SCAPI: The Secure Computation Application
Programming Interface”

Yael Ejgenberg Moriya Farbstein Meital Levy Yehuda Lindell

Department of Computer Science
Bar-Ilan University, ISRAEL

Library Website: http://crypto.biu.ac.il/about-scapi.php
Contact email for support, bug reports, etc.: scapi@biu.ac.il

November 14, 2013

Abstract

Secure two-party and multiparty computation has long stood at the center of the foundations
of theoretical cryptography. Recently, however, interest has grown regarding the efficiency of
such protocols and their application in practice. As a result, there has been significant progress
on this problem and it is possible to actually carry out secure computation for non-trivial tasks
on reasonably large inputs. Part of this research goal of making secure computation practical
has also involved implementations. Such implementations are of importance for two reasons:
first, they demonstrate the real efficiency of known and new protocols; second, they deepen
our understanding regarding where the bottlenecks in efficiency lie. However, it is very hard
to compare between implementations by different research groups since they are carried out on
different platforms and using different infrastructures. In addition, most implementations have
been carried out without the goal of code reuse, and so are not helpful to other researchers.
The difficulty of beginning implementation projects is further compounded by the fact that
existing cryptographic libraries (like openSSL, Bouncy Castle, and others) are tailored for tasks
like encryption, authentication and key-exchange, and not for secure computation. We have
developed SCAPI in order to address these problems. SCAPI is an open-source general library
tailored for secure computation implementations. Our aim in developing SCAPI has been to
provide a flexible and efficient infrastructure for secure computation implementations, that is
both easy to use and robust. Great care has been taken in the design of the library, in writing
clean code, and in documentation. We hope that this library will be useful to the community
interested in implementations of secure protocols, and will help to promote the goal of making
secure computation practical.

*The SCAPI library was developed through the support of the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 239868.

1 Introduction

In the setting of secure multiparty computation, a set of two or more parties wish to compute a
joint function of their inputs, while preserving a number of security properties. The most central
of these properties are privacy (meaning that the parties learn the output f(z,y) but nothing
else), correctness (meaning that the output received is indeed f(x,y) and not something else), and
independence of inputs (meaning that neither party can choose its input as a function of the other
party’s input). Such protocols must maintain their security properties in the presence of adversar-
ial behavior. Three models of relevance are the semi-honest model (where the adversary follows
the protocol specification exactly but tries to learn more than it should by inspecting the protocol
transcript), the malicious model (where the adversary can follow any arbitrary polynomial-time
strategy), and the covert model (where the adversary can follow any arbitrary polynomial-time
strategy, but is guaranteed to be caught with good probability if it cheats). Secure computa-
tion has broad applicability to electronic voting, auctions, privacy-preserving data mining, private
information retrieval, private database queries, and much more.

In the late 1980s and 1990s, the focus of research on secure computation was feasibility [22, 10,
3, 6] and definitional issues [11, 17, 1, 5]. Powerful results were obtained proving that essentially
any multiparty computation task can be solved, in a variety of settings. These results showed that
it is possible to achieve such secure protocols, but did not demonstrate how to do so efficiently,
where by efficiency we mean a protocol that can be implemented and run in practice. This is
especially the case when considering malicious adversaries.

Recently, the question of efficiency in secure computation and its potential use in practice has
gained much interest, and many works in the past 5 years have focused on this question with
impressive success. The aforementioned feasibility results for secure computation are all based
on the circuit representation of the function being computed. For many years, it was believed
that such protocols belong to the realm of pure theory and cannot be useful in practice. This
belief was changed by the Fairplay system [16] which was the first software implementation of the
two-party protocol of [22]. Ever since, many protocols were implemented, with security for semi-
honest, covert and malicious adversaries; see [2, 4, 13, 14, 15, 21, 18] for just a few examples. The
current state-of-affairs today is such that extremely fast implementations exist for semi-honest and
covert adversaries, and security in the presence of malicious adversaries is even practical for some
non-trivial tasks like private AES computation. These achievements are actually very surprising
since until recently, many held the belief that secure computation is a purely theoretical field that is
unlikely to be of use in practice. Today, we have protocols that can carry out complex computations
on datasets of reasonable size in time that suffices for some practical applications.

In addition to the above progress within the research community, governments and industry
have shown much interest recently in the “technology” of secure multiparty computation as a
potential tool for their needs (governments wishing to balance the needs of homeland security and
privacy, and industry wishing to maximize the utility of their datasets while keeping within privacy
law and without provoking customer anger at privacy breaches). Thus, one can argue that “secure
computation has come of age”, and the SCAPI project was initiated in this context.

Current implementations and SCAPI. To the best of our knowledge, existing implementation
projects for secure computation aim at solving a specific problem more efficiently, with higher
security and so on. As such, the implementations are specifically tailored to the task being studied,

and the code is optimized and tailored to that problem. One of the problems that is arising is
that many different research groups are implementing secure computation protocols, with each one
working on a different platform with a different setup and completely different code. Thus, it is
hard to compare different results, and implementations carried out by one group cannot be used by
others. The aim of SCAPI is to provide a general platform of cryptographic primitives for secure
computation implementations. As such, primitives have been implemented with the explicit aim of
being modular and suitable for general use. In addition, the design is such that primitives can be
easily replaced with others. Our primary focus in this project is to provide a service that others can
use. Thus, the software has been written with the understanding that others will be using it, and
so an emphasis has been placed on clean design and coding, documentation, and so on. Finally,
SCAPI is intended to be a long-term open-source project. Thus, we will continue to update it,
by adding additional primitives, improving existing implementations, incorporating additional low-
level libraries, fixing bugs that we and others find, and so on. We will also welcome contributions,
as long as they meet the software engineering and documentation standards of the library. Finally,
we will provide support and help to those who wish to use SCAPI. To the best of our knowledge,
this makes SCAPI a unique project in the landscape of secure computation implementations.

