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Abstract

Coin-tossing protocols are protocols that generate a random bit with uniform distribution. These pro-
tocols are used as a building block in many cryptographic protocols. Cleve [STOC 1986] has shown that
if at least half of the parties can be malicious, then, in any r-round coin-tossing protocol, the malicious
parties can cause a bias of Ω(1/r) to the bit that the honest parties output. However, for more than two
decades the best known protocols had bias t√

r
, where t is the number of corrupted parties. Recently, in

a surprising result, Moran, Naor, and Segev [TCC 2009] have shown that there is an r-round two-party
coin-tossing protocol with the optimal bias of O(1/r). We extend Moran et al. results to the multiparty
model when less than 2/3 of the parties are malicious. The bias of our protocol is proportional to 1/r
and depends on the gap between the number of malicious parties and the number of honest parties in
the protocol. Specifically, for a constant number of parties or when the number of malicious parties is
somewhat larger than half, we present an r-round m-party coin-tossing protocol with optimal bias of
O(1/r).
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1 Introduction

Secure multiparty computation in the malicious model allows distrustful parties to compute a function se-
curely. Designing such secure protocols is a delicate task with a lot of subtleties. An interesting and basic
functionality for secure computation is coin tossing – generating a random bit with uniform distribution.
This is a simple task where the parties have no inputs. However, already this task raises questions of fair-
ness and how malicious parties can bias the output. Understanding what can be achieved for coin tossing
in various settings can be considered as a step towards understanding general secure and fair multiparty
computation. Indeed, some of the early works on secure computation were on coin tossing, e.g., [5, 6, 9].
Furthermore, coin tossing is used as a basic tool in constructing many protocols that are secure in the mali-
cious model. Secure protocols for coin tossing are a digital analogue of physical coin tossing, which have
been used throughout history to resolve disputes.

The main problem in designing coin-tossing protocols is the prevention of a bias of the output. The
bias of a coin-tossing protocol measures the maximum influence of the adversary controlling a subset of
malicious parties on the output of the honest parties, where the bias is 0 if the output is always uniformly
distributed and the bias is 1/2 if the adversary can force the output to be always (say) 1. To demonstrate the
problems of designing a coin-tossing protocol, we describe Blum’s two-party coin-tossing protocol [5].

Example 1.1 (Blum’s coin-tossing protocol [5]). To toss a coin, Alice and Bob execute the following proto-
col.

• Alice chooses a random bit a and sends a commitment c = commit(a) to Bob.
• Bob chooses a random bit b and sends it to Alice.
• Alice sends the bit a to Bob together with de-commit(c).
• If Bob does not abort during the protocol, Alice outputs a⊕ b, otherwise she outputs a random bit.
• If Alice does not abort during the protocol and c is a commitment to a, then Bob outputs a ⊕ b,

otherwise he outputs a random bit.

If Alice is malicious, then she can bias the output toward (say) 1. If a ⊕ b = 1, she opens the commitment
and Bob outputs 1. However, if a⊕ b = 0, Alice aborts, and Bob outputs 1 with probability 1/2. Altogether,
the probability that the honest Bob outputs 1 is 3/4. It can be proved that this is the best that Alice can do
in this protocol, and, hence, the bias of the protocol is 1/4. This protocol demonstrates the problems caused
by parties aborting the protocol and the need to define how the output of the other parties is computed after
such aborts.

While the above protocol is a significant improvement over naive protocols whose bias is 1/2, the
protocol still has a constant bias. If more than half of the parties are honest, then, using general secure
multiparty protocols, there are constant-round protocols with negligible bias (assuming a broadcast channel),
e.g., the protocol of [20]. Cleve [9] proved that when at least half of the parties can be malicious, the bias of
every protocol with r rounds is Ω(1/r). In particular, this proves that without honest majority no protocol
with polynomial number of rounds (in the security parameter) can have negligible bias. On the positive
side, it was shown in [2, 9] that there is a two-party protocol with bias O(1/

√
r). This can be generalized

to an m-party protocol that tolerates any number of malicious parties and has bias O(t/
√

r), where t is
a bound on the number of malicious parties. Cleve and Impagliazzo [10] have shown that, in a model
where commitments are available only as black-box (and no other assumptions are made), the bias of every
coin-tossing protocol is Ω(1/

√
r).1 The protocols of [5, 2, 9] are in this model.

1The lowerbound of [10] holds in a stronger model which we will not discuss in this paper.
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The question if there is a coin-tossing protocol without an honest majority that has bias O(1/r) was
open for many years. Recently, in a breakthrough result, Moran, Naor, and Segev [18] have shown that there
is an r-round two-party coin-tossing protocol with bias O(1/r). Moran et al. ask the following question:

“An interesting problem is to identify the optimal trade-off between the number of parties, the
round complexity, and the bias. Unfortunately, it seems that several natural variations of our
approach fail to extend to the case of more than two parties. Informally, the main reason is that
a coalition of malicious parties can guess the threshold round with a pretty good probability by
simulating the protocol among themselves for any possible subset.”

1.1 Our Results

Our main contribution is a multi-party coin-tossing protocol that has small bias when less than 2/3 of the
parties are malicious.

Theorem 1 (Informal). Let m, t, and r be integers such that m/2 ≤ t < 2m/3. There exists an r-round
m-party coin-tossing protocol tolerating t malicious parties that has bias O(22k+1

/r′), where k = 2t −m
and r′ = r −O(k + 1).

The above protocol nearly has the desired dependency on r, i.e., the dependency implied by the lower
bound of Cleve [9]. However, its dependency on k (where k is the difference between the number of
malicious parties and the number of honest parties) has, in general, a prohibitive cost. Nevertheless, there
are interesting cases where the bias is O(1/r).

Corollary 2 (Informal). Let m and t be constants such that m/2 ≤ t < 2m/3 and r be an integer. There
exists an r-round m-party coin-tossing protocol tolerating t malicious parties that has bias O(1/r).

For example, we construct an r-round 5-party coin-tossing protocol tolerating 3 malicious parties that
has bias 8/(r −O(1)) (this follows from our general construction in Sections 4–6).

Notice that the protocol of Theorem 4 depends on k and not on the number of malicious parties t. Thus,
it is efficient when k is small.

Corollary 3 (Informal). Let m, r be integers and t = m/2 + O(1). There exists an r-round m-party
coin-tossing protocol tolerating t malicious parties that has bias O(1/r).

For example, for any even m we construct an r-round m-party coin-tossing protocol tolerating m/2
malicious parties that has bias 1/(2r − O(1)). Furthermore, even when t = 0.5m + 0.5 log log m− 1, the
bias of our protocol is small, namely, O(m/(r −O(log log m))).

We also reduce the bias compared to previous protocols when more than 2/3 of the parties are malicious.
The bias of the m-party protocol of [2, 9] is O(t/

√
r). We present in Section 7 a protocol whose bias is

O(1/
√

r) when t/m is constant, that is, when the fraction of malicious parties is constant we get rid of the
factor t in the bias.

Communication Model. We consider a communication model where all parties can only communicate
through an authenticated broadcast channel. On one hand, if a party broadcasts a message, then all other
parties see the same message. This ensures some consistency between the information the parties have. On
the other hand, there are no private channels and all parties see all messages. We assume a synchronous
model; however, the adversary is rushing.2 That is, in this model, in each round each party broadcasts a

2If there is synchronous broadcast without a rushing adversary then coin tossing is trivial.
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message. However, the adversary can wait until it sees the messages sent by the honest parties before it
broadcasts the messages of the malicious parties (that is, these messages can depend on the honest parties’
messages).

We note that our results can be translated to a model with authenticated point-to-point channels with
a PKI infrastructure (in an m-party protocol, the translation will increase the number of rounds by a mul-
tiplicative factor of O(m)). Thus, our results hold in the two most common models for secure multiparty
computation.

1.2 The Idea of Our Protocol

We generalize the two-party protocol of Moran et al. [18] to the multi-party setting. In the protocol of [18],
in each round Alice and Bob get bits that are their output if the other party aborts: If a party aborts in round
i, then the other party outputs the bit it got in round i − 1. Furthermore, there is a special round i∗; prior
to round i∗ the bits given to Alice and Bob are random independent bits and from round i∗ onward the bits
given to Alice and Bob are the same fixed bit. The adversary can bias the output only if it guesses i∗. In our
protocol, in each round there are many bits. We define a collection of subsets of the parties and each subset
gets a bit. The bits are chosen similarly to [18]: prior to i∗ they are independent; from i∗ onward they are
fixed. In our case we cannot give the bits themselves to the parties. We rather use a few layers of secret-
sharing schemes to store these bits. For every subset in the collection, we use a first secret-sharing scheme
to share the bit of the subset among the parties of the subset. We use an additional secret-sharing scheme
to share the shares of the first secret-sharing scheme. The threshold in the latter secret sharing scheme is
chosen such that the protocol can proceed until enough parties aborted. In the round when the number of
aborted parties ensures that there is an honest majority, an appropriate subset in the collection is chosen, its
bit is reconstructed, and this bit is the output of the honest parties. The description of how to implement
these ideas appears in Sections 4–6.

The construction of Moran et al. [18] is presented in two phases. In the first phase they present a
protocol with a trusted dealer, for which an adversary can only inflict bias O(1/r). Then, they show how
to implement this protocol in the real-world, using a constant round secure-with-abort multiparty protocol,
as well as secret-sharing and authentication schemes. This can be seen as a general transformation from
any two-party coin-tossing protocol with a trusted dealer, into a real world two-party coin-tossing protocol.
We observe that the transformation of Moran et al. to a real-world protocol requires some further care for
the multiparty case generalization. We show how this can be achieved by adopting the definition of secure
multiparty computation of [1], which requires the protocol to detect a cheating party, that is, at the end of
the protocol either the honest parties hold a correct output or all honest parties agree on a party (or parties)
that cheated during the protocol.

1.3 Follow-up Works

1/p-secure protocols. In a follow-up work, Beimel et al. [4] study multiparty 1/p-secure protocols for
general functionalities. Informally, a protocol is 1/p-secure if every adversary cannot harm the protocol with
probability greater than 1/p (e.g., it cannot bias the output with probability greater than 1/p). The formal
definition of 1/p-secure computation appears in Definition 2.3. The main result in [4] is constructions
of 1/p-secure protocols that are resilient against any number of corrupt parties provided that the number
of parties is constant and the size of the range of the functionality is at most polynomial in the security
parameter n. In addition, Beimel et al. provide some impossibility result that states that the feasibility of
the results for 1/p-secure computation are essentially tight. The protocols in [4] combine ideas from the
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protocols presented in this paper and these presented in [16]. In addition, the bias of the protocol of [4] is
O(1/

√
r).

Multiparty protocols for coin-tossing in the preprocessing model. Ishai et al. [15] constructed a new
type of secret-sharing scheme in which the reconstruction algorithm informs each honest player of the
correct set of cheaters, i.e., each honest player gets a list of all the parties that input a wrong share in
the reconstruction phase. This scheme can be used to convert our multiparty coin-tossing protocols into
unconditional multiparty coin-tossing protocols in the preprocessing model, namely, assuming that there
exist an off-line dealer which computes some values in a preprocessing phase, gives them to the parties, and
halts. Such a transformation eliminates the cryptographic assumptions and the need of a broadcast channel,
while the bias of the resulted protocols is not effected.

Organization. In Section 2, we provide security definitions in multi-party protocols, a description of the
cryptographic tools used in this paper, and a brief overview of the result by Moran et al. [18]. In Section 3,
we present two warm-up constructions for multiparty coin-tossing with bias O(1/r) where r is the number
of rounds in the protocol. In Sections 4–6 we present our main result – a coin-tossing protocol that has nearly
optimal bias and can tolerate up to 2/3 fraction of malicious parties. In Section 7 we describe an r-round
m-party coin-tossing protocol that tolerates up to t dishonest parties, where t is some constant fraction of
m.

2 Preliminaries

A multi-party coin-tossing protocol with m parties is defined using m probabilistic polynomial-time Turing
machines p1, . . . , pm having the security parameter 1n as their only input. The coin-tossing computation
proceeds in rounds, in each round, the parties broadcast and receive messages on a broadcast channel. The
number of rounds in the protocol is typically expressed as some polynomially-bounded function r in the
security parameter. At the end of protocol, the (honest) parties should hold a common bit w. We denote by
CoinToss() the ideal functionality that gives the honest parties the same uniformly distributed bit w, that is,
Pr[w = 0] = Pr[w = 1] = 1/2. In our protocol, the output bit w might have some bias.

In this work we consider a malicious static computationally-bounded adversary, i.e., a non-uniform that
runs in a polynomial-time. The adversary is allowed to corrupt some subset of the parties. That is, before the
beginning of the protocol, the adversary corrupts a subset of the parties that may deviate arbitrarily from the
protocol, and thereafter the adversary sees the messages sent to the corrupt parties and controls the messages
sent by the corrupted parties. The honest parties follow the instructions of the protocol.

The parties communicate in a synchronous network, using only a broadcast channel. The adversary is
rushing, that is, in each round the adversary hears the messages sent by the honest parties before broadcasting
the messages of the corrupted parties for this round (thus, the messages broadcast by corrupted parties can
depend on the messages of the honest parties broadcast in this round).

2.1 The Real vs. Ideal Paradigm

The security of multiparty computation protocols is defined using the real vs. ideal paradigm. In this
paradigm, we consider the real-world model, in which protocols are executed. We then formulate an ideal
model for executing the task at hand. This ideal model involves a trusted party whose functionality captures
the security requirements of the task. Finally, we show that the real-world protocol “emulates” the ideal-
world protocol: For any real-life adversary A there should exist an ideal-model adversary S (also called
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simulator) such that the global output of an execution of the protocol with A in the real-world model is
distributed similarly to the global output of running S in the ideal model. In the coin-tossing protocol, the
parties do not have inputs. Thus, to simplify the definitions, we define secure computation without inputs
(except for the security parameters).

The Real Model. Let Π be an m-party protocol computing F . LetA be a non-uniform probabilistic poly-
nomial time adversary with auxiliary input aux. Let REALΠ,A(aux)(1n) be the random variable consisting
of the view of the adversary (i.e., its random input and the messages it got) and the output of the honest
parties, following an execution of Π, where each party pj begins by holding the input 1n.

The Ideal Model. The basic ideal model we consider is a model without abort. Specifically, there are
parties {p1, . . . , pm}, and an adversary S who has corrupted a subset I of them. An ideal execution for the
computing F proceeds as follows:

Inputs: Party pj holds a security parameter 1n. The adversary S has some auxiliary input aux.

Trusted party sends outputs: The trusted party computes F(1n) with uniformly random coins and sends
the appropriate outputs to the parties.

Outputs: The honest parties output whatever they received from the trusted party, the corrupted parties
output nothing, and S outputs an arbitrary probabilistic polynomial-time computable function of its
view (the outputs of the corrupted parties).

Let IDEALF ,S(aux)(1n) be the random variable consisting of the output of the adversary S in this ideal
world execution and the output of the honest parties in the execution.

In this work we consider a few formulations of the ideal-world, and consider composition of a few
protocols, all being executed in the same real-world, however, each secure with respect to a different ideal-
world. We prove the security of the resulting protocol, using the hybrid model techniques of Canetti [7].

2.1.1 1/p-Indistinguishability and 1/p-Secure Computation

As explained in the introduction, the ideal functionality CoinToss() cannot be implemented when there is
no honest majority. We use 1/p-secure computation, defined by [14, 16], to capture the divergence from the
ideal world. This notion applies to general secure computation. We start with some notation.

