
Robust Encryption, Revisited

Pooya Farshim1, Benôıt Libert2, Kenneth G. Paterson3, and Elizabeth A. Quaglia4

1 Fachbereich Informatik, Technische Universität Darmstadt, Germany
2 Technicolor, France

3 Information Security Group, Royal Holloway, University of London, UK
4 Département d’Informatique, École Normale Supérieure – Paris, France

Abstract. We revisit the notions of robustness introduced by Abdalla, Bellare, and Neven (TCC 2010). One
of the main motivations for the introduction of strong robustness for public-key encryption (PKE) by Abdalla
et al. to prevent certain types of attack on Sako’s auction protocol. We show, perhaps surprisingly, that Sako’s
protocol is still vulnerable to attacks exploiting robustness problems in the underlying PKE scheme, even
when it is instantiated with a strongly robust scheme. This demonstrates that current notions of robustness
are insufficient even for one of its most natural applications. To address this and other limitations in existing
notions, we introduce a series of new robustness notions for PKE and explore their relationships. In particular,
we introduce complete robustness, our strongest new notion of robustness, and give a number of constructions
for completely robust PKE schemes.

Keywords. Robustness, Anonymity, Public-key encryption, Security proofs.

1 Introduction

A commonly pursued goal in cryptography is message privacy, which is typically achieved by means of
encryption. In recent years, the privacy of users has become an equally relevant concern. It has led the
research community to strive for anonymity properties when designing cryptographic primitives. In public-
key encryption, in particular, key-privacy (a.k.a. receiver anonymity) was introduced in [4] to capture the
idea that a ciphertext does not leak any information about the public key under which it was created,
thereby making the communication anonymous. In this context, Abdalla, Bellare, and Neven [2] raised a
fundamental question: how does a legitimate user know if an anonymous ciphertext is intended for him?
Moreover, what happens if he uses his secret key on a ciphertext not created under his public key? To
address this question, Abdalla et al. formalized a property called robustness, which (informally speaking)
guarantees that decryption attempts fail with high probability if the “wrong” private key is used. They
argued that, in all applications requiring anonymous public-key encryption, robustness is usually needed
as well. These applications include auction protocols with bid privacy [28], consistency [1] in searchable
encryption [8] and anonymous broadcast encryption [3,24]. As shown by Mohassel [25], robustness is also
important in guaranteeing the anonymity of hybrid encryption schemes resulting from the combination of
anonymous asymmetric and symmetric components.

1.1 Robust public-key encryption

Robustness ensures that a ciphertext cannot correctly decrypt under two different secret keys. This notion
has (often implicitly) been present in the literature (e.g., [28,8,10,22,3]), but formal definitions remained
lacking until the recent foundational work of Abdalla et al. [2]. In particular, Abdalla et al. introduced two
flavors of encryption robustness: weak and strong robustness.

Weak robustness is modeled as a game in which a winning adversary outputs a valid message M and
two distinct public keys pk0 and pk1 such that the encryption of M under pk0 decrypts to a valid message
under sk1, the secret key corresponding to pk1. This notion is of interest since it precisely addresses the issue
of using the wrong key that arises in anonymity contexts (such as anonymous broadcast encryption [3,24],
for instance), but it is also useful in achieving the stronger notion of strong robustness.

Strong robustness—also called SROB-CCA when the adversary has access to a decryption oracle—
allows for a more powerful adversary which chooses a ciphertext C (as opposed to a message which will be
honestly encrypted) and two distinct public keys, and wins if C decrypts to a valid message under both
corresponding secret keys. In [2] the need for this notion is motivated by scenarios where ciphertexts can be
adversarially chosen. The authors of [2] give Sako’s auction protocol [28] as an example of such a situation,
explaining that strong robustness is required in order to prevent an attack on the fairness of this protocol
by a cheating bidder and a colluding auctioneer.

As pointed out by Abdalla et al. [2], merely appending the receiver’s public key to the ciphertext is
not an option for providing robustness, since it destroys key-privacy properties. Abdalla et al. also showed
that the seemingly natural solution of using an unkeyed redundancy function to modify the message
before encryption does not achieve even weak robustness, thus demonstrating the non-triviality of the
problem. They then gave several anonymity-preserving constructions to obtain both weak and strong
robustness for public-key encryption. Using a simple tweak, they also showed how to render the Cramer–
Shoup cryptosystem [13] strongly robust without introducing any overhead.

More recently, Mohassel [25] studied robustness in the context of hybrid encryption [14]. He showed
that weak robustness (and not only anonymity) is needed in the asymmetric part of a hybrid encryption
scheme to ensure anonymity of the overall scheme. Mohassel also considered relaxations, called collision-
freeness, of both weak and strong robustness. He showed that many constructions in the literature are
natively collision-free and showed how to generically turn any weakly (resp., strongly) collision-free scheme
into a weakly (resp., strongly) robust one.

1.2 Our contributions

The need for stronger definitions. In this paper, we argue that some applications require even
stronger forms of robustness than those considered in [2,25]. The first such application is, perhaps surpris-
ingly, the construction of auction protocols with bid privacy, like that of Sako [28]. Recall that this was
one of the initial motivations for analyzing robustness in [2]. Strong robustness actually turns out not to
suffice for thwarting attacks against the fairness of Sako’s auction protocol [28]: strong robustness assumes
honestly generated public keys whereas, if the auctioneer can collude with cheating bidders (as assumed
in [2]), what really needs to be considered is an adversary who can maliciously generate ciphertexts and the
public keys. To illustrate this, we show an attack on the fairness of Sako’s protocol when instantiated with
CS?, a variant of the Cramer–Shoup encryption scheme which was proven to be key-private and strongly
robust in [2]. This observation, then, motivates us to introduce notions of robustness where keys may be
maliciously generated. We do not offer a full treatment of the delicate issue of fairness in auction protocols
and its relation to robustness, since that is beyond the scope of this paper. Rather, as with [2], we use
Sako’s protocol as a motivation for introducing and studying stronger robustness notions.

The limitations of existing robustness notions, and therefore the motivation for this work, are not solely
restricted to Sako’s protocol. For instance, existing notions are not necessarily strong enough to provide
robustness guarantees if the scheme is used to encrypt key-dependent messages [7] or messages encrypted
under related keys [6]. This is because the adversary is denied access to the secret keys in these notions. The
strongest of our new notions gives the adversary sufficient power and automatically provides robustness in
these more challenging settings.

New notions of robustness and their relations. Our strongest new notion is called complete ro-
bustness (CROB) and is obtained by progressively removing various restrictions on adversarial capabilities
in the strong robustness security model. First, we give access to honestly generated secret keys and arrive
at an intermediate notion which we term unrestricted (strong) robustness (USROB). Next, we also remove
the honest key-generation requirement to get to the notion of full robustness (or FROB for short). We then

2

Fig. 1. Relations among notions of robustness.

view robustness in terms of the behavior of the encryption and decryption algorithms with respect to each
other, and obtain our CROB notion. Roughly speaking, in CROB, the adversary should not be able to
find “collisions” in the scheme beyond those which are already implied by the correctness property of the
scheme. For example, he should not be able to “explain” a ciphertext C of his choice as an encryption under
two different adversarially chosen public keys pk0, pk1 by revealing the plaintext and the encryption coins
for pk0 and the secret key sk1 for pk1. As we will see, full robustness can be viewed as the “decryption-only
part” of CROB. Another natural notion of robustness, which we call key-less robustness (KROB), arises
as the dual notion corresponding to the “encryption-only part” of CROB, and is also implied by CROB.
Finally, XROB is a “mixed” notion derived from FROB and KROB that has no natural interpretation but
is a useful tool in establishing results about these notions.

We next study how these new notions of robustness relate to each other and to existing notions.
Figure 1 summarizes the main relations that we prove between our new and existing robustness notions. In
this figure, the lack of an implication between two notions should be interpreted as meaning that we prove
a separation. Thus, for example, we will show that CROB is strictly stronger than FROB. It is apparent
from the figure that we provide a complete account of the pairwise relations between the various robustness
notions. In addition to these relations, we can prove several pairwise separations. For example, we will show
that no two of the three notions from {FROB,KROB,XROB} are sufficient to prove CROB, but that their
combination is. Thus we obtain a characterization of CROB in terms of the three intermediate notions.
These separations are not displayed in the figure for ease of visual presentation.

That robustness can come in so many flavors may be unsettling to some readers. Certainly, one should
not seek to clutter the definitional landscape unnecessarily. Yet, with the exception of XROB, all of our
notions arise as natural generalizations of the existing notions. Exploring their relations is then a natural
endeavor. This is not so different from the situation for, say, confidentiality and anonymity notions for
public-key encryption, where we now have many different security definitions and developing an under-
standing of their relations has taken several years.

Constructions of completely robust encryption. Having defined CROB and its weaker relatives,
we prove it to be achievable via a variety of efficient and natural constructions.

We first show that the generic construction for strong robustness presented in [2] is already powerful
enough as to also achieve CROB. Further, we observe that a slight modification of this transformation
allows dispensing with the weak robustness assumption—which was necessary in [2]—on the underlying
PKE scheme. Moreover, we point out that the random-oracle-based generic transformation of Mohassel [25]
also achieves CROB.

In the standard model, we also answer in a positive sense a question left open in [2] as to whether
the Canetti–Halevi–Katz [12] (CHK) paradigm—which is known to provide chosen-ciphertext secure cryp-
tosystems from weakly secure identity-based encryption (IBE) schemes—can be leveraged to construct
systems that are simultaneously anonymous and offer message privacy under chosen-ciphertext attacks
(AI-CCA security) and are robust in a strong sense. Answering this question is non-trivial: Abdalla et al.

3

pinpointed that applying the one-time-signature-based CHK transformation to the Boyen–Waters IBE [11],
for example, does not provide SROB-CCA or even SROB-CPA. Here, we show how to obtain AI-CCA-
secure, completely robust PKE schemes from weakly secure IBE schemes. Our construction is a variant of
the Boneh–Katz construction for chosen-ciphertext security [9], and it only requires the underlying IBE
to satisfy a weak level of security under chosen-plaintext attacks. In comparison, the most powerful trans-
formation of [2] must start from a scheme that is already AI-CCA-secure to achieve a comparable result.
Because our technique simultaneously provides complete robustness and AI-CCA security, it enjoys better
efficiency than applying the strongest robustness-conferring transformation of [2] to an AI-CCA-secure
scheme obtained from the original Boneh–Katz transformation.

Finally, we also ask whether we can improve upon the efficiency of generic constructions with concrete
schemes whose security rests on specific computational assumptions. By giving a concrete construction
of a scheme that is CROB and AI-CCA-secure, we present a different and potentially more efficient way
of directly achieving CROB for certain hybrid encryption schemes such as the Hofheinz–Kiltz [20] or
Kurosawa–Desmedt [23] schemes. To do so, we take advantage of certain properties in the underlying sym-
metric components. Namely, we consider hybrid schemes that build on the encrypt-then-MAC paradigm in
their symmetric part to obtain a suitably secure symmetric cipher. We show that, if the message authen-
tication code (MAC) is what we call committing, then a simple modification in the hybrid scheme gives
complete robustness without any significant computational overhead. The use of committing MACs readily
extends as a tool to design AI-CCA-secure CROB hybrid constructions via the KEM/DEM framework [14].
Concretely, Mohassel [25] showed that the KEM/DEM framework gives an AI-CCA-secure hybrid encryp-
tion scheme when the KEM component is weakly robust and AI-CCA, and the DEM component is an
authenticated symmetric encryption scheme. If the latter part is furthermore realized using the encrypt-
then-MAC approach with a committing MAC, we easily obtain complete robustness as well. As we will
see, the committing MAC technique can also offer certain advantages.

Taken altogether, our constructions achieving CROB rely on different building blocks and, when fully
instantiated, allow us to rely on a variety of different hardness assumptions. They demonstrate that CROB,
while providing strong guarantees, is attainable in an efficient and flexible manner.

Organization. We start by reviewing the previous notions of robustness and highlighting their limitations
in Section 2. Section 3 presents our new notions of robustness. In Section 4, we study the relations among
notions of robustness. We describe our generic constructions in Section 5 and give an efficient construction
in Section 6. We close by some concluding remarks in Section 7.

2 Previous Notions of Robustness and Their Limitations

We first briefly recall the existing notions of robustness, namely weak and strong robustness from [2].

2.1 Weak and strong robustness

Let PKE = (PG,KG,Enc,Dec) be a public-key encryption scheme consisting of parameter-generation, key-
generation, encryption, and decryption algorithms (see Appendix A for the detailed syntax). The authors
of [2] distinguish between weak robustness, where the adversary has to output a message and two public
keys, and strong robustness, where it outputs a ciphertext and two public keys. The corresponding games
are recalled in Figure 2.