Licensing. SCAPI is free and is licensed under an adaptation of the MIT license. SCAPI also
uses the Crypto++, Miracl, NTL and Bouncy Castle libraries. Please see those projects for any
further licensing issues. We kindly request an appropriate citation from any work that uses SCAPI.

Current release — disclaimer. As we have mentioned, SCAPI is a long-term project and we
have a long-term commitment to this project. The current release is not perfect. Most outstand-
ingly, only two of the layers are currently in the release, and the third layer that is arguably the
most significant (see Section 3) will be released in a few months. In addition, not all of the code
has undergone the level of QA that we desire. Nevertheless, we have decided to release what we
have so far as a “beta-type release”, since our experience shows that it is already very useful. The
primitives that will be included in the next release are described in Section 3.3; please also report
any bugs discovered so that we can fix them.

Website and support. The SCAPI library website with all necessary information can be found
at http://crypto.biu.ac.il/about-scapi.php. The complete source code can be found there,
as well as documentation (highly detailed design documents, Javadoc documentation of the entire
library, and installation notes). Support questions regarding installation, usage, or anything else
relevant, as well as bug reports can be sent by email to scapi@biu.ac.il.

Contributions. We will be very happy to receive contributions of new code that extends SCAPI
(under the condition that it is cleanly written, well documented, and fits into the SCAPI design
paradigm). Until the release of the third layer, we will accept contributions relevant only to the
first and second layers (this is due to the fact that the design of the third layer components is
not yet finalized). Contributions can be small (e.g., a wrapper of a small primitive), medium-size
(e.g., an implementation of a new encryption or signature scheme), and large (e.g., wrapping a new
low-level library for existing primitives like GMP, or providing new low-level primitives like those
provided by the Miracl bilinear maps library).

2 Design Principles

2.1 Basic Principles

The main driving principles behind the design of SCAPI are flexibility, extendibility, efficiency, and
ease of use. We describe these goals in more detail below. In short, flezibility means that protocols
implemented using SCAPI use primitives and subprotocols in an abstract way so that they can
be easily changed and replaced; extendibility means that new implementations of primitives and
subprotocols that are added to SCAPI can be used by protocols even if they were previously
implemented; efficiency means that protocols implemented using SCAPI will have the support of
highly efficient low-level libraries; finally, ease of use simply means that the library is easy to use,
and “speaks the language” of cryptographers.

Before describing the above principles in more details, we begin by explaining why we chose
to implement SCAPI in Java. First, Java combines the properties that it is suitable for the de-
velopment of large projects, and also enables easy and quick development (due to features such as
a very large standard library, garbage collection, and no pointer logic). Second, Java is portable
and can be run on multiple operating systems and platforms. One setting of importance in this
respect regarding secure computation is the ability to run a secure protocol between a mobile device
and a PC. Third, there exist very good cryptographic libraries implemented in Java which can be
integrated to our API; one example of such a library is Bouncy Castle (www.bouncycastle.org).
Finally, using the JNI framework, it is possible to integrate existing applications and libraries
written in native code.! This is of great importance to both flexibility and efficiency, as will be
described below.

Flexibility. Protocols for secure computation tasks are typically described as using arbitrary
primitives of a lower-level type. For example, a protocol may use oblivious transfer, commitments,
and pseudorandom functions, and is secure for any instantiation of these primitives. SCAPI is
designed so that in such a case, the protocol is also implemented using any oblivious transfer,
any commitment scheme, and any pseudorandom function. The choice of which concrete oblivious
transfer, commitment and so on to actually use is determined later on by the high -level application
calling the protocol. This flexibility has many advantages. First, it enables a very easy way of
comparing the efficiency impact of using different lower-level primitives. For example, the same
protocol code can be run with an elliptic curve group and with a prime subgroup of Z;. This is
extremely useful, as we demonstrate in Section 4. Furthermore, it should be possible to run the
same protocol on a mobile device which supports Java only (by using low-level primitives that are
implemented in pure Java), and with higher efficiency on a PC (by using low-level primitives that
are implemented in C or C++). In addition, it has ramifications to extendibility and efficiency
(e.g., since a new more efficient oblivious transfer protocol can improve the running-time of already-
implemented protocols without changing any code). Finally, it is important for ease of use, since
cryptographers are used to working at this level of abstraction, and don’t have to make decisions
about which concrete primitives to use when this can depend on other factors not yet determined.

!The JNI framework, or “Java Native Interface” enables Java code running in a Java virtual machine to call native
applications (i.e., applications that are specific to a hardware and operating system, like C or C++ code compiled
on a certain platform). JNI is typically used for platform-specific features that are not supported in Java, or in order
to achieve higher efficiency than is possible with Java code.