A function µ(·) is negligible if for every positive polynomial q(·) and all sufficiently large n it holds
that µ(n) < 1/q(n). A distribution ensemble X = {Xa,n}a∈{0,1}∗,n∈N is an infinite sequence of random
variables indexed by a ∈ {0, 1}∗ and n ∈ N.

Definition 2.1 (Statistical Distance and 1/p-indistinguishability). We define the statistical distance between
two random variables A and B as the function

SD(A,B) =
1
2

∑
α

∣∣∣Pr[A = α]− Pr[B = α]
∣∣∣.

For a function p(n), two distribution ensembles X = {Xa,n}a∈{0,1}∗,n∈N and Y = {Ya,n}a∈{0,1}∗,n∈N
are computationally 1/p-indistinguishable, denoted X

1/p≈ Y , if for every non-uniform polynomial-time al-
gorithm D there exists a negligible function µ(·) such that for every n and every a ∈ {0, 1}∗,

∣∣∣ Pr[D(Xa,n) = 1]− Pr[D(Ya,n)) = 1]
∣∣∣ ≤ 1

p(n)
+ µ(n).
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Two distribution ensembles are computationally indistinguishable, denoted X
C≡ Y , if for every c ∈ N

they are computationally 1
nc -indistinguishable.

We next define the notion of 1/p-secure computation [14, 16, 4]. The definition uses the standard
real/ideal paradigm [11, 7], except that we consider a completely fair ideal model (as typically considered
in the setting of honest majority), and require only 1/p-indistinguishability rather than indistinguishability.

Definition 2.2 (perfect 1/p-secure computation). An m-party protocol Π is said to perfectly 1/p-secure
compute a functionalityF if for every non-uniform adversaryA in the real model, there exists a polynomial-
time adversary S in the ideal model such that for every n ∈ N and for every aux ∈ {0, 1}∗

SD(IDEALF ,S(aux)(1
n), REALΠ,A(aux)(1

n)) ≤ 1
p(n)

.

Definition 2.3 (1/p-secure computation [14, 16, 4]). Let p = p(n) be a function. An m-party protocol
Π is said to 1/p-securely compute a functionality F if for every non-uniform probabilistic polynomial-time
adversary A in the real model, there exists a non-uniform probabilistic polynomial-time adversary S in
the ideal model corrupting the same parties as A such that the following two distribution ensembles are
computationally 1/p(n)-indistinguishable

{
IDEALF ,S(aux)(1

n)
}

aux∈{0,1}∗,n∈N
1/p≈ {

REALΠ,A(aux)(1
n)

}
aux∈{0,1}∗,n∈N .

We next define the notion of secure computation and notion of bias of a coin-tossing protocol by using
the previous definition.

Definition 2.4 (Secure computation). An m-party protocol Π is said to securely compute a functionality F ,
if for every c ∈ N , the protocol Π is (1/nc)-securely compute the functionality F .

Definition 2.5. We say that a protocol is a coin-tossing protocol with bias 1/p if it is a 1/p-secure protocol
for the functionality CoinToss().

2.2 Security with Abort and Cheat Detection

We present here a definition of secure multiparty computation that is more stringent than standard definitions
of secure computation with abort. This definition extends the definition for secure computation as given by
Aumann and Lindell [1]. Roughly speaking, our definition requires that one of two events is possible: If
at least one party deviates from the prescribed protocol, then the adversary obtains the outputs of these
parties (but nothing else), and all honest parties are notified by the protocol that these parties have aborted.
Otherwise, the protocol terminates normally, and all parties receive their outputs. Again, we consider the
restricted case where parties hold no private inputs. The formal definition uses the real vs. ideal paradigm
as discussed in Section 2.1. We next describe the appropriate ideal model.

Execution in the ideal model. Let D ⊆ [m] denote the indices of the corrupted parties, controlled by an
adversary A. An ideal execution proceeds as follows:

Inputs: Each party obtains a security parameter 1n. The adversary A receives an auxiliary input denoted
aux.

Trusted party sends outputs to adversary: The trusted party computes F(1n) with uniformly random
coins and sends the appropriate outputs to the parties pj such that j ∈ D.
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Adversary instructs the trusted party to continue or halt: A sends either a “continue ” message or
{“abortj”}j∈J to the trusted party on behalf of a set of corrupt parties indexed by J . If it sends
a “continue ” message, the trusted party sends the appropriate output to the parties pj for j /∈ D
(i.e., to all honest parties). Otherwise, if it sends {“abortj”}j∈J for some set of indices of corrupt
parties J ⊆ D, then the trusted party sends the set J to all parties pj for j /∈ D.

Outputs: An honest party always outputs the message it obtained from the trusted party. The corrupted
parties output nothing. The adversary A outputs an probabilistic polynomial-time computable func-
tion of the auxiliary input aux, and the outputs obtained from the trusted party.

We let IDEALCD
F ,S(aux)(1

n) and REALΠ,A(aux)(1n) be defined as in Section 2.1 (where in this case
IDEALCD

F ,S(aux)(1
n) refers to the above execution with cheat detection of F). This ideal model is different

from the ideal world without cheat detection (see, e.g., [11]); without cheat detection, the trusted party sends
a ⊥ symbol when the trusted party gets an abort message. With cheat detection, the honest parties know the
identities of the corrupted parties that cause the abort. This cheat detection is achieved by most multiparty
protocols, including that of [12], but not all (e.g., the protocol of [13] does not meet this requirement). Using
this notation we define secure computation with abort and cheat detection.

Definition 2.6. Let F and Π be as above. A protocol Π is said to securely compute F with abort
and cheat detection if for every non-uniform polynomial-time adversary A for the real model, there exists a
non-uniform polynomial-time adversary S for the ideal model corrupting the same parties as A, such that

{
IDEALCD

F ,S(aux)(1
n)

}
aux∈{0,1}∗,n∈N

C≡ {
REALΠ,A(aux)(1

n)
}

aux∈{0,1}∗,n∈N .

2.3 Cryptographic Tools

We next informally describe two cryptographic tools that we use in our protocols.

Signature Schemes. A signature on a message proves that the message was created by its presumed
sender, and its content was not altered. A signature scheme is a triple (Gen, Sign,Ver) containing the
key generation algorithm Gen, which gets as input a security parameter 1n and outputs a pair of keys, the
signing key KS and the verification key Kv, the signing algorithm Sign, and the verifying algorithm Ver.
We assume that it is infeasible to produce signatures without holding the signing key.

Secret-Sharing Schemes. An α-out-of-m secret-sharing scheme is a mechanism for sharing data among
a set of parties such that every set of parties of size α can reconstruct the secret, while any smaller set knows
nothing about the secret. In this paper, we use Shamir’s α-out-of-m secret-sharing scheme [21]. In this
scheme, for every α− 1 parties, the shares of these parties are uniformly distributed and independent of the
secret. Furthermore, given at most such α− 1 shares and a secret s, one can efficiently complete them to m
shares of the secret s.

In order to simplify the presentation of our protocols, we construct the following way to share a secret
in a threshold secret- sharing scheme with respect to a certain party.

Construction 2.7. Let s be some secret taken from some finite field F. We share s among m parties with
respect to a special party pj in an α-out-of-m secret-sharing scheme as follows:
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1. Choose shares (s(1), s(2)) of the secret s in a two-out-of-two secret-sharing scheme, that is, select
s(1) ∈ F uniformly at random and compute s(2) = s − s(1). Denote these shares by maskj (s) and
comp (s), respectively.

2. Generate shares (λ(1), . . . , λ(j−1), λ(j+1), . . . , λ(m)) of the secret comp (s) in an (α − 1)-out-of-
(m− 1) Shamir’s secret-sharing scheme. For each ` 6= j, denote comp` (s) = λ(`).

Output:

• The share of party pj is maskj (s). We call this share, pj’s masking share.

• The share of each party p`, where ` 6= j, is comp` (s). We call this share, p`’s complement share.

In the above, we shared the secret s among the parties in P in a secret-sharing scheme such that any
set of size at least α that contains pj can reconstruct the secret. In addition, similarly to the Shamir secret-
sharing scheme, the following property holds: for any set of β < α parties (regardless if the set contains pj),
the shares of these parties are uniformly distributed and independent of the secret. Furthermore, given such
β < α shares and a secret s, one can efficiently complete them to m shares of the secret s and efficiently
select uniformly at random one vector of shares competing the β shares to m shares of the secret s.

2.4 The Two-Party Protocol of Moran et al.

Moran, Naor, and Segev [18] present a two-party coin-tossing protocol with optimal bias with respect to
the round complexity (i.e., meeting the lowerbound of Cleve [9]). We next briefly review their protocol,
which later serves as the basis for our construction. Following the presentation of [18], we first describe a
construction that uses an on-line trusted party called the dealer. Later, we describe how the dealer can be
eliminated.

The main underlying idea is that the dealer chooses a special round during which the parties actually
unknowingly learn the output of the protocol. If the adversary guesses this round, it can bias the output by
aborting. If the adversary aborts (or behaves maliciously) in any other time, then there is no bias. However,
this special round is uniformly selected (out of r possible rounds) and then concealed such that the adversary
is unable to guess it with probability exceeding 1/r. Therefore, the bias of the protocol is O(1/r).

More specifically, for two parties Alice and Bob to jointly toss a random coin, the protocol proceeds as
follows. In a preprocessing phase, the dealer selects a special round number i∗ ∈ {1, . . . , r}, uniformly at
random, and selects bits a1, . . . , ai∗−1, b1, . . . , bi∗−1, independently, uniformly at random. It then uniformly
selects a bit w ∈ {0, 1} and sets ai = bi = w for all i∗ ≤ i ≤ r. Thereafter, the protocol proceeds in rounds:
In round i, the dealer gives Alice the bit ai and Bob the bit bi. If none of the parties abort, then at the end
of the protocol both output ar = br = w. If a party prematurely aborts in some round i, the honest party
outputs the bit it received in the previous round (i.e., ai−1 or bi−1 respectively). If one party aborts before
the other party received its first bit (i.e., a1 or b1), then the other party outputs a random bit.

The security of the protocol follows from the fact that, unless the adversary aborts in round i∗, it cannot
bias the output of the protocol. The view of any of the parties up to round i < i∗ is independent of the value
of i∗, hence, any adversary corrupting a single party can guess i∗ with probability at most 1/r.

To eliminate the trusted party, Moran et al. first turn the trusted party from an on-line dealer into an off-
line dealer, i.e., one that computes some values in a preprocessing phase, gives them to the parties, and halts.
To achieve this, they use a 2-out-of-2 secret-sharing scheme and an authentication scheme. The trusted party
selects i∗, bits a1, . . . , ai∗−1, b1, . . . , bi∗−1, and a bit w ∈ {0, 1} as before. It then selects random shares for
ai and bi for each i ∈ {1, . . . , r}. That is, it computes shares a

(A)
i ⊕ a

(B)
i = ai and b

(A)
i ⊕ b

(B)
i = bi. At
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the beginning of the protocol, the trusted party sends to Alice her shares of the ai’s, that is, a
(A)
i , and the

shares b
(A)
i together with an authentication of the bit b

(A)
i with a key kA (i.e., authenticated shares of the

bi’s), and sends to Bob his shares of the bi’s and authenticated shares of the ai’s with a key kB . The key kA

is given to Bob and the key kB is given to Alice. The protocol now proceeds in rounds. In each round i Bob
sends to Alice his authenticated share of ai, so Alice can reconstruct the bit ai. Alice then sends to Bob her
authenticated share of bi. An adversary cannot forge with noticeable probability an authentication, and is,
thus, essentially limited to aborting in deviating from the prescribed protocol.

The off-line dealer is then replaced by a (constant round) secure-with-abort two-party protocol of [17]
for computing the preprocessing functionality. That is, at the end of the initialization protocol, the parties
get the authenticated shares of the ai’s and the bi’s, while the underlying i∗ stays secret. The security of the
2-party preprocessing protocol guarantees that a polynomial-time adversary is essentially as powerful as in
a computation with an off-line dealer.

3 Coin Tossing with Dishonest Majority – A Warm-Up

In this section we present two warm-up constructions of multiparty protocols coin-tossing with bias O(1/r)
where r is the number of rounds in the protocol. The first construction considers the case that at most half of
the parties are malicious (however, there is no majority of honest parties). The second construction solves
the problem of coin tossing with 5 parties, where at most 3 are malicious. These two protocols demonstrate
the main difficulties in constructing multiparty coin-tossing protocols with dishonest majority, alongside the
techniques we use to overcome these difficulties. In Sections 4–6, we present a construction for the general
case that combines ideas from the two constructions presented in this section.

The main issue of any coin-tossing protocol is how to deal with premature aborts. The protocol must
instruct any large enough subset of parties (i.e., at least as large as the set of honest parties) how to jointly
reconstruct a bit if all other parties abort the protocol. Since there is no honest majority, an adversary
controlling some set of parties can compute the output of this set assuming that the other parties abort. The
problem in designing a protocol is how to ensure that this information does not enable the adversary to bias
the output.

3.1 Multiparty Coin Tossing When Half of the Parties Can Be Malicious

In this section we present a protocol with optimal (up to a small constant) bias with respect to round com-
plexity, when up to half the parties may be corrupt. We next give an informal description of the protocol
with an on-line trusted party who acts as a dealer. In this protocol, the parties simulate the 2-party protocol
of [18]. That is, we partition the parties into two sets A and B, one will simulate Alice and the other will
simulate Bob. The main difficulty is that the adversary is not restricted to corrupting parties only in one of
these sets. To overcome this problem, in our partition A contains a single party p1, and the set B contains
the parties p2, . . . , pm. If the adversary corrupts p1, it gains full access to the view of Alice in the 2-party
protocol; however, in this case a strict majority of the parties simulating Bob is honest, and the adversary
will gain no information about the bits of Bob, i.e., the bi’s.

We next describe the protocol. We assume for simplicity that m is even. In a preprocessing phase,
the dealer uniformly selects i∗ ∈ {1, . . . , r} and then uniformly and independently selects a1, . . . , ai∗−1,
b1, . . . , bi∗−1. Finally, it uniformly selects w ∈ {0, 1} and sets ai = bi = w for all i∗ ≤ i ≤ r. In each
round i, the dealer sends ai to A, selects random shares of bi in Shamir’s m/2-out-of-(m−1) secret-sharing
scheme, and sends each share to the appropriate party in B. We stress that formally (to model a rushing
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adversary), the dealer first sends the malicious parties their messages, allows them to abort, and proceeds as
described below.

During the execution, some parties might abort; we say that a party is active if it has not aborted. If a
party pj prematurely aborts, then the trusted party notifies all currently active parties that pj has aborted.
We next describe the actions when a party aborts:

• If p1 aborts in round i, then the parties in B reconstruct bi−1, output it, and halt. In this case, since p1

is corrupt, at least m/2 honest parties exist in B and, thus, they will be able to reconstruct the output.

• If in round i less than m/2 active parties remain in B, then p1 broadcasts ai−1 to the remaining
m/2− 1 parties in B and all (honest) parties output ai−1 and halt. In this case p1 must be honest, and
hence, can be trusted to broadcast ai−1.

• While there are still at least m/2 active parties in B (i.e., at most m/2 − 1 of them abort) and p1 is
active, the protocol proceeds without a change.

To prevent cheating, the dealer needs to sign the messages given to the parties in B. We omit these details
in this subsection.

