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Preface

These are basically the lecture notes for the short course Applications of Combinatorics to
Information-Theoretic Cryptography, Central European University, Budapest, May-June
2012. With the objective of covering a full course on secret sharing, additional content
will be added in subsequent versions of these lecture notes.

Secret sharing, which was independently introduced in 1979 by Shamir [49] and Blak-
ley [6], is one of the most widely studied topics in information-theoretic cryptography. In a
secret sharing scheme, a secret value is distributed into shares among a set of participants
is such a way that only some qualified coalitions of participants can recover the secret
value from their shares. One can think immediately on possible applications of secret
sharing. The first one, proposed by the pioneering authors [6, 49], was safe storage of
cryptographic keys. Nevertheless, a number of much less obvious applications of secret
sharing to different kinds of cryptographic protocols have appeared. Arguably, the most
interesting one is secure multiparty computation [5, 11, 12, 14, 29, 30].

Similarly to other topis in cryptography, research in secret sharing has attracted a
lot of attention. Shortly after its introduction, difficult open problems appeared, and the
attempts to solve them have involved several areas of mathematics. We focus here mainly
on the ones involving matroid theory.

Unfortunately, no textbook on secret sharing has appeared yet, but two excellent
surveys [1, 54] are available. The reader is referred to [20, 56] for basic textbooks on
cryptography. The textbooks on matroid theory by Oxley [44] and by Welsh [57] may be
useful too.
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Chapter 1

Basics on Matroid Theory and
Information Theory

1.1 Introduction

We present here some basic facts on Matroid Theory and Information Theory that will be
used in the other chapters. The reader will find more information about these topics in
the textbooks [13, 44, 57]. For a set Q, we notate P(Q) for the power set of Q, that is,
the set of all subsets of Q.

1.2 Matroids and Polymatroids

Definition 1.2.1. A polymatroid is a pair (Q, f), where Q is a finite set, and f is a map
f : P(Q) → R satisfying the following properties.

1. f(∅) = 0.

2. f is monotone increasing : if A ⊆ B ⊆ Q, then f(A) ≤ f(B).

3. f is submodular : f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) for all A,B ⊆ Q.

The set Q and the map f are called, respectively, the ground set and the rank function of
the polymatroid. A polymatroid is said to be integer if its rank function is integer-valued.

Definition 1.2.2. A matroid M is an integer polymatroid (Q, r) such that r(A) ≤ |A|
for every A ⊆ Q. The independent sets of M are the subsets A ⊆ Q with r(A) = |A|. The
sets that are not independent are called dependent . A basis is a maximal independent set
and a circuit is a minimal dependent set.

We presented a definition of matroid in terms of the properties of the rank function.
The following propositions provide equivalent definitions that are based, respectively, on
the properties of the independent sets, the bases, and the circuits. The proofs for these
results can be found, for instance, in the textbook by Oxley [44].

Proposition 1.2.3. Let Q be a finite set and I ⊆ P(Q) a family of subsets. Then I is the
family of the independent sets of a matroid with ground set Q if and only if the following
properties are satisfied.

1. ∅ ∈ I.

7
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2. If F ∈ I and F ′ ⊆ F , then F ′ ∈ I.

3. If F1 and F2 are in I and |F1| < |F2|, then there exists x ∈ F2 − F1 such that
F1 ∪ {x} ∈ I.

Moreover, this matroid is unique since its rank function is determined by r(A) = max{|F | :
F ∈ I, F ⊆ A}.

Proposition 1.2.4. A family B ⊆ P(Q) is the family of bases of a matroid with ground
set Q if and only if B is nonempty and the following exchange condition is satisfied.

• For every B1, B2 ∈ B and x ∈ B1 − B2, there exists y ∈ B2 − B1 such that (B1 −
{x}) ∪ {y} is in B.

This matroid is unique because the independent sets are determined by the bases.

Proposition 1.2.5. A family C ⊆ P(Q) is the family of circuits of a matroid with ground
set Q if and only if the following conditions are satisfied.

1. ∅ /∈ C.

2. C is an antichain, that is, C1 ̸⊆ C2 if C1, C2 ∈ C and C1 ̸= C2.

3. If C1, C2 ∈ C are different and x ∈ C1 ∩ C2, then there exists C3 ∈ C with C3 ⊆
(C1 ∪ C2)− {x}.

Since the independent sets are determined by the circuits, this matroid is unique.

1.3 Some Operations on Matroids and Polymatroids

Definition 1.3.1. If S1 = (Q, f1) and S2 = (Q, f2) are polymatroids on the same ground
set, then S1 + S2 = (Q, f1 + f2) is clearly a polymatroid, which is called the sum of the
polymatroids S1 and S2. Moreover, if c is a positive real number, then cS1 = (Q, cf1) is a
polymatroid, which is said to be a multiple of the polymatroid S1.

Definition 1.3.2. For a polymatroid S = (Q, f) and a set Z ⊆ Q, the polymatroids
S \Z = (Q−Z, f\Z) and S/Z = (Q−Z, f/Z) are defined, respectively, by f\Z(A) = f(A)
and f/Z(A) = f(A ∪ Z) − f(Z). Every polymatroid that can be obtained from S by
repeatedly applying these operations is called a minor of S. Observe that the minors of a
matroid are matroids as well.

Proposition 1.3.3. For a polymatroid S with ground set Q and disjoint subsets Z1, Z2 ⊆
Q, the following properties are satisfied.

1. (S \ Z1) \ Z2 = S \ (Z1 ∪ Z2) and (S/Z1)/Z2 = S/(Z1 ∪ Z2).

2. (S \ Z1)/Z2 = (S/Z2) \ Z1.

As a consequence, every minor of S is of the form (S \ Z1)/Z2 for some disjoint sets
Z1, Z2 ⊆ Q.

Definition 1.3.4. If B is the family of bases of a matroid M on a set Q, then

B∗ = {B ⊆ Q : Q−B ∈ B}

is the family of bases of a matroid M∗ (Problem 1.2), which is called the dual matroid
of M .
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Proposition 1.3.5. The following properties hold for a matroid M = (Q, r).

1. M∗∗ = M .

2. The rank function r∗ of the dual matroid M∗ is given by r∗(A) = |A|−r(Q)+r(Q−A)
for every A ⊆ Q.

3. (M \ Z)∗ = M∗/Z and (M/Z)∗ = M∗ \ Z for every Z ⊆ Q.

