function (from u bits to n bits). Pseudo-random functions have found extensive applications in cryptography
- from symmetric-key cryptography to software protection to zero-knowledge proofs [11, 10, 9, 17, 16].

Goldreich et al. showed how to construct a PRF from any length doubling pseudo-random generator,
that is a function G : {0, 1}n → {0, 1}2n that takes as input a seed of n bits and outputs 2n bits that are com-
putationally indistinguishable from the uniform distribution on 2n bits. We will refer to their construction
as the GGM construction. The GGM construction gives rise to a PRF GGMG : {0, 1}` × {0, 1}n → {0, 1}m
for ` = n and m = n (in fact this construction works for any input length u ∈ N with other parameters
remaining n).

Hardness preservation. Now, assume that the underlying PRG G has “σ bits of security”, mean-
ing that no adversary of size 2σ can distinguish G(Un) from U2n (where Ut denotes the uniform distribution
on t bits) with advantage more than 2−σ. The GGM construction of a PRF is hardness preserving, i.e.,
if G has cn bits of security (for some constant c > 0 and all sufficiently large n), then GGMG has c′n
bits of security for some 0 < c′ ≤ c. The domain size of the PRF can be arbitrary ({0, 1}u), but the
GGM construction makes u calls to the underlying PRG, and hence the efficiency of GGMG depends
critically on u. Levin [15] suggested a trick that improves the efficiency when u is large; first hash the
u bits down to v bits, using a universal hash function, and now apply the GGM construction to the v

∗Full version of paper published at Indocrypt 2014
†Microsoft Research, India; Email: nichandr@microsoft.com. Work done while this author was at Microsoft Research,

Redmond.
‡University of California, Berkeley; Email: sanjamg@berkeley.edu. Work done while this author was visiting Microsoft

Research, Redmond. Part of this research conducted while at the IBM Research, T.J. Watson funded by NSF Grant No.1017660.

1

mailto:nichandr@microsoft.com
mailto:sanjamg@berkeley.edu

bits obtained. Now, the efficiency of the GGM construction can be reduced to v calls to G, and v can be
set to ω(log n), if we want security only against polynomial-size adversaries. However, if we care about
preserving hardness (if G has cn bits of security), then we are forced to set v = Ω(n) and hence, the
best hardness-preserving construction of a PRF, F, from a length-doubling PRG, G, requires Θ(n) calls
to G (except in the case when u = o(n) is sublinear, in which case one can use the GGM construction directly).

Constructing PRFs with bound on queries of adversary. Jain, Pietrzak, and Tentes [13]
considered a setting, in which the size of the adversary is still 2σ (or 2cn when G is exponentially hard),
but there is a bound q on the number of queries that the adversary can make to the PRF F. Surprisingly,
by making such a restriction on the adversary, they can dramatically improve the efficiency of PRF
constructions. In more detail, they consider an adversary of size 2cn who can make only q = 2n

ε

(for
constant 1

2 ≤ ε < 1) queries to F; against such an adversary, they give a construction of a PRF F that only
makes Θ(nε) calls to the underlying PRG, but is still hardness preserving.

Hardness preservation and bounding queries in practice. We stress here that the notion of
hardness preserving constructions of PRFs is important both in theory as well as in practice. For example, if
we have a hardness preserving construction of a PRF (and the underlying PRG has exponential security) we
can scale down the security parameter by almost a logarithmic factor in practical scenarios where security
against only polynomial-size adversaries is required. This implies an almost exponential improvement in the
efficiency. Furthermore, in most practical situations, we will be able to bound the number of queries that
the adversary can make to the PRF; e.g., if we are using the PRF for constructing a symmetric encryption
scheme, it is conceivable that we can bound the number of ciphertexts that the adversary can get to see
(which inherently bounds the number of queries to the PRF that the adversary can get). In such situations,
we can obtain much more efficient hardness preserving constructions of PRFs.

1.1 Our Results

Unfortunately, for the case when ε < 1
2 , that is when q = 2o(

√
n), the construction of Jain et al. [13] does

not offer any further improvement in efficiency, and the best hardness preserving construction of F from G
makes Θ(

√
n) calls to G.

In this work, we are precisely interested in answering the following question: can we obtain a hardness
preserving construction of a PRF from a PRG that makes o(

√
n) calls to G, when q, the bound on the

number of queries that the adversary can make to the PRF, is 2o(
√
n)?

Roughly speaking it seems that, as any hardness preserving construction of a PRF tries to make fewer
calls to the underlying PRG, its ability to output pseudo-random bits reduces.1 In the setting where a PRF
from a PRG makes o(

√
n) calls to G and when q is bounded by 2o(

√
n) we present a tradeoff between the

output length of the PRF, the bound q, and the level of hardness preserved. In particular:

• We provide a hardness preserving construction of a PRF F : {0, 1}` × {0, 1}n → {0, 1}n2ε

(where
` = Θ(n) denotes the seed length, n denotes the input length, and n2ε denotes the output length),
that makes Θ(nε) calls to G : {0, 1}n → {0, 1}2n for any u ∈ N, where q = 2n

ε

and 0 < ε < 1. Note
that the PRF in this construction outputs n2ε bits as opposed to n bits as in the construction of Jain
et al. [13]. For the case when ε > 1

2 , our construction outputs more number of random bits than the
construction of Jain et al. [13], while making the same number of calls to G.