2.2 Strong robustness does not suffice for auction protocols

Sako’s auction protocol [28] was the first practical protocol to ensure bid privacy, i.e., to hide the bids of
losers. The basic idea is as follows. Let V = {v1, ..., vN} be the set of possible bid values. The auctioneer
prepares N key-pairs (sk i, pk i)i∈{1,...,N} and publishes the N public keys. To bid for a value vi a bidder

4

proc Initialize

EK,DK, U, V ← ∅
pars ←$ PG
Return pars

proc GetEK(id)

U ← U ∪ {id}
(DK[id],EK[id])←$ KG(pars)
Return EK[id]

proc GetDK(id)

If id /∈ U Then Return ⊥
V ← V ∪ {id}
Return DK[id]

proc Dec(C, id) // ATK = CCA

If id /∈ U Then Return ⊥
M ← Dec(pars,EK[id],DK[id], C)
Return M

proc Finalize(M, id0, id1) // WROB-ATK

If (id0 /∈ U) ∨ (id1 /∈ U) Then Return F
If (id0 ∈ V) ∨ (id1 ∈ V) Then Return F
If (id0 = id1) Then Return F
M0 ←M ; C ←$ Enc(pars,EK[id0],M0)
M1 ← Dec(pars,EK[id1],DK[id1], C)
Return (M0 6=⊥) ∧ (M1 6=⊥)

proc Finalize(C, id0, id1) // SROB-ATK

If (id0 /∈ U) ∨ (id1 /∈ U) Then Return F
If (id0 ∈ V) ∨ (id1 ∈ V) Then Return F
If (id0 = id1) Then Return F
M0 ← Dec(pars,EK[id0],DK[id0], C)
M1 ← Dec(pars,EK[id1],DK[id1], C)
Return (M0 6=⊥) ∧ (M1 6=⊥)

Fig. 2. Games defining weak/strong robustness.

encrypts a pre-determined message M under the public key pk i. This is signed and posted by the bidder.
To open a bid the auctioneer attempts to decrypt the encrypted bids one by one using skN . If at least one
decrypts to M , the auctioneer publishes the winning bid vN , a list of all the winning bidders and the secret
key skN for the bidders to verify correctness of the result. If no decryption returns M , the auctioneer
repeats the procedure using skN−1, and so on. For the auction to hide the bid values, the underlying
public-key encryption scheme needs to be key-private, in the sense of [4].

In [28], Sako provided an example of an auction protocol scheme based on the ElGamal public-key
encryption scheme, which is key-private. In [2], Abdalla et al. gave an attack which allows a cheating
bidder and a colluding auctioneer to break the fairness of the protocol. This attack is based on the fact
that the ElGamal scheme is not robust and therefore the auctioneer can open the cheating bidder’s bid
to an arbitrary (winning) value. To prevent this attack, the authors of [2] suggest using any strongly
robust scheme (strong robustness, instead of simply weak robustness, is required since the ciphertexts are
generated adversarially).

We show that strong robustness is not sufficient to prevent an attack of the above type on Sako’s
protocol. More precisely, we present an attack on the protocol when it is instantiated with a variant of the
Cramer–Shoup encryption scheme, CS?, which is known to be key-private and strongly robust (the latter
result was proved in [2]). Just as with the attack of Abdalla et al. [2], the attack we present assumes a
cheating bidder and a colluding auctioneer. The key idea behind the attack (which is presented in detail
in Appendix C) is that an auctioneer can maliciously prepare the public keys so that the cheating bidder’s
encryption decrypts to M under any secret key.

This attack shows that strong robustness is not enough to guarantee fairness in Sako’s auction protocol.
Intuitively what is needed here is a form of robustness wherein all the public keys and ciphertexts in
the system may be adversarially generated. In the coming sections we will formalize stronger notions of
robustness which rule out such attacks.

3 New Notions of Robustness

3.1 A direct strengthening: full robustness

Recall that an SROB adversary has to output a ciphertext C and two public keys pk0 and pk1 such that
C decrypts to a message M0 under (sk0, pk0) and a message M1 under (sk1, pk1). The notion poses three
restrictions on the adversary: (1) pk0 and pk1 have to be distinct; (2) The corresponding secret keys cannot
have been queried by the adversary; (3) The public keys are honestly generated.

5

The first condition is inherent to modeling the behavior of an encryption scheme when used on different
public keys, and removing it would make it trivial for an adversary to win.

We now look at the notion resulting from the removal of the second restriction, i.e., when the adversary
is allowed to query secret keys even for the finally output public keys. We call this notion unrestricted
strong robustness (USROB). This game therefore proceeds as the SROB game does except that the check
(id0 ∈ V) ∨ (id1 ∈ V) is no longer present in the Finalize procedure. This notion is powerful enough to
model scenarios where keys are honestly generated, but an adversary may know the secret keys. This, for
example, includes robustness for the encryption of key-dependent messages as discussed in the introduction.

However, as we have seen in the previous section, if an adversary can control the generation of keys, it
may be unreasonable to assume that it can only generate the keys honestly. We therefore can strengthen
USROB further by removing the third restriction on the adversary. We, however, ask the adversary to
return secret keys for the public keys that it chooses. Two points deserve further attention at this point.
First, returning the secret keys is to allow for a polynomial-time game definition which is not excessively
strong. Second, we do not require the secret keys to be valid. Indeed, it is the responsibility of the decryption
algorithm to check that the key-pair it receives is valid. Note that as a result of removing the two restrictions,
the adversary has now full control over the keys, and we no longer need to provide the adversary with the
oracles present in the SROB and USROB games. These modifications result in a simple, but strong, notion
we call full robustness (FROB), and formalize in Figure 3.

proc Initialize

pars ←$ PG
Return pars

proc Finalize(C, pk0, pk1, sk0, sk1) // FROB

If (pk0 = pk1) Then Return F
M0 ← Dec(pars, pk0, sk0, C)
M1 ← Dec(pars, pk1, sk1, C)
Return (M0 6=⊥) ∧ (M1 6=⊥)

Fig. 3. Game defining full robustness.

3.2 A unified approach: complete robustness

At this point it can be asked if there are attacks which fall outside the FROB model. To answer this
question, we take a somewhat different approach towards robustness and view it in terms of the behavior
of the encryption and decryption routines of a scheme with respect to each other. In fact, this is the
underlying intuition behind not only the original weak robustness notion,5 but also the standard correctness
criterion for a PKE scheme (albeit for a single key). This leads us to a new notion which we term complete
robustness (CROB). In this game the shared parameters of the system are passed to an adversary, which
then arbitrarily interacts with the encryption and decryption routines on plaintexts, ciphertexts, keys, and
even random coins of its choice. Its goal is to find an “unexpected collision” in the cryptosystem (i.e., one
outside that imposed by the correctness criterion). We formalize the CROB game in Figure 4.

Key-less robustness. It can be seen through an easy inspection that full robustness is a sub-case of
complete robustness where the adversary is restricted to querying the Dec oracle. One can also consider
the dual case where the adversary only queries the Enc oracle. This results in a new notion which we call
key-less robustness (KROB). Key-less robustness differs from full robustness in that an adversary no longer
needs to return any secret keys, but instead “opens” a ciphertext by providing the random coins and the
message used in the encryption. More precisely, the adversary outputs two messages, two distinct public
keys and two sets of random coins, and its goal is to invoke a collision in the encryption algorithm. The
game is shown in Figure 5.

5 This then disappears in the SROB game as the adversary outputs ciphertexts.

6

proc Initialize

List← []
pars ←$ PG
Return pars

proc Enc(pk ,M, r)

C ← Enc(pars, pk ,M ; r)
List← (pk ,M,C) ∪ List

proc Dec(pk , sk , C)

M ← Dec(pars, pk , sk , C)
List← (pk ,M,C) ∪ List

proc Finalize() // CROB

For each pair (pk0,M0, C0), (pk1,M1, C1) ∈ List
If (C0 = C1 6=⊥) ∧ (pk0 6= pk1) ∧ (M0 6=⊥ ∧M1 6=⊥) Return T

Return F

Fig. 4. Game defining complete robustness.

proc Initialize

pars ←$ PG
Return pars

proc Finalize(M0,M1, pk0, pk1, r0, r1) // KROB

If (pk0 = pk1) Then Return F
C0 ← Enc(pars,M0, pk0; r0)
C1 ← Enc(pars,M1, pk1; r1)
Return (C0 = C1 6=⊥)

Fig. 5. Game defining key-less robustness.

Intuitively this notion appears to be the strongest amongst the ones considered so far, since the ad-
versary has the liberty to choose the public keys and does not have to reveal any secret information.
Surprisingly, we will see that key-less robustness does not imply any other of the other notions considered
so far (FROB, SROB, and not even weak robustness). Furthermore, we will show that FROB does not
imply KROB either. In the next section we give a complete treatment of relations among different notions.

Identity-based encryption. In the IBE setting the identities (analogous to public keys in the PKE
setting) are already chosen maliciously, while the natural extension of our notions would allow the adversary
to also choose the IBE master keys maliciously. In particular, the identity-based analogue of FROB would
be strong enough to guarantee well-addressedness according to the definition proposed by Hofheinz and
Weinreb [21] (see also Figure 9 in Appendix B), whereas SROB-CCA may not always do so. We leave the
further development of the ID-based setting to future work.

4 Relations among Notions of Robustness

We now study how the various notions of robustness relate to each other. Starting with complete robustness,
it may be asked if KROB and FROB are strong enough together to jointly imply CROB. We show that
this is not the case. Indeed, there is a third “mixed” notion of robustness implicit in CROB, which we
term XROB and formalize in Figure 6. As the next theorem shows, the XROB notion is necessary in the
sense that it is not implied by KROB and FROB together.

In fact, no pair of the notions from {FROB,KROB,XROB} implies the third. Furthermore, the con-
junction of all three notions is sufficient to imply CROB.

Theorem 1 (CROB Characterization). A PKE scheme is CROB if and only if it is simultaneously
FROB, KROB, and XROB. Furthermore, no combination of at most two of FROB, KROB, and XROB
is sufficient to provide the CROB guarantees.

We prove the theorem via a sequence of propositions in Appendix E. To give a flavor of our results we
present one of these next.

Proposition 1 (FROB ∧ KROB 6=⇒ XROB). Let PKE be a public-key encryption scheme which is
FROB and KROB. Then there is a scheme PKE ′ which is FROB and KROB, but fails to be XROB.

Proof. We define the required scheme PKE ′ as follows.

PG′(1λ): Run PG(1λ) to obtain pars. Return pars.

7

proc Initialize

pars ←$ PG
Return pars

proc Finalize(M0, pk0, r0, C1, pk1, sk1) // XROB

If (pk0 = pk1) Then Return F
C0 ← Enc(pars,M0, pk0; r0)
M1 ← Dec(pars, pk1, sk1, C1)
Return (C0 = C1) ∧ (M0 6=⊥) ∧ (M1 6=⊥)

Fig. 6. Game defining mixed robustness.

KG′(pars): Run KG(pars) to obtain (sk , pk). Return (sk , 0‖pk).
Enc′(pars, b‖pk ,M ; r): Run Enc(pars, pk ,M ; r) to obtain C. Output b‖C.
Dec′(pars, b‖pk , sk , c‖C): If b = 1 return ⊥. If c = 1 return a fixed (e.g., the lexicographically smallest)

message M? in the message space for pk . Else return Dec(pars, pk , sk , C).

Note that PKE ′ is a correct public-key encryption scheme. We show PKE ′ is not XROB. Consider
the XROB adversary A which obtains pars, generates a key-pair (sk , 0‖pk) and a set of coins r for the
encryption algorithm, and returns (M, 1‖pk , r, 1‖C, 0‖pk , sk) where M is any valid message and C :=
Enc(pars, pk ,M ; r). This tuple wins the XROB game with probability 1 as 1‖pk 6= 0‖pk , the output of
Enc′(pars, 1‖pk ,M ; r) is 1‖C, and the output of Dec′(pars, 0‖pk , sk , 1‖C) is M? 6=⊥.

It is easy to see that PKE ′ is still KROB. Indeed, since Enc′ attaches the first bit of its input public
key to the ciphertext, if a collision in the output of Enc′ for two distinct public keys arises, it must be that
the public keys have the same starting bit and hence they must be differing in their remaining parts. This
then translates into a KROB attack on the underlying scheme PKE .

To see that the modified scheme is also FROB, observe that no adversary can win the FROB game
by outputting any public key whose starting bit is a 1 as otherwise the decryption algorithm will reject.
Therefore the public keys must start with a 0, and as before, in a successful FROB attack the remaining
parts of the public keys must be differing. Now since the leading bit, c, of the ciphertexts does not affect
Dec′, we also obtain an FROB attack on the starting scheme PKE . ut

It is natural to study how our new notions relate to the existing notions from Abdalla et al. [2]. Since
USROB is a natural intermediate notion, for the sake of completeness, we also investigate where it stands
in relation to existing notions. We start by observing that FROB =⇒ USROB =⇒ SROB-CCA as the
adversary becomes progressively more restricted in each game. Moreover, in the first part of the following
theorem, we show that USROB is strictly stronger than SROB-CCA, and that FROB is strictly stronger
than USROB. In the second part of the theorem we show that KROB does not even imply WROB-CPA,
separating this notion from all notions other than complete robustness. Finally, we show that XROB implies
WROB-CCA but not SROB-CPA. Hence XROB can be seen a strengthened version of weak robustness
in a direction orthogonal to strong robustness.

Theorem 2 (Relation with WROB and SROB). Let PKE be a PKE scheme. We have the following.

– FROB: If PKE is FROB, then it is also USROB. If PKE is USROB then it is also SROB-CCA.
Moreover, these implications are strict.

– KROB: KROB does not imply WROB-CPA and SROB-CCA does not imply KROB.
– XROB: If PKE is XROB, then it is also WROB-CCA. Furthermore, XROB does not imply SROB-CPA

and SROB-CCA does not imply XROB.

We prove the theorem in Appendix F. The results of [2] together with Theorems 1 and 2 resolve all the
relations between any pair of robustness notions as we have summarized in Figure 1. For example, to see that
KROB 6=⇒ FROB, we use the facts that FROB =⇒ SROB-ATK but KROB∧XROB 6=⇒ SROB-ATK.
Moreover, although we do not formally prove it here, all our separating examples are designed such that
they preserve the AI-ATK security of the underlying PKE schemes. Hence Figure 1 also applies in the
presence of AI-ATK security.

8

5 Generic Constructions of Completely Robust Public-key Encryption

5.1 Mohassel’s transformation

Mohassel [25] gives a generic transformation in the random-oracle model that converts an AI-ATK encryp-
tion scheme into one which is SROB-CCA without compromising its AI-ATK security. This construction
also achieves complete robustness. In this construction, the hash value H(pk , r,M), where r is the random-
ness used in the encryption, is attached to ciphertexts. This immediately rules out all forms of collisions
between ciphertexts, as the hash values are unlikely to collide on two distinct public keys.

