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Abstract

In a digital signature scheme with message recovery, rather than transmitting the message m
and its signature σ, a single enhanced signature τ is transmitted. The verifier is able to recover
m from τ and at the same time verify its authenticity. The two most important parameters of
such a scheme are its security and overhead |τ | − |m|. A simple argument shows that for any
scheme with “n bits security” |τ | − |m| ≥ n, i.e., the overhead is lower bounded by the security
parameter n. Currently, the best known constructions in the random oracle model are far from
this lower bound requiring an overhead of n + log qh, where qh is the number of queries to the
random oracle. In this paper we give a construction which basically matches the n bit lower
bound. We propose a simple digital signature scheme with n + o(log qh) bits overhead, where
qh denotes the number of random oracle queries.

Our construction works in two steps. First, we propose a signature scheme with message
recovery having optimal overhead in a new ideal model, the random invertible function model.
Second, we show that a four-round Feistel network with random oracles as round functions is
tightly “public-indifferentiable” from a random invertible function. At the core of our indiffer-
entiability proof is an almost tight upper bound for the expected number of edges of the densest
“small” subgraph of a random Cayley graph, which may be of independent interest.

Keywords: digital signatures, indifferentiability, Feistel, Additive combinatorics, Cayley graph.

1 Introduction

When transmitting a message m over an unauthenticated public channel, one usually appends a
string σ to the message that can be used to verify (relative to a public key) the authenticity of
the message. This string σ is called a digital signature of m. More generally, one transforms the
message m into an enhanced signature τ such that (i) the original message m can be recovered from
τ ; (ii) the authenticity of m can be verified from τ . This is called a digital signature scheme with
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message recovery (MR) and is used to save on bandwidth, i.e., to minimize the signature overhead
informally defined as O = |τ | − |m| (signature length minus message length). Standard bodies for
signature schemes (e.g. ISO/IEC 9796 and IEEE P1363a) contain several schemes with MR. In
this paper we ask the natural question: what is the minimal overhead required to achieve a desired
security level?

1.1 Bounds on the Overhead

A Trivial Lower Bound for Every Scheme. Following [3], we say that a signature scheme
has “n-bit security” if all adversaries A attacking the scheme have success ratio SR(A) at most 2−n,
where SR(A) := success(A)/time(A). A natural lower bound for the overhead of a signature scheme
(with or without message recovery) for n-bit security is O ≥ n bits. This is since for a signature
scheme with O bits of overhead any random bit string τ constitutes a valid enhanced signature
with probability 2−O. Hence an adversary A guessing a single random authenticated message τ has
success ratio SR(A) = 2−O which implies O ≥ n.

Overhead of Schemes without MR. In standard digital signature schemes (without message
recovery) such as RSA full domain hash [5], the probabilistic signature scheme PSS [5], or (pairing-
based) BLS signatures [6] the overhead equals the size of a signature. Since classical signatures
contain (at least) one group element (e.g., Z∗N or an elliptic curve group) whose representation
requires at least 2n bits (for n bits security, due to generic square-root attacks) we cannot hope to
obtain an overhead smaller than 2n bits. The above lower bounds do not apply for schemes without
such a group structure, in particular schemes based on lattices or codes, but for other reasons these
schemes tend to have a very large overhead and/or prohibitively large public parameters.

Overhead of Schemes with MR in the RO model. Computing the overhead for a given
signature scheme turns out to be a bit subtle and depends on the security reduction. We exem-
plify such a calculation for the RSA-based probabilistic signature scheme with message recovery
PSS-MR[n0, n1] [5], which can be seen as a two-round Feistel construction. PSS-MR[n0, n1] has
an overhead of n0 + n1 bits, where parameter n0 controls the randomness and n1 the amount of
added redundancy used during signing. The minimal size of n0 and n1 providing a given security
level can be computed from the security reduction. The security reduction from [5] in the random
oracle model [4] transforms an adversary against PSS-MR[n0, n1] making qs (online) signing and qh
(offline) hash queries with success probability εPSS-MR into an adversary against RSA with success
probability εRSA such that εPSS-MR = εRSA + εsim , where εsim = (qs + qh)2(2−n0 + 2−n1). An easy
computation shows that this implies OPSS-MR = n0 + n1 ≥ 2n + 2 log2(qh) bits of overhead for n
bits security.1 An improved security reduction by Coron gives OPSS-MR ≥ 2n+ log2(qh) + log2(qs).
Recently, an alternative security reduction for PSS-MR was proposed in [15] demonstrating a tight
security reduction for PSS-MR[n0 = 0, n1] with zero-padding from the (stronger) phi-hiding as-
sumption [7]. However, the required overhead is still OPSS-MR = n+ log2(qh) bits, stemming from
an additive term εsim = q2h/2

n1 in the security reduction.

The Random Invertible Permutation Model. Besides the popular random-oracle model,
signature schemes have also been analyzed in other idealized models. In particular, [16, 8] propose

1For n-bit security of PSS-MR[n0, n1] we require SR(A) ≤ 2−n+1 which is implied by εRSA/time(A) ≤ 2−n and
εsim/time(A) ≤ 2−n. With time(A) ≥ qs + qh we obtain n0 ≥ n + log2(qh) and n1 ≥ n + log2(qh) and consequently
the overhead is O = n0 + n1 ≥ 2n + 2 log2(qh).
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Type Required overhead O for n bits security Security
asymptotic n = 80 qh ≤ 260, qs ≤ 240 reduction

2-round Feistel 2n+ 2(log qh) 320 280 Bellare-Rogaway [5]
2-round Feistel 2n+ log(qh) + log(qs) 320 240 Coron [9]
2-round Feistel n+ log(qh) 160 140 Kakvi-Kiltz [15]
6-round Feistel n+ log(qh) 160 140 [16, 8]+[17]
4-round Feistel n+ o(log qh) 97 93 this work (1024-bit RSA)
4-round Feistel n+ o(log qh) 92 90 this work (2048-bit RSA)

Table 1: Overhead of RSA-based signature schemes with message recovery in the random oracle
model for n bits security assuming the adversary makes at most qh hash and qs signing queries.
The table shows the overhead required for n = 80 (and only the trivial upper bound qh + qs ≤ 280)
and when we additionally assume that the number of random-oracle/signature queries are upper
bounded by qh ≤ 260 and qs ≤ 240, respectively. As the o(log qh) term in our bound depends on
the domain, we give the bounds for 1024 and 2048 bits RSA.

a digital signature scheme with message recovery, together with optimal security reduction in the
ideal random invertible permutation model. Unfortunately, unlike for random oracles, there is
no standard cryptographic object which could be used to directly instantiate random invertible
permutations over a large domain.2 In order to get a construction in the random oracle model, one
can replace the random invertible permutation P with some construction CH (based on a random
oracle H) that is indifferentiable [18, 10] from P. In the context of signature schemes, already a
weaker notion called “public-indifferentiability” [22, 11, 17] is sufficient. In [17] it is proven that
a six-round Feistel network with random round functions is public-indifferentiable from a random
invertible permutation. (For full indifferentiability more rounds are needed [14].) Unfortunately,
the reduction from [17] is not tight in the oracle query complexity (i.e., the number of queries made
by the simulator is quadratic in the number of the queries made by the distinguisher), and as a
consequence the required overhead is log(qh) bits larger than in the ideal permutation model.

Table 1 summarizes the signature overhead and gives concrete parameters for a typical security
parameter of n = 80 bits and using 1024/2048-bit RSA. (Parameters for n ∈ {128, 192, 256} can be
computed accordingly.) We remark that the table is only valid for sufficiently large messages, i.e.,
if |M | ≥ 1024 − O. For smaller messages standard signatures such as BLS naturally outperform
any RSA-based signature scheme with MR.

1.2 Our contribution

Our main contribution is to revisit and affirmatively answer the question whether there exist signa-
ture schemes with minimal overhead in the random oracle model. In a first step we show that such
a scheme exists in a new ideal model which we call random invertible function model, provided
that the ideal functions’ image is sufficiently sparse. Next, we show that a Feistel network with
four rounds and random oracles as round functions is public-indifferentiable from a random invert-
ible function with an almost tight reduction. Combining the two steps, we obtain a new signature

2For fixed small domain, one might use a block-cipher with a fixed key. Though, the heuristic to replace a random
permutation with a block-cipher like AES with fixed known keys is not as well analyzed as replacing a random oracle
with a strong cryptographic hash function.
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scheme with message recovery with almost minimal overhead in the random oracle model.

Signature scheme with MR from random invertible functions. Given a trapdoor permu-
tation TDP = (f, f−1) over {0, 1}k and an injective function F : {0, 1}m → {0, 1}k (k > m) that can
be queried in both directions, we can define a signature scheme with message recovery SIG-MRF as
follows. The enhanced signature τ on a message m is defined as τ = f−1(F(m)). Signature recovery
first evaluates the trapdoor permutation on τ and checks if the result has a valid pre-image or not,
i.e., {m,⊥} = F−1(f(τ)). If the result is not ⊥, it returns message m. The overhead of SIG-MRF

is O = k −m bits. It is a straight-forward generalization of [16, 15], to prove that the resulting
signature scheme SIG-MRF is tightly secure (losing an additive factor qF/2

k−m, where qF is the
number of queries to F) if F is chosen at random. (The above scheme can only be proved secure
assuming TDP is lossy [21]. Using a trick of [16] we can also prove a slightly modified scheme
tightly secure assuming TDP is one-way.)

Instantiating Invertible Random Functions with Random Oracles. To instantiate the
above scheme in the random oracle model, we must replace the random invertible function F :
{0, 1}m → {0, 1}k with a construction CH that is public-indifferentiable from F .