• Next, we note that if we wished to output more number of bits (say n, as opposed to n2ε, when
ε < 1

2), then we can obtain a construction that makes the same Θ(nε) calls to G, but the resulting
PRF F : {0, 1}` × {0, 1}n → {0, 1}n has only n2ε bits of security.
Alternatively, we can obtain a construction of a PRF with cn bits of hardness and n bits of output by
repeating the construction of F : {0, 1}` × {0, 1}n → {0, 1}n2ε

, n1−2ε times in parallel. While the total
number of calls to the PRG made by this construction will be Θ(n1−ε) (which is larger than Θ(nε) for
0 < ε < 1

2), the advantage of this construction is that the depth of the circuit evaluating our PRF will
still be Θ(nε).

1In fact with appropriate formalization Jain et al. conjecture this.

2

• We also note that, just as in [13], our results extend to the case when we start with a PRG G that
has only σ = o(n) bits of hardness, and we have a bound q = 2σ

ε

on the number of queries that the
adversary can make to the PRF, when 0 < ε < 1.2

• Finally, we mention that, similar to Jain et al. [13], our techniques can be used to give more efficient
constructions in other settings; for example by applying it to the work of Naor and Reingold [21]
who construct PRFs computable in low depth from pseudorandom synthesizers (objects stronger than
PRGs but weaker than PRFs). The construction of [21] gives a hardness-preserving construction of
a PRF from a pseudorandom synthesizer (PRS) with Θ(n) calls to the PRS in depth Θ(log n). Our
techniques can be used to improve the efficiency of their construction to Θ(log q) whenever one can
put an upper bound q = 2n

ε

, 0 < ε < 1 on the number of adversarial queries.

Concurrent and independent work. Concurrently and independently of our work, Berman et al. [4],
using very different techniques based on cuckoo hashing, show how to construct a hardness preserving PRF
from n bits to n bits that makes O(nε) calls to the underlying PRG when the bound on the number of
queries made by the adversary is 2n

ε

, for any 0 < ε < 1. A technical comparison between our work and the
work of Berman et al. [4] follows:

• In our construction the seed length of the PRF contructed, `, is Θ(n), while the PRF construction of
Berman et al. [4] requires a seed of length Θ(n2).

• Secondly, in the case when ε < 1
2 , their PRF outputs more random bits (n) than our construction

(n2ε); however, when ε > 1
2 , the situation is reversed, and our PRF outputs more random bits (n2ε)

as opposed to their construction (as well as [13], since both constructions output n bits) while making
the same number of GGM calls.

1.2 Technical Difficulties and New Ideas

In order to present the high level ideas behind our construction, we shall begin by describing Levin’s trick
and how Jain et al. build upon it to construct a PRF that makes fewer calls to the PRG.

Background. Recall that the key idea behind Levin’s trick [15] is to first hash the input bits down
using a (information-theoretically secure) universal hash function h : {0, 1}u → {0, 1}v, and then applying
the GGM construction to the obtained hashed bits. The efficiency of the GGM construction depends on
the output length of this hash function. Now observe that that in order to use Levin’s trick, to obtain a
hardness preserving construction, one must set v = Θ(n). If v were to be o(n), then the probability that
two inputs xi and xj collide on the hash function’s output would be 2−o(n). In other words F(xi) = F(xj)
(since F(x) = GGMG(k, h(x))) and this would prevent us from achieving exponential security. Hence we
need that a hardness preserving construction of a PRF makes Θ(n) calls to the underlying PRG.

The key idea of Jain et al. is to exploit tools from information-theoretic t-wise independent hash functions
and hash the bits using a hash function h1 to 2t bits anyway (t is chosen to be log q, where q = 2

√
n is the

bound on the number of queries that the adversary can make to F) and then evaluate the GGM construction
on it.3 Of course there will be collisions and so they do not output the generated value directly. Instead they
use the output in order to derive a key for another hash function h2 which is then applied on the original
un-hashed input. The resulting value is the output. The derivation of the key from the output of the GGM
function involves stretching the output of the GGM function using the PRG. In particular, the output of
GGM is stretched by a factor of t so that it is large enough to serve as the seed for h2.

Roughly speaking if h1 and h2 are both t-wise independent hash functions, then Jain et al. can argue the
security of their scheme as long as the adversary makes less than q queries to the PRF. The crucial idea is
that since h1 is t-wise independent not too many inputs (specifically no more than t) can collide on the first
hashing. Furthermore the few (up to t) that do happen to collide on a specific value will ultimately lead to
random outputs as h2 is also t-wise independent. More formally, h1 is a t-wise independent hash functions,

2For clarity of exposition, we present our results only in the case when G has exponential hardness.
3We consider only the case where q = 2

√
n in the discussion below, but the argument holds for q = 2n

ε
, for 1

2
≤ ε < 1.