This flexibility is achieved by working with interfaces that define the functionality of the prim-
itive. For example, a protocol that can use any pseudorandom permutation (PRP) will receive in
its constructor any object that implements the PRP interface. Then, an application that uses this
protocol, and so calls the constructor for the protocol class, first instantiates an object of one of
the classes that implements the PRP interface, and then passes that object to the function (it may
be AES, tripleDES or any other PRP that is implemented). We remark that it is also possible to
implement a protocol that uses AES specifically. However, once again, here there is flexibility since
it may use AES that is implemented in Java from Bouncy Castle or in native code from another
library.

Extendibility. An important feature of any infrastructure of this type is the ability to later add
different implementations of existing primitives and protocols. By having each algorithm /primitive/
protocol type be represented by an interface, we allow future implementations of a given type to be
easily used in existing protocols that call it. This is useful for a number of reasons. We illustrate
this through two examples. Oblivious transfer is a protocol that is widely used as a building
block in many higher-level protocols for secure computation. Until recently, oblivious transfer
(with security in the presence of malicious adversaries) was very inefficient. This situation was
dramatically changed with the protocols of [20, 12] that require only a small constant number of
exponentiations. The design of SCAPI ensures that any new implementations of oblivious transfer
that are even more efficient (or advantageous in other ways) can be utilized in all existing protocols
that use oblivious transfer. The only change that needs to be made is in the application that calls
the protocol, which should now instantiate an object from the new oblivious transfer class and
pass it to the constructor of the protocol. The second example relates to the use of new low-level
libraries. SCAPI wraps many primitives from existing libraries and enables their use with a common
interface. Currently we have wrapped implementations from Bouncy Castle (Java), Crypto++
(C++) and Miracl (C). However, some specific primitives may be more efficiently implemented in
other existing libraries, or in the future a better library may become available. In such a case, all
protocols implemented above SCAPI can immediately benefit from a new library, once a SCAPI
wrapping has been implemented. No existing code needs to be changed and the efficiency or other
advantages are immediately utilized by all existing implementations. We will discuss this in more
depth in Section 3.1.

Efficiency. One of the main reasons that researchers currently implement new protocols is to
demonstrate their efficiency and feasibility in practice. As such, any infrastructure for implement-
ing protocols for secure computation must place a strong focus on efficiency. SCAPI achieves this
by wrapping highly-efficient low-level implementations using JNI. For example, elliptic curve op-
erations coded in Java can actually be run using the extremely efficient Miracl library written in
C. It is important to stress that protocols implemented in SCAPI are unlikely to be as efficient as
specifically tailored and highly optimized low-level code. However, our tests have shown that the
difference should not be significant. We believe that in most cases, the benefit here far outweighs
the cost; it is much quicker and easier to implement a protocol using SCAPI, and the result is code
that has far more flexibility and extendibility, as described above, and is still highly efficient.

Ease of use. There is a significant barrier to begin implementing secure computation protocols.
This is due to a number of reasons. First, existing cryptographic libraries focus on the tasks of
encryption, key exchange and authentication, and often do not expose the functionality needed
for secure computation protocols. Second, these libraries often speak a very different language to
that used by cryptographers, and this is a significant obstacle in implementation. Third, existing
implementations of secure protocols are typically focused on specific tasks and the code is usually
not amenable to reuse by others. SCAPI is designed explicitly for secure computation protocols,
but with no specific goal in mind. In fact, we have made every effort to provide as much generality
as possible and to not limit ourselves to types of protocols that we currently have in mind.? An
emphasis was also placed on writing clear code, comments throughout, and in preparing good doc-
umentation. Finally, we will provide support to users within the cryptography research community,
as much as our resources allow. We believe that these steps will make SCAPI easy to use.

2.2 Security Levels

In many cases, a cryptographic primitive is not just “secure” or “insecure”. Rather, it may meet
some notion of security and not another. A classic example is encryption, where a scheme can be
secure in the presence of eavesdropping adversaries, in the presence of chosen-plaintext attacks or
in the presence of chosen-ciphertext attacks. These three levels of security also form a hierarchy
(any scheme that is secure in the presence of chosen-ciphertext attacks is secure against chosen-
plaintext attacks and so on). The choice of which level of security to require therefore depends on
the application. SCAPI includes a mechanism that allows a protocol to work with any encryption
scheme, on the one hand, but to require that the scheme be CCA-secure, for example, on the other.
Likewise, it is possible to implement a protocol using any discrete-log group, and to require that
the DDH assumption be hard in that group (or CDH, or just the discrete log problem itself). As a
final example, it is possible to construct a protocol that uses a commitment scheme and oblivious
transfer, and to require that the commitment scheme be perfectly hiding and the oblivious transfer
be UC-secure. This ensures that any application instantiating the protocol will not be able to pass
the constructor primitives that do not provide the necessary security guarantees.?

This mechanism works by defining a hierarchy of security-level interfaces for the different prim-
itives implemented in SCAPI. For example, a cryptographic hash function can be “collision resis-
tant” or “target collision resistant” (where the latter is implied by the former), and a discrete-log
group has security levels DDH, CDH and DLOG (where security under DDH implies security under
CDH which implies security under DLOG). Now, the constructor of a protocol that uses a group
in which the CDH assumption is hard, can simply verify that the object that it receives (which is
guaranteed to be a dlog group) is an “instance of CDH”. We remark that since the security-level
interfaces form a hierarchy, any dlog group that extends the DDH interface automatically extends
the CDH interface and will therefore be accepted by this constructor. Some examples of security
level hierarchies are provided in Figure 1.