It is easy to construct a random invertible function F : {0, 1}m → {0, 1}k from a random
invertible permutation P : {0, 1}k → {0, 1}k (by setting F(x) = P(x‖0k−m)) with a tight reduction.
But as discussed above, we do not know how to instantiate P in the random oracle model without
losing at least a quadratic factor in the oracle query complexity [17]. Furthermore, it is well known
that a five (or less) round Feistel network cannot be pub-indifferentiable from a random invertible
permutation [17].

A formal definition of pub-indifferentiability is given in Definition 2.1. The important param-
eters are the error εsim and the number of queries qS made by the simulator S, which are both
functions in the number of queries qD made by the distinguisher D. In order to get a reduction
with optimal overhead, i.e., where the security (in bits) is not much smaller than the overhead
O = k −m, we need qS ≈ qD and εsim ≈ qD/2k−m.

Two Feistel rounds. As a simple warmup example we show that a two-round Feistel network
(with random oracles as round functions) is pub-indifferentiable from F with

εsim = q2D/2
k−m and qS = qD.

The resulting signature scheme (as explained above) requires an overhead of O = n + log2(qh) to
achieve n bits security. This essentially reproves the overhead of PSS-MR obtained in [15].

Four Feistel rounds. As the main technical result of this paper we give a construction CH4F
based on a four round Feistel network and prove it pub-indifferentiable from F with

εsim ≤ q1+o(1)D /2k−m and qS = Õ(qD). (1)

Hence the resulting signature scheme has an overhead of O = n + o(log qh) bits, cf. Table 1. The
o(1) term can be computed explicitly and leads to 95 bits overhead for n = 80 bits security if the
domain of the TDP is at least 1024 bits. (More concretely, the o(1) term goes to 0 as the ratio of
the security we want to achieve, divided by the domain size of the TDP, decreases.)

In the proof of (1), the variable Q(µ, q) = maxX ,Z |{(x, z) |x ∈ X , z ∈ Z, z − x ∈ B}| (where
B,X ,Z are q element subsets of Zµ and B is sampled uniformly at random) will play a central role.
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This variable has a natural interpretation in graph theoretical terms as we’ll explain in Section 5.1.
We prove by a compression argument (Corollary 6.3) an upper bound

for each 0 < a < 1/4 : Q(µ, µa) ≤ µa+2a2 (with probability extremely close to 1). (2)

We believe that this bound may be of independent interest. It complements a result of Alon et al.
[2, Th. 4] which states that Q(µ, µa) ≈ µ3a−1 for 2/3 < a ≤ 1, i.e. their bound applies to large
subgraphs of size ≥ µ2/3.

We prove (Theorem 4.2) that the four round Feistel network CH4F is pub-indifferentiable form a
random invertible function with an error with a simulator making qS = Õ(qD) queries and failing
with probability εsim = O(E[Q(µ, qD)]/2k−m) and a queries. Setting qD = µa in (2) this gives the
claimed bound (1) on the pub-indifferentiability of CH4F .

Very informally, the term Q(µ, qD) show up in the proof as follows. Consider a qD query
adversary who queries an unbalanced three round Feistel nework as illustrated in Figure 2. Assume
she queried the third oracle H3 on inputs Z and the second on inputs Y (receiving outputs B).
Next, she chooses some set X and queries the network on inputs (x, 0). If for some x ∈ X we have
H1(x) ∈ Y and x+H2(H1(x)) ∈ Z, then the input to H3 on this query has been already fixed, and
the simulator can’t program it.3 Any tuple (x, y, z) ∈ X ×Y ×Z where x+H2(y) = z can lead to
such a failure with probability Z−1ρ ≈ 2m−k (namely, if H1(x) = y). The expected number of such
tuples (for an optimal choice of X ,Z after seeing the random B) is Q(µ, qD).

We leave it is an interesting open problem whether our techniques can be used to prove better
bounds for constructions of permutations from random oracles. As mentioned above, currently
all such constructions suffer from a quadratic increase in the oracle query complexity. Another
interesting question is, whether random invertible functions can be used to build chosen-ciphertext
secure encryption with optimal overhead. Interestingly, the construction from [1] also uses a four
round Feistel network, but the proven security suffers from a quadratic loss in running time.

2 Preliminaries

For n ∈ N, we write 1n for the string of n ones, and [n] for {1, . . . , n}. |x| denotes the length of a
bitstring x, while |S| denotes the size of a set S. s ← S denotes sampling an element s uniformly
at random from the set S. For an algorithm A, we write z ← A(x, y, . . .) to indicate that A is a
(probabilistic) algorithm that outputs z on input (x, y, . . .). In the following we will introduce some
basic cryptographic objects that (for simplicity) are defined over bit-strings (rather than arbitrary
domains).

2.1 Ideal primitives and indifferentiability

Throughout, we use the letter H to denote a random oracle [4], P for a random invertible permu-
tation and F for a random invertible function.

A random oracle H : D → R with input domain D ⊂ {0, 1}∗ and range R ⊂ {0, 1}∗ is a
function chosen uniformly at random from all functions D → R. A random invertible function

3Our actual construction has one more round, so we also program the right half of the output of the network.
Moreover the right half contains not just the redundance 0 ∈ Zµ, but another element Zµ which is part of the message,
this way the right half is large enough so we can ignore other terms which come up in the proof and depend on the
collision probability of random elements over this domain.
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F : D → R is a function chosen uniformly at random from all injective functions (i.e., all functions
where x 6= x′ ⇒ F(x) 6= F(x′)). A random invertible permutation P is a random injective function
where D ≡ R.

Unlike for H, which can only be queried in forward direction, whenever we consider algorithms
with oracle access to F (or P), it is always understood that F can be queried also in inverse direction.
Technically, we can think of F as being given by two oracles F and F−1, where F−1(F(x)) = x
and F−1(y) = ⊥ if y is not in the range of F .

Below we define a pub-indifferentiable [11, 22] construction of F from H. The public indiffer-
entiability notion differs from the standard indifferentiability notion [18, 10] by the fact that in the
public notion the simulator S gets to see all queries made by D.

Definition 2.1 (pub-indifferentiability) A (qD, qS, εsim , tsim)-public-indifferentiable construction
of a random invertible function F from a random oracle H is a stateless oracle circuit C and a
(stateful, probabilistic) simulator S such that for any distinguisher D making at most qD oracle
queries, S makes at most qS oracle queries, runs in time at most tsim and the following holds:

|Pr[DF ,S
F

(1n) = 1]− Pr[DCH,H(1n) = 1]| ≤ εsim ,

here the second oracle SF gets to see also the queries made by DF ,S
F

to the first oracle F .

2.2 Digital signatures with message recovery

A digital signature scheme with message recovery SIG-MR = (GSIG-MR,Sign,Recover) consists of
three algorithms and two function families m(n), k(n) describing message space {0, 1}m(n) and
signature space {0, 1}k(n). Key generation GSIG-MR generates a keypair (pk , sk)← G(1n) for a secret
signing key sk and a public verification key pk . The signing algorithm Sign on input a message
M ∈ {0, 1}m(n) and the secret signing key, and returns an enhanced signature τ ← Signsk (M) ∈
{0, 1}k(n) of the message. The recovery algorithm Recover takes a verification key pk and an
enhanced signature τ as input and returns M ← Recoverpk (τ), where M ∈ {0, 1}m(n) ∪ {⊥}. We
require that Pr[Recoverpk (Signsk (M)) = M ] = 1.

The security of the signature scheme can be analyzed in a model where an idealized primitive
exists, for example a random oracle or a random invertible function. In that case the adversary
and the scheme get access to the idealized primitive O by making oracle calls.

Security. Let us recall the existential unforgeability against chosen message attacks (EUF-CMA)
security game [12] relative to the ideal primitive O, played between a challenger and a forger A.

1. The challenger runs GSIG-MR(1n) to generate a keypair (pk , sk). Forger A receives pk as input.

2. Forger A may ask the challenger to sign a number of messages and evaluate the ideal object
O. To query the i-th signature, A submits a message Mi ∈ {0, 1}m(n) to the challenger. The
challenger returns an enhanced signature τi under sk for this message. For the j-th query to
O, A submits a query xj to the challenger who returns the values O(xj).

3. Forger A outputs an enhanced signature τ∗.

Let M∗ ← Recover(pk , τ∗) be the recovered message of A’s forgery. The game outputs 1 (meaning
forger A wins the game) if M∗ 6= ⊥ (i.e., τ∗ is a valid enhanced signature) and M∗ 6= Mi for all i.
The success probability of A is the probability that the game outputs 1.
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Definition 2.2 (Security and Overhead of SIG-MR) Let O be an ideal primitive and let SIG-MRO

be a signature scheme with message recovery, where {0, 1}m(n) is the message and {0, 1}k(n) is the
signature space. Let tsig , qs, qo, εsig be functions of a security parameter n.

Security: SIG-MRO is (tsig , qs, qo, εsig)-secure relative to O, if all adversaries A running in time at
most tsig making at most qs signing queries and qo queries to O (this includes direct queries
to O, but also the queries to O done during evaluation of the signature queries), have success
probability at most εsig . If O is a random oracle (random invertible function), then we say
that SIG-MRO is secure in the random oracle (random invertible function) model.

n-bit security: We say SIG-MRO has n bits of security against qs, qo queries if it is (tsig , qs, qo, εsig)-
secure for all tsig , εsig satisfying εsig/tsig ≤ 2−n. We simply say it has n bits security if it has n
bits security for any qs, qo (we can always assume the trivial upper bound qs+qo ≤ tsig ≤ 2n.4)

Overhead: The overhead of SIG-MRO is defined as k(n) −m(n). OSIG-MRO(n, qs, qo) denotes the
overhead required in the construction SIG-MRO to reach n bits security against qs and qo
queries. OSIG-MRO(n) is short for OSIG-MRO(n, 2n, 2n).