1.4 Linear Representations of Matroids and Polymatroids

Let E be a vector space over a field K and (Vi)i∈Q a tuple of vector subspaces of E.
Then the map f : P(Q) → Z defined by f(X) = dim

∑
i∈X Vi for every X ⊆ Q is the

rank function of an integer polymatroid Z with ground set Q. Clearly, Z is a matroid if
dimVi ≤ 1 for every i ∈ Q. Matroids and integer polymatroids that can be defined in this
way are said to be K-linearly representable, or simply K-linear or K-representable, and
the tuple (Vi)i∈Q is called a K-linear representation of Z.

Clearly, a K-linear representation of a matroid M can be seen as a tuple (vi)i∈Q of
vectors in E. If a basis of E is given, this representation can be presented as a matrix G
over K with a one-to-one correspondence between the columns of G and the elements in Q.
Each column of G contains the components of the corresponding vector vi. In particular,
this matrix can be seen as a generator matrix of a K-linear code C. All generator matrices
of a linear code define the same matroid. Nevertheless, a matroid can be K-linearly
represented by inequivalent linear codes.

Theorem 1.4.1. All minors of a K-linear integer polymatroid are K-linear.

Proof. Let Z = (Q,h) be a K-linear integer polymatroid and take Z ⊆ Q. Consider a
tuple (Vi)i∈Q of vector subspaces of a K-vector space E that linearly represents Z over K.
Obviously, (Vi)i∈Q−Z is a K-linear representation of Z \ Z. Take VZ =

∑
i∈Z Vi and, for

every i ∈ Q− Z, the vector subspace Wi = (Vi + VZ)/VZ of E/VZ . Then (Wi)i∈Q−Z is a
K-linear representation of Z/Z.

Theorem 1.4.2. If a linear code C linearly represents the matroid M over K, then the
dual code C⊥ is a K-linear representation of the dual matroid M∗. Therefore, the dual of
a K-linear matroid is K-linear too.

The multiples of K-linear polymatroids are said to be K-poly-linear . Observe that a
matroid M = (Q, r) is K-poly-linear if and only if there exists a positive integer c such
that the integer polymatroid cM = (Q, cr) is K-linear.

1.5 Shannon Entropy

Definition 1.5.1. Let X be a discrete random variable on a finite set E. The Shannon
entropy (or simply entropy) of X is

H(X) = −
∑
x∈E

p(x) log p(x)

where the binary logarithm is considered, and we take p(x) log p(x) = 0 if p(x) = 0.
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Lemma 1.5.2. Jensen’s inequality. Let I ⊂ R be an interval and f : I → R a strictly
convex function. Then,

f

(
k∑

i=1

λixi

)
≤

k∑
i=1

λif(xi)

for every x1, . . . , xk ∈ I and λ1, . . . , λk ∈ R with 0 < λi < 1 and λ1 + · · · + λk = 1. The
equality holds if and only if x1 = · · · = xk.

Proof. Since f is a strictly convex function, for every x1, x2 ∈ I, the segment

((1− λ)x1 + λx2, (1− λ)f(x1) + λf(x2)), 0 ≤ λ ≤ 1

lies over the graph of f . That is, f((1−λ)x1+λx2) ≤ (1−λ)f(x1)+λf(x2) if 0 ≤ λ ≤ 1,
while the equality holds only if x1 = x2 or λ = 0, 1. This proves the lemma for the case
k = 2. The proof is concluded by induction on k. Consider x1, . . . , xk and λ1, . . . , λk in
the required conditions. For i = 1, . . . , k − 1, take µi = λi/(1 − λk). Consider as well
y1 =

∑k−1
i=1 µixi and y2 = xk. Then, by the induction hypothesis,

f

(
k∑

i=1

λixi

)
= f((1− λk)y1 + λky2)

≤ (1− λk)f(y1) + λkf(y2)

≤ (1− λk)

k−1∑
i=1

µif(xi) + λkf(xk) =

k∑
i=1

λif(xi).

Clearly, the equality holds if and only if x1 = · · · = xk.

Proposition 1.5.3. For a discrete random variable X on a set E, the following properties
hold.

• 0 ≤ H(X) ≤ log |E|.

• H(X) = 0 if and only if there exists x0 ∈ E with p(x0) = 1.

• H(X) = log |E| if and only if p(x) = 1/|E| for every x ∈ E.

Proof. Clearly, H(X) ≥ 0, and H(X) > 0 if 0 < p(x) < 1 for some x ∈ E. Applying
Lemma 1.5.2 to the strictly convex function f(x) = − log x,

H(X) =
∑

x∈E,p(x)̸=0

p(x) log

(
1

p(x)

)
≤ log

 ∑
x∈E,p(x) ̸=0

p(x)

p(x)

 ≤ log |E|

and the equality holds if and only if p(x) = 1/|E| for every x ∈ E.

If X and Y are two random variables on the sets E and F , respectively, we can consider
the entropy of the random variable (X,Y ) on the set E × F :

H(XY ) = −
∑

(x,y)∈E×F

p(x, y) log p(x, y).

In addition, for every y ∈ F , we can consider the random variable X|Y = y on the set E
and its entropy:

H(X|Y = y) = −
∑
x∈E

p(x|y) log p(x|y).

The conditional entropy is defined by taking the average of this quantity on the set F .
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Definition 1.5.4. Let X and Y be random variables on the sets E and F , respectively.
The conditional entropy of X with respect to Y is defined as:

H(X|Y ) = −
∑
y∈F

p(y)

(∑
x∈E

p(x|y) log p(x|y)

)
.

Proposition 1.5.5. The following properties hold for every two random variables X
and Y .

1. 0 ≤ H(X|Y ) ≤ H(X).

2. H(X|Y ) = 0 if and only if for every y ∈ F there exists x ∈ E with p(x|y) = 1.

3. H(X|Y ) = H(X) if and only if the random variables X and Y are independent.

4. H(XY ) = H(Y ) +H(X|Y ) = H(X) +H(Y |X).

Proof. Clearly, H(X|Y ) ≥ 0. In addition, H(X|Y ) = 0 if and only if H(X|Y = y) =
−
∑

x∈E p(x|y) log p(x|y) = 0 for every y ∈ F . Observe that the function f(x) = x log x is
strictly convex. Then, by Lemma 1.5.2,

H(X|Y ) = −
∑
x∈E

∑
y∈F

p(y)p(x|y) log p(x|y)

≤ −
∑
x∈E

∑
y∈F

p(y)p(x|y)

 log

∑
y∈F

p(y)p(x|y)


= −

∑
x∈E

p(x) log p(x) = H(X).