2This does not mean that SCAPI currently implements everything. In the first stage, we have chosen to focus on
the tools that are typically used in protocols that are secure without an honest majority. The tools that are used in
the setting of an honest majority, like secret sharing and so on, will be considered in future versions.

3This is typically the way secure protocols are described in academic papers. One describes the protocol with
respect to a commitment scheme and oblivious transfer. Then, the theorem stating security states that “if the
commitment scheme is perfectly-hiding and the oblivious transfer protocol is UC-secure, then the protocol meets the
specified definition of security”.

. 1 1
«interfaces

EncsecLevel «interfaces «interfaces
@ HashSeclLevel DlogSeclLevel
«interfaces «inkerfaces
Indistinguishable [Z] Eav
iy «interfaces «interfaces
@ TargetCollisionResistant @ Dlog
«interfaces #interfaces
g NonMalleable g Cpa
«interfaces: «interfaces
CollisionR esistant CDH
«inkerfaces
[T cea1
«inkerfaces
] pDH
«interfaces
[Ccaz

Figure 1: Security Levels Hierarchy for Encryption, Hash Functions and Discrete Log Groups

3 Layers and Primitives

The SCAPI library is divided into three layers. The first layer consists of low-level primitives like
pseudorandom functions, hash functions and so on. The second layer is comprised of non-interactive
schemes, mainly encryption and MAC /signatures. Finally, the third layer contains basic protocols
that are commonly used in secure computation, like oblivious transfer, a variety of commitment
schemes, Sigma protocols and zero-knowledge, and more. This final layer is the most powerful in
some sense. However, in reality, the most important part of the library lies in its design at the lower
layers. For example, it is very easy to implement the oblivious transfer protocol of [20] given the
discrete-log group functionality in the first layer. In addition to these three main layers, there is an
orthogonal communication layer that is used for setting up communication channels and sending
messages.

3.1 Layer 1 — Basic Primitives

The first, lowest layer of SCAPI contains basic cryptographic primitives. Most of our code at
this level consists of wrapping code from other libraries into a unified format (the exceptions are
primitives like HKDF, universal hash function and Luby-Rackoff that are not implemented in
standard crypto libraries). Despite this, the basic primitive layer plays a very important role in
SCAPI since it provides a common interface for different low-level libraries. This enables higher-
level protocols to be designed and implemented independently of any specific low-level library.

Although we have already mentioned this above, we describe the advantages to this approach in
more detail here:

1. A single implementation can run on different platforms based on different low-level libraries
that are available for that platform.

2. A new low-level library that is more efficient can be wrapped by SCAPI and then all higher-
level protocols that are implemented with SCAPI will automatically gain from the efficiency
improvement. For example, new Intel chips have AES in hardware and also enable finite
field operations in hardware that can speed up elliptic curve operations. By wrapping this
capability, any secure computation protocol that uses such functions will immediately run
much faster; the only change that needs to be made is in defining the provider for AES and
for the elliptic curve operations.

3. The interface of this layer provides different levels of abstraction, as desired. For example, it
is possible to implement a protocol that uses any pseudorandom function, any pseudorandom
permutation, the AES function, or even the AES function as implemented in some specific
low-level library (where this latter choice is not desired since it leaves no flexibility). At a later
stage, when actually instantiating the protocol, a concrete pseudorandom function must be
chosen (like AES). However, since the protocol implementation refers to any pseudorandom
function or maybe permutation, the function can be chosen to be anything that meets the
definition without modifying the code at all. This level of abstraction is very suitable to the
way that cryptographers typically speak and design protocols. In addition, it enables easy
comparison of the efficiency ramifications of using different primitives. An example of this is
given in Section 4.

The primitives implemented in this layer are: pseudorandom functions and permutations (of multi-
ple types with fixed input and output length, varying input and output length, and so on), crypto-
graphic hash functions, universal hash functions, trapdoor permutations, pseudorandom generators,
key derivation functions (a.k.a. extractors), and discrete log groups. The discrete log group is the
most significant since it exposes the functionality that cryptographers expect from a generic group
of this kind, without linking it to the specific needs of encryption and signing as can be found in
most libraries. In addition, the same functionality is provided for groups based on Z, and elliptic
curve groups of different types; see Section 4 for an example of this. The functionality provided
by the discrete log implementation is novel with respect to other existing libraries, and we view its
contribution as significant in and of itself.

3.2 Layer 2 — Non-Interactive Schemes

The second layer consists of non-interactive cryptographic schemes. Specifically, this layer con-
tains symmetric and asymmetric encryption, message authentication codes and digital signatures.?
Regarding asymmetric encryption, SCAPI supports RSA-OAEP (from Bouncy Castle and from
Crypto++), El-Gamal (over any discrete log group), Cramer-Shoup [7] (over any discrete log
group), and Damgard-Jurik additively homomorphic encryption [8] (which is an extension of Pail-
lier [19]). We remark that both ElGamal and Cramer-Shoup can receive group elements or byte

4Commitment schemes are part of the third layer since some are interactive and some are non-interactive.

arrays as plaintext; the former case is often needed in protocols where the algebraic structure of
the ciphertext is needed for efficiently proving statements in zero knowledge.