3

and therefore the probability that one gets a t + 1-wise collision after the first hashing (i.e., some t + 1 of
the q queries hash down to the same value) is upper bounded roughly by 1

2t2
, which is exponentially small,

when q ≥ 2
√
n. This implies that with very high probability, at most t inputs will use the same seed for the

t-wise independent hash function h2 and hence the outputs will be pseudorandom.
Now, observe that the total number of calls that the above PRF construction makes to the underlying

PRG is Θ(t). This is because the GGM construction is executed on a t-bit input (generated as the output
of the hash function h1) which makes t calls to the underlying PRG. The construction additionally makes t
calls in deriving the key for h2 from the output of GGM.

Overview of our construction: new ideas. In order to reduce the number of calls in the above
construction, we need to reduce the number of calls that F makes in two places: the GGM part, as well as
the PRG stretch (to sample the t-wise independent hash function h2) part. We are interested in the case
when q = 2n

ε

, for 0 < ε < 1
2 and would like to obtain a construction that makes Θ(nε) calls to the PRG.

However in order to make just Θ(nε) calls to the PRG we need to reduce the output length of the first hash
function h1 to Θ(nε). Recall that the probability of a t+ 1-wise collision is bounded by roughly 1

2t2
, which

is sub-exponential (when ε < 1
2) for our setting. Another problem is that far too many inputs to the F

will collide in the key of h2 than what h2 is equipped to handle. The only option seems to be to make the
hash functions much more resilient to collisions, or in other words increase the parameter t for both h1 and
h2. That is, we use α-wise independent hash functions h1 and h2 for some parameter α = ω(t). However
this is fundamentally problematic since the GGM part of the construction outputs n bits that need to be
“stretched” to get a seed of length Θ(αn) bits. This, unfortunately, would end up requiring ω(t) calls to G
for stretching the output of GGM from n bits to Θ(αn).

Our key idea here is to use approximate constructions of α-wise independent hash functions [20, 1, 14]
for h1 and h2. The key advantage of these hash functions is that they can be constructed using roughly
Θ(mα) bits of randomness (where m is the output length), instead of the Θ(nα) bits needed for perfect
constructions (where n is the input length). Hence by decreasing the output length we can obtain the
desired level of resilience to collisions. This allows us to obtain a tradeoff between the efficiency of the PRF
and the length of the output it generates.

Even though our construction makes a seemingly simple tweak to the construction of Jain et al. [13],
unfortunately their proof strategy does not work for us. The fundamental reason behind this is that having
a perfect t-wise independent hash function allows them to reduce an adaptive distinguisher directly to a
non-adaptive distinguisher. Intuitively speaking, this follows from the fact that the outputs of the t-wise
independent hash function are uniformly random strings and hence when these values are used as the
outputs of the PRF, they prove useless for the adaptive distinguisher. Formally, this follows from a claim
of Maurer [18]. However, in our setting, the responses are not uniform and the slight bias could help the
adversary choose its queries intelligently, triggering the events that ultimately allow it to distinguish the
function from random. This prevents us from using the results of Maurer [18]. It is worth noting here, that
the problem of constructing adaptively secure pseudorandom functions from non-adaptive pseudorandom
functions [19, 22, 23, 8, 2, 4] is a very important problem that has received plenty of attention.

For our construction, we prove security against adaptive distinguishers using a step-ladder approach.
More specifically, consider an adaptive distinguisher that makes i queries to the PRF. Its distinguishing
advantage can be used to upper bound the statistical distance between the distribution of the responses to i
adaptive queries and the distribution of i uniform strings. This statistical difference gives us an upper bound
on the advantage an adaptive distinguisher has in the choice it makes for the i + 1th query over its non-
adaptive counterpart. Given this we can evaluate the distinguishing advantage of an adaptive distinguisher
that makes i + 1 adaptive queries. Carefully applying this process repeatedly allows us to obtain a bound
on the distinguishing advantage of an adaptive distinguisher making q queries.

Finally, we remark that our various results are obtained by setting α and m (output length of F) appro-
priately, according to the hardness of G and q.

4

1.3 Roadmap

We start by recalling the preliminary notions and definitions needed in Section 2. Then we provide our
construction in Section 3 and the proof of our main theorem in Section 4. Finally we conclude in Section 5.

2 Preliminaries

In this section we recall and define some basic notions and setup notation. Let λ denote the security
parameter. We say that a function is negligible in the security parameter if it is asymptotically smaller than
the inverse of any fixed polynomial. Otherwise, the function is said to be non-negligible in λ. We say that
an event happens with overwhelming probability if it happens with a probability p(λ) = 1 − ν(λ) where
ν(λ) is a negligible function in λ.