5.2 The ABN transformation

In [2, Theorem 4.2] the authors give a generic construction for a scheme PKE which confers strong robust-
ness and preserves the AI-ATK security of the starting scheme PKE , provided that the latter scheme is
additionally WROB. We briefly describe how the transformation works, and refer the reader to the original
work for the details. At setup, include in pars for PKE the parameters of a commitment scheme (see Ap-
pendix G for the definitions). When encrypting, commit to the public key, and encrypt the de-commitment
along with the message. Also include the commitment as a ciphertext component. Decryption checks the
commitment/de-commitment pair for consistency and rejects if this is not the case. We strengthen the
result of [2], showing that this construction achieves complete robustness:

Theorem 3 (The ABN Transformation Achieves CROB). Let A be a PPT CROB adversary against
PKE. Then there exist PPT adversaries B1, B2, and B3 against the binding property of CMT such that

Advcrob
PKE(A) ≤ Advbind

CMT (B1) + Advbind
CMT (B2) + Advbind

CMT (B3).

The proof of this theorem is given in Appendix H, where we show scheme PKE is simultaneously FROB,
KROB, and XROB.

5.3 A modification of the ABN transformation

While the original transformation [2] does provide AI-ATK and CROB guarantees, the AI-ATK security
of the transformed scheme PKE relies on the weak robustness of the underlying encryption scheme PKE
in the case of chosen-ciphertext adversaries (i.e., when ATK = CCA). We show that, if the underlying
encryption scheme supports labels [29] (in which case the encryption and decryption algorithms both take
an additional public string L as input; see Appendix A), this assumption can be eliminated and we only
need PKE to be AI-ATK-secure.

Although the weak robustness assumption is not too demanding in theory (since any encryption scheme
can be made weakly robust by means of a keyed redundancy-based transformation [2]), our construction
provides better efficiency in some settings since many AI-CCA encryption schemes, such as the Cramer–
Shoup or the Kurosawa–Desmedt scheme, natively support labels.6

Our transformation, which relies on a commitment scheme CMT = (CPG,Com,Ver), is as follows.

PG(1λ): Run pars ←$ PG(1λ) to obtain public parameters pars for PKE . Then, generate cpars ←$ CPG(1λ)
for CMT . Finally, return (pars, cpars).

KG(pars, cpars): Compute and return (sk , pk)←$ KG(pars).

Enc
(
(pars, cpars), pk ,M

)
: The algorithm proceeds in two steps.

6 In the worst case, labeled public-key encryption schemes can always be obtained by appending the label to the encrypted
plaintext and checking whether the correct label is recovered at decryption.

9

1. Commit to pk by computing a pair (com, dec)←$ Com(cpars, pk).
2. Encrypt M‖dec under the label L = com by computing C ←$ Enc(pars, pk ,M‖dec, L).
Return (C, com) as the final ciphertext.

Dec
(
(pars, cpars), pk , sk , (C, com)

)
: The algorithm proceeds in two steps.

1. Compute M ′ ← Dec
(
pars, pk , sk , (C, com), L

)
, with L = com. Then, parse M ′ as M‖dec (and

return ⊥ if M ′ cannot be parsed properly).
2. Return M if Ver(cpars, pk , com, dec) = 1. Else return ⊥.

Theorem 4, whose proof is in Appendix I, shows that thanks to the use of labels, we do not have to
rely on any weaker form of robustness of PKE when proving the AI-ATK security of PKE .

Theorem 4. If PKE is AI-ATK-secure and CMT is a hiding commitment, then PKE is AI-ATK-secure.
More precisely, for any PPT AI-ATK adversary A against PKE, there exists a PPT AI-ATK adversary
B1 against PKE and a PPT distinguisher B2 against CMT such that

Advai-atk
PKE (A) ≤ 2 ·Advai-atk

PKE (B1) + Advhide
CMT (B2).

Furthermore, the above construction is CROB if CMT is a binding commitment. More precisely, for any
PPT CROB adversary A, there exists a PPT adversary B against the binding property of the commitment
scheme such that

Advcrob
PKE(A) ≤ Advbind

CMT (B).

5.4 Completely robust AI-CCA-secure PKE from selectively secure IBE

Next, we present a modification of the Boneh–Katz approach [9] which provides both CROB and AI-CCA
security when applied to any IBE scheme that only provides TA anonymity in the multi-authority selective-
ID setting (or sID-TAA-CPA security, as defined in Appendix J). In particular, this positively answers the
question of whether CHK-like techniques can be used to achieve a strong flavor of robustness from weakly
secure IBE.

Let IBE be an sID-TAA-CPA secure IBE scheme. We obtain a completely robust AI-CCA-secure
public-key encryption scheme PKE by combining IBE with a strongly secure message authentication code
MAC and a trapdoor commitment scheme T CMT .

Recall that a trapdoor commitment scheme T CMT = (CPG,Com,Ver,Equiv) consists of efficient algo-
rithms where (CPG,Com,Ver) function as in an ordinary commitment except that CPG outputs public pa-
rameters cpars and a trapdoor td . In addition, Equiv allows equivocating a commitment using the trapdoor
td : for any two messages m1,m2 and any tuple (com, dec1) produced as (com, dec1)←$ Com(cpars,m1), the
trapdoor td allows computing dec2 ←$ Equiv(td , com,m1, dec1,m2) such that Ver(cpars, com,m2, dec2) = 1.
Moreover, (com, dec2) has the same distribution as Com(cpars,m2).

Our IBE-based construction PKE = (PG,KG,Enc,Dec) is as follows.

PG(1λ): Run pars ←$ IBE .PG(1λ) to obtain common public parameters pars. Also run cpars ←$ CPG(1λ)
to obtain public parameters for a trapdoor commitment scheme T CMT . Then, choose a message
authentication code MAC with key length ` ∈ poly(λ). Finally, return (pars, cpars,MAC).

KG(pars, cpars,MAC): Generate a master key pair (msk ,mpk)←$ IBE .MPG(pars) for IBE . Return the
key pair (sk , pk) := (msk ,mpk).

Enc
(
(pars, cpars,MAC), pk ,M

)
: To encrypt M under pk = mpk , the algorithm proceeds as follows.

1. Choose a random MAC key k ←$ {0, 1}`.
2. Commit to mpk‖k by computing a pair (com, dec)←$ Com(cpars,mpk‖k).
3. Encrypt M‖k‖dec under the identity com by computing C ←$ IBE .Enc(pars,mpk , com,M‖k‖dec).

10

4. Compute tag = MacGenk(C) and return (C, com, tag) as the final ciphertext.

Dec
(
(pars, cpars,MAC), pk , sk , (C, com, tag)

)
: Given pk = mpk and sk = msk , conduct the following

steps.

1. Compute dk com ←$ IBE .KG(pars,msk , com) and then M ′ ← IBE .Dec
(
pars,mpk , dk com, com,C

)
.

Then, parse M ′ as M‖k‖dec (and return ⊥ if M ′ =⊥ or if M ′ cannot be parsed properly).
2. If MacVerk

(
C, tag

)
= 1 and Ver(cpars,mpk‖k, com, dec) = 1, return M . Otherwise, return ⊥.

A difference with the original Boneh–Katz construction—which can use a weak form of commitment
called encapsulation—is that our construction requires a full-fledged commitment scheme. This is because,
in order to achieve complete robustness, we need to commit to the master public key of the scheme at the
same time as the MAC key in the encryption algorithm. Moreover, the proof of AI-CCA security requires
the commitment to be a trapdoor commitment: the trapdoor plays an essential role when it comes to reduce
the sID-TAA-CPA security of the IBE to the AI-CCA security of the encryption scheme.

The proof of the following theorem can be found in Appendix J.

Theorem 5. If IBE is sID-TAA-CPA-secure, MAC is strongly unforgeable, and T CMT is a computa-
tionally binding trapdoor commitment scheme, then PKE is AI-CCA-secure. Moreover, the scheme PKE
is CROB if T CMT is computationally binding.

6 A Concrete CROB Scheme

In this section, we describe a simple way to achieve complete robustness using hybrid encryption where the
symmetric component uses the encrypt-then-MAC approach. To this end, we require the MAC to satisfy
a “MAC analogue” of the notion of committing symmetric encryption [17]. Informally this notion requires
that a given MAC tag is valid for a single message regardless of the key used.

Committing MAC. We say MAC = (MacGen,MacVer) is committing if for any message m and any key
k, there exists no message-key pair (m′, k′) such that m′ 6= m and MacVerk′(m

′,MacGenk(m)) = 1.

We also need the MAC to computationally hide the message. Note that the following definition is
implied by the definition of message-hiding security used in [15, Definition 2.2].

Indistinguishable MAC. We say that a message authentication code MAC = (MacGen,MacVer) with
key space KSp provides indistinguishability if, for any two messages m0,m1, it is computationally infeasible
to distinguish the distributions Db := {tag ←$ MacGenk(mb) : k ←$ KSp} for b ∈ {0, 1}.

For our purposes, the MAC only has to provide one-time strong unforgeability. Namely, the adversary
is allowed to see one pair of the form (m, tag), where tag = MacGenk(m), and should not be able to produce
a pair (m′, tag ′) such that (m′, tag ′) 6= (m, tag) and MacVerk(m

′, tag ′) = 1.
Using ideas from [17], it is easy to construct a MAC which is simultaneously committing, indistin-

guishable, and strongly unforgeable. The idea is to use a family of injective and key-binding pseudorandom
functions: for any distinct keys k1, k2, the functions fk1(·) and fk2(·) have disjoint ranges, i.e., there exist
no two pairs (k1, x1), (k2, x2) such that k1 6= k2 and fk1(x1) = fk2(x2). The key space of the MAC is that
of the PRF. For any message m 6= 1λ, the MAC generation computes and outputs the pair (fk(1

λ), fk(m)).
The first component serves as a perfectly binding commitment to the key k while the injectivity of fk(·)
guarantees that the MAC is only valid for one message. In addition, its strong unforgeability and indistin-
guishability properties are both implied by the pseudorandomness of {fk}k as long as the message space
of the MAC, MSpmac, does not include 1λ (the proof is straightforward).

We show a simple variant of the Hofheinz–Kiltz (HK) hybrid encryption scheme [20] that provides
CROB and AI-CCA security when the underlying authenticated symmetric encryption scheme uses a
MAC with the aforementioned properties. Besides providing new ways to achieve robustness, our scheme

11

comes with the advantage that its computational efficiency is the same as the original HK scheme and in
particular it is more efficient than combining HK with a commitment using the ABN transformation.

PG(1λ): Choose a group G of prime order p > 2λ with g ←$ G. Also, choose a symmetric encryption scheme
(E,D) of key length `0 and a message authentication code MAC = (MacGen,MacVer) of key length
`1. Finally, choose a key-derivation function KDF : G → {0, 1}`0+`1 , a target collision-resistant hash
function7 TCR : G→ Zp, and a collision-resistant hash function H : {0, 1}∗ → MSpmac, where MSpmac

is the message space of MAC. The public parameters consist of pars :=
(
G, p, g, (E,D), MAC,

TCR, KDF, H
)
.

KG(pars): Choose x, y, z ←$ Z∗p and compute u = gx, v = gy, and h = gz. The public key is pk =
(
u, v, h

)
and the private key is sk = (x, y, z) ∈ (Z∗p)3.

Enc
(
pars, pk ,M

)
: To encrypt M under the public key pk , choose s←$ Z∗p and compute

C1 = gs, C2 = (uτ · v)s, C3 ←$ EK0(M), tag = MacGenK1(H(C3, u, v, h))

where τ = TCR(C1) ∈ Z∗p and (K0,K1) = KDF(hs) ∈ {0, 1}`0+`1 . Return C = (C1, C2, C3, tag).

Dec
(
pars, pk , sk , C

)
: Given C = (C1, C2, C3, tag), return⊥ if C2 6= Cτ ·x+y1 , where τ = TCR(C1). Otherwise,

compute (K0,K1) = KDF(Cz1) and then M ← DK0(C3). Return M if MacVerK1(H(C3, pk), tag) = 1.
Otherwise, return ⊥.

The scheme was known to be IND-CCA-secure. We are also able to prove that it provides AI-CCA
security, essentially because the ciphertexts can be shown to be indistinguishable from dummy ciphertexts
that are statistically independent of the public key, even in the presence of a decryption oracle. Proofs of
the following results may be found in Appendix K.

Theorem 6. The scheme provides AI-CCA security assuming that: (1) The DDH assumption holds in
G; (2) (E,D) is a semantically secure symmetric encryption scheme; (3) KDF is a secure key-derivation
function;8 (4) MAC is a one-time strongly unforgeable MAC and provides indistinguishability; (5) H and
TCR are collision-resistant and target collision-resistant, respectively. Furthermore, the scheme is CROB
if H is collision-resistant and MAC is committing.

Interestingly, if the construction of Section 5.4 is modified to use a committing MAC, it can be in-
stantiated using any commitment scheme and in particular a perfectly binding commitment or even an
encapsulation scheme (as in the original Boneh–Katz construction) also work. In this case, the sender no
longer needs to commit to the master public key: (com, dec) is generated by committing to the MAC key
only. Instead, the sender computes tag as tag = MacGenk(H(C,mpk)) using a collision-resistant hash func-
tion H. If the MAC is committing, the resulting construction is easily seen to provide complete robustness.
It also remains AI-CCA-secure provided the MAC satisfies the notion of indistinguishability.

7 Closing Remarks

Motivated in part by the shortcomings of existing definitions of robustness, we have made a thorough
exploration of the landscape of robustness definitions and their relations, and given a suite of flexible and
efficient methods for obtaining completely robust AI-CCA-secure public-key encryption schemes. In future
work, one could explore the situation in the ID-based setting. Another open question, well beyond the
remit of this paper, is to formalize the fairness of auctions and formally prove that our CROB notion is
strong enough to ensure this property for Sako’s protocol or its variants.