Regarding symmetric encryption, message authentication codes and digital signatures, standard
schemes are currently supported (e.g., AES with CBC and counter modes, CBC-MAC, DSA and
RSA signatures, etc.). However, according to the design paradigm of the library, protocols that use
encryption should work at the abstract level of what is required. For example, a protocol requiring
CCA2-secure asymmetric encryption should accept any asymmetric encryption scheme, and then
check that its security level is CCA2. This enables the incorporation of different schemes once
implemented in SCAPI.

The security levels for encryption provided are Eavesdropping, CPA, CCA1l, and CCA2, and
orthogonally indistinguishability and non-malleability. For example, one can specify non-malleable
under CPA, or indistinguishability under CCA1; needless to say, any scheme that is CCA2 is
automatically both indistinguishable and non-malleable; see Figure 1.

3.3 Layer 3 — Interactive Protocols

The third layer of SCAPI contains interactive protocols and schemes that are widely used in pro-
tocols for secure computation. The main schemes are:

e Sigma protocols and zero knowledge: SCAPI contains over 10 common Sigma protocols (e.g.,
discrete log, Diffie-Hellman tuple, etc.). In addition, the following operations on arbitrary
Sigma protocols are included: AND of multiple statements, OR of two or many statements,
transformation to zero-knowledge, transformation to zero-knowledge proof of knowledge, and
Fiat-Shamir transformation to non-interactive zero-knowledge.

This design makes it extraordinarily easy to implement new zero-knowledge based on Sigma
protocols. The only new implementation required is to define the prover and verifier messages
in the Sigma protocol. The automatic transformations provide immediate zero knowledge,
as well as complex constructions like a zero-knowledge proof of knowledge of the OR of two
statements.

o Commitments: SCAPI includes Pedersen commitments, ElGamal commitments, Hash-based
commitments, and equivocal commitments. Additional schemes like extractable commit-
ments, fully trapdoor commitments, homomorphic commitments, non-malleable commit-
ments and UC-secure commitments will be released in the near future.

e Oblivious transfer: Many oblivious transfer protocols are implemented in SCAPI, with se-
curity in the presence of semi-honest and malicious adversaries. For the case of malicious
adversaries, protocols achieving privacy only, one-sided simulation, full simulation-based se-
curity, and UC-security are included. In the very near future, highly optimized oblivious
transfer extension for semi-honest adversaries will be included (enabling semi-honest OT at
a rate of close to 1 million transfers per second).

e Garbled circuit: A number of Yao garbled-circuit constructions are implemented. There
is a basic construction that can work with any double-encryption scheme, and some more
optimized constructions (e.g., using the free XOR technique). The design is also such that a
circuit can be broken up into layers and processed in parts, if desired.

e Miscellaneous: In addition to the above, SCAPI also has protocols for tossing a single bit and a
string (with full simulatability or one-side simulatability), and will later include functionalities
like pseudorandom function evaluation and more.

The above is included in the first release of the 3rd layer of SCAPI. Our aim is to increasingly add
functionality as time goes on.

We stress that although this layer is the most significant in terms of the functionality it pro-
vides, the first layer is also highly important in terms of providing the necessary infrastructure for
implementing protocols for secure computation.

3.4 The Communication Layer

SCAPI comes with a built in communication layer for setting up communication channels between
two or more parties. In future releases, the communication layer will include advanced features like
secure broadcast between multiple parties and more. Currently, it enables the generation of a plain,
encrypted, authenticated, or encrypted-then-authenticated TCP channel between two parties.®

A communication channel has two main functions, send and receive, and these are used by the
parties for “communicating”. The main issue that arises in implementing such a channel is what
can be sent over such a channel. Recall that cryptographic objects are often not simple types (e.g., a
Cramer-Shoup ciphertext consists of group elements, and possibly also a byte array). Furthermore,
at the level of abstraction that SCAPI works, a protocol wishing to send an object may not know
what that object actually contains. For example, a group element can be a single Biglnteger (in
the case of a Z,-based group), or a pair of Biglntegers (in the case of an elliptic curve group).5 We
therefore defined a mechanism enabling any object in SCAPI to be sent or received. Fortunately,
Java already comes with a built-in mechanism for sending objects that were generated by one VM
to another VM. This mechanism is called serialization, and is used to convert a Java object into a
form that can be stored or transmitted over a communication channel. Serialization converts an
object into a stream of bytes containing all of the information necessary to recreate the object at
a later time, e.g., after communication. In order to use this mechanism, all that needs to be done
is to make all classes that contain data that may need to be sent serializable.”

Primitive types like int and byte, and basic classes like arrays, String and BigInteger are already
serializable in Java. SCAPI objects that need to be sent include keys, plaintexts, ciphertexts,
signatures, group parameters, group elements and trapdoor-permutation elements. These last two
types cause a problem since they are only defined in the context of their associated group or
trapdoor permutation (e.g., a point (x,y) may be in the group defined by one elliptic curve but not
another). Due to this, SCAPT only allows the construction of a group element from within the class
that represents the actual group; likewise, a RabinElement or RSAElement can only be constructed
from within the actual corresponding permutation (specifically, the generateElement function needs
to be called from within the relevant TPPermutation or dlog group). This design decision ensures

5In actuality, the very first release only has a plain channel; the addition of encryption and authentication will be
included in an additional release very soon.