The equality holds if and only if, for every x ∈ E, the value p(x|y) is constant, that is,
p(x|y) = p(x) for every y ∈ F . A straightforward calculation proves the fourth property.

Proposition 1.5.6. Let X, Y and Z be random variables. Then H(X|Y Z) ≤ H(X|Y ).

Proof. We proceed in a similar way as in the proof of Proposition 1.5.5.

H(X|Y Z) = −
∑
x∈E

∑
(y,z)∈F×G

p(y, z)p(x|yz) log p(x|yz)

= −
∑
x∈E

∑
y∈F

p(y)
∑
z∈G

p(z|y)p(x|yz) log p(x|yz)

≤ −
∑
x∈E

∑
y∈F

p(y)

(∑
z∈G

p(z|y)p(x|yz)

)
log

(∑
z∈G

p(z|y)p(x|yz)

)
= −

∑
x∈E

∑
y∈F

p(y)p(x|y) log p(x|y) = H(X|Y ).

For a finite set Q, consider a family of random variables (Si)i∈Q, where Si is defined
on a set Ei. For every A ⊆ Q, we use SA to denote the random variable (Si)i∈A on the
set
∏

i∈AEi, and H(SA) will denote its Shannon entropy. Fujishige [27, 28] found out the
following connection between Shannon entropy and polymatroids.
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Theorem 1.5.7. Let (Si)i∈Q be a family of random variables. Consider the mapping
h : P(Q) → R defined by h(∅) = 0 and h(A) = H(SA) if ∅ ̸= A ⊆ Q. Then h is the rank
function of a polymatroid with ground set Q.

Proof. If A ⊆ B ⊆ Q, then h(B) = H(SB) = H(SASB−A) = H(SA) + H(SB−A|SA) ≥
H(SA) = h(A). Finally, for every two subsets A,B ⊆ Q,

h(A ∪B) = H(SA) +H(SB−A|SA)

≤ H(SA) +H(SB−A|SA∩B)

= H(SA) +H(SB)−H(SA∩B)

= h(A) + h(B)− h(A ∩B),

where the inequality is a consequence of Proposition 1.5.6.

Because of this connection between polymatroids and the Shannon entropy, and by
analogy to the conditional entropy, for a polymatroid S = (Q, f), we write f(X|Y ) =
f(X ∪ Y )− f(Y ). Clearly,

f(A1 ∪ · · · ∪Ar) =
r∑

i=1

f(Ai|A1 ∪ · · · ∪Ai−1) (1.1)

for all A1, . . . , Ar ⊆ Q. Obviously, f(X|Y ) ≥ 0 and submodularity implies that f(X|Y ) ≥
f(X|Y ∪Z). Moreover, f(X|Y ∪Z) = f(X|Y ) if f(Z|Y ) = 0. Indeed, this is a consequence
of the equality f(Z|Y ) + f(X|Y ∪ Z) = f(X|Y ) + f(Z|X ∪ Y ).

1.6 Entropic Polymatroids

We saw in Section 1.4 that some integer polymatroids admit linear representations, that
is, they can be represented by a family of vector subspaces. As a consequence of Theo-
rem 1.5.7, we can use families of discrete random variables to represent polymatroids.

Definition 1.6.1. A polymatroid S = (Q, h) is said to be entropic if there exists a family
(Si)i∈Q of discrete random variables such that h(A) = H(SA) for every A ⊆ Q. A poly-
entropic polymatroid is a multiple of an entropic polymatroid.

In order to prove the main result in this section, Theorem 1.6.2, we need to introduce
a special class of families of discrete random variables: the ones defined by linear maps.
Consider a finite field K, a family (Ei)i∈Q of K-vector spaces and an injective K-linear map
π : E →

∏
i∈QEi such that the induced linear maps πi : E → Ei are surjective. By taking

the uniform probability distribution on E, these linear maps define, for every i ∈ Q, a
random variable Si on Ei. A family of random variables (Si)i∈Q that can be defined in this
way is said to be K-linear. For every A ⊆ Q, consider the linear map πA : E →

∏
i∈AEi

defined by πA(x) = (πi(x))i∈A. Then it is clear that

H(SA) = rankπA log |K| = (dimE − dimkerπA) log |K|.

For every i ∈ Q, consider Wi = kerπi and the orthogonal subspace Vi = W⊥
i ⊆ E∗. The

collection (Vi)i∈Q of subspaces define a K-linear integer polymatroid Z = (Q, f). For every
A ⊆ Q,

f(A) = dim
∑
i∈A

Vi = dimE − dim

(∑
i∈A

Vi

)⊥

= dimE − dim
∩
i∈A

Wi.
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Since kerπA =
∩

i∈A kerπi,

f(A) = dimE − dimkerπA =
H(SA)

log |K|
.

As a consequence of the previous discussion, we obtain the following result.

Theorem 1.6.2. Let K be a finite field and Z = (Q, f) a K-linear integer polymatroid.
Take c = log |K|. Then the polymatroid S = (Q, cf) is entropic. In particular, every
poly-linear polymatroid is poly-entropic.

1.7 Exercises

1.1. Prove that the sum (Definition 1.3.1) of K-linear polymatroids is K-linear. Prove
that the sum of entropic polymatroids is entropic.

1.2. Prove that a nonempty family B of subsets of a finite set Q is the family of bases of
a matroid if and only if the following exchange condition is satisfied.

• For every B1, B2 ∈ B and x ∈ B1 − B2, there exists y ∈ B2 − B1 such that (B2 −
{y}) ∪ {x} is in B.

Observe that this exchange condition is slightly different to the one in Proposition 1.2.4.
Use this new characterization of families of bases of matroids to prove the statement in
Definition 1.3.4.

1.3. Prove Theorem 1.4.2.

1.4. Take Q = {1, 2, 3, 4} and the map f : P(Q) → Z defined by:

• f(∅) = 0 and f({i}) = 2 for every i ∈ Q,

• f(X) = 3 for every X ⊆ Q with |X| = 2, except for f({1, 4}) = 4,

• f(X) = 4 for every X ⊆ Q with |X| ≥ 3.

