
Security Analysis of an Open Car Immobilizer
Protocol Stack

Stefan Tillich and Marcin Wójcik

University of Bristol, Computer Science Department, Merchant Venturers Building,
Woodland Road, BS8 1UB, Bristol, UK

{tillich,wojcik}@cs.bris.ac.uk

Abstract. An increasing number of embedded security applications—
which traditionally have been heavily reliant on secret and/or proprietary
solutions—apply the principle of open evaluation. A recent example is
the specification of an open security protocol stack for car immobilizer
applications by Atmel, which has been presented at ESCAR 2010. This
stack is primarily intended to be used in conjunction with automo-
tive transponder chips of this manufacturer, but could in principle be
deployed on any suitable type of transponder chip. In this paper we
re-evaluate the security of this protocol stack. We were able to uncover
a number of security vulnerabilities. We show that an attacker with a
cheap standard reader close to such a car key can track it, lock sections of
its EEPROM, and even render its immobilizer functionality completely
useless. After eavesdropping on a genuine run of the authentication pro-
tocol between the car key and the car, an attacker is enabled to read and
write the memory of the car key. Furthermore, we point out the threats of
relay attacks and session hijacking, which require slightly more elaborate
attack setups. For each of the indicated attacks we propose possible fixes
and discuss their overhead.

Keywords: Security, car immobilizer, protocols, openness, analysis.

1 Introduction

Embedded security systems like car immobilizers have traditionally relied on
proprietary algorithms and protocols where the specifications have been kept
confidential. On the one hand, this approach can indeed complicate an attacker’s
job for understanding the system’s specifics. On the other hand, non-public
specifications limit the exposure of the employed security mechanisms to expert
scrutiny. Prominent attacks on such “closed” embedded security systems like on
the MIFARE Oyster card for London public transport [7] and the KeeLoq algo-
rithm used in remote control systems [8] demonstrate the risks of this security
philosophy. In contrast, open evaluation efforts like the Advanced Encryption

This is the full version of the paper. Previous versions of this paper were presented
at the industrial track of ACNS 2012 [17], at INTRUST 2012 [14], as an invited
paper at WESS 2012 [15], and at ESCAR 2012 [16].



2 S. Tillich, M. Wójcik

Standard (AES) competition [12] and the Secure Hash Algorithm-3 (SHA-3)
competition [13] are widely recognized for yielding robust solutions. Therefore, it
is encouraging to see emerging open security specifications for embedded systems
like the Open Source Immobilizer Protocol Stack given in [1]. Facilitated by its
openness, we were able to re-evaluate its security, point out a number of security
vulnerabilities, and suggest countermeasures.

A car immobilizer is a system that requires the presence of a security token
(often in the form of a key fob) to allow a car to run. If this token is not present,
the car’s Engine Control Unit (ECU) interrupts key components like the ignition,
the starter motor circuit, or the fuel pump. The communication between car and
key fob is typically done via RFID, where the car is fitted with an RFID reader
and the key fob contains an RFID tag. While earlier models used a static code
in the key fob, modern immobilizers utilize either rolling codes or cryptography
to prevent duplication of the key fob. Communication between car and key fob
involves the use of a protocol stack which defines frame sizes, data formats, error
detection, data transformations, etc.

Our analysis shows that an attacker can track car keys, lock sections of their
EEPROM, and even permanently disrupt their immobilizer functionality with
the help of a cheap standard reader and provided that she is in communication
range. Eavesdropping on a genuine run of the authentication protocol between
the key and the car allows an attacker to subsequently read and write memory of
the key. In addition we discuss the issues of relay attacks and session hijacking.

The rest of the paper is organized as follows. The investigated protocol stack
is described in Section 2. The attacks and security issues are we discovered are
discussed in Section 3 and conclusions are drawn in Section 4.