In the following we will propose a scheme with finite message space. To obtain a scheme for any
larger message space, one can apply the domain extension given in Appendix B.

Using a composition theorem [18], we can express the security of a signature scheme proven
secure in the invertible function model when we replace the invertible random function F with an
pub-indifferentiable constructions CH as follows.

Theorem 2.3 If SIG-MRF is (tsig , qs, qh, εsig)-secure in the random invertible function model, and
C is a (qD = qh, qS, εsim , tsim)-pub-indifferentiable construction of F from H (cf. Def.2.1), then

SIG-MRCH is (tsig − tsim , qs, qS, εsig + εsim)-secure in the random oracle model.

2.3 Trapdoor Permutations

A trapdoor permutation TDP = (GTDP, f, f
−1) over domain D(n) = {0, 1}k(n) consists of three ppt

algorithms. Key generation GTDP generates a keypair (ek , td) ← GTDP(1n) of evaluation key and
trapdoor. For every (ek , td) in the domain of GTDP(1n), f(ek, ·) and f−1(td , ·) compute permutations
fek (·), f−1td (·) on {0, 1}k(n) s.t. for all x ∈ {0, 1}k(n): f−1td (fek (x)) = x. We say TDP is homomorphic
if (D(n), ◦) is a group and for all x1, x2 ∈ D(n), fek (x1) ◦ fek (x2) = fek (x1 ◦ x2).

We now recall the security properties of one-wayness and regular lossiness [15, 21].

Definition 2.4 (Security of TDP) Let t = t(n) and εone−way = εone−way(n) be functions of a
security parameter n. TDP is (εone−way , t)-one-way if for all adversaries A running in time at
most t, Pr[A(ek , fek (x)) = x] ≤ εone−way , where (ek , td)← GTDP(1n), x← {0, 1}k(n).

Definition 2.5 (Lossy TDP) Let tlossy = tlossy(n), ` = `(n) and εlossy = εlossy(n) be func-
tions of a security parameter n. A trapdoor permutation TDP over domain {0, 1}k(n) is regular
(εlossy , tlossy , `)-lossy if there exists a ppt algorithm Glossy (the lossy key generator) that on input 1n

outputs ek ′ such that

4As ε ≤ 1, εsig/tsig ≤ 2−n for every tsig ≥ 2n, so we only have to look at the case tsig ≤ 2n.
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1. (indistinguishability of real and lossy keys) for all adversaries A running in time at most tlossy ,
Pr[A(ek) = 1]− Pr[A(ek ′) = 1] ≤ εlossy , where (ek , td)← GTDP(1n) and ek ′ ← Glossy(1n);

2. (lossiness) fek ′(·) is `-to-1, i.e. ∀x ∈ {0, 1}k(n) : |{z : fek ′(z) = fek ′(x)}| = `.

For any ` ≥ 1, a lossy trapdoor permutation is collision-resistant when instantiated in lossy mode
[21]. The most important example of a trapdoor permutation is RSA with domain Z∗N , defined
as fN,e(x) = xe mod N . It is homomorphic with respect to modular multiplication. It is one-way
under the RSA assumption; for any e < N1/4 it is furthermore regular e-lossy under the phi-hiding
assumption [15], where e is the public RSA exponent. Another example of a (homomorphic and
regular lossy) trapdoor function is Paillier [20].

3 Signatures with MR from random invertible functions

Let k = k(n) and m = m(n) be functions with k(n) ≥ m(n). Let TDP be a trapdoor permutation
over domain {0, 1}k and F : {0, 1}m → {0, 1}k be a random invertible function. We build a
signature scheme with message recovery SIG-MRF = (GSIG-MR,Sign,Recover) with message space
M(n) = {0, 1}m and signature space S(n) = {0, 1}k. GSIG-MR(1n) runs (ek , td) ← GTDP(1n). It
returns pk = ek and sk = td .

Algorithm Signsk (M ∈ {0, 1}m)

y := F(M) ∈ {0, 1}k
Return τ = f−1td (y) ∈ {0, 1}k

Algorithm Recoverpk (τ ∈ {0, 1}k)
y = fek (τ)
If F−1(y) = ⊥ then return ⊥
Else return M = F−1(y)

Note that SIG-MR has n1 = k − m bits of redundancy and correctness follows since TDP is a
permutation.

The following theorem proves security provided TDP is regular lossy. Its proof is similar to the
one of FDH in [15] and postponed to Appendix C.

Theorem 3.1 Suppose TDP is regular (`, tlossy , εlossy)-lossy (i.e., lossy by log2(`) bits) and F is a
random invertible function from {0, 1}m to {0, 1}k. Then SIG-MRF is (tsig , qs, qf , εsig) secure with

tsig ≈ tlossy , εsig = (2`− 1)/` · εlossy +
qf

2k−m
.

In case TDP only satisfies the weaker security property of (t, εone−way)-one-wayness, we only
can obtain a non-tight security reduction [9] with respect to εone−way . As we will show now, a
tight security reduction from one-wayness can be obtained by padding M with one random bit
b, using a reduction technique by Katz and Wang [16]. We now define an alternative signature
scheme SIG-MRFow with message space M(n) = {0, 1}m−1 which can be proved tightly secure from
one-wayness of TDP.

Algorithm Signsk (M ∈ {0, 1}m−1)
b(M)← {0, 1}
y := F(b‖M) ∈ {0, 1}k
Return τ = f−1td (y) ∈ {0, 1}k

Algorithm Recoverpk (τ ∈ {0, 1}k)
y = fek (z)
If F−1(y) = ⊥ then return ⊥
Else compute b‖M = F−1(y)
Return M

8



It is furthermore enforced that Sign always uses the same random bit b = b(M) for message M .
(E.g., by defining b = PRFK(M).) Note that SIG-MRFow has k −m+ 1 bits redundancy.

The proof of the following theorem is postponed to Appendix C.

Theorem 3.2 Suppose TDP is homomorphic and (t, εone−way)-one-way and F is a random injec-
tive function from {0, 1}m to {0, 1}k. Then SIG-MRFow is (t, qs, qf , 2εone−way +

qf
2k−m

) secure.

4 Pub-Indifferentiable Constructions based on Feistel Networks

4.1 The two round Feistel network

Consider the two-round construction CH2f : Zµ → Zµ × Zρ Figure 1 (left) which is derived from an
unbalanced two-round Feistel network φ2f instantiated with random oracles H1 : Zµ → Zρ,H2 :
Zρ → Zµ

φ2f (x, v) = (x+H2(H1(x) + v),H1(x) + v) φ−12f (w, y) = (w −H2(y), y −H1(w −H2(y))

as CH2f (x) = φ2f (x, 0) CH2f
−1

(w, y) =

{
x if φ−12f (w, y) = (x, 0)

⊥ otherwise

This will serve as an example of a simple indifferentiability proof and to prepare for our four round
Feistel network in the next section

Theorem 4.1 (pub-indifferentiability of C2f , implicit in [5]) CH2f as illustrated in Figure 1
(left) is (qD, qS, εsim , tsim)-pub-indifferentiable from F (cf. Def. 2.1) where

qS = qD tsim = qD · polylog(µ) εsim = q2D/ρ,

More precisely, we can set tsim = O(qD log(qD) log(µ)) using that the cost per (find or insert)
operation on a sorted list with ≤ qD elements of size log(µ) bits is O(log(qD) log(µ)).

The proof of Theorem 4.1 is postponed to Appendix A. There we also formally show that a combi-
nation with Theorems 3.1/3.2 and Theorem 2.3 leads to the overhead of O(n, qh, qs) = n+ log(qh)

bits for the two schemes SIG-MRCH2f [RSA] and SIG-MR
CH2f
ow [RSA] in the random oracle model.

4.2 The four round Feistel network

We will prove the following theorem which bounds the pub-indifferentiability of our main construc-
tion CH4F as illustrated in Figure 1 (right) in terms of the variable Q(µ, q) (which we discussed in
the introduction, and will define formally in Section 5.1).

Theorem 4.2 (pub-indifferentiability of CH4F ) CH4F as illustrated in Figure 1 (right) is (qD, qS,
εsim , tsim)-pub-indifferentiable from F (cf. Def. 2.1) where

qS ≤ qD log(ρ) tsim = qS ·polylog(µ) εsim =
2E[Q(µ, qD)]

ρ
+

2q4D
µ

+
2q2D
ρ2
·
(

log(ρ)

log(ρ/qD)

)2

. (3)
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Figure 1: (left) Two round Feistel network φ2f : Zµ×Zρ → Zµ×Zρ, the construction CH2f : Zµ →
Zµ × Zρ of a random invertible function F from a random oracle H is derived from φ2f by setting
the right part to 0, i.e. CH2f (x) = φ2f (x, 0). � denotes component-wise addition in the respective
domains. (right) Four round Feistel network φ4F , our main construction is derived from it as
CH4F (x, v) = φ4F (x, v, 0).

Given Theorem 4.2 we will now compute the concrete overhead of SIG-MRCH4F [RSA] and SIG-MR
CH4F
ow [RSA].