5To be exact, a group element is neither a single Biglnteger nor a pair of Biglntegers, but rather is a separate
class containing this data.

"Many consider using serialization a security risk since the entire class contents are revealed. In the context of
SCAPI, we do not consider this to be a concern. First, anything sent is supposed to be fully revealed to the recipient,
or else it should not be sent. Second, if something should not be viewed by an eavesdropper on the channel, then an
encrypted channel should be used.

an explicit connection between elements of the above type and the group or permutation that they
are associated with.

Due to the above, SCAPI does not define the actual element object to be serializable (since this
would either involve sending the group information explicitly with each element, which is wasteful,
or would require enabling the construction of an element independent of its context). Rather,
a separate class containing the data only is used for communication. This design has another
advantage in that it allows two communicating parties to use different providers. For example,
consider a secure computation protocol that is run between a PC and a mobile device, where the
latter only supports Java. If they communicated actual Java objects, then the PC would either have
to use only Java-based classes (e.g., an Elliptic curve library from Bouncy Castle) which is much
slower, or would have to explicitly convert every element received. By only sending data, each party
can use whatever library it prefers. In order for this to work, all SCAPT objects which are not basic
types have a function called generateSendableData() that returns a data object that is serializable,
and a function for generating the appropriate object from the sendable-data object. For example,
the code for sending a dlog group element is channel.send(myPoint.generateSendableData()) and the
code for receiving it is myPoint = myDlogGroup.generateElement(channel.receive()).

We remark that this issue arises also with other types that can contain dlog elements and the
like. Thus, asymmetric ciphertexts must also implement generateSendableData and construction
from such data, since schemes like ElGamal and Cramer-Shoup contain dlog elements.

4 Example Usage

In this section, we present an example of how the SCAPI library works. The example that we use
is the Cramer-Shoup encryption scheme [7]. This implementation is part of the second layer of
the library, but also demonstrates how to use the library externally. The Cramer-Shoup scheme is
a CCA2-secure public-key (asymmetric) encryption scheme. As such, the CramerShoup interface
extends the asymmetric-encryption and CCA2 interfaces.®

public interface CramerShoupDDHEnc extends AsymmetricEnc, Cca2 {

}

This defines its type and enables a protocol/scheme that is secure when using any CCA2-secure
public-key encryption scheme to use Cramer-Shoup.

Constructor: Cramer-Shoup encryption works over any group in which the DDH problem is
assumed to be hard, and also uses a collision-resistant hash function. Thus, the constructor for
the scheme receives a “discrete-log group” and a “cryptographic hash function” and verifies that
the former has security level DDH and that the latter is collision resistant. This ensures that one
cannot instantiate Cramer-Shoup with a weaker hash function, or with a group in which DDH is
not hard (e.g., some Bilinear group). The constructor is shown below.

public CramerShoupAbs(DlogGroup dlogGroup, CryptographicHash hash, SecureRandom random){
//The Cramer-Shoup encryption scheme must work with a Dlog Group that has DDH security level
//and a Hash function that has CollisionResistant security level. If any of this conditions is not
//met then cannot construct an object of type Cramer-Shoup encryption scheme; therefore throw exception.

8There are also Indistinguishable and NonMalleable interfaces for encryption; however, since any CCA2 scheme
is both indistinguishable and non-malleable there is no need to extend these as well.

10

if (! (dlogGroup instanceof DDH)){
throw new IllegalArgumentException("The Dlog group has to have DDH security level");
}

if (! (hash instanceof CollisionResistant)){
throw new IllegalArgumentException("The hash function has to have CollisionResistant security level");

}

// Everything is correct, then sets the member variables and creates object.
this.dlogGroup = dlogGroup;

gMinusOne = dlogGroup.getOrder() .subtract(BigInteger.ONE);

this.hash = hash;

this.random = random;

Encryption: The code for the Cramer-Shoup encryption procedure can be found below. Observe
that the operations on the discrete-log group are completely abstract, and are independent of its
actual structure. This enables the same code to be used for groups based on Zj, or on elliptic curves,
and so on. This is most evident in the mapAnyGroupElementToByteArray function which is needed
to translate a group element into a string so that it can be input to the hash function (because the
latter works only on byte arrays); since we have no information on the format of a group element,
a special function is needed for this benign purpose.

Note that the encryption procedure here receives a plaintext that is a group element and not a
byte array; there is a different class that is used for encrypting a byte array. This difference is of
significance when the algebraic properties of the ciphertext need to be preserved (e.g., in order to
prove statements in zero-knowledge regarding the plaintext).

public AsymmetricCiphertext encrypt(Plaintext plaintext){

/*

* Choose a random r in Zq

* Calculate ul = gl°r

* u2 = g2°r

* e = (h"r)*msgEl

* Convert ul, u2, e to byte[] using the dlogGroup

* Compute alpha - the result of computing the hash function on the concatenation ul+u2+e.
* Calculate v = c"r * d~(r*alpha)

* Create and return an CramerShoupCiphertext object with ul, u2, e and v.