Notation. We denote values and bit strings by lower case letters and random variables by upper-
case letters. Sets are denoted by uppercase calligraphic letters. We use Un to denote the random
variable which takes values uniformly at random from the set of n bit long strings and Rn,m to denote
the set of all functions F : {0, 1}n 7→ {0, 1}m. For a set X , X t denotes the t’th direct product of
X , i.e., (X1, . . . ,Xt) of t identical copies of X and for a random variable X, X(t) denotes the random
variable which consists of t independent copies of X. Let x ← X denote the fact that x was chosen
according to the random variable X and analogously let x ← X denote that x can chosen uniformly
at random from set X . For random variables X0, X1 distributed over a set X , we use X0 ∼ X1 to
denote that the random variables are identically distributed, we use X0 ∼δ X1 to denote that they
have a statistical distance δ, i.e. 1

2

∑
x∈X | PrX0

[x] − PrX1
[x] |≤ δ, and finally we use X0 ∼(δ,s) X1 to

denote that they are (δ, s) indistinguishable, i.e. for all distinguishers D of size at most |D| ≤ s we have
| PrX0 [D(x)→ 1]− PrX1 [D(x)→ 1] |≤ δ.

2.1 Pseudorandom Functions

We recall the definitions of pseudorandom generators (PRG) and pseudorandom functions (PRF). Subse-
quently we will describe the GGM construction of a pseudorandom function from a pseudorandom generator.

Definition 1 (PRG [5, 25]) A length-increasing function G : {0, 1}n 7→ {0, 1}m where m > n is a (δ, s)-
hard pseudorandom generator if

G(Un) ∼(δ,s) Um

We say that G has σ bits of security if G is (2−σ, 2σ)-hard. G is exponentially hard if it has cn bits of security
for some c > 0, and G is sub-exponentially hard if it has cnε bits of security for some c > 0, 0 < ε < 1.

Stretching a PRG. Let G : {0, 1}n → {0, 1}2n be a length doubling function. For e ∈ N, let Ge : {0, 1}n →
{0, 1}en be the function that takes an n bit string as input and expands it to an en bit string using e − 1
invocations of G. This can be done sequentially or via a more efficient parallel computation of depth dlog ee.
We now have the following lemma.

Lemma 1 As stated in [13]. Let G be a (δ, s)-hard PRG, then Ge is a (e · δ, s− e · |G|)-hard PRG.

Definition 2 (PRF [12]) 4 A function F : {0, 1}` × {0, 1}n → {0, 1}m is a (q, δ, s)-hard pseudorandom
function (PRF) if for every oracle aided distinguisher D∗ of size |D∗| ≤ s making at most q oracle queries

| Prk←{0,1}` [DF(k,·) → 1]− Prf←Rn,m [Df(·) → 1] |≤ δ

F has σ bits of security against q queries if F is (q, 2−σ, 2σ) secure. If q is unspecified then it is assumed to
be unbounded (the size 2σ of the distinguisher is a trivial upper bound on q).

4We use the specific definition of [13].

5

The GGM Construction. Goldreich, Goldwasser and Micali [12] gave the first construction of a pseu-
dorandom function from any length doubling PRG. Their construction is described below. For any length
doubling PRG G : {0, 1}n → {0, 1}2n, GGMG : {0, 1}n × {0, 1}n → {0, 1}n is defined as a function that
takes as input x along with a seed k. The output of the function GGMG(k, x) is kx that can be obtained by
recursive evaluation using kε = k and ka||0||ka||1 := G(ka) (where ε denotes the empty string).

Proposition 1 (PRF [12]) If G is a (δG, sG)-hard PRG, then for any n, q ∈ N, GGMG : {0, 1}n×{0, 1}n →
{0, 1}n is a (q, δ, s)-hard PRF where

δ = n · q · δG s = sG − q · n · |G|

We remark, that in general, using the above same transformation, one can also obtain a PRF GGMG :
{0, 1}n × {0, 1}u → {0, 1}n for any u ∈ N. We will use GGMG to refer to the PRF so obtained (with input
length u) when the value of u is clear from context.

2.2 Information theoretic tools

The construction of pseudorandom functions presented in this paper relies on some well studied information
theoretic tools. Next we recall these notions.

Definition 3 (α-wise independence [6, 24]) For `,m, n, α ∈ Z, a function h : {0, 1}` × {0, 1}n →
{0, 1}m is α-wise independent, if for every α distinct inputs x1, . . . , xα ∈ {0, 1}n and a random key
k ← {0, 1}` the outputs are uniform, i.e.

hk(x1)|| . . . ||hk(xα) ∼ U (α)
m

Proposition 2 For any α, n,m ≤ n there exists an α-wise independent hash function with key length ` =
n · α.

Definition 4 (Almost α-wise independence [20]) For `,m, n, α ∈ Z, a function h : {0, 1}` × {0, 1}n →
{0, 1}m is (δ, α)-wise independent, if for every α distinct inputs x1, . . . , xα ∈ {0, 1}n and a random key
k ← {0, 1}` the outputs are statistically close to uniform, i.e.

hk(x1)|| . . . ||hk(xα) ∼δ U (α)
m

Proposition 3 ([1, 14]) For any α, n,m there exists a (δ, α)-wise independent hash function with key length
` = O(mα+ log n

δ).5

3 Our Construction

Our construction will use two parameters q, α. Recall that q represents the bound on the number of queries
to the PRF that the adversary is allowed to make. We will use t as a shorthand for the value log q. On the
other hand α is a parameter that will depend on the other parameters in the system. Very roughly looking
ahead α will need to increase as the desired level of security increases.