2 Description of the Immobilizer Protocol Stack

An open security protocol stack for car immobilizer applications has been pre-
sented in [9]. It is mainly intended for use with specific automotive transponder
chips. According to [9], the stack consists of a physical layer, a logical layer, a pro-
tocol layer, and the AES crypto layer. The physical layer deals with modulation
types, data encoding, and bit timing. The logical layer defines the functional
behavior of the reader and the transponder and includes communication link
controls, controls configuration, setup of functional dependencies and error res-
olution. The protocol layer allocates data frames and buffers for reading and
writing. It implements the user command interface, authentication, and key
learning (i.e. changing cryptographic keys before and after deployment). The
AES crypto layer controls the data authentication results1. Both physical and
AES crypto layer are already industry standards. The logical and protocol layer,

1 The description of this protocol layer in [9] probably refers to the use of the AES
block cipher in the execution of various commands by reader and key fob. As such it
is debatable whether it constitutes a separate layer or should be considered as part
of the protocol layer.



Security Analysis of an Open Car Immobilizer Protocol Stack 3

which are usually proprietary, are made open. This means the specification of
these layers is available for inspection and modification.

The protocol stack implements a number of commands to be issued by
the reader to the key fob. In most cases, the car featuring the immobilizer
functionality acts as reader but the reader can also be a programming device
used by the car manufacturer or distributor. The communication between reader
and key fob uses the LF band at 125 kHz. In this band, the normal read range
is usually very limited (commonly a few centimetres), but there are readers
available which can extend it to up to one metre [3, 6] and thus allowing for
attacks in close proximity of the key fob.

The command set out in the protocol stack’s specification [1] encompasses
eleven commands. They include reading of the key fob’s unique ID (UID) and
error status, initiation of authentication, setting of the used secret keys, initiation
and leaving of the so-called enhanced mode (for RF communication powered by
the battery), a request to repeat the last response, reading and writing of user
memory as well as setting memory access protection to certain memory sections.
Authentication can be configured to be unilateral (only key fob authenticates it-
self to the reader) or “bilateral” (both key fob and reader authenticate themselves
to each other) 2. If “bilateral authentication” is configured, some commands like
reading and writing user memory can only be executed when there has been a
previous successful authentication.

Authentication follows the challenge-response pattern [11]. The verifying
party sends out a challenge (usually a random number) and the other participant
transforms the challenge cryptographically using a secret or private key and
returns the response. The first party then checks this result using its knowledge
of the same secret key or the according public key. The point of the challenge is
to prevent replay attacks, where messages recorded from a genuine protocol run
are replayed by an attacker at a later time to achieve authentication. Therefore,
the challenge must be non-repeating or only repeat with negligible probability.

The investigated protocol stack has the caveat that the key fob is not ex-
pected to be able to generate challenges. This is no problem for unilateral
authentication, where the challenge is generated by the reader alone, but poses
difficulties for “bilateral authentication”. “Bilateral authentication” works by
reusing the challenge from the reader for the challenge of the key fob. The cryp-
tographic transformation involved in the authentication is AES encryption with
one of two shared keys. Figure 1 shows the steps of “bilateral authentication” as
given in [1].

The car and the key fob share two AES keys (Key 1 and Key 2). The “bilateral
authentication” protocol works as follows. First, the car requests the key fob’s
unique ID (UID) via the “ReadUID” command. The key fob reads its UID from
memory and returns it. The car checks whether this UID is paired with it (as a

2 As we will show in the following, “bilateral authentication” as set out in [1] fails
to achieve the goal of authenticating both parties which is central to protocols
performing bilateral (mutual) authentication. We will thus use quotes to refer to
this particular part of the protocol stack.



4 S. Tillich, M. Wójcik

Fig. 1. “Bilateral authentication” between key fob and car.

mechanism for early termination if a foreign key fob is in communication range).
The second part of the protocol consists of a “Start Authentication” command
by the car and the key fob’s response. The car generates the N-bit challenge
RandN, encrypts it with Key 1 and selects M bits of the resulting ciphertext as
RandM. N and M can be configured to be less than the AES block size of 128
bits in order to reduce communication overhead. RandN and RandM are sent to
the key fob, which validates that RandM originated from RandN via encryption
with Key 1. If this is successful, the car is authenticated to the key fob. The
key fob uses the output of the first AES encryption as input for a second AES
encryption with Key 2. As this value is not fully known to an eavesdropper (M
being usually smaller than 128), it is also denoted as hidden challenge. M bits of
the second encryption result are selected as RespM, which is sent to the car. The
car then verifies that RespM resulted from encryption with Key 2. On success,
the key fob is authenticated to the car and “bilateral authentication” is finished.