Recall that at most m/2 out of the m parties are malicious. Thus, if p1 is corrupted, then at most
(m/2)− 1 parties in B are corrupted, and they cannot reconstruct bi. The argument that the above protocol
is O(1/r)-secure is now straightforward. An adversary wishing to bias the protocol must cause premature
termination. To do so, it must either corrupt p1 (and gain no information on the bi’s) or otherwise corrupt
m/2 parties in B (hence, leaving p1 uncorrupted). Thus, for any adversary in the multi-party protocol there
is an adversary corrupting Alice or Bob in the two party protocol with dealer of [18] that is, essentially, as
powerful. An important feature that we exploit in our protocol is the fact that in the two-party protocol Bob
does not need its bit bi−1 if Alice does not abort. Thus, in our protocol the parties in B do not reconstruct
bi−1 unless p1 aborts in round i.

More work is required in order to eliminate the trusted dealer; the details are a special case of those
described in Section 6.

3.2 A 5-Party Protocol that Tolerates up to 3 Malicious Parties

In this section we consider the case where m = 5 and t = 3, i.e., a 5-party protocol where up to 3 of
the parties may be malicious. The protocol we present in this section inferior compared to the protocol in
Sections 4–6. As in previous protocols, we first sketch our construction assuming there is a special on-line
trusted dealer. This dealer interacts with the parties in rounds, sharing bits to subsets of parties, and proceeds
with the normal execution as long as at least 4 of the parties are still active.

Denote the trusted dealer by T and the parties by p1, . . . , p5. In this protocol, for each interaction round,
the dealer produces a bit for each one of the 10 possible triplets of parties; this bit is recovered if in case
of a premature termination of at least 2 parties occurs. Formally, for each triplet J ⊂ {1, . . . , 5} (i.e.,
|J | = 3), denote PJ = {pj : j ∈ J} and by σi

J a bit to be recovered by 2 or 3 active parties in PJ if the
protocol terminates in round i + 1. In a preprocessing phase, the dealer T selects uniformly at random
i∗ ∈ {1, . . . , r}, indicating the special round in this five-party protocol. Then, for every 0 ≤ i < i∗ it
selects σi

J independently and uniformly at random for each triplet J ⊂ {1, . . . , 5}. Finally, it independently
and uniformly selects a random bit w and sets σi

J = w, for every i ∈ {i∗, . . . , r} and for every triplet
J ⊂ {1, . . . , 5}.

The dealer T interacts with p1, . . . , p5 in rounds, where round i, for 1 ≤ i ≤ r consists of three phases:
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The peeking phase. The dealer sends to the adversary all the bits σi
J such that there is a majority of cor-

rupted parties in PJ , i.e., at least 2 parties pj s.t. j ∈ J are controlled by the adversary.

The abort and premature termination. The adversary sends to T a list of parties that abort in the current
round. If there are less than 4 active parties (i.e., there are either 2 or 3 active parties),3 T sends σi−1

J

to the active parties, where J is the lexicographically first triplet that contains all the indices of the
active parties. The honest parties output this bit and halt.

The main phase. If at least 4 parties are active, T notifies the active parties that the protocol proceeds
normally.

If after r rounds, there are at least 4 active parties, T simply sends w to all active parties and the honest
parties output this bit.

As an example of a possible execution of the protocol, assume that p1 aborts in round 4 and p3 and p4

abort in round 37. In this case, T sends σ36
{1,2,5} to p2 and p5, which output this bit.

Recall that the adversary obtains the bit of the triplet J if at least two parties in PJ are malicious. If the
adversary causes the dealer to halt, then, either there are two remaining active parties, both of them must be
honest, or there are three active parties and at most one of them is malicious. In either case, the adversary
does not know σi−1

J in advance. Furthermore, the dealer reveals the appropriate bit σi−1
J to the active

parties. Jumping ahead, these properties are later preserved in a real world protocol by using a 2-out-of-3
secret-sharing scheme.

We next argue that any adversary can bias the output of the above protocol by at most O(1/r). As in
the protocol of Moran et al., the adversary can only bias the output by causing the protocol to terminate
in round i∗. In contrast to the protocol of [18], in our protocol if in some round there are two bits σi

J and
σi

J ′ that the adversary can obtain such that σi
J 6= σi

J ′ , then the adversary can deduce that i 6= i∗. However,
there are at most 7 bits that the adversary can obtain in each round (i.e., the bits of sets PJ containing at
least two malicious parties). For a round i such that i < i∗, the probability that all these bits are equal to
(say) 0 is (1/2)7. Such rounds are indistinguishable to the adversary from round i∗. Intuitively, the best an
adversary can do is guess one of these rounds, and therefore cannot succeed guessing with probability better
than 1/27. Thus, the bias the adversary can cause is 27/r.

3.2.1 Eliminating the Dealer for the 5-Party Protocol

We eliminate the trusted on-line dealer in a few steps using a few layers of secret-sharing schemes. First,
we change the on-line dealer, so that in each round i it shares the bit σi

J among the parties in PJ using a
2-out-of-3 secret-sharing scheme – called inner secret-sharing scheme. In fact, the dealer first signs the bit
share to prevent cheating. The same requirements on σi

J as in the above protocol are preserved using this
inner secret-sharing scheme. That is, the adversary is able to obtain information on σi

J only if it controls
at least two of the parties in PJ . On the other hand, if the adversary does not control at least two parties in
some PJ (i.e., there is an honest majority in PJ ), then, in round i, the honest parties can reconstruct σi−1

J (if
so instructed by the protocol).

Next we turn the on-line dealer into an off-line dealer. That is, we show that it is possible for the dealer
to only interact with the parties once, sending each party some input, so that thereafter, the parties interact
in rounds (without the dealer) and in each round i each party learns its shares in the ith inner secret-sharing
scheme. That is, in each round i, each party pj learns a share of σi

J in a 2-out-of-3 secret-sharing scheme,

3The reason for requiring that the dealer does not continue when at least two parties abort will become clear when we transform
the protocol to a protocol with an off-line dealer.

12



for every triplet J such that j ∈ J . For this purpose, the dealer computes, in a preprocessing phase, the
appropriate shares for the inner secret-sharing scheme. The shares of each round for each party pj are
then shared in a 2-out-of-2 secret-sharing scheme, where pj gets one of the two shares (this serves as a
mask, allowing only pj to later reconstruct its shares of the appropriate σi

J ’s while other shares are sent
on a broadcast channel). All parties except pj get shares in a 3-out-of-4 Shamir secret-sharing scheme of
the other share of the 2-out-of-2 secret sharing. See Construction 2.7 for a formal description. We call the
resulting secret-sharing scheme the outer scheme.

The use of the 4-out-of-5 secret-sharing scheme plays a crucial role in eliminating the on-line dealer. It
guarantees that an adversary, corrupting at most three parties, cannot reconstruct the shares of round i before
round i. However, if at least two parties do not reveal their shares, then they prevent a reconstruction of the
outer scheme (this is why we cannot proceed after 2 parties aborted); in this case there is an honest majority.
Hence, the protocol proceed normally as long as at least 4 parties are active. If, indeed, at least two parties
abort (in round i), then the remaining parties use their shares of the inner scheme to reconstruct the bit σi−1

J

for the appropriate triplet J .
To prevent malicious parties from cheating, by say, sending false shares and causing reconstruction of

wrong secrets, every message that a party should send during the execution of the protocol is signed in the
preprocessing phase (together with the appropriate round number and with the party’s index). Furthermore,
all shares in the inner secret-sharing scheme are signed (as they are used as messages if reconstruction is
required). In addition, the dealer sends a verification key to each of the parties. To conclude, the off-line
dealer gives each party the signed shares for the outer secret sharing scheme together with the verification
key. A formal description of the functionality of the off-line dealer, called ShareGenForFiver, is given in
Figure 1. In order to simplify the presentation, we use slightly different notations compared to the notations
used in the presentation of the general construction in Sections 4–6.

The protocol with the off-line dealer proceeds in rounds. In round i of the protocol, all parties broadcast
their (signed) shares in the outer (4-out-of-5) secret-sharing scheme. Thereafter, each party can unmask the
message it receives (with its share in the appropriate 2-out-of-2 secret-sharing scheme) to obtain its signed
shares in the 2-out-of-3 sharing of the bits σi

J (for the appropriate triplets J’s to which the party belongs). If
a party stops broadcasting messages or broadcasts improperly signs messages, then all other parties consider
it as aborted and will ignore all messages it will send in the future. If two or more parties abort, the remaining
parties reconstruct the bit of the lexicographically first triplet that contains all of them, as described above.
In the special case of premature termination already in the first round, the remaining parties engage in a fully
secure protocol (with honest majority) to toss a completely random coin. In Figure 2 we formally define the
5-party coin-tossing protocol tolerating up-to 3 malicious parties.

Finally, we replace the off-line dealer by using a secure-with-abort protocol with cheat-detection com-
puting the functionality computed by the dealer, that is, Functionality ShareGenForFiver. Obtaining the
outputs of this computation, an adversary is unable to infer any information regarding the output of the
coin-tossing protocol (as the functionality does not give any information to an adversary controlling at most
3 parties). The adversary, however, can prevent the execution, at the price of at least one malicious party
being detected by all other parties. In such an event, the remaining parties will start over. This can go on at
most twice, before there is a honest majority and a completely fair coin can be obtained. The details of this
final step are given in Section 6.

The above construction can be generalized in a straightforward manner to any number m of parties and
any number t of malicious parties such that t < 2m/3 (where there is a bit for every set Q of size t; the
outer secret-sharing is a (t + 1)-out-of-m scheme and the inner secret-sharing scheme is (m − t)-out-of-t
scheme). However, in the protocol described in Sections 4–6 the bias on the output is substantially smaller;

13



Functionality ShareGenForFiver

Computing default bits and signing keys

1. Choose w ∈ {0, 1} and i∗ ∈ {1, . . . , r} uniformly at random.

2. For each i ∈ {1, . . . , r} and for each triplet J ⊂ {1, . . . , 5} (i.e., |J | = 3),

(a) if i < i∗ − 1, then choose independently and uniformly at random σi
J ∈ {0, 1}.

(b) if i ≥ i∗, then set σi
J = w.

3. Compute (Ksign,Kver) ← Gen(1n).

Computing signed shares of the inner secret-sharing scheme

4. For each i ∈ {1, . . . , r} and for each triplet J ⊂ {1, . . . , 5},

(a) Choose random secret shares of σi
J in an 2-out-of-3 Shamir’s secret-sharing scheme for

the parties in PJ . For each party pj ∈ PJ , let Si,J
j be its share of σi

J .

(b) Sign each share Si,J
j :

Ri,J
j ← (Si,J

j , i, J, j,Sign((Si,J
j , i, J, j),Ksign)).

Computing shares of the outer secret-sharing scheme

5. For each i ∈ {1, . . . , r}, for each triplet J ⊂ {1, . . . , 5}, and for each j ∈ J : share pj’s
signed share Ri,J

j using a 4-out-of-5 secret-sharing scheme with respect to pj as defined in

Construction 2.7; that is, one masking share maskj (Ri,J
j ) that only pj obtains and 4 comple-

ment shares for the rest of the parties are produced.

Signing the messages of all parties

6. For every 1 ≤ q ≤ 5, compute the message m(q,i) that pq ∈ {p1, . . . , p5} broadcasts in round
i by concatenating (1) q, (2) the round number i, and (3) the complement shares compq (Ri,J

j )
for all triplets J and for all j 6= q such that j ∈ J produced in Step (5) for pq.

7. Compute Mq,i ← (mq,i, Sign(mq,i,Ksign)).

Outputs: Each party pj receives

• The verification key Kver.

• The messages Mj,1, . . . , Mj,r that pj broadcasts during the protocol.

• pj’s private masks maskj (Ri,J
j ) which were produced in Step (5) for each 1 ≤ i ≤ r

and each triplet J ⊂ {1, . . . , 5} such that j ∈ J .

Figure 1: The initialization functionality ShareGenForFiver.
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A 5-party protocol FivePartyCoinTossr

Joint input: Security parameter 1n.

Preliminary phase:

• The parties engage in a secure-with-abort and cheat-detection protocol in order to computing
the functionality ShareGenForFiver. If a single party aborts, then this phase is repeated.
This may happen at most twice before an honest majority is guaranteed. If at least two parties
aborted (and detected), the parties use multiparty secure computation (with full security) to
toss a fair coin, output this resulting bit, and halt.

In each round i = 1, . . . , r do:

1. Each active party pj ∈ {p1, . . . , p5} broadcasts M(j,i) (its share of the pq’s share of the bit
σi

J for each triplet J ⊂ {1, . . . , 5} (i.e., |J | = 3) and each q ∈ J where q 6= j)

2. For each active party pj ∈ {p1, . . . , p5}, if Ver(M(j,i),Kver) = Fail or if pj broadcasts an
invalid or no message, then all parties mark pj as inactive.

3. If at least 2 parties were marked inactive:

• If i = 1 (i.e., the parties aborted during the first round), then the active parties use a
multiparty secure protocol (with full security) to toss a fair coin, output this resulting
bit, and halt.

• Otherwise, the active parties reconstruct the bit σi−1
J where J is the lexicographically

first triplet that contains all the indices of the active parties, output it, and halt.

At the end of round r: Each active party pj broadcasts the signed share Rr,J
j , for each triplet

J ⊂ {1, . . . , 5}, such that, j ∈ J , in order to reconstruct σr
J = w. All honest parties output w.

Figure 2: The FivePartyCoinTossr protocol.
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this is done using a better way for distributing bits to subsets.

4 Our Main Construction

In Sections 4–6 we present our main result – a coin-tossing protocol that has nearly optimal bias and can
tolerate up to 2/3 fraction of malicious parties. More specifically, we prove the following theorem:

Theorem 4. If enhanced trap-door permutations exist, then for any m, t, and r = r(n) such that m/2 ≤
t < 2m/3, there is an r-round m-party coin-tossing protocol tolerating up to t malicious parties that has
bias O

(
22k+1

/r′
)

, where k = 2t−m and r′ = r −O(k + 1).

In the above theorem, k is the difference between the number of malicious parties and the number of
honest parties, i.e., k = t − (m− t) = 2t −m. For example, if t = m/2, then the number of honest and
malicious parties are equal and k = 0,

Following [18], we describe our protocol in two steps. In Section 5, we describe Protocol CTWithDr

that uses an online trusted party, called dealer. In Section 6, we get rid of the on-line dealer. This simplifies
the description and understanding of our protocols. More importantly, we prove the security of our main
protocol in a modular way. In Section 5, we prove

Theorem 5. Protocol CTWithDr is an r-round m-party coin-tossing protocol with an on-line dealer tol-
erating up to t malicious parties and has bias O

(
22k+1

/r
)

.

We then consider the on-line dealer of Protocol CTWithDr as an ideal functionality. In this protocol,
the honest parties do not send any messages and in each round the dealer sends messages to the parties; we
consider an interactive functionality sending the messages that the dealer sends. We prove

Theorem 6. Let t < 2m/3. If enhanced trap-door permutations exist, then Protocol CoinTossr′ presented
in Section 6, is a computationally-secure implementation (with full security) of the dealer functionality in
Protocol CTWithDr. Protocol CoinTossr′ has r′ = r + O(k + 1) rounds.