*/
if (!isKeySet()){
throw new IllegalStateException("in order to encrypt a message this object must be initialized
with public key");
}
if (!(plaintext instanceof GroupElementPlaintext)){
throw new IllegalArgumentException("plaintext should be instance of GroupElementPlaintext");
}
GroupElement msgElement = ((GroupElementPlaintext) plaintext).getElement();

BigInteger r = chooseRandomR() ; //Choose a random value between O and gq-1 (q = group order)
GroupElement ul = calcUl(r); //Compute gl-r
GroupElement u2 = calcU2(r); //Compute g2°r

GroupElement hExpr = calcHExpR(r); //Computer h"r
GroupElement e = dlogGroup.multiplyGroupElements (hExpr, msgElement) ;

11

byte[] ulToByteArray = dlogGroup.mapAnyGroupElementToByteArray(ul);
byte[] u2ToByteArray = dlogGroup.mapAnyGroupElementToByteArray (u2) ;
byte[] eToByteArray = dlogGroup.mapAnyGroupElementToByteArray(e);

//Calculates the hash(ul + u2 + e).
byte[] alpha = calcAlpha(ulToByteArray, u2ToByteArray, eToByteArray);

//Calculates v = c"r * d~(r*alpha).
GroupElement v = calcV(r, alpha);

//Creates and return an CramerShoupCiphertext object with ul, u2, e and v.
CramerShoupOnGroupElementCiphertext cipher = new CramerShoupOnGroupElementCiphertext(ul, u2, e, v);
return cipher;

}
The functions calcU1, calcU2, and so on compute exponentiations, as expected. For example:

protected GroupElement calcUl(BigInteger r) {

return dlogGroup.exponentiate(publicKey.getGenerator1(), r);

}
These are written as functions since there are two versions of Cramer-Shoup, one that receives a
group element for encryption and one that receives a byte array, and writing these as functions
prevents code duplication.

A demonstration of modularity. As we have described, the implementation of the Cramer-
Shoup encryption scheme is completely independent of the actual discrete log group and hash
function. Thus, it is very easy to write a simple loop that instantiates the scheme with different
groups and measures the running time. We stress that this holds both with respect to different
group types (e.g., the order-g subgroup of Z, where p = 2q + 1 versus different elliptic curve
groups), and with respect to the provider (e.g., elliptic curve routines of Bouncy Castle in Java,
versus elliptic curve routines of Miracl that are written in C). This example clearly demonstrate
our above discussion on flexibility and extendibility: this given Cramer-Shoup implementation will
be able to work with any elliptic curve library that will be incorporated into SCAPI in the future.
In addition, the same code should run on a mobile device (which only supports Java and so would
use a Bouncy Castle based discrete log group) and on a PC where faster libraries like Miracle can
be used. We now present the code for running this test and then the results.

We do not provide all of the code here, but rather just the main parts. The main function reads
the parameters of the test from a configuration file and executes the test for each set of parameters.
The main loop appears below:

public static void main(String[] args) throws FactoriesException {

// Get parameters from config file:
CramerShoupTestConfig[] config = readConfigFile();

for (int i = 0; i < config.length; i++) {
result = runTest(configl[il);
out.println(result);
System.out.println(result);

12

Three example sets of parameters, as they appear in the configuration file, are as follows:

dlogGroup = DlogZpSafePrime
dlogProvider = CryptoPP
algorithmParameterSpec
hash = SHA-256
providerHash = BC
numTimesToEnc = 1000

1024

dlogGroup = DlogECFp
dlogProvider = BC
algorithmParameterSpec
hash = SHA-1
providerHash = BC
numTimesToEnc = 1000

P-224

dlogGroup = DlogECFp
dlogProvider = Miracl
algorithmParameterSpec = P-224
hash = SHA-1

providerHash = BC
numTimesToEnc = 1000

As you can see, the parameters determine which “discrete-log group” to use (e.g., Zy,-based group,
elliptic curve group over a prime-order field, etc.), which provider of that group to use (e.g.,
Crypto++, Bouncy Castle (BC) or Miracl), and whatever additional parameters needed (the size
of the prime p in Z,-based groups or the curve name for elliptic curve groups). Likewise, the hash
function and provider are specified as well. We now present the function that carries out the ac-
tual work of encryption. This function also demonstrates how to generate an encryption object, a
random key, a random group element, and so on.

static public String runTest(CramerShoupTestConfig config) throws FactoriesException{
DlogGroup dlogGroup;
//Create the requested Dlog Group object. Do this via the factory.
//I1f no provider specified, take the SCAPI-defined default provider.
if (config.dlogProvider != null){
dlogGroup = DlogGroupFactory.getInstance().getObject(config.dlogGroup+
"("+config.algorithmParameterSpec+")", config.dlogProvider);
Yelse {
dlogGroup = DlogGroupFactory.getInstance().getObject(config.dlogGroup+
"("+config.algorithmParameterSpec+")") ;

CryptographicHash hash;
//Create the requested hash. Do this via the factory.
if (config.hashProvider != null){
hash = CryptographicHashFactory.getInstance().getObject(config.hash, config.hashProvider);
Yelse {
hash = CryptographicHashFactory.getInstance().getObject(config.hash);

//Create a random group element. This element will be encrypted several times as specified in
//config file and decrypted several times
GroupElement gEl = dlogGroup.createRandomElement () ;