Prove that f is the rank function of an integer polymatroid Z on Q. Prove that Z is not
K-linear for any field K.
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Chapter 2

Secret Sharing Schemes

2.1 Access Structures

Let P be a finite set. If F ,A ⊆ P(P ) are families of subsets of P such that F is monotone
decreasing, A is monotone increasing, and F∩A = ∅, then the pair Γ = (F ,A) is called an
access structure on P . An access structure with F = ∅ or A = ∅ is said to be degenerate.
The sets in F and the ones in A are, respectively, the forbidden and the qualified sets
of the access structure Γ. Every access structure is determined by the families maxF
and minA of its maximal forbidden sets and minimal qualified sets. An access structure
is connected if every participant x ∈ P is in a minimal qualified set and in a minimal
non-forbidden set.

As we did before for polymatroids and matroids, we introduce the concepts of dual
and minor of an access structure. For a family H ⊆ P(P ) of subsets of P , we notate

• H = P(P )−H = {A ⊆ P : A /∈ H}, and

• Hc = {A ⊆ P : P −A ∈ H}.

The dual of an access structure Γ = (F ,A) on P is the access structure Γ∗ = (Ac,Fc) on
the same set. It is clear that the dual of a connected access structure is connected as well.
Minors are obtained from two operations on families of subsets of a set. Specifically, for a
family H ⊆ P(P ) and a subset Z ⊆ P , we consider

• H \ Z = {A ⊆ P − Z : A ∈ H}, and

• H/Z = {A ⊆ P − Z : A ∪ Z ∈ H}.

For an access structure Γ = (F ,A) on P , we consider Γ \ Z = (F \ Z,A \ Z) and
Γ/Z = (F/Z,A/Z), which are access structures on P − Z. Observe that they may be
degenerate. Any access structure that is obtained from Γ by repeating these operations is
called aminor of the access structure Γ. An analogous result to Proposition 1.3.3 applies to
access structures, and hence every minor of an access structure Γ is of the form (Γ\Z1)/Z2

for some disjoint sets Z1, Z2 ⊆ P . Some properties of minors of access structures are given
in Problem 2.1.

The access structures of the form Γ = (A,A) are called perfect . For perfect access
structures, we identify Γ to A. The dual of a perfect access structure is also perfect and
Γ∗ = Γc. A perfect access structure is determined by the family minΓ of its minimal
qualified subsets. Every minor of a perfect access structure is perfect too.

15
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For Γ = (F ,A) and Γ′ = (F ′,A′), access structures on P , we say that Γ′ is stronger
than Γ if F ⊆ F ′ and A ⊆ A′. In this situation, we write Γ ≼ Γ′. This defines a partial
order on the access structures on a set P , and the maximal elements coincide with the
perfect access structures. The minimum gap of an access structure Γ = (F ,A) is defined
by

g(Γ) = min{|B −A| : A ∈ F , B ∈ A}.

Observe that g(Γ′) ≤ g(Γ) if Γ ≼ Γ′. An access structure with minimum gap g that is
maximal with this property is called g-gap-maximal.

The following definition of an access structure from a polymatroid is well motivated by
the definition in Section 2.2 of the access structure of a secret sharing scheme. Consider
a polymatroid S = (Q, f) and a set P0 ⊆ Q with f(P0) > 0. The access structure
ΓP0(S) = (F ,A) on the set P = Q− P0 is defined by:

• F = {A ⊆ P : f(P0|A) = f(P0)},

• A = {B ⊆ P : f(P0|B) = 0}.

It is not difficult to check that this is indeed an access structure, that is, that F is monotone
decreasing, A is monotone increasing, and F ∩ A = ∅. The access structure ΓP0(M) is
called a generalized matroid port if M is a matroid. If, in addition, P0 = {p0}, then
ΓP0(M) = Γp0(M) is said to be a matroid port or, more specifically, the port of the matroid
M at the point p0. Since the rank function of a matroid M = (Q, r) is integer-valued and
r({p0}|A) = r(A ∪ {p0})− r(A) ≤ r({p0}) = 1, we have that r({p0}|A) ∈ {0, 1} for every
A ⊆ P . Therefore, matroid ports are perfect access structures. With a slightly different
definition, matroid ports were introduced in 1964 by Lehman [36] to solve the Shannon
switching game. According to Lehman’s definition, which is based on the characterization
in Proposition 2.1.1, a matroid port is the family of minimal sets of a matroid port as
defined here.

Proposition 2.1.1. Let M be a matroid and p0 a point in its ground set Q. Then

minΓp0(M) = {A ⊆ Q− {p0} : A ∪ {p0} is a circuit of M}.

Proof. Suppose that A ∪ {p0} is a circuit of M . Then A is an independent set while
A∪ {p0} is dependent, and hence r(A∪ {p0}) = r(A). Moreover, if B ( A, then B ∪ {p0}
is independent, and hence r(B ∪ {p0}) = r(B) + 1. Therefore, A is a minimal set in
Γp0(M).

Assume now that A ∈ minΓp0(M). Observe that A ∪ {p0} is a dependent set of M
because r(A∪{p0}) = r(A). Suppose that A∪{p0} is not a circuit. If A is dependent, then
there exists a subset B ( A with r(B) = r(A). Then r(B ∪{p0}) ≤ r(A∪{p0}) = r(A) =
r(B), a contradiction with A being minimal in Γp0(M). Then A is independent, and there
exists B ( A such that B ∪ {p0} is dependent, and hence B ∈ Γp0(M), a contradiction
again.

A matroid is said to be connected if every two points in the ground set lie in a common
circuit. Clearly, all ports of a connected matroid are connected. Moreover, as a conse-
quence of [44, Proposition 4.1.2], a matroid is connected if and only if at least one of its
ports is connected. Lehman [36] proved that a connected matroid is determined by the
circuits that contain some given point. A proof for this result can be found in [44, The-
orem 4.3.2], Therefore, if Γ is a connected matroid port, there exists a unique connected
matroid M with Γ = Γp0(M).
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We conclude this section by proving that the class of the matroid ports is minor-closed
and duality-closed. This is a consequence of the following proposition, whose proof is left
as an exercise.

Proposition 2.1.2. Let S be a polymatroid with ground set Q = P0 ∪ P and let Z ⊆ P .
The following properties hold.

1. ΓP0(S \ Z) = ΓP0(S) \ Z.

2. If Z is a forbidden set of ΓP0(S), then ΓP0(S/Z) = ΓP0(S)/Z.

3. If M is a matroid on Q, then ΓP0(M
∗) = (ΓP0(M))∗.

2.2 Secret Sharing Schemes

Definition 2.2.1. Let P be a finite set of participants, let p0 /∈ P be a special participant,
which is usually called dealer , and take Q = P ∪{p0}. A secret sharing scheme Σ on P is a
collection (Si)i∈Q of discrete random variables such that h({p0}) > 0, where h(A) = H(SA)
for every A ⊆ Q.