3 Security Issues

The concrete attacks are listed in the rest of this section. All attacks require
a standard reader in the vicinity of the genuine key fob. The relay attack in
Section 3.1 requires a second reader close to the car and connected to the first
reader. The replay attack described in Section 3.4 also requires eavesdropping on



Security Analysis of an Open Car Immobilizer Protocol Stack 5

a valid authentication or separate communication with the genuine key fob and
the car prior to the actual attack. The session hijacking outlined in Section 3.6
requires the presence of the attacker’s reader during communication of the
genuine key fob and car. Also in this case the reader must be able to selectively
overpower the signal from the car.

3.1 Relay Attack with Genuine Key Fob

Unlike the other attacks described in this paper, this attack is not specific to the
investigated protocol stack but can potentially be applied to any security system
with token-based authentication. A relay attack tricks the car into thinking that
the key fob is in its immediate vicinity when it is actually located further away,
thus allowing an attacker to deactivate the immobilizer. Such relay attacks have
been known as early as 1976 [2] and have been practically demonstrated, e.g.
in [5] for Automotive Passive Keyless Entry and Start Systems and in [4] for the
EMV chip and PIN setting. In the current setting, this attack relays messages
between the genuine key fob and the car through a transparent reader (close
to the genuine key fob) connected to a transparent key fob (close to the car)
as shown in Figure 2. Such an attack would require two cooperating attackers,
one bringing the transparent reader close to the genuine key fob and the other
gaining entry to the car and bringing the transparent key fob close to the car’s
reader.

Fig. 2. Relay attack with transparent reader and key fob.

A potential countermeasure to this relay attack is to measure the communi-
cation delay between the reader’s challenge and the key fob’s response in order to
detect the actual distance between the communicating endpoints. Alternatively,
a dedicated protocol, like the distance bounding protocol used in [4] could be
employed. However, the protocol stack includes a mechanism to defeat such
countermeasures. If the transparent key fob fakes an uplink CRC error, this
forces the car to send a “Repeat Last Response” command. The attacker can
use the extra time for the repeated response to get the actual response from the
genuine key fob.

This remote attack could be defended against with the measurement of the
communication delay of the key fob by the car and by abandoning the mechanism
of requesting a repeat of the the key fob’s response in answer to a CRC error.
Instead the whole sequence of commands and responses should be repeated
when a CRC error is encountered. This gives the attacker no time to hide the
extra communication delay introduced by the transparent reader and key fob.
Measurement of the communication delay might require extra components (e.g.
a high-precision oscillator) at the car’s side.



6 S. Tillich, M. Wójcik

3.2 Tracking

Generally speaking, tracking is potentially enabled through any command which
can be executed without proper authentication and which returns a result both
predictable by the attacker and unique to the key fob. Although tracking can
be achieved by a large range of technologies (e.g. automated visual license
plate recognition), tracking via electronic tokens tends to be more versatile (e.g.
requires no direct line of sight), more reliable (inherent error resilience of the
employed digital communication protocols) and cheaper (wide availability of
standardized readers). Traceability can be seen as an enabler of a large array of
undesired behaviors (ranging from mere nuisances as revealing personal habits
to potential untrustworthy companies up to more sinister threats as determining
which individual in a crowd has recently come by an ATM machine).

The protocol stack includes the “ReadUID” command to retrieve the 32-bit
UID from the key fob. There is no security mechanism in place which would
require authentication by the reader. Therefore, any reader can request the UID
and the key fob can be potentially tracked by an attacker via a number of
standard readers installed at various places.