7 As in [20], this function can be replaced by an injective encoding from G to Zp.
8 The standard KDF security requires that no distinguisher can tell if it is given the output of the KDF for a random input

or just a random element in the range of the KDF.

12

Acknowledgments. The authors would like to thank Mihir Bellare for his valuable comments. Pooya Farshim
is supported by grant Fi 940/4-1 of the German Research Foundation (DFG). Part of this work was done
while Benôıt Libert was an F.R.S.-F.N.R.S. scientific collaborator at the Université catholique de Louvain
(Belgium). Kenneth G. Paterson was supported by an EPSRC Leadership Fellowship, EP/H005455/1.

References

1. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John Malone-Lee, Gregory
Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Consistency properties, relation to anonymous
IBE, and extensions. J. Cryptology, 21(3):350–391, 2008. (Cited on page 1.)

2. Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In Daniele Micciancio, editor, TCC 2010, volume
5978 of Lecture Notes in Computer Science, pages 480–497. Springer, 2010. (Cited on pages 1, 2, 3, 4, 5, 8, 9, 14, 15, 17,
and 18.)

3. Adam Barth, Dan Boneh, and Brent Waters. Privacy in encrypted content distribution using private broadcast encryption.
In Giovanni Di Crescenzo and Aviel D. Rubin, editors, Financial Cryptography 2006, volume 4107 of Lecture Notes in
Computer Science, pages 52–64. Springer, 2006. (Cited on pages 1 and 15.)

4. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key encryption. In Colin
Boyd, editor, ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages 566–582. Springer, 2001.
(Cited on pages 1 and 5.)

5. Mihir Bellare, Eike Kiltz, Chris Peikert, and Brent Waters. Identity-based (lossy) trapdoor functions. In Advances in
Cryptology – Eurocrypt 2012, Lecture Notes in Computer Science. Springer, 2012. (Cited on page 25.)

6. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: Rka-prps, rka-prfs, and applications.
In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages 491–506. Springer, 2003.
(Cited on page 2.)

7. John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the presence of key-dependent
messages. In Kaisa Nyberg and Howard M. Heys, editors, Selected Areas in Cryptography, volume 2595 of Lecture Notes
in Computer Science, pages 62–75. Springer, 2002. (Cited on page 2.)

8. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption with keyword
search. In Ronald Cramer, editor, EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 506–
522. Springer, 2004. (Cited on page 1.)

9. Dan Boneh and Jonathan Katz. Improved efficiency for CCA-secure cryptosystems built using identity-based encryption.
In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages 87–103. Springer,
2005. (Cited on pages 4, 10, 25, and 26.)

10. Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In Vaudenay [30], pages 535–554.
(Cited on page 1.)

11. Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without random oracles). In Cynthia
Dwork, editor, CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages 290–307. Springer, 2006. (Cited
on pages 4 and 25.)

12. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption. In Christian
Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages
207–222. Springer, 2004. (Cited on page 3.)

13. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext
attack. In Hugo Krawczyk, editor, CRYPTO 1998, volume 1462 of Lecture Notes in Computer Science, pages 13–25.
Springer, 1998. (Cited on page 2.)

14. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive
chosen ciphertext attack. SIAM Journal of Computing, 33:167–226, 2003. (Cited on pages 2 and 4.)

15. Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. Message authentication, revisited. In Eurocrypt 2012,
volume 7237 of Lecture Notes in Computer Science, pages 355–374. Springer, 2012. (Cited on page 11.)

16. Léo Ducas. Anonymity from asymmetry: New constructions for anonymous HIBE. In Topics in Cryptology – CT-RSA
2010, volume 5985 of Lecture Notes in Computer Science, pages 148–164. Springer, 2010. (Cited on page 25.)

17. Marc Fischlin. Pseudorandom function tribe ensembles based on one-way permutations: Improvements and applications.
In Eurocrypt’99, volume 1592 of Lecture Notes in Computer Science, pages 432–445. Springer, 1999. (Cited on page 11.)

18. Rosario Gennaro and Victor Shoup. A note on an encryption scheme of Kurosawa and Desmedt. Cryptology ePrint
Archive: Report 2004/194, 2004. (Cited on pages 26 and 29.)

19. Craig Gentry. Practical identity-based encryption without random oracles. In Vaudenay [30], pages 445–464. (Cited on
page 25.)

20. Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation. In Crypto’07, volume 4622
of Lecture Notes in Computer Science, pages 553–571. Springer, 2007. (Cited on pages 4, 11, 12, 29, and 30.)

13

21. Dennis Hofheinz and Enav Weinreb. Searchable encryption with decryption in the standard model. IACR Cryptology
ePrint Archive, 2008:423, 2008. (Cited on pages 7 and 15.)

22. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial equations, and
inner products. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages
146–162. Springer, 2008. (Cited on page 1.)

23. Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme. In Crypto 2004, volume 3152 of
Lecture Notes in Computer Science, pages 426–442. Springer, 2004. (Cited on pages 4, 17, and 29.)

24. Benôıt Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia. Anonymous broadcast encryption: adaptive security and
efficient constructions in the standard model. In Public Key Cryptography 2012 (PKC 2012), Lecture Notes in Computer
Science. Springer, 2012. Available from http://eprint.iacr.org/2011/476. (Cited on pages 1, 17, and 18.)

25. Payman Mohassel. A closer look at anonymity and robustness in encryption schemes. In Masayuki Abe, editor, ASI-
ACRYPT, volume 6477 of Lecture Notes in Computer Science, pages 501–518. Springer, 2010. (Cited on pages 1, 2, 3, 4,
9, and 15.)

26. Kenneth G. Paterson and Sriramkrishnan Srinivasan. Security and anonymity of identity-based encryption with multiple
trusted authorities. In Steven D. Galbraith and Kenneth G. Paterson, editors, Pairing 2008, volume 5209 of Lecture Notes
in Computer Science, pages 354–375. Springer, 2008. (Cited on page 25.)

27. Kenneth G. Paterson and Sriramkrishnan Srinivasan. Building key-private public-key encryption schemes. In Colin Boyd
and Juan Manuel González Nieto, editors, ACISP 2009, volume 5594 of Lecture Notes in Computer Science, pages 276–292.
Springer, 2009. (Cited on page 25.)

28. Kazue Sako. An auction protocol which hides bids of losers. In Hideki Imai and Yuliang Zheng, editors, Public Key
Cryptography, volume 1751 of Lecture Notes in Computer Science, pages 422–432. Springer, 2000. (Cited on pages 1, 2,
4, 5, and 18.)

29. Victor Shoup. A proposal for an ISO standard for public key encryption (version 2.1). Manuscript, 2001. (Cited on
pages 9 and 14.)

30. Serge Vaudenay, editor. Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume
4004 of Lecture Notes in Computer Science. Springer, 2006. (Cited on page 13.)

A (Labeled) PKE Schemes and AI-ATK Security

We recall the syntax of a (labeled) public-key encryption scheme. We chose not to use the syntax of a
Generalized Encryption (GE) scheme [2], which simultaneously formalizes PKE and IBE schemes, for two
reasons. First, we will be mainly treating the robustness of public-key encryption schemes in this paper.
Second, the GE syntax is not flexible enough to allow defining the identity-based analogs of the notions
that we present for PKE schemes.

Labeled public-key encryption. A labeled public-key encryption scheme [29] is defined through a
four-tuple of algorithms as follows.

1. PG(1λ): This is the parameter generation algorithm. On input a security parameter λ ∈ N, it outputs
a set pars of common public parameters shared by all users in the scheme.

2. KG(pars): This is the key generation algorithm. On input of the public parameters pars, it outputs a
key-pair (sk , pk). Implicit in pk are descriptions of the message space MSp and the label space LSp.

3. Enc(pars, pk ,M,L): This is the encryption algorithm. On input of the public parameters pars, a public
key pk , a message M , and a label L, it outputs a ciphertext C or the special error symbol ⊥.

4. Dec(pars, pk , sk , C, L): This is the encryption algorithm. On input of the public parameters pars, a
public key pk , a secret key sk , a ciphertext C, and a label L, it outputs a message M or the special
error symbol ⊥.

A (standard) public-key encryption scheme is a labeled public-key encryption where LSp = {ε}.

AI security. We recall the definition of AI-CCA security given in [2] and extend it to the case of encryption
schemes with labels. This notion models the usual IND-CCA and anonymity (also known as key-privacy)

14

of a PKE scheme in a single game. The advantage of an adversary in the AI-ATK game is defined in the
usual way:

Advai-atk
PKE (A) := |2 · Pr[AI-ATKAPKE ⇒ T]− 1|

where game AI-ATK is shown in Figure 7. Note that we omit the security parameter from the games, and
deal with concrete security.

proc Initialize

T ← ∅; b←$ {0, 1}
pars ←$ PG
(sk0, pk0)←$ KG(pars)
(sk1, pk1)←$ KG(pars)
Return (pars, pk0, pk1)

proc Dec(b, C, L) // ATK = CCA

If b /∈ {0, 1} Then Return ⊥
If (C,L) ∈ T Then Return ⊥
M ← Dec(pars, pkb, skb, C, L)
Return M

proc LR(L?,M?
0 ,M

?
1)

C? ←$ Enc(pars, pk ,M?
b)

T ← T ∪ {(C?, L?)}
Return C?

proc Finalize(b′)

Return (b′ = b)

Fig. 7. Games defining AI-ATK security for encryption schemes with labels.

Correctness. We call scheme PKE correct if for any λ ∈ N, any pars ←$ PG(1λ), any (sk , pk)←$ KG(pars),
any M ∈ MSp, any L ∈ LSp, and any C ←$ Enc(pars, pk ,M,L), we have that Dec(pars, pk , sk , C, L) = M .

Correctness definitions do not specify how the cryptosystem behaves should the incorrect key pair be
used upon decryption. They are merely a property of the scheme when decryption is run on the correct keys.
Robustness definitions, on the other hand, model how this behavior on different keys, and were implicit in
a number of works prior to [2]. We briefly recall a number of robustness notions that exist in the literature.

B Collision Freeness and Well-addressedness

Collision freeness. This notion was introduced in [25] and captures the idea that a ciphertext should
decrypt to two distinct messages when decrypted using two distinct secret keys. While this notion seems
to be of standalone interest only in limited scenarios (in the case of expected messages for example) The
author considers both weak and strong collision freeness, both in the CPA and CCA setting (in the former
case there is no access to the Dec procedure). These notions were introduced as intermediate steps to
achieve strong robustness. The corresponding games are described in Figure 8. Note that, since it requires
the two messages to also collide (as well as being valid), collision freeness can be considered as a relaxation
of the notion of robustness (which only requires validity).

Strong correctness. The notion of strong correctness was introduced by Barth et al. [3]. This notion is
similar to the weak robustness notion except that the adversary is required to output the message before
receiving the public parameters of the system. This notion is therefore is even weaker than WROB. As it
this notion is about two public keys, in our view it is not a “correctness” condition.

Well-addressedness. This notion was introduced By Hofheinz and Weinreb [21] and has applications
in the context of public-key encryption with keyword search. This notion is defined for identity-based
encryption schemes, and is incomparable to strong robustness for IBE schemes. We have included the

15

proc Initialize

pars ←$ PG
(sk0, pk0)←$ KG(pars)
(sk1, pk1)←$ KG(pars)
Return (pars, pk0, pk1)

proc Dec(b, C) // ATK = CCA

If b /∈ {0, 1} Then Return ⊥
M ← Dec(pars, pkb, skb, C)
Return M

proc Finalize(M) // Weak collision freeness

M0 ←M ; C ←$ Enc(pars, pk0,M0)
M1 ← Dec(pars, pk1, sk1, C)
Return (M0 6=⊥) ∧ (M1 6=⊥) ∧ (M0 = M1)

proc Finalize(C) // Strong collision freeness

M0 ← Dec(pars, pk0, sk0, C)
M1 ← Dec(pars, pk1, sk1, C)
Return (M0 6=⊥) ∧ (M1 6=⊥) ∧ (M0 = M1)

Fig. 8. Games defining (two-user) weak/strong collision freeness.

definition below. As we shall see, the ID-analogues of notion of robustness that we introduce are strong
enough to imply well-addressedness.

proc Initialize

pars ←$ IBE .PG
(msk ,mpk)←$ IBE .MPG(pars)
Return (msk ,mpk)

proc Encrypt(id0)

M0 ←$ MSp
C ←$ IBE .Enc(pars,mpk , id0,M0)
Return C

proc Finalize(id1)

If (id0 = id1) Then Return F
sk id1 ←$ IBE .KG(pars,msk , id1)
M1 ← IBE .Dec(pars,mpk , id1, sk id1 , C)
Return (M1 6=⊥)

Fig. 9. Games defining well-addressedness of an IBE scheme. An adversary is legitimate if it calls Encrypt exactly once.

C On the Fairness of Sako’s Protocol using SROB Encryption Schemes

We first recall the CS? scheme. The common public parameters for CS? consist of a group G of prime order
p and the description of a family of functions H : Keys(H)×G3 → G. The algorithms of CS? are as follows:

PG: Choose K ←$ Keys(H), g1 ←$ G, and w ←$ Z∗p. Let g2 ← gw1 . Return (g1, g2,K).
KG(g1, g2,K): Choose random exponents x1, x2, y1, y2, z1, z2 ←$ Zp and compute

e = gx11 g
x2
2 , f = gy11 g

y2
2 , h = gz11 g

z2
2 .

The public key is pk = (e, f, h) and the private key is sk = (x1, x2, y1, y2, z1, z2).

Enc(pars, pk ,M): To encrypt a message M ∈ G,

1. Pick u←$ Z∗p and compute a1 = gu1 , a2 = gu2 , and b = hu.

2. Let c← b ·M, v ← H(K, (a1, a2, c)), d← eufuv.

The ciphertext is C = (a1, a2, c, d).