Proof of Theorem 4. This theorem follows from Theorem 5 and Theorem 6 by the composition theorem of
Canetti [7]: Consider the (ideal) functionality FD of the dealer in Protocol CTWithDr. By Theorem 6,
Protocol CTWithDr is a computationally-secure implementation of FD (with full security). Consider the
protocol ΠFD which simply executes the functionalityFD. By Theorem 5, ΠFD is a 1/p-secure implementa-
tion of CoinToss(). By the composition theorem of Canetti [7], ΠCTWithDr is a 1/p-secure implementation
of CoinToss().

We stress that constructing fair coin-tossing protocols assuming a trusted dealer is an easy task, e.g.,
the trusted party can choose a random bit and send it to each party. However, when considering a rushing
adversary, one cannot eliminate the trusted party in this protocol. The coin-tossing protocol we describe,
Protocol CTWithDr, is designed such that it is possible to transform it to a protocol with no trusted party.

5 A Protocol with an On-Line Dealer

In this section we describe a protocol with a special trusted party T that acts as an on-line dealer interacting
with the parties in rounds. The protocol consists of r rounds of interaction. In a preliminary phase, the
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trusted party T selects the prescribed output bit w and a special round number i∗ uniformly at random. In
each round of interaction, the trusted party T selects a bit for each subset in a predetermined collection (this
collection is part of the design of the protocol). The bits of all subsets for any round before round i∗ are
uniformly and independently chosen; the bits of all subsets for all rounds from round i∗ and on all equal w.
These bits are not given to honest parties. However, if the number of corrupted parties in a subset Q is larger
than some predefined threshold, then the corrupted parties get the bit of Q.

In the real world these bits are secret-shared. Since in the real world the adversary is rushing, the
corrupted parties in the real world receive their shares before the honest parties do. Hence, in the protocol
with the dealer, interaction between the parties and T in each round has three phases. In the first phase,
for each subset Q that contains enough malicious parties, the trusted party sends the bit of the subset to the
malicious parties in the subset Q. In the second phase, malicious parties may abort the computation (and by
that prevent later reconstruction of some of the information). To do so, these parties send to T an “abort”
message. Finally, in the third phase, a “proceed” message is sent to the parties (this can be considered as an
“ideal” secret sharing).

The protocol proceeds normally as long as less than m− t parties abort. If at most t parties are active in
round i, the trusted party reveals the value of the bit of some subset Q in round i− 1, i.e., σi−1

S . The subset
Q is chosen in a way that guarantees that the adversary does not know the value of this bit before instructing
parties to abort. Jumping ahead, in the real world Q will also hold the additional property that the adversary
cannot prevent the reconstruction of the bit of Q from round i− 1.

In order to simplify the presentation of this protocol, we assume that there are private channels between
each party and the on-line dealer. The formal description of the protocol called CTWithDr is given in
Figure 3. In Sections 5.1–5.2, we prove that Protocol CTWithDr, described in Figure 3, is an O(22k+1

/r)-
secure protocol for computing the CoinToss() functionality. Our proof follows the real vs. ideal paradigm.
We consider a malicious adversary A that corrupts at most t < 2m/3 of the parties in an execution of
Protocol CTWithDr. In Section 5.1 we present a simulator S that corrupts the same subset of parties in the
ideal world with access to the trusted party TCoinToss for computing the CoinToss() functionality (that is,
TCoinToss gives the same uniformly chosen bit to all parties). The simulator S has black-box access toA and
at the end of the computation it outputs a view of the adversary A. In Section 5.2 we bound the statistical
distance between the random variable describing the view of the real-world adversary A concatenated with
the output of the honest parties in the appropriate execution and the random variable describing the output
of the simulator S concatenated with the bit selected by the ideal-world trusted party.

The bias of the protocol – an informal argument. We next informally explain why the protocol has
small bias, that is, we give a sketch of the proof of Theorem 5. First, we claim that the adversary can bias
the output only if the premature termination occurs in round i∗:

1. If the premature termination occurs after round i∗ (or does not occur at all), then the output is already
fixed.

2. If the premature termination occurs before round i∗, then the adversary does not know the random bit
σi−1

J , which is the output of the honest parties, as there are less than oJ malicious parties in QJ (as
shown in the formal analysis of this event in Section 5.2).

Thus, the adversary can bias the output only if it guesses i∗. If σi
J 6= σi

J ′ for two bits that the adversary
gets from the trusted party, then it can learn that i < i∗. It can be shown that the adversary gets 2k+1 such
bits (out of the 2k+2 bits). With probability 1/22k+1

, all these bits are all equal in a round prior to i∗ and
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Joint Input: The security parameter 1n, a polynomial r = r(n) specifying the number of rounds in
the protocol, and a bound t on the number of corrupted parties.

Underlying Subsets: Let Pj = {pj} for 1 ≤ j ≤ k + 1 and Pk+2 = {pk+2, . . . , pm}.
Define QJ = ∪j∈JPj for each J ⊂ {1, . . . , k + 2}.

For each subset Pj define a reconstruction threshold value oj : For 1 ≤ j ≤ k+1 define oj = 1
and define ok+2 = m− t. Finally, define oJ =

∑
j∈J oj for each J ⊂ {1, . . . , k + 2}.

Instructions for the (trusted) dealer:

The preprocessing phase: Select a bit σi
J for each subset QJ and each round i as follows:

1. Select i∗ ∈ {1, . . . , r} and w ∈ {0, 1} independently with uniform distribution.
2. For each J ⊂ {1, . . . , k + 2}, select σ0

J , . . . , σi∗−1
J independently with uniform

distribution.
3. For each J ⊂ {1, . . . , k + 2}, set σi∗

J = · · · = σr
J = w.

Protocol initialization: Send a “start” message to all parties. For each party pj , upon re-
ceiving an “abortj” from party pj , notify all parties that party pj has aborted. If at
least m− t parties aborted, go to premature termination with i = 1. Otherwise, send
“proceed” to all parties.

Interaction rounds: In each round 1 ≤ i ≤ r, interact with the parties in three phases:

• The peeking phase: For each J ⊂ {1, . . . , k + 2}, if QJ contains at least oJ

malicious parties, send the bit σi
J to all malicious parties in QJ .

• The abort phase: For each party pj , upon receiving an “abortj” message from
party pj , notify all parties that party pj has aborted. (Ignore all other types of
messages.)
If at least m− t parties have aborted so far, go to premature termination step.

• The main phase: Send “proceed” to all parties.

Premature termination step: This step consists of two phases, after which the protocol ter-
minates and all honest parties hold the same output.

• The abort phase: For each party pj , upon receiving an “abortj” message from
party pj , remove party pj from the list of active parties.

• The default output phase: Let D be the set of indices of parties that aborted the
protocol thus far, i.e., D = {j : pj has aborted}.

– If |D ∩ {k + 2, . . . , m}| ≥ m− t then J = {1, . . . , k + 1} \D.
– If |D ∩ {k + 2, . . . , m}| < m− t then J = ({1, . . . , k + 1} \D) ∪ {k + 2}.
– Send w′ = σi−1

J to all parties and halt.

Normal termination: This phase is executed if the last round of the protocol is completed.
Send w to all parties.

Instructions for honest parties: Upon receiving output y from the dealer, output y. (Honest parties
do not send any message throughout the protocol.)

Figure 3: Protocol CTWithDr.
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the adversary cannot distinguish such round from i∗. By [14, Lemma 2], this implies that the adversary can
guess i∗ with probability at most 22k+1

/r. Therefore, the bias is O(22k+1
/r).

5.1 The Simulator for the On-Line Dealer Protocol

We next describe the simulator S for Protocol CTWithDr. Let B be the subset of corrupted parties in the
execution. On input (1n, aux), the simulator S obtains wS = CoinToss() from the trusted party TCoinToss

(i.e., wS is uniformly selected from {0, 1}). The simulator S internally apply A with input (1n, aux). The
simulator S will interact with A playing the role of T , by proceeding as follows:

Simulating the preprocessing phase: S selects a bit σi
J for every subset QJ for which the corrupted parties

get σi
J (i.e., for which |B ∩QJ | ≥ oJ ), and every round i as follows:

1. Selects i∗ ∈ {1, . . . , r} with uniform distribution.

2. For each J ⊂ {1, . . . , k + 2}, the simulator S selects uniformly and independently at random
σ1

J , . . . , σi∗−1
J .

3. For each J ⊂ {1, . . . , k + 2}, the simulator S sets σi∗
J = . . . = σr

J = wS .

Simulating protocol initialization: S sends a “start” message to all corrupt parties (that is, S sends the
messages for the corrupt parties to the adversaryA). For each party pj , upon receiving an “abortj”
message from party pj , the simulator notifies all corrupted parties that party pj has aborted. If at
least m− t parties aborted, S sets i = 1 and proceeds to simulate the premature termination step.
Otherwise, S sends “proceed” to all corrupt parties.

Simulating interaction rounds: In each round 1 ≤ i ≤ r, the simulator S interacts with the corrupt parties,
in three phases:

• The peeking phase: For each J ⊂ {1, . . . , k + 2}, if QJ contains at least oJ corrupt parties,
then S sends the bit σi

J to all corrupt parties in QJ (i.e., to the adversary).

• The abort phase: For each party pj , upon receiving an “abortj” message from party pj , the
simulator notifies all parties that party pj is inactive.
If at least m− t parties have aborted so far, S simulates the premature termination step.

• The main phase: S sends “proceed” to all parties.

Simulating the premature termination step: This round consists of two phases, after which the simula-
tion terminates.

• The abort phase: For each party pj , upon receiving an “abortj” message from party pj ,
remove party pj from the list of active parties.

• The default output phase: Regardless of the subset of set of aborted parties, the simulator
sends wS to all parties and halts the interaction with A.

Simulating normal termination: If the last round of the protocol is completed, then S sends wS to all
parties.

At the end of the interaction withA, the simulator will output the sequence of messages exchanged between
the simulator and the corrupted parties.
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5.2 Proof of the Correctness of the Simulation

We consider the two random variables from Section 2.1, both of the form (V, C), where V describes a pos-
sible view of A, and C describes a possible output of the honest parties (i.e., C ∈ {0, 1}). The first random
variable REALCTWithDr,A(aux)(1n) describes the real world – an execution of the CTWithD protocol,
where V describes the view of the adversary A in this execution, and C is the output of the honest parties
in this execution. The second random variable IDEALCoinToss(),S(aux)(1n) describes the ideal world – an
execution with the trusted party TCoinToss, where V describes the output of the simulator S in this execu-
tion, and C is the output of the honest parties in this execution. Our goal here is to show that the statistical
distance between these two random variables is O(22k+1

/r), that is, to show that the protocol is perfectly
O(22k+1

/r) secure. For the rest of this proof, we simplify notations by omitting notations that are clear from
the context. In particular, we denote the above two random variables by REAL = (VREAL, CREAL) and
IDEAL = (VIDEAL, CIDEAL) respectively.

Lemma 5.1. For every non-uniform polynomial-time adversary A corrupting t < 2m/3 of the parties in
Protocol CTWithDr, for the simulator S described in Section 5.1, controlling the same parties as A, for
every n ∈ N and for every aux ∈ {0, 1}∗, the following two random variables are 1/p(n) = O(22k+1

/r)-
close:

SD
(

IDEALCoinToss(),S(aux)(1
n), REALCTWithDr,A(aux)(1

n)
)
≤ 1/p.

Proof. The flow of our proof is as follows. We first bound the statistical distance between the two random
variables by the probability that the adversary A guesses the special round i∗. We do this by showing that,
conditioned on the event that the adversary fails to guess round i∗, the two random variables are identically
distributed. Then, we bound the probability of guessing i∗. We show that the adversary learns at most 2k+1

new bits in each round. Hence, the probability that all these bits are equal in round i < i∗ is at least 1

22k+1 .

Finally, we show that this implies that the probability that of guessing i∗ correctly is bounded by 22k+1
/r.

We consider the probability of a given pair (v, c) according to the two different random variables. For
thus we recall that the honest parties are deterministic in both models. We compare the two following
probabilities:

1. The probability that v is the view of the adversary A in an execution of Protocol CTWithDr and c is
the output of the honest parties in this execution, i.e.,

Pr[REAL = (v, c)] = Pr[VREAL = v ∧ CREAL = c],

where the probability is taken over the random coins of the dealer T .

2. The probability that v is the output of the simulator S in an ideal-world execution with the trusted
party TCoinToss and c is the output of the honest parties in this execution, i.e.,

Pr[IDEAL = (v, c)] = Pr[VIDEAL = v ∧ CIDEAL = c],

where the probability is taken over the random coins of the simulator S and the random coins of the
ideal-world trusted party TCoinToss.

Observe that in the simulation S follows the same instructions as the trusted party T in Protocol
CTWithDr, except for two changes. First, S does not flip an internal coin to obtain wS (in contrast T
chooses w at random), but rather gets wS externally from TCoinToss. However, since both wS and w are
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uniformly distributed, it is practically the same operation. The major difference is that in the case of a
premature termination step, S always uses wS as its message to the corrupt parties, while T uses the bit of
the appropriate subset QJ as its message. In both cases, this last message sent to the adversary is simply
the output bit of the honest parties, that is, in both of the above random variables, the last message in v
equals c. Hence, it is equivalent to consider the two random variables as above, where in both cases, the last
message sent to the corrupt parties in the premature termination round is omitted from c. Thus, we consider
the possible views v of the adversary without the last message sent to the corrupted parties.

We define a random variable PT ∈ {“before”, “during”, “after”} specifying whether premature ter-
mination occurred before, during, or after the special round i∗. I.e., let i be the round number in which
premature termination occurs (if ever); if i < i∗ (or if premature termination occurs during the protocol
initialization step), then PT = “before”, if i = i∗, then PT = “during”, and PT = “after” if i > i∗ or
premature termination never occurs. The random variable is defined both in the ideal and the real world.

In the next claim, we bound the statistical distance between the two random variables according to
Definition 2.1.

Claim 5.2.

SD(IDEAL,REAL) ≤ 1
2

Pr[PT = “during”].

In order to prove this claim, we analyze the above probabilities conditioned on these three possible
events:

PT = “before” – premature termination occurs before round i∗. We argue that in this case, both
in the real protocol and in the simulation, the actions of A (according to V ) and its view before the prema-
ture termination step are independent of C (and, hence, also of the message sent to corrupt parties in the
premature termination) and, thus, the probabilities are exactly the same.

In a real-world execution, the output of the honest parties is the random bit for the appropriate set QJ ,
i.e., CREAL = σi−1

J . This bit is independent of all other bits (since i− 1 < i∗). Hence, ifA does not receive
σi−1

J from T , then this bit is completely unknown to A (before the last message is sent to the corrupted
parties). This is clearly true if premature termination occurs during the protocol initialization. To see that is
is also the case if premature termination occurs during round i < i∗, consider the following two cases:

1. If |D ∩ {k + 2, . . . , m}| ≥ m− t, then J = {1, . . . , k + 1} \ D and oJ = |J |. There are at most t
corrupt parties and at least m− t of them are in Q{k+2}, thus, at most t− (m− t) = k corrupt parties
among the k+1 parties p1, . . . , pk+1. In other words, there is at least one honest (and therefore active)
party in QJ , and the adversary does not learn σi−1

J during the peeking phase.

2. If |D ∩ {k + 2, . . . , m}| < m− t, then J = ({1, . . . , k + 1} \ D) ∪ {k + 2}. In this case, let
α = |D ∩ {1, . . . , k + 1}|, therefore, oJ = (k+1−α)+(m−t) = 2t−m+1−α+m−t = t+1−α.
The set QJ contains at most t − α < oJ corrupt parties, thus, these parties do not get the bit σi−1

J

from the trusted party.