We use a (δ1, α+ 1)-wise independent hash function h1 : {0, 1}`1 × {0, 1}n → {0, 1}2t with appropriate seed
length `1 = O(tα+log n

δ1
). (cf. Proposition 3) We will also need a (δ2, α+1)-wise independent hash function

h2 : {0, 1}`2 × {0, 1}n → {0, 1}m with appropriate seed length `2 = O(mα+ log n
δ2

).

Let CG : {0, 1}`1+n × {0, 1}n → {0, 1}m be our PRF that on input a key k = k0||k1(where k0 ∈ {0, 1}`1 and
k1 ∈ {0, 1}n) and x ∈ {0, 1}n, computes the output as:

C(k, x) = h2(G2t(GGMG(k1, h1(k0, x))), x).

5To see that this is true, use Theorem 3 from [1] and consider the construction that outputs 2n ·m bits which are δ-away

(in L1 norm) from mα-wise independence using roughly mα+ 2 log(
α log(2n·m)

2δ
) bits. This gives us the desired hash function.

6

Input Query bound Output Hardness δ
n q (log q)2 2−cn

n q
√
n log q 2−

√
n log q

n q < 2
√
n n 2−(log q)

2

n q ≥ 2
√
n (log q)2 2−cn

Figure 1: Security obtained for different settings of parameters.

Theorem 1 (Main Theorem) If G is a (δG, sG)-hard PRG, then CG is a (q, δ, s)-secure PRF where

δ ≤ 4 · q · t · δG +
q2

2n
+

q2

2tα
+ q2 · 2tα(δ1 + q · δ2) + q · δ2

mα+ log
n

δ2
≤ ctn

where c > 0 is an appropriately chosen constant and t = log q. Finally note that the seed length, ` =
O(tα+ log n

δ1
+ n) and a total of Θ(t) calls are made to G.

s = sG − q · |CG| − 2q · t · |G|

Implications of Theorem 1. Now, suppose we want to obtain a hardness-preserving construction to obtain
a PRF with c′n bits of hardness, then in order to obtain δ = 2−c

′n, we must set tα = n. This means that
m ≈ t2 (from the constraint mα+log n

δ2
≤ ctn); in other words we obtain a hardness-preserving construction

of a PRF that outputs n2ε bits. At the other end of the spectrum, suppose we want the PRF to output n
bits, then we must set α ≈ t, which gives us a PRF with n2ε bits of hardness. To give a better perspective
of the various results obtained by setting the values of α and m appropriately, we give some examples for
the choices of these parameters in Figure 1.

4 Proof of Theorem 1

We prove Theorem 1 by considering the following sequence of hybrids H0,H1 . . . ,H4. In hybrid Hi (for
i ∈ {0, 1, . . . 4}) samples are generated according to the circuit Ci (described in the sequel). In the first
hybrid, C0 corresponds to the execution of C itself and in the last hybrid H4, C4 corresponds to the random
function Rn,m.

[-] Hybrid H0: This hybrid corresponds to actual evaluation of the function C. In other words
C0(k, x) = C(k, x) = h2(G2t(GGMG(k1, h1(k0, x))), x). For any machine DC0 of size s and that makes q
queries to C0 let pD0 = Pr[DC0(·) = 1].

[-] Hybrid H1: This hybrid is the same as the previous hybrid except that we use a random func-
tion R2t,n instead of the GGMG execution. More specifically, C1(k, x) = h2(G2t(R2t,n(h1(k0, x))), x). For
any machine DC1 of size s and that makes q queries to C1 let pD1 = Pr[DC1(·) = 1]. We now show:

Lemma 2 For every adversarial q-query distinguisher D of size s ≤ sG − 2q · t · |G| − q · |CG| we have that
|pD1 − pD0 | ≤ 2q · t · δG.

Proof. Assume |pD0 − pD1 | > 2q · t · δG. Then we construct a distinguisher D′ of size at most s + q · |CG|
(which is equal to sG − 2q · t · |G|), that distinguishes GGMG from R2t,n with a distinguishing advantage
> 2q · t · δG, leading to a contradiction to Proposition 1. D′ has access to an oracle O(·) that generates a
sample according to GGMG(k1, ·) (for a random k1) or according to R2t,n and it needs to distinguish among
the two.

7

Now we describe our distinguisher D′. D′ samples a random seed k0 of appropriate length. It
executes D internally that makes queries for C. Consider a query x. Let y be the response of O on
the query h1(k0, x). D′ responds with the value h2(G2t(y, x)) to D. Observe that the responses of D′

to D correspond to evaluations of the circuit C0 if the oracle O(·) samples according to the distribution
GGMG(k1, ·) (for a random k1) and to evaluations of the circuit C1 if the oracle samples according to R2t,n.
Hence the success of D is distinguishing between the two cases directly translates to the success of D′

in distinguishing GGMG from R2t,n. Note that D′ makes q queries to O which is same as the number
of queries D makes. Note that the size of our distinguisher D′ is larger than the size of D by at most q ·|CG|.