The specification [1] does not state whether tracking is considered an issue to
protect against. A possible argument against the feasibility of tracking could be
the potential small communication range of the key fob. However, we still think it
is important to point out this issue in order to caution system developers against
redeploying the protocol layer on a different physical layer without considering
the potential ramifications of a change in communication range.

Tracking via the “ReadUID” command could be prevented if the UID is not
returned in cleartext, but dependent on a shared secret and a nonce generated
by the key fob. A simple example is to use the existing AES encryption EK with
one of the pre-shared keys K in a tweakable block cipher construction ẼK [10]
3 .

ẼK(nonce,UID) = EK(nonce ⊕ EK(UID)) (1)

The result of ẼK will vary with the nonce and the UID will be protected even
when the nonce is revealed. Thus, even though the key fob can be still queried
by any reader, the result cannot be used any more to track it.

There are two options for the values returned by the key fob depending on the
actual functional requirements. If the complete result of ẼK is returned alongside
with the nonce, the reader can decrypt it and arrive at the original UID. Thus,
the full functionality of the original “ReadUID” command is retained. This comes
at the price of a relatively high communication overhead as the key fob needs
to send the 128-bit ciphertext ẼK and the nonce. The computational overhead

3 We have chosen a tweakable block cipher construction as example as it offers
semantic security. Other constructions like EK(nonce|UID) might be more efficient
by eliminating the need for a separate transmission of the nonce. However, the
analysis of the security of such construction is out of scope of this paper.



Security Analysis of an Open Car Immobilizer Protocol Stack 7

would essentially be the generation of the nonce and two AES encryptions on
the key fob side and two AES decryptions on the reader side.

Alternatively, the reader could still check for a specific UID if only a part
of the result of ẼK were returned with the nonce. This could be useful if the
reader requires the “ReadUID” command exclusively to check for a specific UID.
We denote this new command as “CheckUID” and its functionality is shown in
Figure 3. It’s advantage is a shorter response and a better response time of the
key fob compared to the enhanced “ReadUID” command.

Fig. 3. Enhanced “CheckUID” command with resistance against tracking.

By varying the size of the nonce and the portion of ẼK to be checked
(M-bit RespM), the security and communication overhead can be balanced. For
example, using a 32-bit portion of ẼK for checking, a similar resilience against
accidentally matching UIDs would be introduced as in the original protocol stack
with 32-bit UIDs. The communication overhead would consist of the extra bits of
the nonce and the computational overhead would be the generation of the nonce
for the key fob and two extra AES encryptions for key fob and reader each. The
encrypted UID (EK(UID)) could also be pre-computed and stored which would
reduce the computational overhead by one AES encryption for each side.

In both cases, the key fob must be able to generate nonces. This might
require a key fob with slightly higher capabilities as set out in the protocol stack
specification. It might even be possible to include a software nonce generator (e.g.
a LFSR with its state stored in non-volatile memory4). Note that generation of

4 The generator may need to be cryptographically strong.



8 S. Tillich, M. Wójcik

nonces is also required by one of the countermeasures to the attack described in
Section 3.4. Considering the cost spent on implementation of a sound security
primitive like AES, it appears logical to spend the extra effort for nonce gener-
ation in order to allow for sound protocols as well. It appears doubtful whether
it is possible to defend against tracking without the ability of the key fob to
generate nonces.

Other commands could also be used for tracking as well, although it would
not be as versatile as using the “Read UID” command. In the following, we give
a brief discussion of the use of other commands for tracking.

The command “Read Transponder Error Status” returns a status byte con-
sisting of the last executed command and an error code for its execution. A
tracking reader could induce a specific (error) state in the key fob, e.g. by sending
a non-existing command. Other tracking readers could then query the key fob’s
state and thus track it. As there is only a limited number of possible (error)
states, only a limited number of key fobs would be trackable at once. Also, any
genuine errors could disturb the tracking process as key fobs would end up in
different states as anticipated by the tracking readers.

The “Repeat Last Response” prompts the key fob to return the result to
its last received command. As most responses contain a status byte (command
code and error status), “Repeat Last Response” could be used similarly to “Read
Transponder Error Status” for tracking. Also, if the last response contained a
unique value (e.g. the UID in response to “Read UID” or the encrypted challenge
RespM in response to “Start Authentication”), “Repeat Last Response” could
be used for tracking.