Let N = pq be the RSA modulus with k = logN and recall that logµ = k − log ρ, where log ρ is
the redundancy of the scheme. It is easy to verify that for all practically relevant values, the first
term in εsim in (3) is the dominating one. With the same argument as in the case of two rounds,
by Theorems 3.1/3.2 and Theorem 2.3 the overhead for n-bit security can (up to a small additive
constant) be computed as

O(n, qh, qs) = n+ log E[Q(µ, qh)]− log qh. (4)

In order to bound E[Q(µ, qh)] we assume n ≤ log ρ ≤ 1.25n and hence logµ = logN − 2 log ρ ≥
logN − 2(1.25n). The following table summarizes the overhead O(n, qs, qh) for n = 80 bits security
using (4) and the bounds on Pr[Q(µ, qh) ≥ qh2s] from Theorem 6.2 in Section 6. We use logN ∈
{1024, 2048} as bit-length of RSA and log qh ∈ {60, 80} as upper bound on the random oracle
queries.

logN log qh t = logµ s Pr[Q(µ, qh) ≥ qh2s] O(n, qh, qs)

1024 80 824 17 2−427 (l = 8) ≈ 97
1024 60 824 13 2−430 (l = 10) ≈ 93
2048 80 1848 12 2−230 (l = 16) ≈ 92
2048 60 1848 10 2−92 (l = 18) ≈ 90

5 Indifferentiability Proof for Four Round Feistel

The proof of Theorem 4.2 is organized as follows. In Section 5.1 we formally define Q(q, µ). In
Section 5.2 we prove a technical lemma (Lemma 5.2) which informally bounds the advantage of
any q query adversary in making a fresh query x to H1 (variables as in Figure 2, right) such that
for some v, in the evaluation of φ4F (x, v, 0) the input z to H3 has already been queried. Next, in
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Lemma 5.3 we prove the pub-indifferentiability of CH4F (·) = φ4F (·, ·, 0) as claimed in Theorem 4.2.
Finally, in Section 6 we prove a q1+o(1) upper bound on Q(µ, q).

5.1 Density of Subgraphs of Random Cayley Graphs

For µ, q ∈ N let B be a subset of Zµ of size q, we define the value

Q(µ, q,B) = max
X ,Z⊂Zµ,|X |=|Z|=q

|{(x, z) | x ∈ X , z ∈ Z, z − x ∈ B}| (5)

We will be interested in the random variable Q(µ, q,B) where B is a randomly chosen q element
subset of Zµ, we denote this variable by Q(µ, q).

It will be convenient to think of Q(µ, q) in terms of random Cayley graphs as we will explain
now. For B ⊂ Zµ, |B| = q we denote with C(µ, q,B) the bipartite graph with µ vertices on each side
which we identify with the elements of Zµ. The edge set is e(C(µ, q,B)) = {(x, z) : z − x ∈ B},
that is, (x, z) is an edge if x + b = z for some b ∈ B. With C(µ, q) we denote the random graph
C(µ, q,B) for a random B ⊂ Zµ, |B| = q.

With this notion Q(µ, q,B) is the maximum number of edges in any subgraph of C(µ, q,B) with
q vertices on each side. Trivial lower and upper bounds on Q(µ, q,B) are

∀B ⊂ Zq, |B| = q : 2q − 1 ≤ Q(µ, q,B) ≤ 2q2.

In the proposition below we observe that known results on the edge density of graphs without
4-cycles already give us an q1.5 upper bound on the expected value E[Q(µ, q)]. In Section 6 we will
prove an upper bound of q1+o(1), thus almost matching the lower bound.

Proposition 5.1 If µ ≥ q5 then E[Q(µ, q)] ≤ q1.5 + 3q.

Proof. We first observe that C(µ, q,B)← C(µ, q) has a 4-cycle with probability at most

Pr[G← C(µ, q) : G has a 4-cycle] ≤ q4/µ.

The proposition now follows from a result by Naor and Verstraëte [19] who show that a bipartite
graph with q vertices on each side that does not contain a 4-cycle has at most q1.5 +2q edges. With
probability at most q4/µ ≤ 1/q we have a cycle, in which case we use the trivial q2 upper bound
which adds another q = q2/q to the expected value.

5.2 A Game on Three Round Feistel

In this section we describe a game, where an attacker A can query three randomly chosen functions
H1,H3 : Zµ → Zρ,H2 : Zρ → Zµ, which we think of as round functions of a Feistel network φ3f
as illustrated in Figure 2 (left). Informally, the adversary wins if she makes a fresh query x to H1,
such that the input z to H3 in the evaluation of φ3f (x, 0) has already been queried. We will call
this game the z-collision game and prove (in Lemma 5.2 below) an E[Q(µ, q)]/ρ upper bound for
any q-query adversary for the z-collision game.

Next, we will show that the same bound on the winning advantage holds for a similar game on
the Feistel-network φ3F as illustrated in Figure 2 (right), where we have an extra Zρ domain on
the right side. Here we say the adversary wins if she makes a query x ∈ Zµ such that there exists
a v ∈ Zρ such that in the evaluation of φ3F (x, v, 0) the input z is not fresh.

11
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Figure 2: (left) An unbalanced three-round Feistel network φ3f over Zµ×Zρ. (right) The three-
round Feistel network φ3F with an extra Zρ domain on the right side. This permutations define
constructions of invertible functions CH3f (x) = φ3f (x, 0) and CH3F (x, v) = φ3F (x, v, 0) by fixing the
rightmost Zρ part of the input to 0.

We will later use the bound on the winning advantage for the z-collision game on φ3F as key
technical lemma to prove the pub-indifferentiability of CH4F . As in the pub-indifferentiability proof
the random functions are defined via lazy sampling (done by the simulator), we will already use lazy
sampling in the proof of our upper bound for the z-collision game. More precisely, we will consider
functions Ĥ1, Ĥ2, Ĥ3 which initially are undefined on all inputs. The sets X ,Z ⊂ Zµ,Y ⊂ Zρ
denote the inputs to Ĥ1, Ĥ3 and Ĥ2 on which the outputs have been defined, initially X ,Y,Z = ∅.
Moreover we initialize a variable FAIL := 0, the adversary wins the game if at the end of the game
FAIL > 0. We will assume that Ĥ2 is a random injective function as this will make the proofs a bit
cleaner. One cannot distinguish a random from a random injective function with range Zµ making
q queries with advantage better than q2/µ. As we will later set µ ≥ ρ3, this term will be dominated
by other terms Ω(q/ρ) and thus we will simply ignore it.

The z-collision game on φ3f . Consider an adversary A who can make queries to the three
functions (at most most q to each) which are answered as follows:

Ĥ2 query y ∈ Zρ : If y 6∈ Y sample b← Zµ \ B and set Ĥ2(y) := b.5 Output Ĥ2(y).

Ĥ3 query z ∈ Zµ : If z 6∈ Z sample c← Zρ and set Ĥ3(z) := c. Output Ĥ3(z).

Ĥ1 query x ∈ Zµ : If x 6∈ X then

1. sample a← Zρ and set Ĥ1(x) := a.

2. If x+ Ĥ2(a) ∈ Z then FAIL := FAIL + 1.

Output Ĥ1(x).

We will now upper bound the success probability of any adversary making at most q queries to
each of the three function to win the z-collision game (i.e. achieve FAIL > 0).

Trivial lower and upper bounds on the winning advantage of the z-collision game are q/ρ
and q2/ρ. We will now give an upper bound on the advantage in terms of Q(µ, q) introduced in
Section 5.1.

5Note that we sample the output from Zµ \ B because we want Ĥ2 to behave like a random injective function.
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Lemma 5.2 The advantage of any q-query adversary A in winning the z-collision game on φ3f
(i.e. force FAIL > 0) is at most

Pr[FAIL > 0] ≤ E[Q(µ, q)]/ρ

Proof. We will only sketch the proof, as this lemma is used to get an intuition for Lemma 5.3
below.

Consider the queries X ,Y,Z made by A, and recall that B = Ĥ2(Y). Consider the subgraph
with bipartition (X ,Y) of the bipartite Cayley graph C(µ, q,B). Now for any x ∈ X , let Bx = {b ∈
B : x+ b ∈ Z} be the number of edges from x to Z. The x query will increase FAIL iff the a← Zρ
we sampled is a preimage of some b ∈ Bx (i.e. Ĥ2(a) = b ∈ Bx), this probability is |Bx|/ρ. Summing
over all x ∈ X we get E[FAIL] =

∑
x∈X |Bx|/ρ ≤ Q(µ, q,B)/ρ. This is the expectation after B has

been fixed, as B is a random subset

E[FAIL] ≤ E[Q(µ, q)]/ρ. (6)

Finally, note that E[FAIL] ≥ Pr[FAIL = 1] as FAIL is an integer ≥ 0.
Let us mention that eq.(6) is tight and equality is achieved by the following attack strategy.

First make any q queries to Ĥ2 which gives us a random set B (as Ĥ2 is injective, |B| = |Y| = q).
Next, identify the sets X ,Z of size q s.t. the (X ,Z) subgraph of C(µ, q,B) has the most edges, by
definition this number is Q(µ, q,B). Make all Z queries to Ĥ3, followed by all X queries to Ĥ1.

Ultimately, our goal is to prove pub-indifferentiability from F . The above lemma is a good start
as it tells us that for the evaluation function CH3f (x) = φ3f (x, 0) with probability 1 − E[Q(µ, q)]/ρ

the following holds: whenever a q-query adversary makes an x query to Ĥ1, the resulting z input
to Ĥ3 will be “fresh”, and thus we will be able to program the output c := Ĥ3(z) such that it is
consistent with F(x). By adding one more round to the Feistel network we will be able to program
also the left Zµ part of the input. Unfortunately, this will only work as long as the inputs to this
fourth function are fresh. As its inputs are over Zρ, there is a Θ(q2/ρ) chance we have a collision
on these inputs and will not be able to program after all. Summing up, we are no better than the
q2/ρ bound we already got for the two round Feistel in Theorem 4.1. To overcome this problem,
we will simply increase the domain on the right side of the Feistel to Zρ × Zρ, but in order to not
increase the redundancy space, this extra Zρ space is used for the message, not redundancy. We
will now show that the z-collision game on this new CH3F (x, v) = φ3F (x, v, 0) padding scheme is still
hard.

The z-collision game on φ3F .

Ĥ2 query y ∈ Zρ × Zρ : If y 6∈ Y sample b← Zµ \ B and set Ĥ2(y) := b. Output Ĥ2(y).