Thus, given PT = “before”, the output of the honest parties is independent of the view of the adversary,
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hence,

Pr[VREAL = v ∧ CREAL = c | PT = “before”]
= Pr[VREAL = v | PT = “before”] · Pr[CREAL = c | PT = “before”]

= Pr[VREAL = v | PT = “before”] · 1
2
.

In the ideal-world execution, all the messages sent by the simulator in any round i < i∗ are independent
of wS , which was the value given to S by TCoinToss. Thus,

Pr[VIDEAL = v ∧ CIDEAL = c | PT = “before”]
= Pr[VIDEAL = v | PT = “before”] · Pr[CIDEAL = c | PT = “before”]
= Pr[VIDEAL = v | PT = “before”] · Pr[wS = c | PT = “before”]

= Pr[VIDEAL = v | PT = “before”] · 1
2
.

As explained above, S follows the same random process in interacting with A (before sending the last
message in the premature termination) as does T in the real-world execution. Hence,

Pr[VREAL = v | PT = “before”] = Pr[VIDEAL = v | PT = “before”],

and, thus,

Pr[VREAL = v ∧ CREAL = c | PT = “before”] = (1)

Pr[VIDEAL = v ∧ CIDEAL = c | PT = “before”].

PT = “after” – premature termination occurs after round i∗ or never occurs. Here v must contain
σi∗

J for some J , which, in the real-world execution, is equal to the output bit of all sets for any round i > i∗

(recall that the output bit of the honest parties is determined by one such bit), and in the simulation it equals
wS . Thus, in both scenarios, v must be consistent with i∗ and with c, hence, v completely determines c.
Again, since S follows the same random process in interacting withA as does T in the real-world execution,
we have,

Pr[VREAL = v | PT = “after”] = Pr[VIDEAL = v | PT = “after”],

and, thus,

Pr[VREAL = v ∧ CREAL = c | PT = “after”] = (2)

Pr[VIDEAL = v ∧ CIDEAL = c | PT = “after”].

PT = “during” – premature termination occurs in round i∗. This is the interesting case which
causes the statistical distance. In the real world, the output of the honest parties is σi∗−1

J for some J , while
in the ideal world their output is wS . In the first case the output is independent of the adversary’s view, while
in the second case, the view determining the output.
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In both scenarios, premature termination occurs in round i∗ and all the bits σi∗
J given to the adversary in

round i∗ must be the same (otherwise both probabilities are zero). If, however, c does not equal σi∗
J that the

adversary sees according to v, then we have,

Pr[VREAL = v ∧ CREAL = c | PT = “during”]
= Pr[VREAL = v | PT = “during”] · Pr[CREAL = c | PT = “during”]

= Pr[VREAL = v | PT = “during”] · 1
2

and

Pr[VIDEAL = v ∧ CIDEAL = c | PT = “during”] = 0.

Otherwise, v is consistent both with i∗ and with c, and we have,

Pr[VREAL = v ∧ CREAL = c | PT = “during”] = Pr[VREAL = v | PT = “during”] · 1
2

and

Pr[VIDEAL = v ∧ CIDEAL = c | PT = “during”]
= Pr[VIDEAL = v | PT = “during”]
= Pr[VREAL = v | PT = “during”].

Hence, for any pair (v, c), it holds that,
∣∣∣Pr[VIDEAL = v ∧ CIDEAL = c | PT = “during”]

− Pr[VREAL = v ∧ CREAL = c | PT = “during”]
∣∣∣

≤ 1
2

Pr[VREAL = v | PT = “during”]. (3)

Bounding the statistical distance between the global outputs of the real-world and ideal world. We
next use the above analysis of the three possible cases to bound the statistical distance between the two
random variables describing the global outputs of the ideal and real models. For every pair (v, c), the
following holds,

Pr[VIDEAL = v ∧ CIDEAL = c]
= Pr[VIDEAL = v ∧ CIDEAL = c | PT = “before”] · Pr[PT = “before”]

+Pr[VIDEAL = v ∧ CIDEAL = c | PT = “during”] · Pr[PT = “during”]
+Pr[VIDEAL = v ∧ CIDEAL = c | PT = “after”] · Pr[PT = “after”].
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Similarly,

Pr[VREAL = v ∧ CREAL = c]
= Pr[VREAL = v ∧ CREAL = c | PT = “before”] · Pr[PT = “before”]

+Pr[VREAL = v ∧ CREAL = c | PT = “during”] · Pr[PT = “during”]
+Pr[VREAL = v ∧ CREAL = c | PT = “after”] · Pr[PT = “after”].

Hence, by Equations (1), (2), and (3), for every pair (v, c), we have,
∣∣∣Pr[VIDEAL = v ∧ CIDEAL = c]− Pr[VREAL = v ∧ CREAL = c]

∣∣∣
=

∣∣∣Pr[VIDEAL = v ∧ CIDEAL = c | PT = “before”] · Pr[PT = “before”]

−Pr[VREAL = v ∧ CREAL = c | PT = “before”] · Pr[PT = “before”]
+Pr[VIDEAL = v ∧ CIDEAL = c | PT = “during”] · Pr[PT = “during”]
−Pr[VREAL = v ∧ CREAL = c | PT = “during”] · Pr[PT = “during”]
+Pr[VIDEAL = v ∧ CIDEAL = c | PT = “after”] · Pr[PT = “after”]

−Pr[VREAL = v ∧ CREAL = c | PT = “after”] · Pr[PT = “after”]
∣∣∣

=
1
2

Pr[VREAL = v | PT = “during”] · Pr[PT = “during”]. (4)

This is true since the probability that premature termination occurs in round i∗, i.e., Pr[PT = “during”],
is the same in both models (again, since S follows the same random process in interacting with A, before
sending the last message in the premature termination, as does T in the real-world execution.)

Now, we are ready to conclude the proof of Claim 5.2.

Proof of Claim 5.2.

SD(IDEAL, REAL) =
1
2

∑

(v,c)

∣∣∣Pr[VIDEAL = v ∧ CIDEAL = c]− Pr[VREAL = v ∧ CREAL = c]
∣∣∣

≤ 1
2

∑

(v,c)

1
2

Pr[VREAL = v | PT = “during”] · Pr[PT = “during”] by Equation (4)

≤ 1
2

Pr[PT = “during”] ·
∑

(v,c)

1
2

Pr[VREAL = v | PT = “during”]

≤ 1
2

Pr[PT = “during”].

Where the last inequality is due to the properties of the probability function and the fact that c ∈ {0, 1}.

Hence, the statistical distance is bounded by the probability of the adversary guessing i∗ correctly (before
the abort phase of round i∗). We next bound this probability by first showing that the view of the adversary
in each round prior to round i∗ has probability 1/22k+1

to be indistinguishable from i∗, and then by showing
that this implies that the overall probability for any adversary to guess i∗ is at most 22k+1

/r.
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If σi
J 6= σi

J ′ for two bits that the adversary receives during the peeking phase of round i, then it can learn
that i < i∗. The information that the adversary obtains in each round are the bits σi

J for J’s such that there
are enough corrupt parties in QJ (i.e., for which |B ∩QJ | ≥ oJ ). We next claim that the adversary only
receives half of the 2k+2 bits.

We remark that to obtain a total bias of O(22k+2
/r) (instead of the O(22k+1

/r) bound of Theorem 5),
one may omit the following claim and use the trivial bound of 2k+2 on the number of bits that the adversary
sees in each round. The rest of our proof is independent of this claim. Hence, the reader may choose to skip
the technical details of the proof of Claim 5.3 below.

Claim 5.3. Let B ⊂ P such that |B| = t < 2m/3 be the subset of corrupt parties, then there exists at most
2k+1 different subsets J ⊆ {1, . . . , k + 2} such that |B ∩QJ | ≥ oJ (i.e., set that the adversary receives the
bits of the associated QJ in the peeking phase of any round).

Proof. Recall that Q{j} = Pj is a singleton (and o{j} = oj = 1) for all 1, . . . , k + 1, Q{k+2} = Pk+2 =
{pk+2, . . . , pm} (and o{k+2} = ok+2 = m − t), and QJ = ∪j∈JPj . We consider two cases regarding the
size of the intersection between the set of corrupted parties B and Q{k+2}:

1. |B ∩ Q{k+2}| < o{k+2} = m − t. Let J ′ ⊆ {1, . . . , k + 1} be any subset and let J =
J ′ ∪ {k + 2}. Thus, oJ = o{k+2} + oJ ′ = m− t + |J ′| > |B ∩Q{k+2}| + |B ∩QJ ′ | = |B ∩QJ |,
since |B ∩QJ ′ | ≤ |QJ ′ | = |J ′|. In other words, every such set QJ contains less than oJ corrupt
parties. Hence, there are at least 2k+1 subsets J such that oJ > |B ∩QJ |.

2. |B ∩ Q{k+2}| ≥ o{k+2}. In this case, |B ∩Q{k+2}| = m− t + d for some 0 ≤ d ≤ k. Thus,
there are t−(m− t + d) = 2t−m−d = k−d corrupt parties in {p1, . . . , pk+1}, and, therefore, there
are d + 1 honest parties in {p1, . . . , pk+1}. Without loss of generality, we assume that p1, . . . , pd+1

are honest.

We argue that there are at least 2k+1 bits that the adversary does not see by presenting two types of
subsets whose bits the adversary cannot see.

(a) Subsets J such that, J ⊆ {1, . . . , k + 1}. In this case, oJ = |QJ | and the adversary can only
see that bits of subsets QJ such that J ⊆ {d + 2, . . . , k + 1}, i.e., 2k−d+1 bits. That is, there are
2k−d bits that the adversary can see for sets J ⊆ {1, . . . , k + 1}.

(b) Subsets J , such that k+2 ∈ J . In this case, oJ = |J ∩ {1, . . . , k + 1}|+ok+2 = |J |−1+m−t.
If {1, . . . , d + 1} ⊂ J (where p1, . . . , pd+1 are honest), then QJ contains (|J | − 1) − (d + 1)
corrupt parties from p1, . . . , pk+1 and m− t + d corrupt parties from {pk+2, . . . , pm}. That is,
QJ contains |J | − 2 + m− t < oJ corrupt parties, and the adversary does not know σi−1

J .
There are 2k−d sets J that contain {1, . . . , d + 1} ∪ {k + 2}, for these sets the adversary cannot
see the bits. Thus, the adversary sees at most 2k+1 − 2k−d bits for sets J that contain {k + 2}.

Altogether, that are at least 2k−d−1 + (2k+1 − 2k−d−1) = 2k+1 bits that the adversary does not see and the
adversary sees at most 2k+1 bits.

Hence, for each i < i∗, with probability 1/22k+1
the bits that are available to the adversary are all equal,

and the adversary cannot distinguish this round from i∗. It is left to show that this implies that the adversary
can guess i∗ with probability at most 22k+1

/r. Lemma 2 in [14] proves a generalization of this fact. For the
sake of completeness, we include here a proof for our special case.
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Claim 5.4. Let A be an adversary in Protocol CTWithDr, such that, in each round i, there are α bits of
the form σi

J that A sees. The probability that A guess i∗ is O(2α/r).

Proof. First, recall that A is deterministic. In addition, the exact sequence of aborts by corrupted parties
is immaterial. Thus, for the rest of this proof, whenever we say that A aborts in round i we mean that A
instructs a large enough subset of corrupt parties to abort the computation after having seen the bits of round
i or in prior rounds (and at least one party in round i).

We denote by V the set of all possible views of A ending with a premature termination. Clearly,
∑

v∈V
Pr[VREAL = v | i∗ = r] ≤ 1. (5)

For 1 ≤ i ≤ r let Vi ⊆ V be the set of all views for which the deterministic A aborts in round i. For
a view v ∈ Vi denote by vi−1 the prefix of v that A sees until round i − 1 and denote by γi the bits that A
sees in the peeking phase of round i (i.e., v = vi−1 ◦ γi). Without loss of generality, we assume, that for any
v ∈ Vi, the bits that the adversary sees in round i (i.e., γi) are all the same (otherwise, there exists a more
successful adversary that never guesses i∗ with this view, because if the bits are not the same, then i 6= i∗).
For any round i, let V i

REAL be a random variable describing the view of the adversary until the end of round
i.

We next consider the probabilities of the above views when i∗ = i and when i∗ = r. First, note that
until round i both views happen with exactly the same probability, i.e.,

Pr[V i−1
REAL = vi−1 | i∗ = i] = Pr[V i−1

REAL = vi−1 | i∗ = r]. (6)

When i∗ = i, given the prefix of the view, there are only two possible events for the bits of round i
each occurring with probability 1/2, that is, the bits the adversary sees are either all 1 or they are all 0. On
the other hand, if i∗ > i (specifically, if i∗ = r), then each of these events happens with probability 1/2α.
Hence, we have for every v ∈ Vi that

Pr[VREAL = v | V i−1
REAL = vi−1 ∧ i∗ = i] = 2α−1 · Pr[VREAL = v | V i−1

REAL = vi−1 ∧ i∗ = r]. (7)

Combining Equation (6) and Equation (7) we get for every v ∈ Vi

Pr[VREAL = v | i∗ = i]
= Pr[VREAL = v | V i−1

REAL = vi−1 ∧ i∗ = i] · Pr[V i−1
REAL = vi−1 | i∗ = i]

= 2α−1 · Pr[VREAL = v | V i−1
REAL = vi−1 ∧ i∗ = r] · Pr[V i−1

REAL = vi−1 | i∗ = r]
= 2α−1 · Pr[VREAL = v | i∗ = r].

Finally, the probability that A aborts in i∗ is

Pr[PT = “during”] =
r∑

i=1

Pr[i = i∗] Pr[PT = “during” | i∗ = i]

=
r∑

i=1

Pr[i = i∗]
∑

v∈Vi

Pr[VREAL = v | i∗ = i]

=
1
r

r∑

i=1

∑

v∈Vi

2α−1 · Pr[VREAL = v | i∗ = r]

=
2α−1

r

∑

v∈V
Pr[VREAL = v | i∗ = r] ≤ 2α−1

r
by Equation (5).
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Concluding the proof of Lemma 5.1. By Claim 5.2 the statistical distance between the global outputs of
an ideal-world simulation and a real-world execution of the protocol is bounded by the probability that the
adversary guesses the special round i∗ in time. In Claim 5.4 we bound this probability by 2α/r, where α is
the number of bits that the adversary sees in each round of the protocol. By Claim 5.3, α ≤ 2k+1, thus, the
statistical distance between the two random variables is bounded by 22k+1

/r and

SD
(

IDEALCoinToss(),S(aux)(1
n),REALCTWithDr,A(aux)(1

n)
)
≤ 22k+1

/r.

6 Omitting the On-Line Dealer

6.1 The Protocol Without the Dealer

In this section we show how Protocol CTWithDr, presented in Section 5, can be transformed into a real-
world protocol. That is, we present a fully secure m-party protocol implementing the ideal functionality
described in Protocol CTWithDr. The resulting protocol has r′ rounds, where r′ = r + c(k + 1), for
some constant c. The protocol is executed in a network where the parties communicate via an authenticated
broadcast channel.

In Figure 4 we describe the initialization functionality, Functionality MultiShareGenr, which chooses
i∗, prepares bits for each set for each round, shares those bits, and signs them. In Figure 5, we present Pro-
tocol CoinTossr, which proceeds in rounds and emulates Protocol CTWithDr. Protocol CoinTossr uses
a Functionality Reconstruction, described in Figure 6, which reconstructs the output bit if many malicious
parties have aborted. Before formally describing our construction, we outline its main components.