Defenses against tracking via “Read Transponder Error Status” or “Repeat
Last Response” could be a randomized encryption of the status byte or a lim-
itation of these commands to authenticated readers. Also, for “Repeat Last
Response”, responses containing potentially trackable information should not
be repeated.

The “Start Authentication” command could also be used for tracking, as
its response to a fixed challenge will always be the same but will most likely
differ amongst different key fobs if they use different AES keys. However, an
attacker needs to know a valid challenge-response pair (RandN and RandM,
cf. Figure 1), as otherwise the key fob would abort the authentication before
providing a trackable response. To prevent tracking via “Start Authentication”,
the key fob could randomize its response to the car’s challenge by including a
self-generated random part to it. This would still allow for authentication by the
car (provided the new random part of the challenge is also returned)5.

3.3 Denial-of-Service Attacks

The protocol stack includes commands for writing new cryptographic keys to
the key fob, which replaces the old keys used for authentication. There are two

5 In the case of “Start Authentication”, tracking could also be prevented by the
adoption of one of the countermeasure against replay attacks in Section 3.4.



Security Analysis of an Open Car Immobilizer Protocol Stack 9

different modes for doing this: In open mode, a “Learn Secret Key1” or “Learn
Secret Key2” can be issued by any reader in order to set new keys. In secure
mode, an encrypted key is sent by the reader device, decrypted by the key fob
and the result is set as new key as shown in Figure 4. The key used for encrypting
the new key is the so-called Default Secret Key which is factory set 6 .

Fig. 4. “LearnSecretKey” command in secure mode.

Overwriting keys in open mode is trivial, as the malicious reader only has to
send the according command to set the keys to those of her choice. However, even
in secure mode it is possible to overwrite keys though the value of the new keys
stays hidden to the attacker. This is possible without knowledge of the Default
Secret Key because the secure key learn command only uses the encrypted key
but no integrity check for it. Therefore, an attacker can send a random value as
encrypted key and the key fob will set the decrypted value as new key.

Thus, in both open and secure mode, keys can be overwritten without the
need of knowing a shared secret. Once this has been done, the key fob will no
longer work with the car. If the key fob is queried in intervals while the car is
in motion, it might even be possible to force the immobilizer to stop the car by
overwriting the keys.

The open mode is vulnerable against this attack per design. To defend
against the attack in secure mode, a message authentication code (MAC) should
be included with the encrypted key and the key should only be overwritten
when the MAC is verified successfully. This entails communication overhead for
transmission of the MAC from the reader to the key fob and computational
overhead of MAC generation in the reader and MAC verification in the key fob.

6 The protocol stack specification does not indicate whether this Default Secret Key
is device specific or shared by several key fobs. If this key is shared, eavesdropping
on a “LearnSecretKey” command could enable an attacker to clone a key fob by
replaying the recorded command to a blank key fob.



10 S. Tillich, M. Wójcik

3.4 Replay Attack on Authentication

A unique property of the “bilateral authentication” protocol in the immobilizer
stack is that the key fob is not required to generate nonces. Instead, the encrypted
nonce from the reader is “reused” as the challenge from the key fob. While this
makes the structure of the key fob simpler, it also means the commands from the
reader can be recorded and replayed at a later time to achieve authentication.
The attack is depicted in Figure 5. Thus, the “bilateral authentication” protocol
does not provide mutual entity authentication but only entity authentication of
the reader to the key fob and data origin authentication of the key fob’s response
to the car.

Fig. 5. Replay attack on the key fob.

In order to be able to record the appropriate reader command, the attacker
can record it during a run of authentication between the genuine key fob and
the car. Alternatively, the car can be prompted to issue a valid authentication
challenge without the presence of the genuine key fob, if the attacker is able
to send the correct UID. For example, the attacker could query the UID from
the genuine key fob via the “Read UID” command (similar as in the tracking



Security Analysis of an Open Car Immobilizer Protocol Stack 11

scenario in Section 3.2). Thus an attacker can pretend to be an authenticated
reader, which gives her access to advanced commands like “Read User Memory”
and “Write User Memory”. Note that the specification [1] does not mention the
scenario of replay attacks, so it remains unclear whether the protocol designers
consider protection against it as out of scope of “bilateral authentication”.