Ĥ3 query z ∈ Zµ : If z 6∈ Z sample c← Zρ × Zρ and set Ĥ3(z) := c. Output Ĥ3(z).

Ĥ1 query x ∈ Zµ : If x 6∈ X then

1. sample (a0, a1)← Zρ × Zρ and set Ĥ1(x) := (a0, a1).

2. For all (y0, y1) ∈ Y where a1 = y1 and x+ Ĥ2(y0, y1) ∈ Z set FAIL := FAIL + 1.

Output Ĥ1(x).
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Lemma 5.3 The advantage of any q-query adversary A in winning the z-collision game on φ3F
(i.e. force FAIL > 0) is at most

Pr[FAIL > 0] ≤ E[Q(µ, q)]/ρ

Proof. Consider the queries X ,Y,Z made by A, and recall that B = Ĥ2(Y). For any query x ∈ X ,
let Bx = {b ∈ B : x + b ∈ Z}. Note that |Bx| is the number of edges from x to Z in the Cayley
graph C(µ, q,B). The expected value by which this x query will increase FAIL is

|Bx|/ρ.

To see this, note that for any b ∈ B, the probability that FAIL will increase because of this b is
0 if x + b 6∈ Z (equivalently b 6∈ Bx), and 1/ρ otherwise. More precisely, FAIL will increase if the
(a0, a1) we sample and the preimage (y0, y1) of b (i.e. Ĥ2(y0, y1) = b) satisfy a1 = y1, and as a1 is
uniform, Pr[a1 = y1] = 1/ρ. By definition

∑
x∈X |Bx| is the number of edges of the (X ,Z) subgraph

of C(µ, q,B), we have for a fixed B

E[FAIL] ≤ Q(µ, q,B)/ρ

and as B is sampled uniformly at random

E[FAIL] = E[Q(µ, q)]/ρ.

5.3 Proof of Theorem 4.2

Let qD = qF + qH, where qF and qH denotes the number of queries D makes to its first and second
oracle, respectively. As in the proof of Theorem 4.1 for the two-round Feistel our simulator SF

(given access to a random function F : Zµ × Zρ → Zµ × Zρ × Zρ) will define fake random oracles
Ĥi, i = 1, . . . , 4 by lazy sampling. Ĥ1(x) = ♦ denotes Ĥ1 is undefined on input x. The sets
X ,Y,Z,W define the inputs on which Ĥ1, . . . , Ĥ4 have already been defined. The sets A,B, C,D
are the corresponding outputs, e.g. A = Ĥ1(X ). The simulator also initializes variables FAILi := 0
for i ∈ {0, 1, 2, 3, 4} which will only be used in the proof. Informally, whenever the simulator cannot
define the Ĥi’s consistently, it sets FAILj := 1 (for which j depends on the reason why it fails) and
aborts, by this we mean it just stops giving any more outputs.

Below we define how SF answers the qH queries to Ĥi, i ∈ {1, 2, 3, 4} and updates its state on
the qF queries to F , but let us first give some intuition.

One important property of SF is the fact that whenever it assign a value Ĥi(α) := β, then β is
uniformly random and independent of the variables we’ve seen so far (in some cases SF samples β
at random itself, sometimes the randomness comes from F .) This property is required so we can
later argue that distinguishing oracles F ,SF from CH4F ,H is upper bounded by the probability that
SF fails.

Another important invariant is that whenever CĤ4F (x, v) is defined (i.e. the Ĥi are defined on all

inputs required to evaluate φ4F (x, v, 0) with round functions Ĥi) and the simulator did not yet fail,

then the output is consistent with F , i.e. F(x, v) = CĤ4F (x, v). That this invariant holds can be seen

as follows. Assume the evaluation of CĤ4F (x, v) is defined and consider the inputs x, y, z to the first
three round functions. By definition of the simulator, if the last of these inputs to be defined was
x (i.e. we assigned a value to Ĥ1(x) at a point where Ĥ2(y), Ĥ3(z) were already defined) or y, then
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the simulator failed (we will have set FAIL0 = 1 if the query was y or FAIL1 = 1 if it was x). If the
last value to be defined was Ĥ3(z), then by definition of the simulator also Ĥ4 will be programmed

such that the entire evaluation of CĤ4F (x, v) is defined and outputs F(x, v). The variable FAIL2
will be set to 1 if we failed to program Ĥ4 because it was already defined on the required input.
The variable FAIL3 will be set to 1 if there exist two different query pairs (x, y), (x′, y′) that are
consistent with z, as here we won’t be able to program Ĥ3(z) to be consistent with both.

If D makes a F(x, v) query, our simulator makes sure that CĤ4F (x, v) is defined and equals F(x, v)

by doing the same it would do if the adversary queries Ĥ1, Ĥ2, Ĥ3 (in this order) on the inputs

required to evaluate CĤ4F (x, v).

We now define how SF answers the ≤ qH queries to Ĥi, i ∈ {1, 2, 3, 4} and updates its state on
the ≤ qF queries to F ,F−1 as follows:
• Ĥ2 query y ∈ Zρ × Zρ: If y 6∈ Y sample b← Zµ and set Ĥ2(y) := b. Output Ĥ2(y).

If x+ b = z for some x ∈ X , z ∈ Z set FAIL0 := 1 and abort.
• Ĥ4 query w ∈ Zρ × Zρ: If w 6∈ W sample d← Zµ and set Ĥ4(w) := d. Output Ĥ4(w).
• Ĥ3 query z ∈ Zµ: If z 6∈ Z and there exist two distinct pairs of messages x, (y0, y1) and
x′, (y′0, y

′
1) in X × Y s.t. with (a0, a1) = Ĥ1(x), (a′0, a

′
1) = Ĥ1(x

′)

1. a1 = y1 and a′1 = y′1

2. z = Ĥ2(y0, y1) + x = Ĥ2(y
′
0, y
′
1) + x′

then set FAIL3 := 1 and abort. (Here we fail as z appears in two queries (x, y0 − a0, 0) and

(x′, y′0 − a′0, 0) to CĤ4F , and we won’t be able to program Ĥ3(z) to be consistent with both).
Otherwise, if z 6∈ Z and there exists exactly one pair x, (y0, y1) ∈ X × Y s.t. a1 = y1 and

z = Ĥ2(y0, y1) + x, try to program Ĥ3, Ĥ4 s.t. CĤ4F (x, y0 − a0, 0) = F(x, y0 − a0) as follows:
1. Query (f0, f1, f2)← F(x, y0 − a0)
2. Ĥ3(z) := (f1 − y0, f2 − y1) (program Ĥ3(z))
3. If (f1, f2) ∈ W set FAIL2 := 1 and abort (fail due to collision on w value)
4. Ĥ4(f1, f2) := f0 − z (program Ĥ4(w))

Otherwise, if z 6∈ Z and no such pair exists, sample c← Zρ × Zρ and set Ĥ3(z) := c.
Output Ĥ3(z).
• Ĥ1 query x ∈ Zµ: If x ∈ X output Ĥ1(x).

Otherwise, if x 6∈ X sample (a0, a1)← Zρ × Zρ, set Ĥ1(x) := (a0, a1), output Ĥ1(x).

Then for all (y0, y1) ∈ Y where a1 = y1 try to program Ĥ3, Ĥ4 s.t. CĤ4F (x, y0 − a0, 0) =
F(x, y0 − a0) as follows:

1. Query (f0, f1, f2)← F(x, y0 − a0)
2. If Ĥ2(y0, y1) + x ∈ Z set FAIL1 := 1 and abort (fail due to collision on z value)
3. Now make a z query to Ĥ3(z) as described above.6

• F query (x, v) ∈ Zµ×Zρ: Here the simulator doesn’t have to output anything, but it updates

its state trying to program the Ĥi s.t. CĤ4F (x, v, 0) = F(x, v) as follows: query (a0, a1) ←
Ĥ1(x) (as described above), then query b ← Ĥ2(v + a0, a1) and finally (c0, c1) ← Ĥ3(x + b)
(note that we don’t have to query Ĥ4 explicitly as the Ĥ3 query already programs Ĥ4.)
• F−1 query u ∈ Zµ ×Zρ × Zρ: query (x, v)← F−1(u), if (x, v) 6= ⊥ and Ĥ1(x) 6= ♦ (i.e., the

adversary inverted F on “fresh” value) set FAIL4 := 1.

6If we get into the “exactly one case” in processing the Ĥ3(z) query, then Ĥ3, Ĥ4 will be programmed such that

CĤ4F (x, y0 − a0, 0) = F(x, y0 − a0). The only other option is the “two” case, where we’ll fail with FAIL3 = 1.
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We will bound the probability that FAILi = 1 for i ∈ {0, 1, 2, 3, 4}, and then can use standard
arguments to show that the advantage of distinguishing F , SF from CH,H is upper bounded by the
sum of these probabilities.