Dec(pars, pk , sk , C): Parse the ciphertext C as (a1, a2, c, d). Compute v ← H(K, (a1, a2, c)), M ← c ·
a−z11 a−z22 . If d 6= ax1+y1v1 ax2+y2v2 then set M ←⊥. If a1 = 1 then set M ←⊥. Return M .

The attack works as follows. Let V = {v1, ..., vN} be the set of possible bid values. The auctioneer runs
PG to obtain the public parameters (K, g1, g2). He chooses a fixed message M ∈ G as per Sako’s protocol.

16

He selects u, z1, z2, α1, α2 ← Z∗p and computes a1 = gu1 , a2 = gu2 , b = az11 a
z2
2 , c = b ·M , and d = aα1

1 aα2
2 . He

then computes v = H(K, (a1, a2, c)). If v = 0, the auctioneer re-samples and re-computes the values, until
v 6= 0. He then considers the following system of multivariate linear equations{

x1 + vy1 = α1

x2 + vy2 = α2

and finds N solutions (xi1 , xi2 , yi1 , yi2) with i ∈ {1, ..., N}, where all the values are in Zp.
The auctioneer sets sk i to be (xi1 , xi2 , yi1 , yi2 , z1, z2) for i ∈ {1, ..., N}. He passes u to the cheating

bidder and publishes all the public keys pk i = (g
xi1
1 g

xi1
2 , g

yi1
1 g

yi2
2 , gz11 g

z2
2) with i ∈ {1, ..., N}.

The cheating bidder can now bid for the value vi by encrypting M with randomness u under the public
key pk i to get ciphertext C. Such an encrypted bid C will decrypt to M under any sk j with j ∈ {1, ..., N},
since xi1 + vyi1 = xj1 + vyj1 and xi2 + vyi2 = xj2 + vyj2 , by construction. This means that during the
protocol, the auctioneer can first observe the highest honest bid (say h < N). Then, he can declare the
cheating bidder as the winner (for the bid h+ 1) by revealing the private key skh+1. This clearly gives the
dishonest bidder and colluding auctioneer a cheating strategy and breaks the fairness of the protocol.

Remark 1. It may be argued that the above attack can be detected by the bidders, as the maliciously gen-
erated public keys share the same third component. Although this is a valid point, it may be unreasonable
to assume that the bidders perform such checks outside the protocol description. Indeed, one (or the) goal
of robustness is to ensure that such checks are already implemented within the decryption algorithm. Let
us note that the attack of Abdalla et al. on the robustness of ElGamal also falls within the category of such
“traceable” attacks, as the ciphertexts are of the form (1, C). Despite this, and in order to further justify
the relevance of the new notions, we demonstrate in Appendix D an untraceable attack on the modified
Kurosawa–Desmedt encryption scheme (which was proven strongly robust under chosen-ciphertext attacks
in [24]).

Remark 2. The alert reader might notice that, if the auctioneer is allowed to collude with bidders, then
other, more direct attacks on the protocol are possible: indeed, the auctioneer can first decrypt all honest
bidders’ ciphertexts and tell the cheating bidder what his incremental bid has to be. These attacks can all
be prevented, informally at least, by having all players initially send a commitment to their ciphertexts (as
already suggested in [2, Appendix C]), so that a colluding bidder and auctioneer do not see honest bidders’
ciphertexts before a cheating bid is sent. In contrast, our attack works even in this case.

D A Variant of Kurosawa–Desmedt Is SROB-CCA but Not CROB

We recall the Kurosawa–Desmedt (KD) cryptosystem [23]. Here, the common public parameters consist
of a group G of prime order p > 2λ, with generators g1, g2 ∈R G. They also include the description of a
universal one-way hash function H : {0, 1}∗ → Zp, a key-derivation function KDF : G → {0, 1}k, for some
integer k ∈ poly(1λ), a symmetric authenticated encryption scheme (E,D) of key length k.

KG(pars): Given common public parameters pars = (G, g1, g2, H), choose x1, x2, y1, y2 ←$ Zp and compute

e = gx11 g
x2
2 , f = gy11 g

y2
2

The public key is pk = (e, f) and the private key is sk = (x1, x2, y1, y2).

Enc(pars, pk ,M): To encrypt a message M ∈ G,

1. Pick u←$ Zp and compute

a1 = gu1 , a2 = gu2 , d = (e · fv)u,

where v = H(a1, a2) ∈ Zp.

17

2. Compute K = KDF(d) ∈ {0, 1}k, c = EK(M).

The ciphertext is C = (a1, a2, c).

Dec(pars, pk , sk , C): Parse the ciphertext C as (a1, a2, c). Compute v = H(a1, a2), d = ax1+v·y11 · ax2+v·y22 ,
and K = KDF(d) ∈ {0, 1}k. Then, return m = DK(c) (which may be ⊥ if c fails to properly decrypt
under the key K).

The above algorithms describe the original Kurosawa–Desmedt encryption scheme. Following [2], we denote
by KD? the modified KD scheme where the encryption exponent u = 0 is explicitly disallowed: namely, the
sender chooses u←$ Z∗p (instead of u←$ Zp) at encryption and the receiver outputs ⊥ upon receiving a
ciphertext (a1, a2, c) such that a1 = 1G. We prove in [24] that KD? is strongly robust (with some conditions
on the symmetric components).

We will next see that KD? is not fully robust (and hence neither completely robust). We construct an
adversary A which gets as input pars, picks m←$ G and u, α1, α2 ←$ Z∗p. It then computes

a1 = gu1 , a2 = gu2 , v = H(a1, a2), d = aα1
1 aα2

2 .

Now consider the following system of multivariate linear equations{
x1 + vy1 = α1

x2 + vy2 = α2

Unless v = 0 such system has an infinite number of solutions. (In the case v = 0, A re-samples u). In
particular, let (x10, x20, y10, y20) and (x11, x21, y11, y21) be two integer solutions to the system.

Now A sets pk = (e, f) and pk ′ = (e′, f ′) to be

e = gx101 gx202 , f = gy101 gy202 , e′ = gx111 gx212 , f ′ = gy111 gy212 ,

i.e., the public keys corresponding to secret keys sk = (x10, x20, y10, y20) and sk ′ = (x11, x21, y11, y21),
respectively. The adversary A finally computes d = aα1

1 aα2
2 , K = KDF(d), and c = EK(M) and obtains a

ciphertext C = (a1, a2, c). Its output for the full robustness game will be
(
C, pk , pk ′, sk , sk ′

)
. By the choice

of sk and sk ′, it is clear that C, decrypted under both secret keys, will return a valid message M 6=⊥ with
probability 1.

In [24], the KD? scheme was proved SROB-CCA assuming that the key-derivation function is collision-
resistant and that the symmetric encryption scheme is key binding (i.e., each ciphertext is only valid for
one key). Even when these conditions are satisfied, the above attack still works since both keys recover the
same d = aα1

1 aα2
2 at decryption.

When KD? is used to implement the auction protocol of [28], this attack is much harder to detect than
that of Section 2.2 and the one of [2]: the only apparent way to make it evident is to audit the entire system
and force the auctioneer to reveal all private keys.

E Proof of the Characterization Theorem

We prove the theorem via a sequence of propositions as follows.

Proposition 2 (CROB ⇐⇒ FROB ∧ KROB ∧ XROB). A PKE scheme is CROB if and only if it is
simultaneously FROB, KROB, and XROB.

18

Proof. For the forward direction, suppose there is an adversary which wins one of the FROB, KROB, or
XROB games. Then this adversary also wins the CROB game by querying the FROB winning tuples to
the Dec oracle, the KROB winning tuples to the Enc oracle, and finally the first XROB winning tuple to
the Enc oracle and the second to the Dec oracle.

For the backward direction, note that a pair of winning tuples for the CROB game can arise in one
of three possible ways: (1) Both tuples were added to the list through decryption queries. This translates
into a winning output for an FROB adversary; (2) Both tuples were added to the list through encryption
queries. This translates into a winning output for a KROB adversary; (3) One tuple was added to the list
through an encryption query and the other through a decryption query. This translates into a winning
output for an XROB adversary. ut

For the first separation, we prove the stronger statement that KROB and XROB together are insufficient
to guarantee SROB-CPA (and hence also fail to imply FROB). As we shall see in Proposition 8, we have
that XROB =⇒ WROB-CCA, and hence this is the “best separation” one can hope for.

Proposition 3 (KROB∧XROB 6=⇒ SROB-CPA). Let PKE be a public-key encryption scheme which is
KROB and XROB. Then there is a scheme PKE ′ which is KROB and XROB, but fails to be SROB-CPA.

Proof. We define the required scheme PKE ′ to be identical to PKE except for its encryption and decryption
algorithms, which we modify as follows:

Enc′(pars, pk ,M): Run Enc(pars, pk ,M) to obtain ciphertext C. Return 0‖C.
Dec′(pars, pk , sk , c‖C): If c = 0 return Dec(pars, pk , sk , C). If c = 1 return a fixed (e.g., the lexicographi-

cally smallest) message M? in the message space for pk .

Note that PKE ′ is a correct public-key encryption scheme. Scheme PKE ′ is not SROB-CPA. Consider
the adversary A which queries GetEK twice to obtain, with overwhelming probability, two distinct public
keys pk0 and pk1. Now A picks a random C from the ciphertext space and gives (1‖C, pk0, pk1) as its final
output. It is easy to see that A wins with an overwhelming probability: pk0 6= pk1 and the decryption of
1‖C always returns a valid message by construction.

Next we show PKE ′ is still KROB. It is easy to see that the tweaks in the modified scheme do not
affect the KROB game, since the new encryption algorithm prepends a zero-bit to all ciphertexts.

In order to show that PKE ′ is still XROB, suppose an adversary A(pars) outputs a winning tuple
(M, pk0, r0, C1, pk1, sk1), where pk0 and pk1 are two distinct public keys. Note it must be the case that
C1 = 0‖C̃1, as otherwise A cannot win the XROB game (M is encrypted using Enc in the game). Now an
adversary B can win the XROB game for PKE by outputting (M, pk0, r0, C̃1, pk1, sk1). ut

Proposition 4 (FROB ∧ XROB 6=⇒ KROB). Let PKE be a public-key encryption scheme which is
FROB and XROB. Then there is a scheme PKE ′ which is FROB and XROB, but fails to be KROB.

Proof. We define the required scheme PKE ′ as follows.

PG′(1λ): Run PG(1λ) to obtain pars. Return pars.
KG′(pars): Run KG(pars) to obtain (sk , pk). Return (sk , 0‖pk).
Enc′(pars, b‖pk ,M): If b = 1, output 1λ. If b = 0, run Enc(pars, pk ,M), obtain ciphertext C and output

0‖C.
Dec′(pars, b‖pk , sk , c‖C): If b = 1 or c = 1 return ⊥. Else, run and output Dec(pars, pk , sk , C).

Note that PKE ′ is a correct public-key encryption scheme. To see that PKE ′ is not KROB, note that
an adversary which outputs 1‖pk0 and 1‖pk1, for two valid public keys pk1 and pk0 wins the KROB game
(for any pair of messages and any pair of random coins) as the resulting ciphertext in both cases is 1λ.

19

Next we show that PKE ′ is still FROB Suppose an adversary A(pars) outputs a winning tuple
(c‖C, b0‖pk0, b1‖pk1, sk0, sk1), where b0‖pk0 and b1‖pk1 are two distinct public keys. Note it must be
the case that b0 = b1 = 0, as otherwise decryption rejects and A cannot win the FROB game. Therefore it
is necessarily the case that pk0 6= pk1, and an adversary B can also win the FROB game against PKE by
outputting (C, pk0, pk1, sk0, sk1).

In order to show that PKE ′ is also XROB, suppose an adversary A(pars) outputs a winning tuple
(M, b0‖pk0, r0, c‖C, b1‖pk1, sk1), where b0‖pk0 and b1‖pk1 are two distinct public keys. We must have that
b1 = 0 and c = 0 as otherwise decryption rejects. We must also have that b0 = c, as the first bit of a
ciphertext output by encryption matches the first bit of the public key. Therefore b0 = b1 = c = 0, and an
adversary B can also win the XROB game against PKE by outputting (M, pk0, r0, C, pk1, sk1). ut

These propositions, together with Proposition 1, complete the proof of Theorem 1.

F Relation with WROB and SROB

It is clear that FROB =⇒ USROB =⇒ SROB-CCA as the adversary becomes progressively more
restricted in each game. We prove the rest of the theorem via a sequence of propositions.

Proposition 5 (USROB 6=⇒ FROB). Let PKE be a public-key encryption scheme which is USROB.
Then there is a scheme PKE ′ which is USROB, but fails to be FROB.

Proof. We define the required scheme PKE ′ as follows.

PG′(1λ): Run PG(1λ) to obtain pars. Return pars.
KG′(pars): Run KG(pars) to obtain (sk , pk). Return (sk , 0‖pk).
Enc′(pars, b‖pk ,M): Run Enc(pars, pk ,M) to obtain C. Return C.
Dec′(pars, b‖pk , sk , C): Return Dec(pars, pk , sk , C).

Observe that PKE ′ is a correct public-key encryption scheme. Furthermore, PKE ′ is not FROB. Con-
sider the adversary A which runs KG′(pars) to get a valid key-pair (sk , 0‖pk), picks a random message M
and runs Enc′(pars, 0‖pk ,M) to obtain a ciphertext C. The adversary A gives (C, 0‖pk , 1‖pk , sk , sk) as its
final output. It is easy to see that A wins with probability 1: 0‖pk 6= 1‖pk and the decryption of C with
the secret key sk returns a valid message due to correctness.