The inner secret-sharing scheme. To implement the “ideal secret sharing functionality” of the trusted
party T in the CTWithDr protocol to share the bits σi

J , we use an oJ -out-of-|QJ | Shamir secret-sharing
scheme. That is, in each round i, each party pj ∈ QJ obtains a share Si,J

j in an oJ -out-of-|QJ | secret-
sharing of σi

J . The same requirement on σi
J as in the protocol with the on-line protocol are preserved using

this inner secret-sharing scheme. That is, the adversary is able to obtain information on σi
J only if it controls

at least oJ of the parties in QJ . On the other hand, if, in a premature termination in round i, at least oJ

parties in QJ cooperate, then they can reconstruct σi−1
J from their shares.

The outer secret-sharing scheme. In the protocol with the on-line dealer, the adversary never learns
anything about the bits σi

J before round i begins. To achieve this property in the real-world protocol, the
shares of the inner secret-sharing schemes of all rounds are shared, in a preliminary phase, using a (t + 1)-
out-of-m secret-sharing scheme. The t + 1 threshold guarantees that the adversary, controlling at most t
parties, cannot see the shares of the inner secret-sharing scheme for a given round i without the honest
parties, which will not occur before round i.

In each round i the parties send messages so that each party can reconstruct its shares in the inner secret-
sharing schemes of round i. Since all messages are broadcast and all parties can see them, the shares that
party pj receives in round i are masked by using yet another layer of secret sharing. Specifically, a share
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Si,J
j to be reconstructed by pj in round i is signed and shared (already in the preliminary phase) in a 2-out-

of-2 secret-sharing scheme, such that one share is given to pj and the other is shared among all parties in
a t-out-of-m secret-sharing scheme; for details see Construction 2.7. We refer to the combination of these
two layers of secret sharing as the outer secret-sharing scheme.

Premature Termination. The t + 1 threshold of the outer secret-sharing scheme enables reconstruction
of the shares of the inner scheme as long as at least t + 1 parties participate in the reconstruction. This
allows the real-world protocol to proceed with normal interaction rounds as long as less than m− t parties
have aborted (as does the ideal-world protocol). If during round i the number of parties that have aborted is
at least m− t, then an honest majority is guaranteed (since t < 2m/3). Thus, in a premature termination
in round i > 1, the active parties can engage in a fully secure multiparty computation of a reconstruction
functionality.

Signatures. In order to confine adversarial strategies to premature aborts, the messages that the parties
send are signed (together with the appropriate round number and the index of the sending party), and a ver-
ification key is given to all parties. Furthermore, all shares in the inner secret-sharing scheme are signed (as
they are used as messages if reconstruction is required). Any message failing to comply with the prescribed
protocol is considered an abort message. Since all messages are publicly broadcast, all parties can keep
record of all aborts.

The preliminary phase. The goal of the preliminary phase is to compute the MultiShareGenr function-
ality, which computes the bits for the underlying sets and the signed shares for the inner and outer secret-
sharing schemes. As an honest majority is not guaranteed, it is not possible to implement this functionality
by a secure protocol with fairness. That is, we cannot implement an ideal functionality where a trusted party
computes the MultiShareGenr functionality and sends the appropriate output to each party. However, since
the outputs of the MultiShareGenr functionality do not reveal any information regarding the output of the
protocol to any subset of size at most t, fairness is not essential for this part of the computation. We use a
protocol with cheat detection, that is, if the protocols fails, then at least one corrupt party is identified by all
honest parties. The computation is then repeated without the detected malicious parties.

More formally, we compute the MultiShareGenr functionality using a multiparty protocol that is
secure-with-abort and cheat-detection. Informally, this means that we use a protocol that implements the
following ideal model: the trusted party computes the MultiShareGenr functionality and gives the outputs
of the corrupted parties to the adversary; the adversary either sends “proceed”, in this case, the trusted party
sends the appropriate output to each honest party; otherwise, the adversary sends {“abortj”}j∈J for some
non-empty set of indeces J of corrupt parties to the trusted party. The trusted party, in turn sends the set J
to the honest parties. Using methods from Pass [19], one can obtain a constant-round multiparty protocol
secure-with-abort and cheat-detection. See details in Appendix A. Since this protocol is repeated at most
k +1 times before an honest majority is guaranteed, the round complexity of the preliminary phase is O(k).

6.1.1 Proving the Feasibility of the Reconstruction

We next claim that Functionality Reconstruction described in Figure 6 is well-defined, that is, if the func-
tionalit is computed (after premature termination in round i > 1), then, indeed, σi−1

J can be reconstructed.
To see this, observe that the number of parties in the appropriate set QJ that participate in the computation
(i.e., not in D) is at least the reconstruction threshold oJ .

28



Functionality MultiShareGenr

Computing default bits and signing keys

1. Choose w ∈ {0, 1} and i∗ ∈ {1, . . . , r} uniformly at random.

2. For each i ∈ {1, . . . , r} and for each J ⊂ {1, . . . , k + 2},

(a) if i ≤ i∗ − 1, then choose independently and uniformly at random σi
J ∈ {0, 1}.

(b) if i ≥ i∗, then set σi
J = w.

3. Compute (Ksign,Kver) ← Gen(1n).

Computing signed shares of the inner secret-sharing scheme

4. For each i ∈ {1, . . . , r} and for each J ⊂ {1, . . . , k + 2}
(a) Choose random secret shares of σi

J in an oJ -out-of-|QJ | Shamir’s secret-sharing
scheme for the parties in QJ . For each party pj ∈ QJ , let Si,J

j be its share of σi
J .

(b) Sign each share Si,J
j :

Ri,J
j ← (Si,J

j , i, J, j,Sign((Si,J
j , i, J, j),Ksign).

Computing shares of the outer secret-sharing scheme

5. For each i ∈ {1, . . . , r}, for each J ⊂ {1, . . . , k + 2}, and for each pj ∈ QJ : share pj’s
signed share Ri,J

j using a (t+1)-out-of-m secret-sharing scheme with respect to pj as defined

in Construction 2.7; that is, one masking share maskj (Ri,J
j ) and m − 1 complement shares

(comp1 (Ri,J
j ), . . . , compj−1 (Ri,J

j ), compj+1 (Ri,J
j ), . . . , compm (Ri,J

j )) are produced.

Signing the messages of all parties

6. For every 1 ≤ q ≤ m, compute the message m(q,i) that pq ∈ P broadcasts in round i by
concatenating (1) q, (2) the round number i, and (3) the complement shares compq (Ri,J

j ) for
all J and for all j 6= q such that pj ∈ QJ produced in Step (5) for pq.

7. Compute Mq,i ← (mq,i, Sign(mq,i,Ksign)).

Outputs: Each party pj receives

• The verification key Kver.

• The messages Mj,1, . . . , Mj,r that pj broadcasts during the protocol.

• pj’s private masks maskj (Ri,J
j ) which were produced in Step (5) for each 1 ≤ i ≤ r

and each J ⊂ {1, . . . , k + 2} such that pj ∈ QJ .

Figure 4: The initialization functionality MultiShareGenr.
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An m-party protocol CoinTossr

Joint input: Security parameter 1n.

Preliminary phase:

1. D ← ∅
2. If |D| < m− t,

(a) The parties execute a secure-with-abort and cheat-detection protocol computing Func-
tionality ShareGenWithAbortr.

(b) If a set of parties abort, that is, the output of the honest parties is {“abortj”}j∈J for
some non-empty set J , then D ← D ∪ J and Step (2) is repeated without the parties
whose indices are in D.

3. Else, if |D| ≥ m− t, then the premature termination step is executed with i = 1.

In each round i = 1, . . . , r do:

4. Each party pj ∈ P broadcasts Mj,i (containing its shares in the outer secret-sharing scheme).

5. For each pj , if Ver(M(j,i),Kver) = 0 or if pj broadcasts an invalid or no message, then all
parties mark pj as inactive, i.e., set D ← D ∪ {j}. If |D| ≥ m− t, then the premature
termination step is executed.

Premature termination step

6. If i = 1, then the active parties (parties pj s.t. j ∈ D) use a multiparty secure protocol (with
fairness) to toss a fair coin, output the resulting bit, and halt.

7. Otherwise,

(a) Each party pj reconstructs Ri−1,J
j , the signed share of the inner secret-sharing scheme

produced in Step (4) of Functionality MultiShareGenr, for every J ⊂ {1, . . . , k + 2}
such that pj ∈ QJ .

(b) The active parties execute a secure multiparty protocol (with an honest majority) com-
puting Functionality Reconstruction, where the input of each party pj is Ri−1,J

j for
every J ⊂ {1, . . . , k + 2} such that pj ∈ QJ .

(c) The active parties return the output of this protocol, and halt.

At the end of round r:

8. Each active party pj broadcasts the signed shares Rr,J
j for each J such that pj ∈ QJ .

9. Let J be the lexicographically first set such that at least oJ parties broadcast properly signed
shares Rr,J

j . Each active party reconstructs the bit σr
J of J , outputs σr

J , and halts.

Figure 5: Protocol CoinTossr.
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Functionality Reconstruction

Joint Input: The indices of inactive parties, D, and the verification key, Kver.

Private Input of pj: A set of signed shares Ri−1,J
j for each J ⊂ {1, . . . , k + 2} such that pj ∈ QJ .

Computation:

1. For each pj , if pj’s input is not appropriately signed or malformed, then D ← D ∪{j}.

2. Define the set J :

• If |D ∩ {k + 2, . . . , m}| ≥ m− t then J = {1, . . . , k + 1} \D.
• If |D ∩ {k + 2, . . . , m}| < m− t then J = ({1, . . . , k + 1} \D) ∪ {k + 2}.

3. Reconstruct σi−1
J from the shares of the active parties in QJ .

Outputs: Each honest party pj outputs the value σi−1
J , the secret reconstructed from the signed

shares Ri−1,J
j .

Figure 6: The functionality for reconstruction the output bit if the premature termination step is executed in
round i > 1 .

Claim 6.1. There are at least oJ active parties in QJ .

Proof. Let D be the set of aborted parties and J as defined in Functionality Reconstruction.

• If |D ∩ {k + 2, . . . , m}| ≥ m− t, then QJ = {pj : j ∈ {1, . . . , k} \D} contains only active parties
and |QJ | = oJ . Notice that we already proved that in this case |QJ | ≥ 1.

• If |D ∩ {k + 2, . . . ,m}| ≤ m− t − 1, then oJ = |J | − 1 + m − t and |QJ \ {pj : j ∈ D}| =
|J | − 1 + |{k + 2, . . . ,m} \D|. To prove that |QJ \ {pj : j ∈ D}| ≥ oJ , it suffices to show that
|{k + 2, . . . , m} \D| ≥ m− t:

|{k + 2, . . . ,m} \D| ≥ (m− k − 1)− (m− t− 1) = t− k = t− (2t−m) = m− t.

6.2 The Simulator for the Protocol Without a Dealer

We next prove the security of Protocol CoinTossr and, hence, the correctness of Theorem 6. As explained in
Section 4 we prove that this protocol is a real-world implementation of the (ideal) functionality of Protocol
CTWithDr, the protocol with the on-line dealer. We analyze Protocol CoinTossr in a hybrid model with
the following 3 ideal implementations of the functionalities that we described before:

ShareGenWithAbortr. This is an implementation of Functionality MultiShareGenr in a secure-with-
abort and cheat-detection model. That is, first Functionality MultiShareGenr is executed. Then, the
adversary gets the outputs of the malicious parties of the functionality. Next, the adversary decides
whether to halt or to continue; If the adversary decides to continue, it sends a “proceed” message to
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Functionality ShareGenWithAbortr, which sends the honest parties their outputs. Otherwise, the
adversary sends {“abortj”}j∈J for some set of malicious parties indexed by J , and this message is
sent to the honest parties.

FairCoinToss. This is an implementation with full security (with fairness) of the functionality that com-
putes a uniformly distributed random bit. That is, the functionality simply chooses a random bit and
gives it to all parties.

Reconstruction. This is an implementation with full security (with fairness) of the functionality de-
scribed in Figure 6; this functionality is used in the premature termination step in Protocol CoinTossr

for reconstructing the output bit from the shares of the previous round.

When the last two functionalities are executed, an honest majority is guaranteed, hence, these func-
tionalities can be implemented with full security.

We consider an adversary A in the hybrid model described above, corrupting t < 2m/3 of the parties
that engage in Protocol CoinTossr. We next describe a simulator S interacting with the honest parties in
the ideal-world via a trusted party TCTWithD executing Functionality CTWithDr. The simulator S runs the
adversary A internally with black-box access. Simulating A in an execution of the protocol, S corrupts the
same subset of parties as does A, denoted B = {pi1 , . . . , pit}. At the end of the computation it outputs a
possible view of the adversary A. To start the simulation, S invokes A with the auxiliary input aux and the
security parameter 1n.

Simulating the preliminary phase: Upon receiving a “start” message from the ideal-world trusted party
TCTWithD, the simulator S plays the role of Functionality ShareGenWithAbortr (possibly, up to
m− t times), simulating the interaction between the adversary A and this functionality.

1. D ← ∅.

2. The simulator S prepares outputs for the corrupted parties in a single interaction with Func-
tionality ShareGenWithAbortr. The simulator S does this by first setting σi

J = 1, for all
J ⊂ {1, . . . , k + 2} and for all i ∈ {1, . . . , r}. Then, S follows Steps 3–7 in the computation of
Functionality MultiShareGenr (skipping Step (1) and Step (2)) to obtain uniformly distributed
shares for the parties.4

3. For each pj ∈ B, the simulator S sends to A:

• The verification key Kver.
• The masking shares maskj (Ri,J

j ) for each i ∈ {1, . . . , r} and for each J ⊂ {1, . . . , k + 2}
such that pj ∈ QJ .

• The messages Mj,1, . . . , Mj,r.

4. For each pj ∈ B, if A sends an “abortj” message behalf of pj to S, then S sends “abortj”
to the trusted party TCTWithD.

(a) D ← D ∪ {j}.
(b) If |D| < m− t, then Steps 2–3 are repeated.
(c) Otherwise (|D| ≥ m− t), the simulator S executes the simulation of the premature termi-

nation step with i = 1.
4These shares are temporary and will later be opened to the actual bits obtained from TCTWithD during the interaction rounds

using the properties of Shamir’s secret-sharing scheme; specifically, they can alternatively be computed by setting σi
J to 0.
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5. If A sends a “continue ” message to S (simulating Functionality ShareGenWithAbortr),
then S sends an “abortj” message for each party pj ∈ D to the trusted party TCTWithD (and
gets in return a “proceed” message). The simulator S denotes by B0 = B \D the set of active
corrupt parties after the simulation of the execution of ShareGenWithAbortr (from here on, S
will interact with parties in B0).

Simulating interaction rounds:
Let JB0 be the collection of subsets J ⊂ {1, . . . , k + 2} such that there are enough corrupted parties
in QJ to reconstruct the bits associated with J , i.e., |B0 ∩QJ | ≥ oJ .
To simulate round i for i = 1, . . . , r, the simulator S proceeds as follows:

1. S gets from the trusted party TCTWithD the bits that the corrupted parties see, that is, S gets a
bit τ i

J for each J ∈ JB0 .5

2. The simulator S selects the shares in the inner secret-sharing scheme for corrupted parties: For
every J ∈ JB0 , the simulator S selects uniformly at random shares of τ i

J in an oJ -out-of-|QJ |
Shamir secret-sharing scheme. Denote these shares by

{
Xi,J

j : pj ∈ QJ

}
. For each pj ∈ QJ ,

let Y i,J
j ← (Xi,J

j , i, J, j,Sign((Xi,J
j , i, J, j),Ksign)).