We first consider FAIL4, which is the probability that D by manages to make a query u ∈
Zµ × Zρ × Zρ which hits one of the Zµ × Zρ elements in the (uniformly random) range of F . The
probability of u falling in this set is at most 1/ρ, taking the union bound we get

Pr[FAIL4 = 1] ≤ qD/ρ

We will now bound the sizes of X ,Y,Z,W which will give the same upper bounds on A,B, C and
D, respectively. As X and Y can only increase by at most 1 on a Ĥ1, Ĥ2 or F query, we have

|X | , |Y| ≤ qD (7)

Bounding |Z| and |W| is less trivial, as an Ĥ1 query can increase |Z| and |W| by as much as |Y|,
and thus we only get a q2D upper bound. Fortunately the expected increase of |Z|, |W| on a query

x to Ĥ1 is only |Y|/ρ ≤ qD/ρ ≤ 1 as (y0, y1) ∈ Y will increase |Z|, |W| if y1 = a1 for the randomly
chosen a1 ∈ Zρ. Moreover a Ĥ3 or Ĥ4 query can increase |Z| and |W| by at most 1. We get a
bound on the expected size of Z,W of

E[|Z|] , E[|W|] ≤ 2qD (8)

Below, we will also need an upper bound on E[|W|2]. As mentioned, the expected increase of
|W| with every x query is |Y|/ρ, the case which maximizes E[|W|2] is when this increase is ei-
ther |Y| (with probability ρ−1) or 0, as this maximizes the variance of |W|, and thus also the
expectation E[|W|2]. The probability that we increase by |Y| more than t times is at most
(qD/ρ)t. Setting t := − log ρ/ log(qD/ρ) = log ρ/ log(ρ/qD) this is (qD/ρ)t = 2− log ρ = 1/ρ we

get Pr
[
|W| ≥ qD · log ρ

log(ρ/qD)

]
≤ 1/ρ. The same bound holds for |Z|, and from now on we’ll assume

|Z| , |W| ≤ qD · log ρ/log(ρ/qD) (9)

We can safely ignore the tiny 1/ρ probability that this fails to hold.
We will now bound the probability that FAIL0 := 1 will be set in any of the queries to Ĥ2.

There are at most |X ||Z| possible b ∈ Zµ s.t. x+ b = z for some x ∈ X , z ∈ Z, thus a random b will
fall in this set with probability at most |X ||Z|/µ. Taking the union bound over all ≤ qD queries to
Ĥ2

Pr[FAIL0 = 1] ≤ qDE[|X ||Z|]
µ

≤
q2DE[|Z|]

µ
≤

2q3D
µ

(10)

Next, we will bound the probability that FAIL2 := 1 will be set while processing a z query to
Ĥ3. We set FAIL2 := 1 if the uniformly random (f1, f2) falls into the set W, which happens with
probability |W|/(ρ2). Taking the union bound over the at most |W| times we increase W and (9)
in the second step

Pr[FAIL2 = 1] ≤ E[|W|2]
ρ2

≤
q2D
ρ2
·
(

log ρ

log(ρ/qD)

)2

(11)

To bound the probability that FAIL1 := 1 will be set, we observe that from an adversary D
who manages to set FAIL := 1 when interacting with F ,SF , we can get an adversary A which
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wins the z-collision game on φ3F with at least the same probability. Using this observation with
the bound from Lemma 5.3 and the upper bound on |Z| as given (9) would give Pr[FAIL1 = 1] ≤
E[Q(µ, qD log ρ/ log(ρ/qD))]/ρ. We can get a better bound using E[|Z|] ≤ 2qD and the fact that for
any c ≥ 1, Q(µ, q) increases by at most a factor c if we allow the Z in (5) to have size cq instead
of q (this follows from the maximality of Z.) In particular this gives

Pr[FAIL1 = 1] ≤ 2E[Q(µ, qD)]/ρ (12)

We will now bound Pr[FAIL3 = 1]. To have FAIL3 = 1 it must be the case that at some point the
adversary makes a fresh query y 6∈ Y s.t. the random output Ĥ3(y) = b satisfies x+ b = x′+ b′ = z
for some (x, x′, b′) ∈ X ×X ×B and z 6∈ Z (it’s not possible the x query was made after the y query
as by our handling of Ĥ1 queries in this case we’d have z ∈ Z). As there are at most |X |2|Y| ≤ q3D
triples, (x′, b′, x), each giving rise to one possible “target” b = x′+ b′−x, the probability to hit any
of them in the at most qD queries is at most

Pr[FAIL3 = 1] ≤
q4D
µ

Finally, we can bound

|Pr[DCH4F ,H(1n) = 1]− Pr[DF ,S
F

(1n) = 1]|

≤
3∑
i=0

Pr[FAILi = 1] (13)

≤ 2E[Q(µ, qD)]

ρ
+

2q4D
µ

+
q2D
ρ2
·
(

log ρ

log(ρ/qD)

)2

using standard arguments like in the proof of Theorem 4.1.

6 A Bit of Additive Combinatorics

Additive combinatorics deals with questions of the sort that given an Abelian group A, find subsets
Z,X of given size that minimizes the size of

Z − X = {z − x|z ∈ Z, x ∈ X}

Often we also want to find out the structure of such optimal (or nearly optimal) Z,X pairs. Such
pairs are of course special, and we do not have too many of them. Analogous questions are also
raised when the ’−’ is replaced with ’+’.

Here we investigate a variant, where we also have a third set B ⊆ A with the same size as Z
and X with the property that z − x ∈ B for an unusually large number (say, |B|3/2) of (x, z) pairs
with z ∈ Z and x ∈ X . We show that for an adequately small random B it is very unlikely that we
can find any Z,X such that Z,X and B form a triplet as above. We may interpret our result as a
property of the random Cayley graph generated by B.

Remark 6.1 Although our setting is natural and undoubtedly useful for the application at hand,
the problem we raise does not seem to have been studied before. An often-cited work of B. J. Green
[13] computes the maximum clique size of (dense) random Cayley graphs of cyclic groups and of
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Zn2 . Other authors e.g. Christofides and N. Alon have also investigated random Cayley graphs, but
with focus on Hamiltonicity, chromatic number, etc. The size of the generator set, unlike in our
case, in most studies are either very small (poly(log |A|)) or very large (Ω(|A|)). Since spectra of
random Cayley graphs have been studied, it is conceivable that there is a shorter analytic proof to
our statement. We use simple combinatorics to prove our theorem.

We (non-crucially) set the Abelian group A to be the cyclic group Zµ, where µ is a prime. Let
1 ≤ q ≤ µ arbitrary, but we will think of it as a small constant power of µ, for instance q = µ0.1.
For a set B ⊂ Zµ, |B| = q define

Q(µ, q,B) = max
X ,Z⊂Zµ,|X |=|Z|=q

|{(x, z) | z ∈ Z, x ∈ X , z − x ∈ B}| (14)

Expression (14) becomes a random variable Q(µ, q, .) as B ranges over all uniformly random
B ⊆ Zµ of size q. This random variable was also defined in Section 5.1. The minimum value of
this random variable is at least q, because for any B one can choose Z = B and 0 ∈ X . We show
that if q is a small power of µ, the probability of the event that this random variable much exceeds
q is small. To obtain practical expressions in the theorem and simpler formulas in the proof, we
introduce µ = 2t and q = 2r.

Theorem 6.2 For 0 < r < t/4, and for every s, l > 0, 2s ≥ l2 it holds that

Pr[Q(2t, 2r) ≥ 2r+s] ≤ 2−DB+t

where D = d2s−
r
l /(2l + 2)e and B = t− l(r + 1).

Corollary 6.3 Let q = µa, where a ≤ 1/4. If q is large enough (while parameter a is fixed), then

Pr[Q(µ, q) ≥ q1+2a] ≤ 2−q
a/2

We defer the proof of the corollary to after that of the theorem.

Proof. (of Theorem 6.2) Let µ = 2t denote the size of the group, which we assume to be Zµ, but
this is not essential. We prove Theorem 6.2 by an information compression argument. What we
show is that a set B satisfying |B| = 2r, Q(2t, 2r,B) ≥ 2r+s has a lot of constant size linear relations

between its elements, which allows us to describe it with significantly less than log
(
2t

2r

)
bits.

In order to encode a B ⊆ Zµ for which |B| = 2r, Q(2t, 2r,B) ≥ 2r+s efficiently, we show that
any such B has a decomposition B = D ∪ D, where |D| = D as in the theorem, D = B \ D, and
there exist fixed x, z ∈ Zµ that the elements b of D can be ordered suitably and be expressed as

b = ε(z − x)− ε1b1 − . . .− εl−1bl−1, (15)

where b1, . . . , bl−1 are either from D or from elements of D that are expressed earlier. The numbers
ε, ε1, . . . , εl−1 are all in {−1, 1}. The saving per every item in D is the difference measured in bits
between its description length via (15) versus their default information cost per item. The latter
is:

log
(
2t

2r

)
− log

(
2t

2r−D
)

D
∼ t− r

18



Since the sequence ε1, b1, . . . , εl−1, bl−1 together with ε can be described with (l− 1)(r+ 1) + 1 bits
(each bi is element of B which is already on our list, so has an r-bit description), our saving per
item is

B = t− r − (l − 1)(r + 1)− 1 = t− l(r + 1)

bits. Our total saving is then DB− t, since we also need t bits to describe z−x (once for the entire
D). The upper bound on the probability of the event Q(2t, 2r,B) ≥ 2r+s is then 2−DB+t.

We are left to construct the (D,D) decomposition and to calculate D. Consider a B that satisfies
Q(2t, 2r,B) ≥ 2r+s. Then there are X ,Z ⊆ Zµ, |X | = |Z| = 2r such that |{(x, z) | x ∈ X , z ∈ Z, z − x ∈ B}| ≥
2r+s. We fix such an X ,Z pair. Let G be the bipartite graph with bipartition (X ,Z) and edge set

e(G) = {(x, z) | x ∈ X , z ∈ Z, z − x ∈ B}.

By our assumption |e(G)| ≥ 2r+s. If we iteratively remove the minimum degree vertex from G
until all degrees of the resulting graph are at least 2s/2 (i.e. the average degree of G divided by
two), it is easy to show that this process ends up with a non-empty graph G′ with minimum degree
at least 2s/2. Fix a vertex x ∈ X ∩ V (G′) . Our proof hinges upon the following construction:

Definition 6.4 Let Pi for i = 1, 2, . . . be the set of all those (not necessarily simple) paths π of
length i in G′ (the length is the number of edges) that satisfy:

1. π starts at x

2. No two edges edges of π have identical labels, where a label of an edge (v, w) (v ∈ X , w ∈ Z)
is by definition w − v.