Definition 2.2.2. The access structure Γ(Σ) = (F(Σ),A(Σ)) of a secret sharing scheme
Σ is defined by:

• F(Σ) = {A ⊆ P : h({p0}|A) = h({p0})},

• A(Σ) = {B ⊆ P : h({p0}|B) = 0}.

The random variable Sp0 corresponds to the secret value that is distributed into shares
among the participants in P according to the random variables (Si)i∈P . The participants
in a qualified set B ∈ A(Σ) can recover the secret value from their shares, while the shares
of the participants in a forbidden set A ∈ F(Σ) do not provide any information at all
about the secret value. Observe that a set of participants that is neither qualified nor
forbidden can obtain partial information about the secret value. A secret sharing scheme
is said to be perfect if its access structure is perfect, that is, if every subset of P is either
forbidden or qualified. Of course, Γ(Σ) = Γp0(S), where S is the polymatroid (Q,h).

Definition 2.2.3. For a finite field K, a secret sharing scheme Σ = (Si)i∈Q is called
K-linear if it is a K-linear family of random variables (see Section 1.6).

Linear secret sharing schemes were introduced by Simmons [52], Jackson and Mar-
tin [33] and Karchmer and Wigderson [35] under other names such as geometric secret
sharing schemes or monotone span programs. In a linear secret sharing scheme, the com-
putation of the shares and the recovery of the secret from the shares of a qualified set
require only evaluating linear maps and solving linear systems of equations. Therefore,
linear schemes are computationally efficient. In addition, most of the proposed construc-
tions to obtain schemes with good information ratio are based on linear secret sharing
schemes. Finally, the homomorphic properties of linear schemes make them very useful
for many applications of secret sharing such as multiparty computation.

It is useful to describe a secret sharing scheme Σ as a set E ⊆
∏

i∈QEi such that
every projection πi : E → Ei is surjective, together with some probability distribution
on E. Every random choice of a value x ∈ E provides a share vector (πi(x))i∈Q, which
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contains the secret value πp0(x) ∈ Ep0 and the shares πi(x) ∈ Ei of the participants in
P = Q− {p0}. If Σ is K-linear for some finite field K, then every Ei is a K-vector space,
E is a vector subspace of

∏
i∈QEi, and the uniform probability distribution is taken on E.

Equivalently, a K-linear secret sharing scheme can be seen as an injective K-linear map
π : E →

∏
i∈QEi such that the induced maps πi : E → Ei are surjective.

The information ratio σ(Σ) of a secret sharing scheme Σ is defined as the ratio between
the maximum length of the shares and the length of the secret value. That is,

σ(Σ) =
maxi∈P h({i})

h({p0})
.

The average information ratio σ̃(Σ) is defined by

σ̃(Σ) =
1

|P |
∑
i∈P

h({i})
h({p0})

.

Obviously, σ̃(Σ) ≤ σ(Σ). If Σ is a linear secret sharing scheme, then

σ(Σ) =
maxi∈P dimEi

dimEp0

and σ̃(Σ) =
1

|P |
∑
i∈P

dimEi

dimEp0

.

The information ratio of a secret sharing scheme is lower bounded by the inverse of the
minimum gap of its access structure.

Proposition 2.2.4. If Σ is a secret sharing scheme with access structure Γ, then σ(Σ) ≥
1/g(Γ).

Proof. Consider A ∈ F and B ∈ A such that A ⊆ B. Then

h(A) + h({p0}) = h(A ∪ {p0}) ≤ h(B ∪ {p0}) = h(B) ≤ h(A) + h(B −A),

and hence
h({p0}) ≤ h(B −A) ≤

∑
y∈B−A

h({y}) ≤ |B −A|max
x∈P

h({x}) (2.1)

which clearly concludes the proof.

In particular, σ(Σ) ≥ 1 if Σ is a perfect secret sharing scheme. If, in addition, the
access structure of Σ is connected, then h({i}) ≥ h({p0}) for every participant i ∈ P .
This can be proved with a similar argument as in the previous proof. This fact motivated
the following definition: a perfect secret sharing scheme is called ideal if every share has
the same length as the secret. Observe that the only perfect secret sharing schemes with
information ratio σ(Σ) = 1 are the ideal ones.

2.3 Threshold Secret Sharing Schemes

A threshold access structure is of the form Γ = (F ,A) with F = {A ⊆ P ; |A| ≤ t − g}
and A = {A ⊆ P ; |A| ≥ t} for some integers 1 ≤ g ≤ t ≤ |P |. If g = 1, such an access
structure is perfect, and it is called the (t, n)-threshold access structure, where n is the
number of participants.

We present first an example of a perfect secret sharing scheme for the (n, n)-threshold
access structure. Let (G,+) be a non-trivial finite commutative group. Consider the set
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E ⊆ GQ formed by the tuples (si)i∈Q with
∑

i∈Q si = 0 and take the uniform probability
distribution on it. Clearly, this defines an ideal perfect secret sharing scheme in which the
set P is the only qualified set.

In Shamir’s [49] seminal paper on secret sharing, a method to construct an ideal
perfect secret sharing scheme for every (t, n)-threshold access structure is presented. The
schemes that are obtained by this method are linear. Given integers 1 ≤ t ≤ n, consider
a finite field K with at least n + 1 elements and the K-vector space E = Kt−1[x] of the
polynomials over K with degree at most t − 1, and take Ei = K for every i ∈ Q. Given
a tuple (xi)i∈Q of different elements in K, the linear map π : E →

∏
i∈QEi = KQ defined

by π(f) = (f(xi))i∈Q for every f ∈ E provides an ideal perfect secret sharing scheme
for the (t, n)-threshold access structure. This fact is a straightforward consequence of the
following well known basic fact about polynomials.

Lemma 2.3.1. For every A ⊆ Q with |A| = t and for every tuple (si)i∈A ∈ KA, there
exists a unique polynomial f ∈ Kt−1[x] such that f(xi) = si for every i ∈ A.

Observe that the secret value can be efficiently computed from the shares of a qualified
set by using, for instance, Lagrange interpolation. Efficient computation of the shares and
efficient secret reconstruction are common to all linear secret sharing schemes.