3. The simulator S selects complementary shares for all honest parties, with the requirement that,
together with the masking share maskj (Ri,J

j ) held by pj and the complementary shares held by

the corrupted parties in B0 \ {pj}, they are a sharing of Y i,J
j .

To do so, for every J ∈ JB0 and for each pj ∈ B0,

(a) S calculates αj = maskj (Ri,J
j )⊕ Y i,J

j .
(b) S generates m− t shares of αj uniformly at random from all possible vectors of m− t

shares in a t-out-of-(m− 1) Shamir secret-sharing scheme, where together with the t given
shares

{
compq (Ri,J

j ) : pq ∈ B \ pj

}
which were produced in Step (2) in the simulation of

the preliminary phase, they will form a secret sharing of Y i,J
j .

(This is possible according to Construction 2.7, since the shares held by the corrupted par-
ties before round i do not determine the reconstructed value).
Denote by compq (Y i,J

j ) the complementary share that S generates for the honest party pq

for pj ∈ B0 ∩QJ , where J ∈ JB0 .

4. For party pj and subset J , such that, either pj /∈ B or J /∈ JB0 , let compq (Ri,J
j ) be the

complementary share which was produced in Step (2) in the simulation of the preliminary phase,
i.e., compq (Ri,J

j ).
5. Construct signed messages for the honest parties: To construct the message M ′

q,i for an honest
party pq in round i, the simulator computes m′

q,i by concatenating the following strings:

(a) q,
(b) The round number i,
(c) The complement shares which were described in Step (4) above,
(d) The complement shares compq (Y i,J

j ) for all J ∈ JB0 and for all j 6= q such that pj ∈ QJ

produced in Step (3) for pq.
5In Steps 2–5, the simulator S constructs the messages of the honest parties in order to allow the corrupted parties in each

J ∈ JB0 to reconstruct Y i,J
j .
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Then, S signs m′
q,i, i.e., S computes M ′

q,i ← (m′
q,i, Sign(m′

q,i, Ksign)).

6. The simulator S sends all the message M ′
q,i on behalf of each honest party pq to A.

7. If A sends an invalid or no message on behalf of pj , then S sends “abortj” to TCTWithD.

(a) D ← D ∪ {j}.
(b) If |D| ≥ m− t, then S executes the simulation of the premature termination step.
(c) Otherwise, the simulator S proceeds to the next round.

Simulating the premature termination step:

• If i = 1, S simulates A’s interaction with Functionality FairCoinToss as follows:

1. The simulator S gets from TCTWithD the bit σ. Then, S sends σ to A.

• If i > 1, S simulates A’s interaction with Functionality Reconstruction as follows:

1. S receives from A the inputs of the active malicious parties in the current round denoted
by Bi. If the input for pj ∈ Bi is not appropriately signed, then S sends “abortj” to
TCTWithD.

2. S gets from TCTWithD a bit σ and sends it to A.

Simulating normal termination at the end of round r:

1. The simulator gets w from the trusted party TCTWithD.

2. S constructs all the singed shares of the inner secret-sharing scheme for each J ⊂ {1, . . . , k + 2}
and for each honest party pj ∈ QJ as follows.

• For each J ∈ JB0 , the signed shares
{

Y r,J
j

}
were produced in Step (2) of the simulation

of the interaction of round r.
• For each J /∈ JB0 , the simulator S selects uniformly at random secret shares of w in an

oJ -out-of-|QJ | Shamir secret-sharing scheme. Denote these shares by
{

Xr,J
j

}
.

For each share Xr,J
j , the simulator concatenates the corresponding identifying details, and

signs them to obtain: Y r,J
j ← (Xr,J

j , r, J, j,Sign((Xr,J
j , r, J, j),Ksign)).

(Y r,J
j is the share of inner secret-sharing scheme that party pj ∈ QJ should reconstruct.)

3. For each honest party pj , the simulator S sends to A the shares Y r,J
j for all subsets J , such that

pj ∈ QJ .

The Output of the Simulator: The simulator S outputs rA and the sequence of messages exchanged be-
tween S and the adversary A and halts.

6.3 Proof of the Correctness of the Simulation

In this section we prove that the simulator described in Section 6.2 simulates Protocol CoinTossr de-
scribed in Section 6.1. We consider the two random variables from Section 2.1, both of the form (V, C),
where V describes a possible view of A, and C describes a possible output of the honest parties (i.e.,
C ∈ {0, 1}). The first random variable REALCoinTossr,A(aux)(1n) describes the hybrid world, i.e., an exe-
cution of the CoinTossr protocol in the above hybrid model, where V describes the view of the adversary
A in this execution, and C is the output of the honest parties in this execution. The second random variable

34



IDEALCTWithDr,S(aux)(1n) describes the output of the simulator and the honest parties in the ideal world,
i.e., an execution of the r-round m-party coin-tossing protocol CTWithDr with an on-line dealer, where V
describes the output of the simulator S in this execution, and C is the output of the honest parties in this ex-
ecution. Our goal here is to show that the these two random variables are computationally indistinguishable.
For the rest of this proof, we simplify notations by omitting all notations that are clear from the context; we
denote the above two random variables by REAL = (VREAL, CREAL) and IDEAL = (VIDEAL, CIDEAL)
respectively.

In the main part of the proof, we assume that an adversary never (successfully) forges a signature during
the execution of the protocol. Under this assumption, we prove that these two random variables are identi-
cally distributed. Since the probability that a polynomial-time adversary successfully forges a signature for
any message is negligible, the statistical distance between these two random variables is negligible.

We next prove a slightly stronger claim than the one required for the above. We define two random vari-
ables KEYIDEAL and KEYREAL representing the sequence of signing keys used in the (repeated) iterations
of the preliminary phase to sign the messages. That is, KEYIDEAL represents the sequence of keys that
were used to sign the messages in the computations of Step (2) during a given execution of the simulation,
and KEYREAL represents the sequence of keys that were used to sign the messages in the computations
of Step (2a) (i.e., in the executions of Functionality ShareGenWithAbortr) in an execution of Protocol
CoinTossr in the hybrid model. The signing keys are not part of the view of the adversary. However, we
prove that the joint distributions (VREAL, CREAL, KEYREAL) and (VIDEAL, CIDEAL, KEYIDEAL) are iden-
tically distributed makes the proof easier and at the same time proves that REAL and IDEAL are identically
distributed. Let REAL+ = (VREAL, CREAL,KEYREAL) and IDEAL+ = (VIDEAL, CIDEAL, KEYIDEAL)

We consider r+2 random variables
{
REALi

+

}r+1

i=0
that are related to REAL+ and r+2 random variables{

IDEALi
+

}r+1

i=0
that are related to IDEAL+. Each of these variables describes a partial execution until a

given point as next described. The random variable REAL0
+ describes the execution until the end of the

preliminary phase in Protocol CoinTossr. That is, REAL0
+ contains the sequence of signing keys used by

Functionality ShareGenWithAbortr and the messages that the adversary A exchanges with Functionality
ShareGenWithAbortr in all interactions with this functionality, i.e., until either A sends a “continue ”
message to the functionality or until A interacts with the functionality m− t times. Similarly, the random
variable IDEAL0

+ describes the simulation until the end of all iterations of the simulator S . In addition,
IDEALr+1

+ contains the interaction in the termination step (normal or premature termination).
For each 1 ≤ i ≤ r, the random variable REALi

+ contains REALi−1
+ and, in addition, contains the

messages that were exchanged between the adversary (i.e., the corrupt parties) and the honest parties in the
first i rounds in the execution of Protocol CoinTossr (in the hybrid model). Specifically, if the execution was
prematurely terminated before round i, then we have REALi

+ = REALi−1
+ . The random variable IDEALi

+

is defined similarly.
We next prove that for every 0 ≤ i ≤ r + 1, it holds that REALi

+ ≡ IDEALi
+ (assuming no signatures

were forged). Towards this goal, we fix a triple λ = (v, c, keys) and show that for every i the probability
that IDEALi

+ is consistent with λ is the same as the probability that REALi
+ is consistent with λ, where in

both scenarios we invoke A on 1n and the same auxiliary information aux.

6.3.1 The Initialization Step

Claim 6.2. The probability that REAL0
+ is consistent with λ is the same as the probability that IDEAL0

+ is
consistent with λ.

Proof. The simulator follows the same procedure for generating the messages to malicious parties as the pro-
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tocol with one main difference. The simulator chooses σi
J = 1 for every 1 ≤ i ≤ r and J ⊂ {1, . . . , k + 2},

while the protocol chooses these values at random. However, since the adversary holds at most t shares of
Construction 2.7 with threshold t + 1 (i.e., α = t + 1), these shares are uniformly distributed (as explained
in Construction 2.7). Thus, the probability that the adversary sees the shares that are consistent with λ is the
same in both models. As the messages sent to the corrupt parties are these shares and signatures on these
shares, the claim follows.

6.3.2 The Interaction Rounds of the Protocol

Claim 6.3. For every 1 ≤ i ≤ r, the following two probabilities are equal:

1. The probability that REALi
+ is consistent with λ, given that REALi−1

+ is consistent with λ.

2. The probability that IDEALi
+ is consistent with λ, given that IDEALi−1

+ is consistent with λ.

Proof. If the execution prematurely terminated in round i′ < i, then there is nothing to prove, since by
definition REALi

+ = REALi−1
+ and IDEALi

+ = IDEALi−1
+ and, thus, are both consistent with λ. We,

thus, assume that round i does take place according to λ.
The messages broadcast in round i are shares in the outer secret-sharing schemes of shares generated

in an inner secret-sharing scheme. We will show that in both worlds the hybrid and the ideal, they are
distributed according to the same distribution. The selection of the bits that the adversary sees throughout
the protocol is done by the same process in the real protocol (by Functionality ShareGenWithAbortr)
and in the ideal world (by the trusted dealer). That is, in both cases the bits are selected according to the
algorithm defined by Functionality MultiShareGenr. Furthermore, given these values, each bit is shared
independently of the other bits. Thus, it suffices to show that the outer shares of each bits are equally
distributed. There are two cases:

Outer shares for pj ∈ B0 and J ∈ JB0 such that j ∈ J . Since J ∈ JB0 , the simulator gets from the
trusted party TCTWithD a bit τ i

J . The simulator then generates shares of an inner secret-sharing scheme
of τ i

J , and signs these shares. Let Y i,J
j be the share of pj generated by the simulator. This share is

generated in the same process as the share Ri,J
j generated in the hybrid world.

The process of generating the outer shares of Y i,J
j and Ri,J

j (in the ideal and hybrid worlds, respec-

tively) are different. In the hybrid world, Ri,J
j is simply shared using Construction 2.7. In the ideal

world, the values
{

compq (Ri,J
j )

}
q∈B0

(generated in the simulation of the preliminary phase) are

completed to m shares of Construction 2.7 for the secret Y i,J
j . As explain in Construction 2.7, the

set of at most t shares of Ri,J
j are uniformly distributed, thus, their completion to shares of Y i,J

j is
distributed as in the hybrid world.

Outer shares for pj /∈ B0 or J /∈ JB0 . In the hybrid world, first the value σi
J is chosen in Functionality

MultiShareGenr, then this bit is shared in an inner secret-sharing scheme, signed, and shared in
an outer secret-sharing scheme. In the ideal world, the process is similar, however for the fixed bit
σi

J = 1.

• If pj /∈ B0, the parties in B0 miss the mask of Ri,J
j , thus, they cannot see the difference between

the worlds.
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• If J /∈ JB0 , the number of parties in B0 that are in QJ is less than oJ . Thus, the inner shares
given to the parties in QJ ∩ B0 are equally distributed regardless of the value of σi

J , and their
sharing in the outer secret-sharing scheme is equally distributed in the two worlds.

6.3.3 The Termination Step

We next prove that the random variables are equal distributed after the termination (premature or normal).

Claim 6.4. The following two probabilities are equal:

1. The probability that REAL+ is consistent with λ, given that REALr
+ is consistent with λ.

2. The probability that IDEAL+ is consistent with λ, given that IDEALr
+ is consistent with λ.

Proof. We need to show that the probabilities that in both worlds, the view of the adversary A in the termi-
nation phase is consistent with λ, given that everything else was consistent with λ is the same in both worlds.
We consider the two possible types of termination of the protocol, i.e., normal termination and premature
termination. The type of termination we need to consider is specified by the view in previous round, and,
thus, by REALr

+ and IDEALr
+. We therefore consider the type of termination as specified by λ.

A premature termination step is specified by λ: We separate the analysis of this case into two. First, we
consider the case where the premature termination takes place with i = 1. Then, we consider the case
where 1 < i ≤ r. In all of the cases discussed below, at least m− t parties have aborted, and, thus,
an honest majority is guaranteed among the remaining active parties.

1. The case where i = 1 (according to λ): This case is possible either if according to λ at least
m− t parties aborted in the preliminary phase, or m− t parties aborted before the first round
of interaction was completed. By the definition of the premature termination step, in both the
above cases the output of the protocol should be a uniform bit that is independent of the view of
the adversary. We next claim that both in the hybrid-world and in the simulation this is indeed
the case. Formally, we claim that given that the view of the adversary (as well as the sequence
of signing keys used thus far) is consistent with λ, the view of the adversary in the premature
termination step will consist of an independent uniform bit, both in the hybrid-world and in the
simulation.
In the premature termination step in the hybrid-world, the parties use Functionality FairCoinToss
to toss a completely fair coin (the functionality is fully secure, since an honest majority is guar-
anteed). In the simulation, the simulator S sends an “abortj” message to TCTWithD for each
party pj that has aborted. Then, S gets in return a bit σ and sends σ to A. By the definition of
Protocol CTWithDr the trusted party will return w′ = σ0

J , for some subset J . Regardless of
the exact subset, this bit is uniform and independent of the view of the adversary.

2. The case where 1 < i ≤ r (according to λ): We claim that in this case the output of the honest
parties (which is part of the view of the adversary) is the bit σi−1

J for the same subset J , both in
the hybrid-world and in the simulation. This suffices, since, as explained above, the bits for all
sets are selected according to the same randomized process in the real protocol (by Functionality
ShareGenWithAbortr) and in the ideal world (by the trusted dealer). Thus, given that the same
view for the adversary.
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In the hybrid-world the parties execute Functionality Reconstruction to select the appropriate
bit (the functionality is fully secure, since an honest majority is guaranteed). In the ideal-world
the simulator turns to the trusted party TCTWithD for the output bit. In both cases the bit is
chosen according to the set D of parties that have aborted the protocol. By the assumption that
the view of A thus far is consistent with λ, we have that the set of parties that aborted before
the beginning of the premature termination step has started is the same in both models. Now,
all inputs of corrupted party to Functionality Reconstruction are going to be the same both in
the hybrid-world and in the simulation, thus the subset D is going to be the same. Therefore, in
both models, the same subset J is going to be selected, and by the above the same bit is going
to be output.