We now show PKE ′ is USROB. Suppose there is an adversary A which wins the USROB game against
PKE ′. We construct an adversary B that interacts with A to win the USROB game against PKE with
the same probability. Algorithm B(pars) runs A(pars) and handles A’s queries by forwarding them to its
own oracles simply prepending a zero-bit to all the public keys sent and received. Finally, when A outputs
(C, pk0, pk1) with pk0 6= pk1, B also outputs the same tuple. It’s easy to see that B provides a perfect
simulation of A’s environment, and that if A wins so does B. ut

Proposition 6 (SROB-CCA 6=⇒ USROB). Let PKE be a public-key encryption scheme which is SROB-
CCA. Then there is a scheme PKE ′ which is SROB-CCA, but fails to be USROB.

Proof. We define the required scheme PKE ′ as follows.

PG′(1λ): Run PG(1λ) to obtain pars. Return pars.
KG′(pars): Run KG(pars) to obtain (sk , pk). Sample s←$ {0, 1}λ and return (sk‖s, pk).
Enc′(pars, pk ,M): Run Enc(pars, pk ,M) to obtain ciphertext C. Return C.
Dec′(pars, pk , sk‖s, C): Parse C as C1‖C2. Run Dec(pars, pk , sk , C1). If the output is a valid message M ,

return M . Otherwise, check if C2 = s, and if so return a fixed (e.g., the lexicographically smallest)
message M? in the message space for pk . Else, return ⊥.

20

PKE ′ is a correct public-key encryption scheme.9 We first prove PKE ′ is not USROB by constructing
an adversary A which wins the USROB game against PKE ′. Algorithm A(pars) queries GetEK on two
identities id0, id1 to obtain, with overwhelming probability, two distinct public keys pk0 and pk1. It then
queries GetDK(id0) and receives sk0‖s0. Algorithm A runs Enc′(pars, pk1,M1), where M1 is any (valid)
message, obtaining C1. Adversary A then sets C2 := s0 and outputs (C := (C1‖C2), pk0, pk1) as its final
output. It is easy to see that this is a winning strategy for A: C when decrypted with respect to pk1 would
return M1 due to the correctness of the scheme. Furthermore, when decrypted with respect to pk0 we
obtain a valid message M since C2 = s0.

We now prove that PKE ′ is SROB-CCA. Suppose there is an adversary A which wins the SROB-CCA
game against PKE ′. We construct an adversary B that interacts with A to win the SROB-CCA game
against PKE . Algorithm B(pars) runs A(pars) and handles its queries as follows:

– GetEK(id) query: B queries its own GetEK(id) to get a public key pk . It then selects and stores a
random bit-string s of length λ. Algorithm B gives pk to A.

– GetDK(id) query: B queries its own GetDK(id) for the corresponding secret key sk . Algorithm B
then retrieves and appends s to sk and gives sk‖s as the response to A.

– Dec(C1‖C2, pk) query: B passes (C1, pk) to its own oracle. If the answer is a valid message M , B
forwards M to A. If the output is ⊥, B checks whether C2 is equal to s (which it holds). If so, B
outputs M? as the response to A’s query. If not, B returns ⊥.

Finally, when A outputs (C1‖C2, pk0, pk1), B outputs (C1, pk0, pk1).
We note that B provides a perfect simulation of A’s environment and that B wins whenever A wins

unless A does so by guessing the s-component of either pk0 or pk1. Since these s-components are random
and information theoretically hidden from A’s view, the probability of this event is at most 2 · 1

2λ
. This

completes the proof. ut

Note that by Proposition 4 we also have that SROB-CCA 6=⇒ KROB. The following proposition
provides a separation in the reverse direction.

Proposition 7 (KROB 6=⇒ WROB-CPA). Let PKE be a public-key encryption scheme which is KROB.
Then there is a scheme PKE ′ which is KROB, but fails to be WROB-CPA.

Proof. We define the required scheme PKE ′ to be identical to PKE except its decryption algorithm, which
we modify as follows:

Dec′(pars, pk , sk , C): If Dec(pars, pk , sk , C) is a valid message M , return M . If not return a fixed (e.g., the
lexicographically smallest) message M? in the message space for pk .

It is easy to see that PKE ′ is correct but it is not WROB-CPA: the decryption algorithm never
returns ⊥. However, the modified scheme is still KROB as the tweaked decryption algorithm does not
affect the KROB game. ut

By Proposition 1 we have that SROB-CCA 6=⇒ XROB, and by Proposition 3 we have that XROB 6=⇒
SROB-CPA. The implication to WROB is proved next.

Proposition 8 (XROB =⇒ WROB-CCA). Let PKE be a public-key encryption scheme which is XROB.
Then PKE is also WROB-CCA.

Proof. Let A be a WROB-CCA adversary. We construct an XROB adversary B as follows. Algorithm B
on input pars runs A(pars) and answers its various queries as follows:

9 If the decryption rule was defined to check for the equality before running Dec, correctness would only hold with over-
whelming probability.

21

– GetEK(id) query: B generates a new key-pair (sk , pk), stores them on a list, and passes the public key
to A.

– GetDK(pk) query: B retrieves the secret key corresponding to pk and pass it on to A.
– Dec(C, pk) query: B retrieves the secret key corresponding to pk , uses it to decrypt the ciphertext, and

returns the result to A.

WhenA terminates by outputting (M, pk0, pk1), algorithm B proceeds as follows. It first samples coins r0 for
the encryption algorithm and computes C1 := Enc(pars, pk1,M ; r). It then returns (M, pk0, r0, C1, pk1, sk1)
as its final output, where sk1 is the secret key corresponding to pk1. It is easy to see that B runs A in
an environment identical to WROB-CCA. Furthermore, whenever A is successful in winning this game,
algorithm B also breaks the XROB property. ut

G Definitions for Commitment Schemes

Recall that a commitment scheme (CPG,Com,Ver) is a triple of probabilistic polynomial-time (PPT)
algorithms where, on input of a security parameter λ, CPG outputs public parameters cpars; Com takes
as input a message m and outputs a commitment/de-commitment pair (com, dec)←$ Com(cpars,m), and
Ver(cpars,m, com, dec) is deterministic and outputs 0 or 1. The correctness property guarantees that Ver
always outputs 1 whenever (com, dec) is obtained by committing to m using honestly generated parameters.

The binding property demands that, given cpars, no PPT adversary should be able to produce a
commitment that can be opened to two distinct messages. More precisely, for any PPT adversary A we
require that the following advantage term is negligible as a function of λ.

Advbind
CMT (A) := Pr[Ver(cpars,m0, com, dec0) = Ver(cpars,m1, com, dec1) = 1 ∧ m0 6= m1 :

cpars ←$ CPG(1λ); (com,m0, dec0,m1, dec1)←$ A(cpars)]

A commitment is also said hiding if for any PPT adversary A = (A1,A2) the following advantage term
is negligible as a function of λ.

Advhide
CMT (A) := |2 · Pr[b = b′ : cpars ←$ CPG(1λ); b←$ {0, 1}; (m0,m1, st)←$ A1(cpars);

(com, dec)←$ Com(cpars,mb); b
′ ←$ A2(com, st)]− 1|

H Proof of Theorem 3

Proof. We treat the three possible cases corresponding to FROB, KROB, and XROB.
Given an FROB adversary A against PKE we construct an adversary B1 that will interact with A to

break the binding property of CMT . The game proceeds as follows.
Let C be B1’s challenger. C runs CPG to obtain the commitment schemes’s parameters cpars and passes

them on to B1. Algorithm B1 runs PG to obtain pars, which it passes to A together with cpars. Algorithm
B1 handles all of A’s queries.

Finally, A outputs (C, pk0, pk1, sk0, sk1), where C = (c, com) and pk0 6= pk1. Now, B1 runs the decryp-
tion algorithm twice, obtaining M0 ← Dec(pars, pk0, sk0, C) and M1 ← Dec(pars, pk1, sk1, C). Let Succ be
the event that M0 6=⊥ and M1 6=⊥. If Succ occurs then B1 parses M0 and M1 into M̃0‖dec0 and M̃1‖dec1,
respectively. It then gives (com, pk0, pk1, dec0, dec1) to C as its final output.
B1 provides a perfect simulation for A as well as a legal strategy for attacking the binding property

of CMT , provided Succ occurs. Since this happens whenever A is a winning adversary against the full
robustness of PKE , we have that B1’s advantage is the same as A’s.

22

Given a KROB adversary A against PKE we construct an adversary B2 that will interact with A to
break the binding property of CMT . The game proceeds as follows.

Let C be B2’s challenger. C runs CPG to obtain the commitment schemes’s parameters cpars and passes
them on to B2. Algorithm B2 runs PG to obtain pars, which it passes to A together with cpars. Algorithm
B2 handles all of A’s queries.
A outputs (M0,M1, pk0, pk1, r0, r1), where pk0 6= pk1, r0 = (r0cmt , r0enc) and r1 = (r1cmt , r1enc). Now,

B2 runs Com(cpars, pk0; r0com), obtaining (com0, dec0), and Com(cpars, pk1; r1com), obtaining (com1, dec1).
Then B2 computes ciphertexts c0 = Enc(pars, pk0,M0‖dec0; r0enc) and c1 = Enc(pars, pk1,M1‖dec1; r1enc).
Let C0 = (c0, com0) and C1 = (c1, com1). Let Succ be the event that C0 = C1 (and therefore c0 = c1 = c
and com0 = com1 = com). If Succ occurs then B2 outputs (com, pk0, pk1, dec0, dec1) and gives it to C.
B2 provides a perfect simulation for A as well as a legal strategy for attacking the binding property of

CMT , provided Succ occurs. Since this happens whenever A is a winning adversary against the key-less
robustness of PKE , we have that B2’s advantage is the same as A’s.

Given an XROB adversary A against PKE we construct an adversary B3 that will interact with A to
break the binding property of CMT . The game proceeds as follows.

Let C be B3’s challenger. C runs CPG to obtain the commitment scheme’s parameters cpars and passes
them on to B3. The latter runs PG to obtain pars, which it passes to A together with cpars. Then, B3
handles all of A’s queries during the game.

Eventually, A outputs (M0, pk0, r0, C1, pk1, sk1), where pk0 6= pk1, r0 = (r0cmt , r0enc). At this point,
B3 runs Com(cpars, pk0; r0com), obtaining (com0, dec0), and Dec(pars, pk1, sk1, C1), obtaining M1. Then B3
computes c0 = Enc(pars, pk0,M0‖dec0; r0enc). Let C0 = (c0, com0) and C1 = (c1, com1). Let Succ be the
event that C0 = C1 (and therefore c0 = c1 = c and com0 = com1 = com). If Succ occurs then B3 outputs
(com, pk0, pk1, dec0, dec1) and gives it to C.
B3 provides a perfect simulation for A as well as a legal strategy for attacking the binding property of

CMT , provided Succ occurs. Since this happens whenever A is a winning adversary against the key-less
robustness of PKE , we have that B3’s advantage is the same as A’s. ut

I Proof of Theorem 4

Proof. The proof proceeds with a sequence of games. For each i, we call Si that event that A calls Finalize
on input b′ = 0 in Game i.

Game 1: is the real game when the challenger’s bit equals b = 0. Namely, the adversary A interacts with
an actual AI-ATK challenger who sets b = 0 in the Setup procedure. The challenger always runs the Dec
procedure according to its specification. When A makes its unique LR query (M?

0 ,M
?
1), the challenger

computes (com?, dec?)←$ Com(cpars, pk0) and C? ←$ Enc
(
pars, pk0,M

?
0 ‖dec?, com?

)
. The adversary A is

given (C?, com?) as a challenge ciphertext. The game ends with A invoking Finalize with a bit b′ ∈ {0, 1}.

Game 2: is exactly like Game 1 with one difference in the description of the LR procedure. Namely, the
challenge ciphertext (C?, com?) is generated by computing a pair (com?, dec?)←$ Com(cpars, pk0) and a
ciphertext C? ←$ Enc

(
pars, pk1,M

?
1 ‖0|dec

?|, com?
)
, where 0|dec

?| denotes the all-zeroes string of the same
length as dec?.

We claim that there is a PPT algorithm B1 such that |Pr[S2] − Pr[S1]| ≤ Advai-atk
PKE (B1). Namely, B1

interacts with its own AI-ATK challenger and plays the role of A’s challenger. At the beginning of the game,
B1 generates cpars by running CPG and, when receiving (pars, pk0, pk1) of PKE from its challenger, it gives
(pars, cpars, pk0, pk1) to A. When A decides to invoke the LR oracle on the input of (M?

0 ,M
?
1), B1 first

computes a commitment/de-commitment pair (com?, dec?)←$ Com(cpars, pk0). It then defines messages

23

M
?
0 := M?

0 ‖dec?, M
?
1 := M?

1 ‖0|dec
?|, sets L? := com?, and queries its own LR oracle on (L?,M

?
0,M

?
1). The

latter oracle replies with C? ←$ Enc(pars, pkβ,M
?
β, L

?), for some random bit β ∈R {0, 1}, and B1 gives
(C?, com?) to A. Whenever A makes a Dec query for a pair

(
b, (C, com)

)
, B1 queries its own Dec oracle

for the input (b, C, com) (note that this is a decryption query for the label L = com). When receiving the
answer M‖dec, B1 checks if Ver(cpars, pk b, com, dec) = 1 and, if so, returns M to A. If its decryption oracle
returns ⊥ or if it happens that Ver(cpars, pk b, com, dec) = 0, B1 returns ⊥ to A. We observe that, due to
the use of labels, B1 can always answer A’s decryption queries using its own Dec oracle. Indeed, after the
challenge phase, A is disallowed to query the decryption oracle on (d,C?, com?), for each d ∈ {0, 1}. This
implies that B1 will never query its Dec oracle on an input of the form

(
d,C?, com?

)
, with d ∈ {0, 1}: if

C = C?, it must be the case that com 6= com? = L?.
It is easy to see that, if B1’s challenger chooses the bit β = 0, B1 is playing Game 1 with A. In the

situation where β = 1, B1 and A are playing Game 2.