We present in the following two variants of Shamir’s threshold scheme. The first one,
which was presented in his seminal paper [49], may be useful for hierarchical organizations.
The second one has a non-perfect threshold access structure.

Perfect access structures that reflect the existence of a hierarchy among the participants
can be obtained by assigning a positive integer, called weight , to every participant. A set
is qualified if and only if the weight sum of its participants attain a certain threshold. It is
easy to obtain a secret sharing scheme for such an access structure. One has to consider a
threshold secret sharing scheme and give to every participant as many shares as its weight.
Nevertheless, the scheme obtained in this way is not ideal.

In the other variant of Shamir’s threshold scheme we discuss here, g+n different values
(y1, . . . , yg, (xi)i∈P ) in K are taken. In addition, we consider Ep0 = Kg and πp0(f) =
(f(y1), . . . , f(yg)) for every f ∈ E. As before, πi(f) = f(xi) if i ∈ P . A non-perfect secret
sharing scheme is obtained in this way. The forbidden sets are those with at most t − g
participants, while the ones with at least t participants are qualified. Observe that the
information ratio of this scheme attains the bound in Proposition 2.2.4.

2.4 Secret Sharing Schemes from Linear Codes

Brickell [9] proposed a method, based on linear algebra, to construct ideal perfect secret
sharing schemes for some non-threshold access structures. The schemes that are obtained
by this method are the ones in the family that is defined next.

Definition 2.4.1. A K-linear secret sharing scheme Σ in which Ei = K for every i ∈ Q
is called a K-vector space secret sharing scheme.

That is, in a K-vector space secret sharing scheme, the linear maps πi : E → Ei are
nonzero linear forms. Moreover, for every collection (πi)i∈Q of nonzero linear forms on a K-
vector space E and for every choice of a distinguished participant p0 ∈ Q, a K-vector space
secret sharing scheme on P = Q − {p0} is obtained. Such schemes are perfect and ideal.
A set A ⊆ P is qualified if and only if the linear form πp0 ∈ E∗ is a linear combination of
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the linear forms (πi)i∈A. Observe that Shamir’s threshold scheme is a particular case of
such a scheme. Specifically, the one given by the linear forms πi = (1, xi, . . . , x

t−1
i ).

Let Σ be a K-vector space secret sharing scheme and let S = (Q,h) be its associated
polymatroid. Given a basis of the space E, consider the matrix G such that π(x) = xG for
every x ∈ E, that is, every column of G correspond to a linear form πi. Then G can be seen
as the generator matrix of a K-linear code C ⊆ KQ with length n+ 1, where |Q| = n+ 1.
Every codeword (si)i∈Q corresponds to a share vector of the secret sharing scheme. One
of the entries of the codeword (the one given by the choice of the distinguished participant
p0) corresponds to the secret value and the other entries are the shares to be distributed
among the participants. As we saw in Section 1.4, the code C defines a K-linear matroid
M = (Q, r). Moreover, if S = (Q,h) is the polymatroid associated to Σ, then h = log |K|·r,
and hence the access structure of Σ is the matroid port Γp0(M). Conversely, if a matroid
M is K-linear, a K-vector space secret sharing scheme can be obtained for every one of its
ports. This is summarized in the next proposition.

Theorem 2.4.2. A perfect access structure admits a K-vector space secret sharing scheme
if and only if it is a port of some K-linear matroid.

In particular, Shamir’s (t, n)-threshold schemes coincide with the K-vector space secret
sharing schemes that are obtained from Reed-Solomon codes. The (t, n)-threshold access
structure is a port of the uniform matroid Ut,n+1, whose bases are precisely the sets with
t elements from a ground set with n+1 elements. The uniform matroid Ut,n+1 is K-linear
for every field with at least n elements.

There exist vector space secret sharing schemes whose access structures are not thresh-
old. For instance, for a finite field K with characteristic greater than 3, consider the
K-linear code C with generator matrix

G =

 1 1 0 1 0 1
0 1 1 0 0 2
0 0 0 1 1 3


By identifying the columns of G with the elements in Q = {0, 1, . . . , 5}, and assuming
that the first column corresponds to the dealer p0 = 0, this code defines a K-vector
space secret sharing scheme in which the minimal qualified sets are {1, 2}, {3, 4}, {1, 3, 5},
{1, 4, 5}, {2, 3, 5} and {2, 4, 5}. If we take instead p0 = 6, a K-vector space secret sharing
scheme is obtained for the access structure whose minimal qualified sets are all 3-subsets
of {0, 1, 2, 3, 4} except {0, 1, 2} and {0, 3, 4}.

In a similar way as we did with Shamir’s threshold scheme, we can extend vector space
secret sharing schemes to a more general class of schemes that are not perfect in general.

Definition 2.4.3. A K-linear secret sharing scheme Σ in which Ei = K for every i ∈ P is
called a generalized K-vector space secret sharing scheme.

That is, in a generalized K-vector space secret sharing scheme the secret value can
be a vector instead of an element in the field K. The shares of the participants are, as
before, elements in the field K. Therefore, these schemes are not perfect in general. In
this case, the matrix G is a generator matrix of a linear code C with length n+ g, where
g = dimEp0 . The secret corresponds to the first g entries of a codeword, and the other
entries give the shares of the participants. The access structures of those schemes are also
related to matroids.

Theorem 2.4.4. An access structure admits a generalized K-vector space secret sharing
scheme if and only if it is a generalized port of some K-linear matroid.
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2.5 A Secret Sharing Scheme for Every Access Structure

The aim of this section is to discuss two constructions, which were presented in [4, 32]
providing secret sharing schemes for every perfect access structure. In both constructions
the (n, n)-threshold secret sharing scheme described at the beginning of Section 2.3 is
used. The second construction is based on the following obvious fact.

Lemma 2.5.1. Let Γ be a perfect access structure on a set P . Then a subset A ⊆ P is in
Γ if and only if A ∩B ̸= ∅ for every B in the dual access structure Γ∗.

Let Γ be a perfect access structure on a set P , and let (G,+) be a non-trivial finite
commutative group. We present next two secret sharing schemes, Σ1 and Σ2, with set
of secret values G and access structure Γ. For Σ1, given a secret value s ∈ G, for every
A ∈ minΓ values (sA,i)i∈A with sA,i ∈ G and s =

∑
i∈A sA,i are randomly selected. For

every i ∈ P , take Mi = {A ∈ minΓ : i ∈ A}. The share corresponding to participant i
is the tuple (sA,i)A∈Mi ∈ GMi . The scheme Σ2 is obtained by taking at random a tuple
(sB)B∈minΓ∗ with sB ∈ G and

∑
B∈minΓ∗ sB = s, the secret value. The share for i ∈ P is

(sB)B∈M∗
i
∈ GM∗

i , where M∗
i = {B ∈ minΓ∗ : i ∈ B}.