[-] Hybrid H2: This hybrid is the same as the previous hybrid except that we use a random func-
tion Rn,2tn instead of executing G2t. More specifically, C2(k, x) = h2(Rn,2tn(R2t,n(h1(k0, x))), x). For any
machine DC2 of size s and that makes q queries to C2, let pD2 = Pr[DC2(·) = 1]. Now, we show:

Lemma 3 For any adversarial q-query distinguisher D of size s = sG − 2q · t · |G| − q · |CG| we have that
|pD2 − pD1 | ≤ 2q · t · δG.

Proof. Assume |pD0 −pD1 | > 2q ·t ·δG for a distinguisher D of size s. Then we can construct a distinguisher D′

of size at most s+q · |CG| (which is equal to sG−2q · t · |G|), that distinguishes a q-tuple of samples of G2t(Un)
from a q-tuple of samples of U2tn with a distinguishing advantage > 2q · t · δG. Using a standard hybrid
argument this distinguisher yields another distinguisher D′′ that distinguishes between a single sample of
G2t(Un) from a single sample of U2tn with a distinguishing advantage > 2 · t · δG. This contradicts Lemma 1.

Now we describe our distinguisher D′. D′ gets as input a q-tuple (a1, a2 . . . aq) which has samples either
from G2t(Un) or from U2tn. D′ internally executes D and answers the oracle queries of D by executing
C1. However it uses ai instead of generating values using G2t. More specifically, it uses a fresh value of ai
for every query, except for repeat queries. In case of a repeat query it responds with the value that was
returned previously (for the query being repeated). If the input tuple consists of samples from G2t(Un),
then the distribution corresponds to the circuit C1. On the other hand if the samples are from U2tn, then
the distribution corresponds to the circuit C2. Hence the success of D in distinguishing between the two
cases directly translates to the success of D′ in distinguishing q-tuple of G2t(Un) from q-tuple of U2tn. Note
that the size of our distinguisher D′ is larger than the size of D by at most q · |CG|.

[-] Hybrid H3: This hybrid is the same as the previous hybrid except that we use one random function
Rt,2nt instead of two functions Rn,2nt and R2t,n. More specifically, C3(k, x) = h2(Rn,2nt(h1(k0, x)), x).
For any machine DC3 of size s and that makes q queries to C3 let pD3 = Pr[DC3(·) = 1]. We now show the
following lemma:

Lemma 4 For every adversarial q-query distinguisher D we have (unconditionally) that |pD3 − pD2 | ≤
q2

2n .

Proof. Observe that C2 consists of two nested random functions f(·) = Rn,2nt(R2t,n(·)) and on the other
hand C3 consists of one random function g(·) = R2t,2nt(·). Further, note that every time C2 (resp., C3)
is called f(·) (resp., g(·)) is executed exactly once. Hence, the distinguishing advantage of an unbounded
q-query distinguisher D can be bounded by the distinguishing advantage of an unbounded distinguisher (that
makes q queries) in distinguishing between f(·) and g(·).

Without loss of generality we assume that all the queries of the distinguisher are distinct. Let E be the
event that the q queries (all distinct among themselves) of the distinguisher are such that all of the queries
to the internal random function R2t,n(·) in f(·) are distinct. Observe that, conditioned on the event E, the
distributions generated by f(·) and g(·) are the same. Hence the distinguishing advantage of an unbounded
distinguisher (that makes q queries), in distinguishing between f(·) and g(·), can be upper bounded by the
probability of event E failing to happen. This corresponds to the probability that q uniformly random

values are such that there is a collision among two values. This value is
(q2)
2n which is upper bounded by q2

2n .

[-] Hybrid H4: This hybrid corresponds to a random function. More specifically, C4(k, x) = Rn,m(x). For
any machine DC4 of size s that makes q queries to C4, let pD4 = Pr[DC4(·) = 1].

8

Lemma 5 For every adversarial q-query distinguisher D we (unconditionally) have that |pD4 − pD3 | ≤
q2

2tα +
q2 · 2tα(δ1 + q · δ2) + q · δ2.

Proof. We prove this lemma using a step ladder approach. For an adaptive distinguisher D let EDi be the
event such that D succeeds in making adaptive queries x1, x2 . . . xi such that there exists a subset I ⊆ [i] of
size |I| = α+1 such that h1(k0, xj) = h1(k0, xk) for all j, k ∈ I. Intuitively speaking EDi is the event that D
is able to force an α+ 1-wise collision on the output of the inner hash function in the i queries that it makes.
At this point we claim the following lemma and prove it separately. This lemma will be used crucially in the
rest of the analysis.

Lemma 6 For every adversarial i-query distinguisher D we (unconditionally) have that |Pr[DC3(·) =
1|¬EDi]− Pr[DC4(·) = 1|¬EDi]| ≤ i · δ2.

Proof. We start by stressing that the distinguisher here is only allowed to make i queries and all the
probabilities considered in this proof are for the setting where we condition on ¬EDi .