Let π be a path in Pi and let d = d(π) denote the degree of its end point z. All edges incident
to z have distinct labels, so the number of those edges incident to z whose label do not coincide
with any labels we already have in π is at least d − i. Thus π has d − i ≥ 2s

2 − i continuations in
Pi+1. Therefore, by induction, for i ≥ 1:

|Pi| ≥
i−1∏
j=0

(
2s

2
− j
)
>

1

e

2is

2i
.

Consider the set Pl. Notice that if l is odd, then every path in Pl end in Z, otherwise they all
end in X . Since the nodes of G′ are from X ∪ Z and |X |, |Z| = 2r, there must be a z ∈ X (if l is

even) or z ∈ Z (if l is odd) such that at least |Pl|2r ≥
1
e
2ls−r

2l
paths from Pl end in z.

Let T be the set of the paths in Pl that end in this z. We will use the paths in T to find a lot
of small linear relations among the elements of B. For a path π let `(π) denote the set of labels
that occur on its edges, and define D0 = ∪π∈T `(π), which is just the collection of all labels that
ever occur in those paths of Pl that end in z. Of course, D0 ⊆ B, because all labels along the edges
of G′ are in B. In order to estimate |D0| we view a path π ∈ Pl as an ordered sequence of labels.
Each π ∈ Pl uniquely corresponds to such a sequence of length l (although not necessarily every
element of Dl0 is an element of Pl). Since from an alphabet of size |D0| we can create at most |D0|l
different sequences of length l, we have that

|D0| ≥ |T |1/l ≥
(

1

e

2ls−r

2l

)1/l

≥ 2s−r/l/(2 + 2/l).
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We are now ready to define the decomposition B = D ∪ D as promised in the beginning. The
role of x and z in expression (15) will be played by the common starting- and end-point of all paths
in T . For any path π ∈ T we have that

z − x = b1 − b2 + b3 − . . .+ bl (if l is odd, otherwise the last sign is a minus)

It is a trivial matter to transform the above equation into (15), where b is one of the bis (our choice
which one). What remains is to show is that starting from a subset of T we can to generate all
remaining elements by (15) such, that the number of generated elements is no less than the bound
we require. A combinatorial lemma will help us in this.

Definition 6.5 We say that a set {h1, . . . , hl−1} of nodes in an undirected hyper-graph H generates
node h, if {h1, . . . , hl−1, h} is a hyper-edge. A generator set for H is a subset of nodes from which
we can iteratively generate the entire vertex set of H.

Lemma 6.6 Let H be an hyper-graph on m nodes such that every edge is a set of size at most l,
and every node is contained in at least one hyper-edge. Then H has a generator of size at most
(l−1)m

l .

Proof. The proof is by induction on l. The claim is trivial for l = 1. Take a minimal generator
set X for H. If it does not satisfy our condition, then |X| > (l−1)m

l . Consider the hyper-graph H′
we get from H by restricting all of its nodes and edges to X. Since a minimal generator set in H
cannot properly contain any hyper-edge, every hyper-edge in H′ has size at most l − 1. Thus by
induction H′ has a generator set Y of size at least (l−2)|X|

l−1 . But Y ∪X generates H, and it has size

at most l−2
l−1 |X|+m− |X| ≤ (l−1)m

l .

We now apply this lemma for the hyper-graph, which has vertex set D0 and edge set {`(π) |
π ∈ T}. We get a generator set of size (l− 1)|D0|/l. We put the elements of this generator set into
D, as well as the elements of B that are not in D0. We can generate the remaining elements of D0

out of these via (15), and we let these form the set D. The size of D is |D0|/l = 2s−r/l

(2l+2) .

Proof. (of Corollary 6.3) In Theorem 6.2 we set a = r/t, s = 2r2/t, l = 3t
4(r+1) . This gives B = t/4

and

D =
exp2

(
2 r

2

t −
4r(r+1)

3t

)
2l + 2

= q2
r
t
− 4(r+1)

3t /(2l + 2) ≥ qa/2

if q is large enough (above exp2(z) is by definition 2z). Thus 2−DB+t ≤ 2−q
a/2 when q is sufficiently

large.
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A Indifferentiability of the two round Feistel network

A.1 Proof of Theorem 4.1

Proof. Let qD = qF + qH, where qF and qH denote the number of queries D makes to its first
and second oracle, respectively. We have to specify a simulator S such that for any qD-query
distinguisher D and a random invertible function F : Zµ → Zµ × Zρ

|Pr[DCH2f ,H(1n) = 1]− Pr[DF ,S
F

(1n) = 1]| ≤ q2D/ρ, (16)

where the probability is over the choice of F ,H and the randomness used by S and D. The simulator
SF will internally define fake random oracles Ĥ1, Ĥ2 by lazy sampling which initially are undefined
on all inputs. Ĥ1(x) = ♦ denotes Ĥ1 is undefined on input x. The set X ⊂ Zµ will denote the
inputs on which Ĥ1 has already been defined, and A = Ĥ1(X ) are the corresponding outputs.
Similarly Y,B = Ĥ2(Y) denote the inputs and the corresponding outputs on which Ĥ2 has been
defined. The simulator also initializes a variable FAIL := 0 which will only be used in the proof
below. Informally, if at the end of the experiment FAIL = 1 then this indicates that SF failed to

define the Ĥ1, Ĥ2 such that CĤ2f (·) looks consistent with F(·) given all queries made so far. If this
happens, the simulator aborts which means it refuses to answer any more queries. We now define
how SF answers queries to Ĥ1 and Ĥ2 and how it updates its state if DF ,S

F
makes an F or F−1

query.
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Ĥ2 query y ∈ Zρ : If y 6∈ Y (equivalently Ĥ2(y) = ♦) sample b← Zµ and set Ĥ2(y) := b. Output
Ĥ2(y).

Ĥ1 or F query x ∈ Zµ : If x 6∈ X try to program the Ĥi s.t. CĤ2f (x, 0) = F(x) as follows

1. query (f0, f1)← F(x) and set Ĥ1(x) := f1.

2. if f1 ∈ Y set FAIL := 1 and abort.

3. set Ĥ2(f1) := x− f0.

If this is an Ĥ1 (and not a F) query output Ĥ1(x).

F−1 query u ∈ Zµ × Zρ: query x← F−1(u), if x 6= ⊥ and Ĥ1(x) 6= ♦ set FAIL := 1 and abort.

Considering the efficiency of our simulator, note that SF does exactly one oracle query for every
F ,F−1 and H1 query of DF ,H (and no query for an H2 ar query), so qS ≤ qH + qF = qD.

To prove eq.(16) we will first bound the probability that FAIL = 1 in the above experiment.
Note that |Y| (i.e., the number of inputs on which Ĥ2 is defined) increases by at most 1 on every
Ĥ1, Ĥ2 and F query, thus

|Y| ≤ qH + qF .

Further, FAIL can only be set to 1 on a Ĥ1 or F query, and this happens if the uniformly random
f1 is in Y. For every query, this happens with probability ≤ |Y|/ρ. Taking the union bound over
all Ĥ1,F queries we get

Pr[FAIL = 1] ≤ (qH + qF )2/ρ.

Next, well argue that∣∣∣Pr[DCH2f ,H(1n) = 1]− Pr[DF ,S
F

(1n) = 1]
∣∣∣ ≤ Pr[FAIL = 1]. (17)

Note that the two equations above imply eq.(16).

Let 〈DF ,SF 〉 denote the transcript containing all queries and corresponding answers of the oracle
queries made by D. For any possible transcript τ

∀τ : Pr[τ = 〈DF ,SF 〉 ∧ FAIL = 0] ≤ Pr[τ = 〈DCH2f ,H〉]. (18)

To see this, note that S assigns uniformly random values to the Ĥi (the randomness is either sampled
directly or comes from the random function F) which are independent of anything that happend
so far. (18) implies (17) by standard arguments like the fundamental lemma of game-playing.

A.2 The overhead of the two round Feistel construction

By combining Theorem 4.1 with Theorems 3.1/3.2 and Theorem 2.3 we obtain the following cor-
rollary.

Corollary A.1 (Security and minimal overhead for SIG-MRH2f) Let TDP be a (tlossy , εlossy , `)-

lossy trapdoor permutation. Then SIG-MRH2f = SIG-MRCH2f [TDP] is a (tsig , qs, qh, εsig)-secure signa-
ture scheme with

tsig = tlossy − (qh + qs) · poly(n), εsig =
2(qs + qh)2

ρ
+

2`− 1

`
εlossy . (19)
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Assuming 2εlossy/tsig ≤ 2−n−1, the overhead required to get n bits security with (qs, qh) queries is

O(n, qs, qh) ≥ n+ 2 + log(qh + qs) or O(n) ≥ 2n+ 2

assuming only the trivial qh + qs ≤ 2n bound on the number of queries.

Proof. We compute the overhead according to Definition 2.2. Using 2εlossy/tsig ≤ 2−n−1 and
tsig ≥ qs + qh we obtain by (19)

εsig
tsig
≤ 2(qs + qh)2

ρtsig
+ 2−n−1 ≤ 2(qs + qh)

ρ
+ 2−n−1

To get n bits of security we must set the overhead ρ such that εsig/tsig ≤ 2−n, which holds for
log ρ := n+ 2 + log(qs + qh).

Note that SIG-MR2f is the same as PSS-MR with modular addition instead of xor. Hence
Corollary A.1 essentially reproves a theorem of [15] about the security of PSS-MR, expressed in
our general framework. (We use modular addition since we use SIG-MR2f only as an introductory
example. The same bounds can be proved for xor.)

The following lemma says that one cannot avoid the additional additive factor q2h/ρ in the
security reduction, hence the overhead of OSIG-MR2f

= n+log(qh+qs) bits is optimal for SIG-MR2f .