A defense against this attack is to have the key fob generate the challenges
for the reader. Without a challenge from the key fob, the replay of the reader
command will lead to a successful authentication of the reader.

Alternatively, the reader could include an authenticated timestamp in its
“Start Authentication” command to the key fob. A possible solution would
be to replace the car’s challenge RandN (cf. Figure 1) with the timestamp.
The car then authenticates itself by providing (part of) the encryption of the
timestamp (in the place of RandM). The key fob must store the timestamp of
the last successful authentication and check it against the timestamp of a new
authentication. If the new timestamp is not more recent than the stored one
or the encryption of the timestamp is incorrect, the authentication is aborted.
On successful authentication, the key fob updates the stored timestamp. This
measure prevents an attacker from replaying any previously recorded challenges
from the reader as none of their timestamps can be more recent than that of the
last successful authentication.

3.5 Spoofing Attack on Memory Access Protection

The protocol stack allows the reader to lock the EEPROM sections AP1 to AP3
via a “Write Memory Access Protection” command. This command is accepted
by the key fob without prior authentication and could be issued by any attacker
with a standard reader close to it. Depending on the actual use of these EEPROM
sections, an attacker could impair the functionality of the key fob by locking them
with a spoofed command.

By requiring prior authentication for the “Write Memory Access Protection”
command this attack can be prevented.

3.6 Hijacking Communication Sessions

Privileged commands (e.g. “Write User Memory”) can only be executed if there
has been a successful authentication previously (using the “Start Authentica-
tion” command). However, if a malicious reader is present during the commu-
nication session between car and key fob, it could be possible for it to remain
dormant until after the successful authentication and then to “hijack” the ses-
sion by overshadowing the car’s communication with its own. In that way an
attacker could gain access to privileged commands similar as in the replay attack
described in Section 3.4. In particular, session hijacking could still occur even if
the protocol was secured against the replay attack.

A possible way to prevent session hijacking would be to enhance the authen-
tication to an authenticated key agreement, in which a session key is generated.
This session key would then be used to authenticate subsequent commands (and



12 S. Tillich, M. Wójcik

possibly also responses), e.g. by including a MAC over each message. An attacker
without knowledge of the session key would then be unable to take over the
session and could only disrupt it by jamming the communication channel. Note
that such a non-persistent denial-of-service-attack7 is a general threat which
cannot be solved solely on the logical protocol layers but would have to be
addressed at the physical layer.

Under the assumption that privileged commands are used infrequently, an-
other defense against hijacking could be to authenticate each privileged com-
mand individually. A possible way to achieve this is to modify the “Start Au-
thentication” command so that the nonce RandN is replaced by (timestamp
— privileged command). While the timestamp would prevent replay attacks as
described in Section 3.4, a privileged command code would also be conveyed
by the reader. Upon checking the authenticity of the encrypted (timestamp —
privileged command) value, the key fob could execute the privileged command
and return its result alongside the usual authentication response (RespM).

4 Conclusions

In this paper we have identified a number of potential security vulnerabilities in
an open car immobilizer stack. The vulnerabilities include tracking of key fobs,
denial-of-service attacks to render key fobs useless, achieving key fob authentica-
tion despite absence of the key fob (relay attack), achieving reader authentication
via a replay attack, and a spoof attack to lock out EEPROM sections of the key
fob. For each of the identified vulnerabilities we propose countermeasures. This
proves the great value of the openness of the protocol stack to public review.
Some of our proposed countermeasures can be implemented rather easily while
others require enhanced functionalities from the reader and/or the key fob.

Future work involves implementation of the attacks with the help of a proto-
typing system and formal verification of the proposed countermeasures to ensure
their correctness.