Consider a sequence of i + 1 hybrids – Y0, Y1 . . . Yi. In the hybrid Yj (for 0 ≤ l ≤ i) the adaptive query
xj for j ∈ {0, . . . , i} is answered as follows:

- If j < l then return Rn,m(xj).

- Else return h2(Rn,2tn(h1(k0, xj)), xj).

We will next argue that for every l ∈ {0, 1, . . . i− 1} the statistical difference between the hybrids Yl and
Yl+1, when restricted to the case ¬EDi , is bounded by δ2. This directly implies the claimed lemma.

Now we will argue that any adaptive distinguisherD distinguishing between Yl and Yl+1 with a probability
greater that δ2 can be used to construct a distinguisher D′ that distinguishes the (α+ 1)-wise independent
hash function h2(k1, ·) (for a random seed k1) from Sn,m(·) with probability at least δ2 when making at most
α adaptive queries to O(·), where O(·) is either h2(k1, ·) (for a random seed k1) or Sn,m(·); here Sn,m(·)
is just a random oracle. D′ internally executes D which makes i adaptive queries on inputs x1, . . . xi. D

′

provides answers to the query xj for j ∈ {0, . . . , i} as follows:

- If j < l then return Rn,m(xj).

- If j = l then return Sn,m(xj).

- Else return h2(Rn,2tn(h1(k0, xj)), xj).

Observe that the view of D when O is h2(k1, ·) corresponds to the hybrid Yl. On the other hand the
view of D when O is Sn,m(·) corresponds to the hybrid Yl+1. Note that both R and S are random oracles
with identical output distributions Finally, note that, since we are conditioning on the event that ¬EDi , it
follows that D′ makes at most α adaptive queries to O(·). Hence our claim follows.

We now complete the proof of Lemma 5. We start by evaluating the probability Pr[EDi+1|¬EDi]. First,
consider the case where an adaptive distinguisher D is not given any of the responses. Now, note that the
probability, for the i + 1th query xi+1 made by adaptive D, to be such that for a particular subset I ⊆ [i]
of size |I| = α + 1, h1(k0, xj) = h1(k0, xk) for all j, k ∈ I, is 1

22·t·α + δ1. By Lemma 6 given ¬EDi we have
that the statistical difference between the responses actually provided and uniformly random values is i · δ2.
Therefore, we can claim that given the responses, the success probability of D can increase by at most i · δ2.
Hence we have that the probability that the i+ 1th query made by adaptive D (when it is actually provided
with the responses) such that for a particular subset I ⊆ [i] of size |I| = α + 1, h1(k0, xj) = h1(k0, xk) for

all j, k ∈ I, is at most 1
22t·α + δ1 + iδ2. Taking union bound over all (i+1)α+1

(α+1)! possible α+ 1-element subsets

of the i+ 1 element set we get that:

Pr[EDi+1|¬EDi] ≤ (i+ 1)α+1

(α+ 1)!
·
(

1

22tα
+ δ1 + iδ2

)
≤ 2(α+1)·log (i+1) ·

(
1

22tα
+ δ1 + iδ2

)
≤ 2tα+t ·

(
1

22tα
+ δ1 + qδ2

)
=
(q

2tα
+ 2tα · q · (δ1 + qδ2)

) (1)

9

Next,

Pr[¬EDq] = Pr[¬EDq |¬EDq−1] Pr[¬EDq−1] = (1− Pr[EDq |¬EDq−1]) Pr[¬EDq−1]

=

q−1∏
i=0

(1− Pr[EDi+1|¬EDi]) ≥
q−1∏
i=0

(1− q

2tα
− 2tαq(δ1 + q · δ2))

≥ (1− q

2tα
− 2tαq(δ1 + q · δ2))q ≥ 1− q2

2tα
− q2 · 2tα(δ1 + q · δ2)

(2)

Finally,

|Pr[DC3(·) = 1]− Pr[DC4(·) = 1]|
≤ |Pr[DC3(·) = 1|¬EDq] Pr[¬EDq] + Pr[DC3(·) = 1|EDq] Pr[EDq]

− Pr[DC4(·) = 1|¬EDq] Pr[¬EDq]− Pr[DC4(·) = 1|EDq] Pr[EDq]|

≤ (|Pr[DC3(·) = 1|¬EDq]− Pr[DC4(·) = 1|¬EDq]|) Pr[¬EDq]

+ (|Pr[DC3(·) = 1|EDq]− Pr[DC4(·) = 1|EDq]|) Pr[EDq]

≤ |Pr[DC3(·) = 1|¬EDq]− Pr[DC4(·) = 1|¬EDq]|+ Pr[EDq]

≤ q · δ2 +
q2

2tα
+ q2 · 2tα(δ1 + q · δ2)

(3)

This completes the proof of the claimed lemma.
The proof of Theorem 1 follows from Lemmas 2,3,4 and 5.