Lemma A.2 If there exists a one-way (lossy) TDP, then there exists a one-way (lossy) TDP′ such

that for all q, SIG-MRCH2f [TDP] is not (tsig = O(q), qh = q, qs = 0, εsig = q2/ρ)-secure.

Proof. We define the evaluation function of TDP′ as f ′(z, y) := (z, f(y)) ∈ Zµ × Zρ. Clearly,
one-wayness and lossiness are inherited. The attack on TDP′ is as follows. First, A picks uniform
x1, . . . , xq and computes yi := f(xi). Next, it makes q queries arbitrary distinct m1, . . . ,mq to
the H1 oracle. The probability that there exists indices i, j ∈ {1, . . . , q} such that H1(mi) = yj
is bounded by q2/ρ. In case they exist, then τ := (mi + H2(yj), xj) is a valid signature, i.e.,
Recover′(τ) = mi.

B Domain Extension

Let H be a random oracle and let SIG-MRH be a signature scheme with message recovery with
message space {0, 1}m. We will now describe a simple (almost) generic way to turn SIG-MRH into
a scheme SIG-MRH∗ with arbitrary larger message space {0, 1}m × {0, 1}∗ without increasing the
redundancy and where SIG-MRH∗ comes with almost the same security guarantee (in the random
oracle model) as SIG-MRH.

The scheme SIG-MRH∗ has the same key-space as SIG-MRH, and signs a message (M0,M1) ∈
{0, 1}m × {0, 1}∗ by computing τ ← SIG-MRH(M0), but where each hash function call H(x) is
replaced with H(M1, x).7 The signature is (M1, τ). To verify (M1, τ) one simply verifies τ as in

7Here H(a, b) means we invoke H on some efficiently uniquely decodable encoding of the message pair (a, b). Such
an encoding is, for example, given by 0la‖La‖a‖b where La is the length of a in binary, and la is the length of La.
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SIG-MRH, but using the hash function H(M1, ·). If this verification accepts and outputs a message
M0, the verification for SIG-MRH∗ accepts and outputs (M0,M1).

8

We claim that SIG-MRH∗ is secure if SIG-MRH is. To see this, first assume the adversary against
SIG-MRH∗ only makes signature/hash queries for the same fixed M1 (i.e., signature queries (M0,M1)
for any M0 and hash queries (M1, x) for any x.) Then the security of SIG-MRH∗ can be proven exactly
as for SIG-MRH, except that throughout the security experiment we use the random oracle H(M1, ·)
instead of H(·).

Let us now consider the general case where the adversary makes signature/hash queries for
different M1. In the security proof for SIG-MRH we run a simulator S to program the random
oracle. In the proof for SIG-MRH∗ we now simply start a new simulator SM1 whenever the adversary
makes a query with a fresh M1. We can think of this proof as programming many independent
random oracles H(M1, ·) for different M1. The simulation fails, if any of the simulators SM1 fails. If
our scheme is proven to be (q, ε(q))-pub-indifferentiable where ε(q) is convex, in particular, if for any
q1, . . . , qz,

∑z
i=1 qi = q it satisfies

∑z
i=1 ε(qi) ≤ ε(q). Then we also get (q, ε(q))-pub-indifferentiable

for the potentially many different simulations. The bounds on pub-indifferentiability we prove are
of the form ε(q) = q1+c/d (for some constant c > 0 and a term d that does not depend on q), and
thus satisfy this convexity condition.

C Omitted proofs of Section 3

C.1 Proof of Theorem 3.1

Proof. Let A be an adversary against the signature scheme that runs in time tsig , makes at most
qs queries to the signing oracle, qf queries to the random injective function F and its inverse F−1,
and outputs a forgery with probability εsig . To prove the bound on εsig we will proceed by defining
a number of games G0-G4.

Game G0. This is the UF-CMA game and hence Pr[G0 = 1] = εsig .

Game G1. We simulate the random injective injective function F : {0, 1}m → {0, 1}k,F−1 :
{0, 1}k → {0, 1}m∪{⊥} using lazy sampling. The idea is that we simulate F by internally storing a
random invertible permutation Π over {0, 1}k and defining π(M) := Π(M ||0k−m). In the simulation
all function values of Π,Π−1 are initialized to ♦.

Algorithm F(M ∈ {0, 1}m)

x := M ||0k−m ∈ {0, 1}k
If Π(x) 6= ♦ then return F(M) = Π(x)
Repeat y ← {0, 1}k until Π(y) = ♦
Π−1(y) := x; Π(x) := y
Return F(M) = y

Algorithm F−1(y ∈ {0, 1}k)
If Π−1(y) 6= ♦ then x = Π−1(y)

Else Repeat x← {0, 1}k until Π(x) 6= ♦

Abort if x = M‖0k−m //only in G2

Π−1(y) := x; Π(x) := y
If x = M ||0k−m then return F−1(y) = M

Else return F−1(y) = ⊥
8A more efficient solution (whenever the padding queries H more than once) is to prepend G(M1) instead of M1

for some collision resistant hash function G (e.g., a random oracle). Alternatively, if H is an iterated hash function,
one must hash the prefix M1 only once, and can then evaluate H(M1, x) at basically the cost of hashing only x. The
complexity added by the two solutions outlined above is just the cost of hashing M1 once.
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Note that this simulation is efficient as long as qf < 2k−1. (For qf > 2k−1 there also exists efficient
simulations.) Furthermore, the simulation is perfect and hence |Pr[G0 = 1] = Pr[G1 = 1]|.
Game G2. We change the simulation of F−1 by adding an abort condition. |Pr[G1 = 1] = Pr[G2 =
1]| ≤ qf

2k−m
.

Game G3. We now change the way we define Π(M ||0k−m) in the simulation of F such that we
can simulate signing without knowing the secret-key.

Algorithm F(M)

x := M ||0k−m
If Π(x) 6= ♦ then return F(M) = Π(x)
Repeat τ(M)← {0, 1}k; y = fek (τ(M))

until Π(y) = ♦
Π−1(y) := x; Π(x) := y
Return F(M) = y

Algorithm Sign(M)
If F(M) = ♦ then call F(M)
Return τ(M) // τ(M) is always defined

Since fek defines a permutation, this does not change the distribution of F . Consequently, Pr[G2 =
1]− Pr[G3 = 1].

Game G4. Switch ek of TDP to lossy. More formally, game G4 is like G3 with the difference that ek
from pk is now generated using the lossy trapdoor generation algorithm Glossy(1n). Clearly, since
from G3 on signing does not use trapdoor td any more,

Pr[G3 = 1]− Pr[G2 = 1] ≤ εlossy .

By the regular lossyness of fek , the value τ(M∗) is information-theoretically hidden amongst the
` possible pre-images of fek (τ(M∗)) and with probability `−1

` we have fek (τ(M∗)) = fek (τ∗) with
τ(M∗) 6= τ∗. In the latter case we have a collision which contradicts again lossyness. More formally
we can show that

Pr[G4 = 1] ≤ `− 1

`
· εlossy .

Summing up, we get εsig ≤ Pr[G0 = 1]− Pr[G4 = 1] ≤ εlossy + `−1
` εlossy +

qf
2k−m

as claimed.

C.2 Proof of Theorem 3.2

Proof. Let A be an adversary against the signature scheme that runs in time tsig , makes at most
qs queries to the signing oracle, qf queries to F , and outputs a forgery with probability εsig . Games
G0 until G2 are the same as in the proof of Theorem 3.1, with the obvious adoptions due to bit b.
We have εsig = Pr[G0 = 1] and Pr[G0 = 1]− Pr[G2 = 1] ≤ qf

2k−m
.

Game G3. Define this game as G3 in the proof of Theorem 3.1 with a different simulation of F
and Sign.
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Algorithm F(b‖M)

x := b‖M ||0k−m
If Π(x) 6= ♦ then return F(M) = Π(x)
If b(m) = ⊥ then b(m)← {0, 1}
if b(m) = b then
Repeat τ(M)← {0, 1}k; y = fek (τ(M))

until Π(y) = ♦
Else Repeat y ← {0, 1}k until Π(y) = ♦ (*)
Π−1(y) := x; Π(x) := y
Return F(M) = y

Algorithm Sign(M ∈ {0, 1}m−1)
If b(M) = ⊥ then b(M)← {0, 1}
If F(b(M)‖M) = ⊥ then call F(b(M)‖M)
Return τ(M)

With the same argument as in the proof of Theorem 3.1 we get

Pr[G3 = 1] = Pr[G2 = 2].

Let τ∗ be the forgery and let b∗||M∗ be the bit and the recovered message. Note that the value
b(M∗) is information-theoretically hidden from the adversary’s view and with probability 1/2 we
have b(M∗) 6= b∗. In the latter case the adversary has managed to find a pre-image under fek on
an uniformly distributed value coming from the outside of the experiment. More formally we claim
that

Pr[G3 = 1] ≤ 1

2
· εone−way .

We sketch a proof of the claim. For the simulation, we need TDP to be homomorphic to be able to
embed one single challenge from the one-wayness experiment into all extended signatures τ which
contain b||M such that b 6= b(M). Concretely, the adversary A against one-wayness inputs ek and
y = fek (x). It simulates the oracles F and Sign as above where in the case (∗) (b 6= b(M)) of the
F-simulation he defines F(b||M) := fek (x(M)) ◦ y, for x(M) ← {0, 1}k. Finally, when A outputs
his forgery τ∗, A recovers b∗||M∗ and aborts if b(M∗) = b∗. This happens with probability 1/2.
Otherwise, we have τ∗ = f−1(F(b∗||M∗)) = x(M∗) ◦ f−1ek (y), from which the pre-image of y can be
computed.

Summing up, we get εsig ≤ Pr[G0 = 1]− Pr[G3 = 1] ≤ 1
2εone−way +

qf
2k−m

as claimed.
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