Every perfect access structure Γ on a set P can be described by the monotone boolean
function ξΓ : {0, 1}P → {0, 1} defined by ξΓ(x) = 1 if and only if x is the characteristic
vector of a set in Γ. The following two formulas can be used to describe this function.

ξΓ((xi)i∈P ) =
∨

A∈minΓ

(∧
i∈A

xi

)
and ξΓ((xi)i∈P ) =

∧
B∈minΓ∗

(∨
i∈B

xi

)
.

The schemes Σ1 and Σ2 can be obtained, respectively, from the first and the second formula
by replacing the ∧ gates by (n, n)-threshold schemes and the ∨ gates by (1, n)-threshold
schemes.

These general constructions provide highly inefficient secret sharing schemes because
the length of the shares is too large. Clearly, the information ratios of those schemes are
σ(Σ1) = maxi∈P |Mi| and σ(Σ2) = maxi∈P |M∗

i |. Both values grow exponentially with the
number of participants.

If G is a finite field, linear secret sharing schemes are obtained. Summarizing, the
following result has been proved in this section.

Theorem 2.5.2. Consider a perfect access structure Γ and an integer q ≥ 2. Then there
exists a secret sharing scheme with |Ep0 | = q and access structure Γ. If q is a prime power,
then there exists an Fq-linear secret sharing scheme with access structure Γ and Ep0 = Fq.

These constructions can be easily adapted to non-perfect access structures (Exer-
cise 2.4).

Theorem 2.5.3. Consider an access structure Γ and an integer q > 2. Then there exists
a secret sharing scheme with |Ep0 | = q and access structure Γ. If q is a prime power, then
there exists an Fq-linear secret sharing scheme with access structure Γ and Ep0 = F2

q.

2.6 Linear Secret Sharing Schemes: Access Structure

We saw in Section 2.2 that every secret sharing scheme Σ defines a polymatroid S = (Q,h)
and that the access structure of Σ is Γ = Γp0(S). In this section, we analyze some



22 CHAPTER 2. SECRET SHARING SCHEMES

properties of this polymatroid in the case that Σ is linear, and we present a description of
its access structure.

Consider a linear map π : E →
∏

i∈QEi defining a K-linear secret sharing scheme
Σ = (Si)i∈Q, and let S = (Q,h) be the associated polymatroid, which is given by h(A) =
H(SA) for every A ⊆ Q. As we saw in Section 1.6,

h(A) = rankπA log |K| = (dimE − dimkerπA) log |K|

for every A ⊆ Q, where πA : E →
∏

i∈AEi is defined by πA(x) = (πi(x))i∈A. Therefore, the
polymatroid Z = (Q, f) with f = (log |K|)−1h is integer. Obviously, the access structure of
Σ is Γ = (F ,A) = Γp0(S) = Γp0(Z). Moreover, Z is K-linear. Indeed, if Wi = kerπi ⊆ E
and Vi = W⊥

i ⊆ E∗, then the subspaces (Vi)i∈Q are a K-linear representation of Z, as it
was proved in Section 1.6. Therefore, a set A ⊆ P is in F if and only if

dim

(
Vp0 +

∑
i∈A

Vi

)
= f(A ∪ {p0}) = f(A) + f({p0}) = dimVp0 + dim

∑
i∈A

Vi.

On the other hand, A ∈ A if and only if

dim

(
Vp0 +

∑
i∈A

Vi

)
= f(A ∪ {p0}) = f(A) = dim

∑
i∈A

Vi.

That is, the access structure Γ = (F ,A) of Σ is given by:

• F = {A ⊆ P : Vp0 ∩
(∑

i∈A Vi

)
= {0}},

• A = {A ⊆ P : Vp0 ⊆
∑

i∈A Vi}.

By duality, we obtain a description of the access structure of Σ in terms of the subspaces
Wi = kerπi:

• F = {A ⊆ P : Wp0 +
(∩

i∈AWi

)
= E},

• A = {A ⊆ P :
∩

i∈AWi ⊆ Wp0}.

2.7 Matrix Representation and Duality

Given bases of E and every Ei, one can consider the matrix G of the linear map π : E →∏
i∈QEi. Take k = dimE and ki = dimEi. If we assume that Q = {0, 1, . . . , n} and

p0 = 0, the matrix G is of the form G = (G0|G1| · · · |Gn), where Gi is the k × ki matrix
of the linear map πi : E → Ei (which means π(x) = xG). The columns of this matrix are
linear forms on E, that is, vectors in E∗, and the columns of Gi span the subspace Vi for
every i ∈ Q.

Moreover, G is the generator matrix of a K-linear code C with dimension k and length
N =

∑
i∈Q ki. Therefore, we can consider the K-linear matroid M = (Q̂, r) defined by the

code C. The ground set Q̂ of M in in one-to-one correspondence with the columns of G,
and hence it is a disjoint union Q̂ =

∪
i∈Q Q̂i, where |Q̂i| = ki. The integer polymatroid

Z = (Q, f) defined by the subspaces (Vi)i∈Q can be determined from M because f(A) =

r(
∪

i∈A Q̂i) for every A ⊆ Q.
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The dual code C⊥ of C has a generator matrix of the form H = (H0|H1| · · · |Hn),
which is the transpose of a parity-check matrix of C. Each submatrix Hi has as many
columns as Gi. The code C⊥ defines a linear secret sharing scheme Σ∗ on the same set of
participants as Σ. This scheme is called the dual linear secret sharing scheme of Σ. By
Theorem 1.3.4, the code C⊥ is a K-linear representation of the matroid M∗ = (Q̂, r∗), the
dual of M . In particular, the access structure of Σ∗ is Γp0(Z∗), where Z∗ = (Q, f∗) is the
polymatroid defined by

f∗(A) = r∗

(∪
i∈A

Q̂i

)
=

∣∣∣∣∣∪
i∈A

Q̂i

∣∣∣∣∣− r(Q̂) + r

 ∪
i∈Q−A

Q̂i

 =
∑
i∈A

ki − k + f(Q−A)

for every A ⊆ Q. We have used here the formula for r∗ in Proposition 1.3.5.