Game 3: In this game, we bring a new change in the generation of the challenge ciphertext (C?, com?).
Now A’s challenger generates a commitment/de-commitment pair with respect to pk1: more precisely,
it commits to pk1 by computing (com?, dec?)←$ Com(cpars, pk1). Then, as in Game 2, it computes
C? ←$ Enc(pars, pk1,M

?
1 ‖0|dec

?|,L?), where L? = com?. If CMT is a hiding commitment, Game 3 is
clearly indistinguishable from Game 2. Indeed, it is straightforward to construct a distinguisher B2 such
that |Pr[S3]− Pr[S2]| ≤ Advhide

CMT (B2).
Game 4: We bring a final change to the computation of the challenge ciphertext (C?, com?). Namely,
A’s challenger commits to the public key pk1 by computing (com?, dec?)←$ Com(cpars, pk1). Then, it
computes C? ←$ Enc(pars, pk1,M

?
1 ‖dec?, L?), where L? = com?.

This game is exactly the real game when A’s challenger chooses the bit b = 1 at the beginning of the
experiment. There exists a PPT algorithm B3 such that |Pr[S4]−Pr[S3]| ≤ Advai-atk

PKE (B3). Algorithm B3 is
defined exactly as algorithm B1 in the transition from Game 1 to Game 2. The only differences are: (1) B3
is challenged on a single public key pk0 = pk1 = pk ; (2) M

?
0 and M

?
1 are now defined as M

?
0 = M1‖0|dec

?|

and M
?
1 = M1‖dec?, where dec? is the de-commitment information in (com?, dec?)←$ Com(cpars, pk1).

Clearly, if B3’s challenger encrypts M
?
0, B3 is playing Game 3 with A. Otherwise, B1 and A are rather

playing Game 4. ut

We now prove that the scheme is completely robust.

Proof. We show that the scheme is simultaneously FROB, KROB, and XROB. Let us first assume that
A defeats the FROB property and outputs (C, com) and two private keys sk0, sk1 such that, for each
b ∈ {0, 1}, the ciphertext C decrypts to messages Mb‖decb = Dec(pars, pk b, sk b, (C, com), com) such that
Ver(cpars, pk0, com, dec0) = 1 and Ver(cpars, pk1, com, dec1) = 1 although pk0 6= pk1. Then, the binding
property of CMT is necessarily broken.

Similar arguments apply in the KROB scenario, where the adversary outputs two pairs (Mb, pk b, rb),
with b ∈ {0, 1} and pk0 6= pk1, resulting in colliding ciphertexts C = Enc

(
(pars, cpars), pk b,Mb, rb

)
for

PKE . It necessarily means that rb contains incorporated random coins r′b for which we have (comb, decb)←
Com(cpars, pk b; r

′
b) with com = com0 = com1. This implies

Ver(cpars, pk0, com, dec0) = 1 and Ver(cpars, pk1, com, dec1) = 1,

which also contradicts the assumption that CMT is binding.
Finally, in the XROB case, the adversary outputs (M0, pk0, r0, C1, pk1, sk1) such that M0 6=⊥ and, if

we compute (C, com)← Enc
(
(pars, cpars), pk0,M0; r0

)
and M1‖dec1 ← Dec(pars, pk1, sk1, (C, com), com),

it holds that Ver(cpars, pk1, com, dec1) = 1. In this case, r0 must also contain random commitment coins
such that (com, dec0)← Com(cpars, pk0; r

′
0) and thus Ver(cpars, pk0, com, dec0) = 1. It means that we also

end up with openings (pk b, decb) of the same commitment com to distinct messages pk0 and pk1. ut

24

J Proof of Theorem 5

Let us first briefly recall that a multi-authority IBE scheme [26] consists of algorithms IBE = (IBE .PG,
IBE .MPG, IBE .KG, IBE .Enc, IBE .Dec), corresponding to cross-TA common parameter generation, master
key generation for each TA, user key generation, encryption, and decryption routines respectively. The
notion of sID-TAA-CPA security for IBE schemes in the multi-authority setting is formalized in Figure 10.
It is shown in [26,27] that applying the original CHK transformation to an sID-TAA-CPA secure IBE scheme
provides an AI-CCA-secure PKE. We will prove that our modification of the Boneh–Katz transformation
gives the same result.

It is worth noting that sID-TAA-CPA secure IBE schemes are available in the literature. Indeed, a
sufficient condition for IBE schemes to satisfy the notion of sID-TAA-CPA security is to have pseudorandom
ciphertexts: namely, ciphertexts should be computationally indistinguishable from a sequence of random
group elements. Many anonymous IBE schemes (e.g., [19,11,16,5]) have this property.

proc Initialize(id?)

pars ←$ IBE .PG
(msk0,mpk0)←$ IBE .MPG(pars)
(msk1,mpk1)←$ IBE .MPG(pars)
b←$ {0, 1}
Return (pars,mpk0,mpk1)

proc GetDK(d, id)

If d 6∈ {0, 1} Then Return ⊥
If id = id? Then Return ⊥
dk ←$ IBE .KG(pars,mskd, id)
Return dk

proc LR(M0,M1)

C ←$ IBE .Enc(pars,mpkb, id
?,Mb)

Return C

proc Finalize(b′)

Return (b′ = b)

Fig. 10. Game defining sID-TAA-CPA security for IBE schemes. An adversary is legitimate if it calls LR exactly once on two
messages of equal lengths.

We now prove Theorem 5.

Proof. The proof uses a sequence of games which is similar to that of [9]. For each i, we call Si that event
that Finalize receives the input b′ = 0 from A in Game i.

Game 1: is the real game when the challenger’s bit is b = 0. Namely, the adversary A interacts with
an actual AI-CCA challenger that runs the actual Setup procedure. The challenger always runs the
GetDK procedure by following its exact specification. When the adversary A sends its unique LR query
(M?

0 ,M
?
1), the challenger picks k? ←$ {0, 1}` at random, computes a commitment/de-commitment pair

(com?, dec?)←$ Com(cpars,mpk0‖k?) and an IBE ciphertext C? ←$ IBE .Enc
(
mpk0, com

?,M?
0 ‖k?‖dec?

)
.10

Then, A is given (C?, com?, tag?), where tag? = MacGenk?(C
?), as a challenge ciphertext. At the end of the

game, A calls Finalize with an input bit b′ ∈ {0, 1}. We observe that, without loss of generality, k? and
(com?, dec?)←$ Com(cpars,mpk0‖k?) can be chosen at the beginning of the game, during the execution of
Setup.

Game 2: is identical to Game 1, except that the Dec oracle now rejects all decryption queries (C, com, tag)
such that com = com?. Clearly, Game 2 is identical to Game 1 until Dec rejects a ciphertext that would
not have been rejected in Game 1. We distinguish the following cases in this event:

10 We omit pars as an explicit input to various IBE algorithms to ease notation.

25

- At some Dec query of the form (C, com?, tag) with respect to the public key pkd (with d ∈ {0, 1}), the
execution of algorithm IBE .Dec(mpkd, IBE .KG(mskd, com

?), com?, C) uncovers a message (M‖k‖dec)
such that Ver(cpars,mpkd‖k, com?, dec) = 1 and k 6= k?. We call this event E2.

- In all decryption queries (C, com?, tag), the IBE ciphertext C decrypts to a message of the form
M‖k?‖dec under the key dk com? = IBE .KG(mskd, com

?). We call this event F2.

It is clear that |Pr[S2] − Pr[S1]| ≤ Pr[E2] + Pr[F2]. If E2 occurs, it necessarily means that A provides its
challenger with correct openings (mpk0‖k?, dec?) and (mpkd‖k, dec) of a given commitment com? for two
distinct messages mpk0‖k? and mpkd‖k. If T CMT is binding, E2 only occurs with negligible probability
and there exists a PPT algorithm B0 such that Pr[E2] ≤ Advbind

T CMT (B0).
We thus have to argue that Pr[F2] is negligible. To do this, we use the “deferred analysis” technique [18]

in the same way as in [9]. Namely, we consider games Game 2.1 and 2.2 where we argue that F2 occurs
with about the same probability as in Game 2 and where it will be much easier to bound Pr[F2].

Game 2.1: we modify the generation of the challenge ciphertext. Namely, instead of computing the pair
(com?, dec?) as (com?, dec?)←$ Com(cpars,mpk0‖k?) at the beginning of the game, the challenger com-
putes (com?, dec?) as a commitment to a random message R and, in the challenge phase, uses the trapdoor
td of T CMT to equivocate com? (note that the trapdoor can be used since we do not appeal to the binding
property for now) and compute

dec′ ←$ Equiv(td , (mpk0‖k?), R, dec?)

such that Ver(cpars,mpk0‖k?, com?, dec′) = 1. Then, the challenge ciphertext (C?, com?, tag?) is obtained
by computing C? ←$ IBE .Enc(mpk0, com

?,M?
0 ‖k?‖dec′). Since T CMT is a trapdoor commitment scheme,

this change is purely conceptual since the pair (com?, dec′) has the same distribution as (com?, dec?) in
Game 2. For this reason, we know that Pr[F2.1] = Pr[F2], where F2.1 denotes the equivalent of event F2 in
Game 2.1.

Game 2.2: is like Game 2.1 with the difference that, when the challenge ciphertext (C?, com?, tag?) is gener-
ated by the LR procedure, com?, dec? and dec′ are computed as previously (in such a way that dec′ explains
com? as a commitment to mpk b‖k?) but C? is now computed as IBE .Enc

(
mpk0, com

?,M?
0 ‖0λ‖0|dec

?|),
where 0λ and 0|dec

?| denote all-zeroes strings of lengths λ and |dec?|, respectively. Observe that, in this
game, com? and C? are now completely independent of k?. In the following, we call F2.2 the counterpart
of event F2 in Game 2.2.

We show that any noticeable change in A’s behavior in Games 2.1 and 2.2 would contradict the
IND-sID-CPA security (i.e., its sID-TAA-CPA security in the case mpk0 = mpk1) of the IBE system. There

is a PPT algorithm B1 such that |Pr[F2.2]−Pr[F2.1]| ≤ Advind-sID-cpa
IBE (B1). Namely, B1 interacts with its own

IND-sID-CPA challenger and emulates A’s challenger. At the outset of the game, B1 chooses the description
MAC of a MAC and generates cpars by running CPG. It also computes (com?, dec?) by committing to a
random value R and declares com? as its target identity to the IND-sID-CPA challenger. When obtaining
the common public parameters pars and the master public key mpk of IBE from its challenger (note
that there is only one master public key in the definition of IND-sID-CPA security), it generates a pair
(mpk ′,msk ′)←$ IBE .MPG(pars) of its own and gives (pars, cpars,MAC) as well as mpk0 = mpk and
mpk1 = mpk ′ to A. At this point, B1 knows mpk0 and thus equivocates com? using the trapdoor td
to find a de-commitment dec′ such that Ver(cpars,mpk0‖k?, com?, dec′) = 1. When A invokes the LR
oracle on the input of (M?

0 ,M
?
1), B1 constructs the messages M

?
0 = M?

0 ‖k?‖dec′, M
?
1 = M?

0 ‖0λ‖0|dec
?|

which it sends to its own LR oracle in the IND-sID-CPA security game. The latter LR oracle replies with
C? ←$ IBE .Enc(mpk , com?,M

?
β), for some random bit β ∈R {0, 1}, and B1 provides A with the challenge

ciphertext (C?, com?, tag?), where tag? = MacGenk?(C
?). Algorithm B1 is able to faithfully answer all Dec

queries with respect to mpk1 = mpk ′ since it knows the underlying master secret key msk ′. Whenever A

26

makes a Dec query (C, com, tag) involving mpk0, B1 queries its own GetDK oracle whenever com 6= com?

to decrypt (when obtaining the answer M‖k‖dec, it returns M if Ver(cpars,mpk0‖k, com, dec) = 1 and
MacVerk(C) = 1 and ⊥ otherwise). If com = com?, B1 checks if MacVerk?(C, tag) = 1 and, if so, halts and

output 1. If we call F2.2 the latter event, it is clear that |Pr[F2.2]− Pr[F2.1]| ≤ Advind-sID-cpa
IBE (B1).

In Game 2.2, we claim that Pr[F2.2] ≤ q · Advsuf-cma
MAC (B2), for some efficient algorithm B2. Indeed,

assuming that F2.2 occurs with noticeable probability in Game 2.2, a standard technique allows building
an algorithm that breaks the strong (one-time) unforgeability of MAC with probability Pr[F2.2]/q. The
forger B2 simply chooses a random index i←$ {1, . . . , q}, invokes its MAC generation oracle to compute
tag? in the challenge ciphertext and outputs the pair (Ci, tag i) contained in the i-th decryption query.

When combining the above steps, we find that

Pr[F2] ≤ Advind-sID-cpa
IBE (B1) + q ·Advsuf-cma

MAC (B2).

Now, we are ready to proceed with Game 3, where we only have to worry about decryption queries
(C, com, tag) such that com 6= com?.

Game 3: we modify the generation of the challenge ciphertext analogously to the transition from Game 2 to
Game 2.1. Namely, instead of computing (com?, dec?)←$ Com(cpars,mpk0‖k?) at the outset of the game,
(com?, dec?) is computed by committing to a random message R. In the challenge phase, the challenger
uses the trapdoor of T CMT to equivocate com? and find

dec′ ←$ Equiv(td , (mpk0‖k?), R, dec?).

The challenge ciphertext (C?, com?, tag?) is computed as

C? ←$ IBE .Enc(mpk0, com
?,M?

0 ‖k?‖dec′).

Since T CMT is a trapdoor commitment scheme, this change is purely conceptual since the pair (com?, dec′)
has the same distribution as if it were produced by committing to mpk0‖k?. For this reason, we know that
Pr[S3] = Pr[S2] although the distribution of com? does not depend on mpk0‖k?.