13

//Create a Cramer Shoup Encryption/Decryption object. Do this directly by calling the relevant
//constructor. (Can be done instead via the factory).
ScCramerShoupDDHOnGroupElement enc = new ScCramerShoupDDHOnGroupElement (dlogGroup, hash);

//Generate and set a suitable key.
KeyPair keyPair = enc.generateKey();
try {
enc.setKey(keyPair.getPublic() ,keyPair.getPrivate());
} catch (InvalidKeyException e) {
e.printStackTrace();

//Wrap the group element we want to encrypt with a Plaintext object.
Plaintext plainText = new GroupElementPlaintext(gEl);
AsymmetricCiphertext cipher = null;

//Measure the time it takes to encrypt each time. Calculate and output the average running time.
long allTimes = O;

long start = System.currentTimeMillis();

long stop = 0;

long duration = 0;

int encTestTimes = new Integer(config.numTimesToEnc).intValue();
for(int i = 0; i < encTestTimes; i++){

cipher = enc.encrypt(plainText);

stop = System.currentTimeMillis();

duration = stop - start;

start = stop;

allTimes += duration;

}
double encAvgTime = (double)allTimes/(double)encTestTimes;

//Repeat for decryption...

return result;

See Table 1 for the results of the test (the times are the average of 1000 encryptions and
decryptions). This example demonstrates the power of SCAPI. In more advanced protocols, where
the effect on efficiency of changing the underlying primitives may be unclear, this is a very important
tool.

14

Dlog Group Dlog Dlog Hash Hash Encrypt Decrypt
Type Provider | Param | Function | Provider | Time (ms) | Time (ms)

DlogZpSafePrime | CryptoPP 1024 SHA-256 BC 6.072 3.665
DlogZpSafePrime | CryptoPP | 2048 SHA-256 BC 43.818 26.289
DlogECFp BC P-224 SHA-1 BC 54.171 31.662
DlogECF2m BC B-233 SHA-1 BC 107.316 65.185
DlogECF2m BC K-233 SHA-1 BC 25.292 14.886
DlogECFp Miracl P-224 SHA-1 BC 6.571 3.929
DlogECF2m Miracl B-233 SHA-1 BC 5.819 3.652
DlogECF2m Miracl K-233 SHA-1 BC 2.753 1.787

Table 1: Running times for Cramer-Shoup using Different Groups and Libraries

References

[1]

2]

D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91, Springer-Verlag
(LNCS 576), pages 377-391, 1991.

A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a System for Secure Multiparty Com-
putation. In the ACM Conference on Computer and Communications Security 2008, pages
257-266, 2008.

M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages 1-10, 1988.

P. Bogetoft, D. Christensen, I. Damgard, M. Geisler, T. Jakobsen, M. Krigaard, J. Nielsen,
J.B. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft. Secure Multiparty Com-
putation Goes Live. In Financial Crypto, 2009.

R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143-202, 2000.

D. Chaum, C. Crépeau and I. Damgard. Multi-party Unconditionally Secure Protocols. In
20th STOC, pages 11-19, 1988.

R. Cramer and V. Shoup, A Practical Public Key Cryptosystem Secure Against Adaptive
Chosen Ciphertext Attacks. In CRYPT0’98, Springer (LNCS 1462), pages 13—25, 1998.

I. Damgard and M. Jurik. A Generalisation, a Simplification and Some Applications of Pail-
lier’s Probabilistic Public-Key System. Public Key Cryptography (PKC), Springer (LNCS
1992), pages 119-136, 2001.

O. Goldreich. Foundations of Cryptography: Volume 2 — Basic Applications. Cambridge
University Press, 2004.

O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game — A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218-229, 1987. For
details see [9].

15

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of Immoral
Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77-93, 1990.

C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols: Techniques and Construc-
tions, Springer 2010.

Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Secure Two-Party Computation Using
Garbled Circuits. USENIX Security Symposium, 2011.

B. Kreuter, A. Shelat and C.H. Shen. Towards Billion-Gate Secure Computation with Ma-
licious Adversaries. IACR Cryptology ePrint Archive 2012, report 179, 2012.

Y. Lindell, B. Pinkas and N.P. Smart. Implementing Two-Party Computation Efficiently
with Security Against Malicious Adversaries. In SCN 2008, Springer (LNCS 5229), pages
2-20, 2008.

D. Malkhi, N. Nisan, B. Pinkas and Y. Sella. Fairplay — A Secure Two-Party Computation
System. Proceedings of Usenix Security Symposium, pages 287-302, 2004.

S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Preliminary
version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392-404, 1991.

J.B. Nielsen, P.S. Nordholt, C. Orlandi and S.S. Burra. A New Approach to Practical
Active-Secure Two-Party Computation. In CRYPTO 2012, Springer (LNCS 7417), pages
681-700, 2012.

P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In
EUROCRYPT 1999, Springer (LNCS 1592), pages 223-238, 1999.

C. Peikert, V. Vaikuntanathan and B. Waters. A Framework for Efficient and Composable
Oblivious Transfer. In CRYPTO 2008, Springer-Verlag (LNCS 5157), pages 554571, 2008.

B. Pinkas, T. Schneider, N.P. Smart, S.C. Williams. Secure Two-Party Computation Is
Practical. In ASTACRYPT 2009, Springer (LNCS 5912), pages 250-267, 2009.

A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162-167, 1986.

16