A normal termination step is specified by λ: According to specification of Protocol CTWithDr, at the
end of round r, each party pj broadcasts its (signed) shares in the inner secret-sharing scheme of
round r, i.e., party pj broadcasts Rr,J

j for each J such that pj ∈ QJ . Thus, in the hybrid-world, the
adversary will receive the shares sent by the honest parties. To simulate the messages sent by the
honest parties in this case, the simulator S gets the output bit w from the trusted party TCTWithD,
selects inner secret-sharing schemes shares for the honest parties, and signs them. That is, S selects
for each honest party pj shares {Xr,J

j } and then concatenates the corresponding identifying details,

and signs them to obtain: {Y r,J
j }.

We first consider the issue of the output bit itself. If JB0 6= ∅, that is, that the adversary learns at
least on bit in each round, then, the output bit is completely determined by the bits that the adversary
saw in round r, hence, REALr

+ and IDEALr
+ both determine (and agree on) the output bit w. If

the adversary does not learn any bit in round r (and, hence, it does not learn any bits in any other
round), then the view of the adversary is completely independent of the value of the output bit and
since in both worlds this bit is uniform, the probability that it agrees with λ is 1/2 in both cases.
We continue our analysis under the added assumption that (besides REALr

+ and IDEALr
+ being

consistent with λ) the prescribed output bit in both worlds is consistent with λ. That is, we assume
that the bit w that S obtains from the trusted party TCTWithD is the same as the output bit selected by
Functionality ShareGenWithAbortr, and that they both agree with λ.

We next claim that, under the above assumptions (i.e., conditioned on REALr
+ and IDEALr

+ and the
output bit in each model being consistent with λ), the probability in both models that the adversary
sees shares (of honest parties) for the output bit that are according to λ is the same.

By the properties of the Shamir secret-sharing scheme, the shares of the honest parties for the bits
of sets J ∈ JB0 (i.e., such that |B0 ∩QJ | ≥ oJ ) are completely determined by the view of the
adversary, i.e., by the shares of corrupted parties for these bits (since any oJ shares determine the
other shares in a Shamir oJ -out-of-|QJ | scheme). Hence, these shares will be consistent with λ with
probability 1 in both models. We note that this is true, since the selection of shares is done properly
in both model (specifically, in the simulation, the shares for honest parties Xr,J

j were already selected
in the simulation of round r, together with the shares of corrupt parties). For the remaining shares,
i.e., shares of honest parties pj and subsets J /∈ JB0 , we argue that in both models they are uniformly
distributed over all shares that complete those seen by the adversary to be secret shares of the output
bit w. This is true since the shares that the adversary sees for this bit do not determine its value and
by the properties of secret-sharing schemes. Thus, the distribution over the shares of honest parties pj

and subsets J /∈ JB0 is the same in both models, given the set of shares of corrupt parties for these
bits. That is, selecting uniformly over all shares Xr,J

j for honest parties that complete the shares of the
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corrupt parties (that are specified by λ) to a sharing of w (as is done by the simulator) is equivalent to
uniformly selecting shares for all parties to share w and then selecting uniformly over those for which
the shares of corrupt parties agree with λ (which describes the distribution over shares, implied by the
hybrid world random variable).

So far we considered the correctness of the simulation process, however, in order to argue that the pro-
tocol is secure, we also need to verify that the simulator can be implemented by a probabilistic polynomial
time algorithm.

Claim 6.5. The simulator S described in Section 6.2 is efficient.

Proof. The simulator uses the adversary in a black-box manner and never rewinds it. Furthermore, the ad-
versary is itself a (non-uniform) polynomial time algorithm. In addition, the simulator needs to simulate
Functionality ShareGenWithAbortr (at most m− t times), Functionality FairCoinToss (at most once),
and Functionality Reconstruction (at most once). Since all three functionalities are polynomial time com-
putable, their simulation is efficient. Finally, in each round of the simulation (and in the simulation of a
normal termination) the simulator needs to select uniformly distributed shares of the bits that the adversary
sees. By the properties of Construction 2.7, this can be done efficiently. In addition, in each round of the
simulation the simulator needs to sign these shares, which is also done in polynomial time since it holds the
signing key. Hence, since the number of rounds in the protocol is polynomial in the security parameter, the
whole simulation is done in polynomial time.

6.3.4 Concluding the Proof of Theorem 6

Proof of Theorem 6. In Section 6.2 we describe an ideal-world simulator for any hybrid-world adversary
for Protocol CoinTossr. By the combination of Claim 6.2, Claim 6.3, and Claim 6.4, we have that, under
the assumption that the adversary never forges a signature of a message, for any pair (v, c), the probability
that REAL = (v, c) is exactly the same as the probability that IDEAL = (v, c). That is, the global outputs
of an ideal-world simulation and of a hybrid-world execution are identically distributed under the above
assumption. As explained above, since the probability to successfully forge a signature for any message
is negligible, the above two random variables are statistically close even without the assumption that the
adversary never successfully forges any message. Finally, by Claim 6.5 the simulator is efficient.

The analysis of the security of Protocol CoinTossr is done relative to an hybrid-world with three ideal
functionalities. By Canetti [7], the real-world protocol is computationally secure if computationally secure
real-world implementations of these three functionalities exist. This is indeed the case if enhanced trap-door
permutations exist. Hence, the theorem follows.

7 Coin-Tossing Protocol for any Constant Fraction of Corrupted Parties

In this section we describe a coin-tossing protocol for any constant fraction of corrupted parties. More
specifically, we prove the following theorem:

Theorem 7. If enhanced trap-door permutations exist, then for any m, t, and r = r(n) such that t =
(1 − ε)m, for some constant ε > 0, there is an r-round m-party coin-tossing protocol tolerating up to t
malicious parties that has bias O

(
ε/
√

r − t
)
.
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Before our work, the best known protocol for this scenario is an extension of Blum’s two-party coin-
tossing protocol [5] to an r-round m-party protocol that has bias O

(
t/
√

r − t
)

[2, 9]. In this protocol, in
each round i of the protocol, the parties jointly select a random bit σi in two phases. In the first phase, each
party commits to a “private” random bit, and in the second phase the private bits are all revealed and the
output bit σi is taken to be the XOR of all private bits. The output of the whole protocol is the value of the
majority of the σi’s. When there is a abort in round i, the remaining parties repeat the computation of round
i and continue with the prescribed computation.

Intuitively, the best strategy for a rushing adversary to bias the output of the protocol, say toward 0,
is in each round i to instruct a corrupted party to abort before the completion of the revealing phase if
σi = 1. This is possible, since the rushing adversary learns σi before the completion of round i, specifically,
a corrupted party can delay its message until all honest parties reveal their bit. This can go on at most t
times, resulting in a total bias of O (t/

√
r), whenever r = Ω(t2).

In our protocol, we follow the general structure of the above protocol in computing the σi’s and taking the
majority over them. However, we compute each σi using a secure-with-abort and cheat-detection protocol,
such that either the computation is completed or at least a constant fraction of the malicious parties abort
(specifically, m− t malicious parties abort).

Next, we briefly describe the computation of each σi in our protocol. We show how to obtain a constant
round secure-with-abort and cheat-detection protocol to compute a random bit that identifies at least m− t
cheating parties. Let mi be the number of active parties at the beginning of round i and ti be an upper bound
on the number of active corrupted parties at the beginning of round i (that is, if t′ parties have aborted in
rounds 1, . . . , i−1, then ti = t−t′). We use a constant round secure-with-abort and cheat-detection protocol.
Such a protocol exists under reasonable cryptographic assumptions. More details appear in Appendix A.

In the first phase, a preprocessing phase, the active parties execute a constant round secure-with-abort
and cheat-detection protocol to compute a (ti + 1)-out-of-mi secret-sharing of a random bit σi. That is, at
the end of this phase, each party holds a share in a (ti+1)-out-of-mi Shamir secret-sharing scheme of σi. To
confine adversarial strategies to aborts, the share that each party receives is signed and a verification key is
given to all parties. In a second phase, a revealing phase, all parties reveal their shares and reconstruct σi. In
the reveal phase, broadcasting anything other than a signed share is treated as abort. The formal description
of the protocol appears in Figure 7.

To see that the above protocol achieves the required properties, observe that after the first phase the
adversary cannot reconstruct σi. Thus, by aborting the preprocessing round, malicious parties cannot bias
the output. We stress that they are able to cause the preprocessing phase to fail, at the cost of at least one
malicious party being detected by all honest parties. In such a case, the preprocessing stage is repeated
without the detected party. This, however, can only happen at most t times in total, throughout the whole
protocol.

In the revealing phase, a rushing adversary can learn σi before the corrupted parties broadcast their
messages and, thus, can bias the output by not broadcasting these messages. However, by the properties of
the secret-sharing scheme, at least mi−ti parties have to not broadcast their message, and, hence, effectively
abort the computation. Hence, the adversary cannot do this too many times throughout the protocol. The
next claim bounds the maximal number of bits the adversary could learn during the protocol.

Claim 7.1. The adversary can prevent the honest parties of learning the bit of 1−2ε
ε rounds throughout the

protocol, before an honest majority among active parties is guaranteed.

Proof. In each round i, a (ti + 1)-out-of-mi Shamir secret-sharing scheme is used for sharing σi, therefore,
mi− ti parties have to abort in order to prevent reviling σi. However, recall that mi− ti is a lower bound on
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An m-party protocol CoinTossForConstantFractionr

Joint input: The security parameter 1n, a polynomial r = r(n) specifying the number of rounds
in the protocol, and a bound t on the number of corrupted parties.

Initialization: D ← ∅, t1 ← t,m1 ← m.

In each round i = 1, . . . , r do:

1. If ti ≥ mi/2,

(a) The parties execute a secure-with-abort and cheat-detection protocol computing a func-
tionality in which:

• Signing and verification keys are produced.
• A bit σi is uniformly selected at random.
• The bit σi is shared in a (ti + 1)-out-of-mi Shamir secret-sharing.
• Each share is signed using the signing key.

The output of each party is a signed share and the verification key.

i. If some parties abort, that is, the output of the honest parties is {“abortj”}j∈J
for some non-empty set J , then ti ← ti − |J |, mi ← mi − |J |, D ← D ∪ J , and
Step (1) is repeated without the parties whose indices are in D.

ii. Else (no party aborts), set ti+1 ← ti and mi+1 ← mi.

(b) The parties reconstruct the bit for this round σi that was secret-shared in Step (1a):

i. Each active party broadcasts its signed share.
ii. If ti + 1 valid shares were sent, each party reconstructs σi.

iii. Else, a set of aborted parties indexed by J is identified and
A. Set ti ← ti − |J |, mi ← mi − |J |, and D ← D ∪ J .
B. Step (1) is repeated without the parties whose indices are in D.

2. Else (ti < mi/2), the active parties execute a secure multiparty protocol with an honest
majority in which the bits σi, . . . , σr are selected uniformly at random and each active party
receives them. Next, the active parties skip to the end of round r.

At the end of round r: Each active party calculates the majority of the reconstructed bits,
outputs it, and halts.

Figure 7: Protocol CoinTossForConstantFractionr.
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the number of honest parties, therefore, m − t = m1 − t1 = m2 − t2 = . . .. Hence, the number of parties
that have to abort in order to prevent the honest parties from reviling the bit is constant and equal to the
number of honest parties. Assume that the adversary prevented the honest parties of learning the bits of x
rounds and after it an honest majority is achieved. Therefore, tx ≤ t− x(m− t) and mx ≤ m− x(m− t).
By solving the next inequality,

t− x(m− t) ≤ m− x(m− t)
2

we get and the number of these rounds is bounded by 1−2ε
ε .

Thus, the majority function is applied to Ω(r − t) random bits, of which the adversary can bias 1−2ε
ε .

Thus, the total bias of the protocol is O
(

1
ε
√

r−t

)
.
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A On Achieving Cheat Detection

As discussed in Section 2.2, a key requirement in all our constructions is the existence of constant-round
secure with abort protocols with the ability to detect a cheating party. That is, the protocol we use does not
only guarantee security with abort, but that in case of abort (or any cheating for that matter), honest parties
will be able to detect at least one cheating party. Standard definitions of secure multiparty computation with
abort do not guarantee the ability to detect cheating parties. That is, they require that honest parties are
notified by the protocol upon an abort, however, there is no concept of pointing out a cheating party. Such
a definition of cheat detection was given by Aumann and Lindell [1] in their work on the covert adversary
model. Roughly speaking, their definition requires that in the ideal world upon abort the trusted party gives
all honest parties an ID of one of the corrupted parties (as chosen by the adversary). The formal definition
is given in Section 2.2.
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A generic way of obtaining secure protocols is taking a protocol that is secure against a semi-honest
adversary and compiling it into a protocol that is secure in the malicious model. Goldreich, Micali, and
Wigderson [12] offer a specific paradigm for achieving such compilation. Very roughly, their technique is
based on each party proving to the other parties in zero-knowledge that every step it makes is as prescribed
in the protocol. In our setting, any protocol obtained by this compilation, will have the ability to detect
cheating if the zero-knowledge sub-protocols it uses have two properties:

Perfect completeness. The verifier has no way to incriminate an honest prover.

Public coins. Any party (not only the verifier) can verify the correctness of a proof, given the transcript of
messages.

Recall that we assume that all communication is sent on an authenticated broadcast channel. Thus, any
party that cheats must fail to prove its correctness using a zero-knowledge proof. By the above public coin
property, all other parties can verify that the proof is incorrect, and, hence, detect this party’s cheating. By
the perfect correctness, a malicious verifier cannot incriminate the prover.

For our needs, it is essential that the protocol has constant number of rounds. One can obtain a multi-
party constant-round secure-with-abort protocol with the ability to detect cheating by using methods from
Pass [19]. Pass presents a construction of bounded concurrent simulation-sound zero-knowledge protocols
(that is, the soundness of each one of the protocols is preserved even when all the other protocols are simu-
lated at the same time with the role of the prover and verifier reversed). He shows how these protocols can
be used to realize the ideal one-to-many zero-knowledge proof of knowledge functionality, IDEAL1:M

ZK (that
is, a functionality where a single prover should prove to all other parties the correctness of some statement).
Realizing this functionality, Pass can apply the compilation technique of Canetti, Lindell, Ostrovsky, and
Sahai [8] (which, in turn, follows the paradigm of [12]) to the constant-round semi-honest protocol of [3].
Thus, Pass’s results [19] imply a constant-round multiparty secure-with-abort computation for any feasible
functionality. However, this protocol does not immediately imply the ability to detect cheating.

Pass [19] considers a setting where the parties are connected through a point-to-point asynchronous
public network. To realize the IDEAL1:M

ZK functionality, he reduces the usage of the IDEAL1:M
ZK function-

ality to the usage of the more standard two-party ideal zero-knowledge proof of knowledge functionality,
IDEALZK (i.e., a functionality that models interaction between a single prover and single verifier). The
idea underlying this reduction is similar to the idea used by Goldwasser and Lindell [13] to implement a
broadcast channel in a similar setting. However, as is the case with the protocol of [13], this step does
not yield the ability to detect cheating since a corrupted party can cause the protocol to terminate without
revealing its identity. Fortunately, we can overcome this problem by using a broadcast channel as well as
a synchronous network, thus, simplifying the reduction to IDEALZK to requiring each party to prove in
zero-knowledge the same statement to each of the other parties (while other parties monitor the interaction).
Furthermore, to verify that the resulting protocol has the ability to detect cheating, it suffices to observe that
the zero-knowledge protocols of Pass satisfy the two above-mentioned properties of perfect completeness
and public coins.6

6Canetti et al. [7] use common random string. As we use a broadcast channel and we do not require universally composable
security, we do not need to use such a string.
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