Acknowledgements. The authors would like to acknowledge the help of Löıc
Duflot, Shujun Li, Simon Hoerder, and the anonymous reviewers, whose com-
ments helped to improve this paper.

The research described in this paper has been supported by EPSRC grant
EP/H001689/1. The information in this document reflects only the author’s
views, is provided as is, and no guarantee or warranty is given that the informa-
tion is fit for any particular purpose. The user thereof uses the information at
its sole risk and liability.

7 We denote jamming of the communication channel as a non-persistent attack as it
requires the presence of a disruptive device and will disappear as soon as said device
is no longer close to the authentic communication parties.



Security Analysis of an Open Car Immobilizer Protocol Stack 13

References

1. Atmel. Open Source Immobilizer Protocol Stack. Available online at http:

//www.atmel.com/tools/opensourceimmobilizerprotocolstack.aspx (registra-
tion required), 2010.

2. J. H. Conway. On Numbers and Games. Academic Press, 1976.
3. Daily RFID Co., limited. LF RFID Reader-03. http://www.rfid-in-china.com/

2008-09-06/products_detail_2140.html.
4. S. Drimer and S. J. Murdoch. Keep Your Enemies Close: Distance Bounding

Against Smartcard Relay Attacks. In Proceedings of the 16th USENIX Security
Symposium, pages 87–102, 2007.

5. A. Francillon, B. Danev, and S. Capkun. Relay Attacks on Passive Keyless Entry
and Start Systems in Modern Cars. In Proceedings of the 18th Annual Network &
Distributed System Security Symposium (NDSS 2011). ISOC, 2011.

6. GAO RFID Inc. 125 kHz Long Range Reader. http://www.gaorfid.com/index.

php?main_page=product_info&products_id=363.
7. F. D. Garcia, G. de Koning Gans, R. Muijrers, P. van Rossum, R. Verdult, R. W.

Schreur, and B. Jacobs. Dismantling MIFARE Classic. In S. Jajodia and J. Lopez,
editors, 13th European Symposium on Research in Computer Security (ESORICS
2008), Malaga, Spain, 6-8 October, 2008, Proceedings (to appear), Lecture Notes
in Computer Science. Springer Verlag, 2008.

8. S. Indesteege, N. Keller, O. Dunkelman, E. Biham, and B. Preneel. A Practical
Attack on KeeLoq. In N. Smart, editor, Advances in Cryptology - EUROCRYPT
2008, volume 4965 of Lecture Notes in Computer Science, pages 1–18. Springer,
2008.

9. P. Lepek. Configurable, Secure, Open Immobilizer Implementation. In Proceedings
of the 8th Embedded Security in Cars (ESCAR) Conference.

10. M. Liskov, R. L. Rivest, and D. Wagner. Tweakable Block Ciphers. In
Proceedings of the 22nd Annual International Cryptology Conference on Advances
in Cryptology, pages 31–46. Springer, 2002.

11. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. Series on Discrete Mathematics and its Applications. CRC Press,
1997. ISBN 0-8493-8523-7, Available online at http://www.cacr.math.uwaterloo.
ca/hac/.

12. National Institute of Standards and Technology. AES Competition Website
(archived). http://csrc.nist.gov/archive/aes/index.html.

13. National Institute of Standards and Technology. SHA-3 Competition Website.
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

14. S. Tillich and M. Wójcik. Security Analysis of an Open Car Immobilizer Protocol
Stack. In 4th International Conference on Trusted Systems (INTRUST 2012).

15. S. Tillich and M. Wójcik. Security Analysis of an Open Car Immobilizer Protocol
Stack. In 7th Workshop on Embedded Systems Security (WESS 2012).

16. S. Tillich and M. Wójcik. Security Analysis of an Open Car Immobilizer Protocol
Stack. In 10th escar Embedded Security in Cars Conference.

17. S. Tillich and M. Wójcik. Security Analysis of an Open Car Immobilizer Protocol
Stack. Presented at the industry track of the 10th International Conference on
Applied Cryptograpy and Network Security (ACNS’12), June 2012.