5 Conclusion

Pseudorandom functions (PRF) are one of the most fundamental primitives in cryptography, both from a
theoretical and a practical standpoint. However unfortunately, many of the known black-box constructions
from PRGs are inefficient. Recently, Jain, Pietrzak, and Tentes [13] gave a hardness-preserving construction
of a PRF that makes only O(log q) calls to the underlying PRG when q = 2n

ε

and ε ≥ 1
2 . This dramatically

improves upon the efficiency of the GGM construction. However, they explicitly left open the question of
whether such constructions exist when ε < 1

2 . In this work, we give constructions of PRFs that make only

O(log q) calls to the underlying PRG even when q = 2n
ε

for 0 < ε < 1
2 .

References

[1] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construction of almost k-wise
independent random variables. Random Struct. Algorithms, 3(3):289–304, 1992.

[2] Itay Berman and Iftach Haitner. From non-adaptive to adaptive pseudorandom functions. In Theory
of Cryptography - 9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily, Italy, March
19-21, 2012. Proceedings, pages 357–368, 2012.

[3] Itay Berman, Iftach Haitner, Ilan Komargodski, and Moni Naor. Hardness preserving reductions via
cuckoo hashing. IACR Cryptology ePrint Archive, 2012:722, 2012.

[4] Itay Berman, Iftach Haitner, Ilan Komargodski, and Moni Naor. Hardness preserving reductions via
cuckoo hashing. In TCC, pages 40–59, 2013.

10

[5] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo random
bits. In 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 112–117, 1982.

[6] Larry Carter and Mark N. Wegman. Universal classes of hash functions (extended abstract). In Proceed-
ings of the 9th Annual ACM Symposium on Theory of Computing, May 4-6, 1977, Boulder, Colorado,
USA, pages 106–112, 1977.

[7] Nishanth Chandran and Sanjam Garg. Hardness preserving constructions of pseudorandom functions,
revisited. IACR Cryptology ePrint Archive, 2012:616, 2012.

[8] Chongwon Cho, Chen-Kuei Lee, and Rafail Ostrovsky. Equivalence of uniform key agreement and
composition insecurity. In Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, pages 447–464, 2010.

[9] Oded Goldreich. Towards a theory of software protection. In Advances in Cryptology - CRYPTO ’86,
Santa Barbara, California, USA, 1986, Proceedings, pages 426–439, 1986.

[10] Oded Goldreich. Two remarks concerning the goldwasser-micali-rivest signature scheme. In Advances in
Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, pages 104–110, 1986.

[11] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of random
functions. In Advances in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California, USA,
August 19-22, 1984, Proceedings, pages 276–288, 1984.

[12] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM,
33(4):792–807, 1986.

[13] Abhishek Jain, Krzysztof Pietrzak, and Aris Tentes. Hardness preserving constructions of pseudorandom
functions. In Theory of Cryptography - 9th Theory of Cryptography Conference, TCC 2012, Taormina,
Sicily, Italy, March 19-21, 2012. Proceedings, pages 369–382, 2012.

[14] Kaoru Kurosawa, Thomas Johansson, and Douglas R. Stinson. Almost k-wise independent sample
spaces and their cryptologic applications. In Advances in Cryptology - EUROCRYPT ’97, International
Conference on the Theory and Application of Cryptographic Techniques, Konstanz, Germany, May
11-15, 1997, Proceeding, pages 409–421, 1997.

[15] Leonid A. Levin. One-way functions and pseudorandom generators. Combinatorica, 7(4):357–363, 1987.

[16] Michael Luby. Pseudorandomness and cryptographic applications. Princeton computer science notes.
Princeton University Press, 1996.

[17] Michael Luby and Charles Rackoff. A study of password security. In Advances in Cryptology - CRYPTO
’87, A Conference on the Theory and Applications of Cryptographic Techniques, Santa Barbara, Cali-
fornia, USA, August 16-20, 1987, Proceedings, pages 392–397, 1987.

[18] Ueli M. Maurer. Indistinguishability of random systems. In Advances in Cryptology - EUROCRYPT
2002, International Conference on the Theory and Applications of Cryptographic Techniques, Amster-
dam, The Netherlands, April 28 - May 2, 2002, Proceedings, pages 110–132, 2002.

[19] Steven Myers. Black-box composition does not imply adaptive security. In Advances in Cryptology -
EUROCRYPT 2004, International Conference on the Theory and Applications of Cryptographic Tech-
niques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 189–206, 2004.

[20] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applications.
SIAM J. Comput., 22(4):838–856, 1993.

[21] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction of
psuedo-random functions. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, 23-25 October 1995, pages 170–181, 1995.

11

[22] Krzysztof Pietrzak. Composition does not imply adaptive security. In Advances in Cryptology -
CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 14-18, 2005, Proceedings, pages 55–65, 2005.

[23] Krzysztof Pietrzak. Composition implies adaptive security in minicrypt. In Advances in Cryptology -
EUROCRYPT 2006, 25th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, pages 328–338, 2006.

[24] Mark N. Wegman and Larry Carter. New classes and applications of hash functions. In 20th Annual
Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 29-31 October 1979, pages
175–182, 1979.

[25] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982,
pages 80–91, 1982.

12

	Introduction
	Our Results
	Technical Difficulties and New Ideas
	Roadmap

	Preliminaries
	Pseudorandom Functions
	Information theoretic tools

	Our Construction
	Proof of Theorem 1
	Conclusion