Game 4: we change again the generation of the challenge ciphertext. In this game, the pair (com?, dec?) is
again generated by committing to a random value. However, the IBE part C? of the challenge ciphertext
is now computed as

dec′ ←$ Equiv(td , (mpk1‖k?), R, dec?)

C? ←$ IBE .Enc(mpk1, com
?,M?

1 ‖k?‖dec′)

To justify the transition from Game 3 to Game 4, we describe a sID-TAA-CPA adversary B3 against the
IBE scheme that “bridges” between the two games in such a way that |Pr[S4]−Pr[S3]| ≤ AdvsID-taa-cpa

IBE (B3).
Concretely, B3 interacts with its own sID-TAA-CPA challenger and embodies A’s challenger. At the be-
ginning of its interaction with A, B3 chooses the description MAC and generates cpars using CPG. It
computes (com?, dec?) by committing to a random value R and announces com? as the identity that it
wishes to be challenged upon. When obtaining the common public parameters pars and master public
keys mpk0,mpk1 from its sID-TAA-CPA challenger, it gives (pars, cpars,MAC) as well as mpk0,mpk1

to A. At this point, B3 equivocates com? twice to find suitable de-commitments dec′0, dec
′
1 such that

Ver(cpars,mpk0‖k?, com?, dec′0) = 1, Ver(cpars,mpk1‖k?, com?, dec′1) = 1. When the AI-CCA adversary
A calls the LR oracle with input values (M?

0 ,M
?
1), B3 defines messages M

?
0 = M?

0 ‖k?‖dec′0, M
?
1 =

M?
1 ‖k?‖dec′1 which are sent to B3’s LR oracle in the sID-TAA-CPA security game. The latter oracle

returns C? ←$ IBE .Enc(mpk , com?,M
?
β), where β ∈R {0, 1}, and B3 prepares A’s challenge ciphertext as

(C?, com?, tag?), where tag? = MacGenk?(C
?). Whenever A makes a Dec query (C, com, tag) involving

27

mpk0 or mpk1, B3 queries its own Dec oracle when com 6= com? (upon receiving the answer M‖k‖dec, it
proceeds as in step 2 of Dec). If com = com?, B3 returns ⊥. By inspection, it can be checked that, if B3’s
challenger chooses β = 0, B3 and A are playing Game 3. If β = 1, they are playing Game 4. As claimed,
it comes that |Pr[S3]− Pr[S4]| ≤ AdvsID-taa-cpa

IBE (B3).

Game 5: is identical to Game 4 except that the commitment/de-commitment pair (com?, dec?) is now
computed by committing to mpk1‖k? (and (M?

1 ‖k?‖dec?) is IBE-encrypted in the challenge phase, as
previously) instead of equivocating com?. This change does not affect A’s view since (com?, dec?) has the
same distribution either way. We thus have Pr[S5] = Pr[S4].

Game 6: is exactly the same as Game 5 but the Dec oracle does no longer reject any decryption queries
(C, com, tag) such that com = com?. Instead, the real Dec algorithm is always used. This transition can
be justified completely analogously to that between Game 2 and Game 3 (in other words, the probability
that one ciphertext gets rejected in one game and not in the previous one is the same) and we can write:

|Pr[S6]− Pr[S5]| ≤ Advbind
T CMT (B0) + AdvsID-taa-cpa

IBE (B1) + q ·Advsuf-cma
MAC (B2),

for certain PPT algorithms B0,B1, and B2.
It is easy to see that Game 6 is the real game when the challenger’s bit is b = 1. By collecting proba-

bilities, the announced result follows.

The proof of complete robustness of the scheme is similar to that of Theorem 4 and omitted. ut

K Proof of Theorem 6

Proof. To argue for the AI-CCA security, we prove that, even if the adversary has access to a decryption
oracle, ciphertexts are computationally indistinguishable from “dummy” ciphertexts that are statistically
independent of the plaintext or the receiver’s public key. Since all ciphertexts live in the same space,
regardless of the public key, this guarantees AI-CCA security.

Concretely, we show that the adversary cannot distinguish a real game from an ideal game. In the
former, he has access to a decryption oracle and, in the challenge phase, obtains a properly generated
encryption of the plaintext M? of his choice. In the latter, the challenge ciphertext is a dummy ciphertext
that has nothing to do with the plaintext chosen by the adversary or the receiver’s public key. We prove
that, even with the help of a decryption oracle, the adversary A cannot distinguish the two worlds. The
proof uses a sequence of games. For each i, we call Si the event that the adversary outputs b′ = 1 at the
end of Game i.

Game 1: is the real game with the difference that, in the challenge phase, the adversary is given an
encryption of a random plaintext. The adversary is given a public key pk and access to a decryption oracle.
In the challenge phase, it outputs a plaintext M?. The challenger responds by encrypting M?. At the end
of the game, after a second series of decryption queries, the adversary outputs a bit b′ ∈ {0, 1}.
Game 2: is like Game 1 but we change the generation of the public key pk . Namely, u and v are chosen as

u = gx1 · hx2 , v = gy1 · hy2

using random x1, x2, y1, y2 ←$ Zp. If we define ω = logg(h), this implicitly defines x = x1 + ωx2 and
y = y1 + ωy2. As in Game 1, the challenger rejects all decryption queries (C1, C2, C3, tag) for which
C2 6= Cx·τ+y1 . It is clear that these changes are purely conceptual since pk has the same distribution as
before. For, this reason, we have Pr[S2] = Pr[S1].

28

Game 3: is identical to Game 2 but the challenger rejects all decryption queries (C1, C2, C3, tag) such
that C1 6= C?1 and TCR(C1) = TCR(C?1) (we assume, without loss of generality, that C?1 is computed at
the beginning of the game). If the adversary A manages to create a ciphertext that is rejected in Game
3 but would not have been rejected in Game 2, the challenger B can clearly use A to break the target
collision-resistance of TCR. We can thus write |Pr[S3]− Pr[S2]| ≤ Advtcr

TCR(B).

Game 4: is like Game 3 but the decryption oracle rejects all post-challenge queries (C1, C2, C3, tag) such
that C?3 6= C3 and H(C3, pk) = H(C?3 , pk). This time, we have |Pr[S4] − Pr[S3]| ≤ Advcr

H(B) and rely on
the collision-resistance of H to argue that Game 4 and Game 3 are indistinguishable.

Game 5: we modify the decryption oracle. At each query (C1, C2, C3, tag), the challenger computes τ =
TCR(C1), (K0,K1) = KDF(Ω), where

Ω =
(C2

Cτ ·x1+y11

) 1
τ ·x2+y2 , (K.1)

and M = DK0(C3). If MacVerK1(H(C3, pk), tag) = 1, it outputs M . Otherwise, it output ⊥. We claim that,
if KDF is a secure key-derivation function and ifMAC is unforgeable, the modified decryption oracle does
not reject a ciphertext that would not have been rejected in Game 5. The technique of [23,18,20] allows
proving that |Pr[S5]− Pr[S4]| ≤ q ·

(
Advsuf-cma

MAC (B1) + Advkdf
KDF(B2)

)
for some efficient algorithms B1 and

B2. The argument is as follows. Suppose that a ciphertext (C1, C2, C3, tag) is invalid because C2 6= Cτ ·x+y1 .
It means that we have C1 = gr and C2 = (uτ · v)r · gr′ for some r ∈ Zp and some r′ 6= 0. The decryption
oracle thus computes Ω = hr · gr′/(τ ·x2+y2), which is uniformly random from A’s view. Indeed, it is the
product of hr, which is uniquely determined by C1, and gr

′/(τ ·x2+y2) that is completely independent of A’s
view because the public key reveals no information about (x2, y2). The same analysis as in [23,18,20] shows
that creating an invalid ciphertext that does not get rejected amounts to forging a MAC for a randomly
chosen key or breaking the security of the key-derivation function. We also note that the value ω = logg(h)
is not used by the decryption oracle anymore.

Game 6: We modify the generation of the challenge ciphertext. Namely, the challenger B first defines
η1 = gr

?
, η2 = hr

?
and τ? = TCR(η1), for a randomly chosen r? ←$ Zp, and computes

C?1 = η1, C?2 = ητ
?·x1+y1

1 · ητ
?·x2+y2

2 (K.2)

(K?
0 ,K

?
1) = KDF(η2), C

?
3 = EK?

0
(M?) and tag? = MacGenK?

1
(H(C?3 , pk)). This modification does not affect

A’s view since (C?1 , C
?
2 , C

?
3 , tag?) has the same distribution as in Game 5. So, Pr[S6] = Pr[S5].

Game 7: We change again the generation of the challenge (C?1 , C
?
2 , C

?
3 , tag?). Namely, η2 is now chosen at

random in G instead of being defined as η2 = hr
?
, where r? = logg(η1). Under the DDH assumption, this

modification should not significantly affect A’s view. It comes that |Pr[S7]− Pr[S6]| ≤ Advddh
G (B).

Game 8: In this game, we can use the value ω = logg(h) since we are done with the DDH assumption.

Here, the decryption oracle rejects again all ciphertexts (C1, C2, C3, tag) for which C2 6= Cτ ·x+y1 , where
τ = TCR(C1), x = x1 + ωx2 and y = y1 + ωy2. For each ciphertext (C1, C2, C3, tag) such that C1 = gr and
C2 = (uτ · v)r · gr′ , with r′ 6= 0, the decryption oracle of Game 7 derives (K0,K1) from

Ω = hr · gr′/(τ ·x2+y2).

In (K.2), we now have η1 = gr
?

and η2 = hr
?+r′′ , for some r? ∈R Zp and r′′ 6= 0. The challenge ciphertext

is thus distributed as

C?1 = gr
?
, C?2 = (uτ

? · v)r
? · hr′′·(τ?·x2+y2), (K.3)

29

and it reveals hr
′′·(τ?·x2+y2) in the information theoretic sense. However, we have τ 6= τ? unless the failure

event of Game 3 occurs, so that τ? ·x2 +y2 and τ ·x2 +y2 are independent. This means that Ω is uniformly
random from A’s view. The only way for A to create an invalid ciphertext that would be rejected in
Game 8 and not in Game 7 is to break the unforgeability of MAC or the security of the key-derivation
function. Using the same arguments as in, e.g., [20], we can thus write the inequality |Pr[S8] − Pr[S7]| ≤
q ·
(
Advsuf-cma

MAC (B3) + Advkdf
KDF(B4)

)
, for some efficient algorithms B3 and B4.

In Game 8, we claim that C?1 , C?2 , and η2 (which is used to derive the keys (K?
0 ,K

?
1) = KDF(η2) in

the challenge ciphertext) look independent to A. Indeed, from (K.3) and since the value τ? · x2 + y2 is
independent of A’s view, (C?1 , C

?
2 , η2) is statistically indistinguishable from a triple of three random and

independent group elements.

Game 9: We change again the construction of the challenge ciphertext. Namely, we choose K?
0 and K?

1

at random instead of deriving them from η2. Since KDF is a secure key-derivation function, we have
|Pr[S9]− Pr[S8]| ≤ Advkdf

KDF(B).

Game 10: We bring one more change to the computation of the challenge ciphertext (C?1 , C
?
2 , C

?
3 , tag?).

Namely, instead of computing tag? = MacGenK?
1
(H(C?1 , pk)), we compute the MAC as tag? = MacGenK?

1
(R),

where R←$ MSpmac is chosen independently of C?1 or pk . Due the indistinguishability property of MAC,
however, this change is not noticeable to A and we have |Pr[S10]− Pr[S9]| ≤ Advindist

MAC(B).

Game 11: We introduce a final change in the generation of (C?1 , C
?
2 , C

?
3 , tag?). Namely, instead of computing

C?3 as C?3 = EK?
0
(M?), we symmetrically encrypt a random plaintext M ′ which is chosen independently of

M?. Clearly, any significant change in A’s behavior would contradict the semantic security of the symmetric
cipher (E,D) and we can write |Pr[S11]− Pr[S10]| ≤ Advind-cpa

E,D (B) for some efficient adversary B against
(E,D).

In Game 11, the challenge ciphertext (C?1 , C
?
2 , C

?
3 , tag?) is perfectly independent of the public key pk

and the message M? chosen by A. ut

We now prove the second part of the theorem.

Proof. Let us assume that an adversary can break one of the FROB, KROB or XROB notions. We show
that it can either find a collision on H or contradict the assumption of MAC being committing.

We first consider the FROB case and assume that, on input of pars, an adversary A is able to output a
ciphertext C = (C1, C2, C3, tag) and two keys pairs (sk , pk), (sk ′, pk ′) such that C correctly decrypts under
both sk = (x, y, z) and sk ′ = (x′, y′, z′). If we define (K0,K1) = KDF(Cz1) and (K ′0,K

′
1) = KDF(Cz

′
1), we

must have MacVerK1(H(C3, pk), tag) = 1 and MacVerK′1(H(C3, pk ′), tag) = 1. It means that either:

- H(C3, pk) = H(C3, pk ′), in which case the collision resistance of H is broken since pk 6= pk ′.
- MAC is not a committing MAC because there exist two keys K1, K

′
1 and two distinct messages

R = H(C3, pk), R′ = H(C3, pk ′) such that MacVerK1(R, tag) = 1 and MacVerK′1(R′, tag) = 1.

It is straightforward that the same arguments apply in KROB and XROB cases. ut

30

	Robust Encryption, Revisited
	Introduction
	Previous Notions of Robustness and Their Limitations
	New Notions of Robustness
	Relations among Notions of Robustness
	Generic Constructions of Completely Robust Public-key Encryption
	A Concrete CROB Scheme
	Closing Remarks
	(Labeled) PKE Schemes and AIATK Security
	Collision Freeness and Well-addressedness
	On the Fairness of Sako's Protocol using SROB Encryption Schemes
	A Variant of Kurosawa–Desmedt Is SROBCCA but Not CROB
	Proof of the Characterization Theorem
	Relation with WROB and SROB
	Definitions for Commitment Schemes
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6