Theorem 2.7.1. Let Σ be a K-linear secret sharing scheme with non-degenerate access
structure Γ = (F ,A). Then the dual linear secret sharing scheme Σ∗ has access structure
Γ∗ = (Ac,Fc).

Proof. As we saw before, the access structure of Σ∗ is equal to Γp0(Z∗) = (F ′,A′). Observe
that

• f∗(A ∪ {p0}) = k0 +
∑

i∈A ki − k + f(P −A),

• f∗(A) =
∑

i∈A ki − k + f(Q−A), and

• f∗({p0}) = k0 − k + f(P ) = k0 (since Γ is not degenerate, f(P ) = f(Q)).

A set A ⊆ P is in F ′ if and only if f∗(A∪{p0}) = f∗(A)+f∗({p0}), which is equivalent to
f(P −A) = f(Q−A) = f((P −A) ∪ {p0}), and hence equivalent to P −A ∈ A. Finally,
A ∈ A′ if and only if f∗(A ∪ {p0}) = f∗(A), which is equivalent to f((P − A) ∪ {p0}) =
f(P −A) + k0, and hence equivalent to P −A ∈ F .

2.8 An Example of a Linear Secret Sharing Scheme

We present in this section an example of a perfect linear secret sharing scheme. Differently
to the ones in the family introduced in Section 2.4, it is not ideal.

Take Q = {0, 1, 2, 3, 4} and p0 = 0. Consider as well a finite field K and the K-vector
spaces E = K6 and (Ei)i∈Q, where E0 = E1 = E4 = K2 and E2 = E3 = K3. Let Σ by the
linear secret sharing scheme on P defined by the linear map π : E →

∏
i∈QEi given by

the matrix

G =



1 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0

 .

Consider as before, for every i ∈ Q, the vector subspace Vi ⊆ E∗ spanned by the columns
of G corresponding to i. One can check that V0 ⊆ Vi + Vj if {i, j} is one of the subsets
A1 = {1, 2}, A2 = {2, 3} or A3 = {3, 4}, and that V0 ∩ (Vi + Vj) = {0} if {i, j} is any
other 2-subset of {1, 2, 3, 4}. As a consequence of that, the secret sharing scheme we have



24 CHAPTER 2. SECRET SHARING SCHEMES

defined from the linear mappings πi is perfect and A1, A2, A3 are the minimal qualified
subsets in its access structure. The information ratio of this scheme is equal to 3/2. We
will prove in the following chapters that there does not exist any ideal scheme for that
access structure and that the proposed scheme has optimal information ratio among all
schemes for that structure.

2.9 Exercises

2.1. Prove the following properties about minors and duals of access structures. For an
access structure Γ on a set P and Z ⊆ P ,

1. Γ∗∗ = Γ, and

2. (Γ \ Z)∗ = Γ∗/Z and (Γ/Z)∗ = Γ∗ \ Z.

2.2. Prove Proposition 2.1.2.

2.3. Let n be a prime power and t an integer with 1 ≤ t ≤ n. By modifying Shamir’s
threshold scheme, present a K-vector space secret sharing scheme for the (t, n)-threshold
access structure in which |K| = n. Recall that in the description of Shamir’s threshold
scheme in Section 2.3 we required that |K| ≥ n+ 1.

2.4. Prove Theorem 2.5.3. Specifically, by adapting the previous general constructions
for the perfect case, prove that every (maybe non-perfect) access structure admits a linear
secret sharing scheme.

2.5. On the set P = {1, 2, 3, 4}, consider the perfect access structure Γ whose minimal
qualified subsets are {1, 2}, {2, 3}, and {3, 4}. Prove that Γ is not a matroid port. Describe
the two secret sharing schemes for Γ that are obtained by applying the constructions in
Section 2.5.

2.6. Let K be a finite field of characteristic 2 and Γ a perfect access structure. Let Σ be
the K-linear secret sharing scheme for Γ that is obtained by using the first construction
in Section 2.5. Prove that the dual linear secret sharing scheme Σ∗ coincides with the
K-linear secret sharing scheme that is obtained by applying the second construction in
Section 2.5 to the dual access structure Γ∗.



Chapter 3

Optimization of Secret Sharing
Schemes

3.1 Parameters to Be Optimized

Some optimization problems for secret sharing schemes with general (non-threshold) access
structure are considered in this chapter. Even though such problems could be considered
in the general case, they have been studied almost exclusively for perfect secret sharing
schemes. Because of that, only the perfect case is considered in this chapter.

By Theorem 2.5.2 there exists a secret sharing scheme for every perfect access structure
and for every size of the set of values of the secret. A constructive proof was given, but
it provides very inefficient schemes. A natural question appearing at this point is to
determine the most efficient efficient scheme for every given access structure.

Among all possible ways to measure the efficiency of a secret sharing scheme, the
length of the shares, generally in relation to the length of the secret value, has been the
most widely considered. More specifically, we define in the following the parameters whose
optimization has attracted most of the attention.

Definition 3.1.1. The optimal information ratio σ(Γ) of a perfect access structure Γ
is the infimum of the information ratios of all secret sharing schemes for Γ. The optimal
average information ratio σ̃(Γ) is defined analogously. If we restrict to linear secret sharing
schemes, we have the parameters λ(Γ) and λ̃(Γ), the infimum of the information ratios
and, respectively, average information ratios of all linear secret sharing schemes for Γ.

Obviously, 1 ≤ σ(Γ) ≤ λ(Γ) and 1 ≤ σ̃(Γ) ≤ λ̃(Γ) for every perfect access structure Γ.
Determining the values of these parameters has appeared to be a very difficult open prob-
lem. They are unknown even for very simple access structures. Moreover, there is a huge
gap between the best known general upper and lower bounds on the asymptotic behavior
of those parameters.

For a polymatroid S = (Q, f) and p0 ∈ Q, we notate

σp0(S) =
max{f({i}) : i ∈ Q− {p0}}

f({p0})
and σ̃p0(S) =

1

|Q| − 1

∑
i∈Q−{p0}

f({i})
f({p0})

.

Observe that Γp0(S ′) = Γp0(S) if S ′ is a multiple of S. Therefore, for every perfect access
structure Γ,

σ(Γ) = inf{σp0(S) : S is a poly-entropic polymatroid with Γ = Γp0(S)}

25
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and

λ(Γ) = inf{σp0(S) : S is a poly-linear polymatroid with Γ = Γp0(S)}.

Similar expressions hold for σ̃(Γ) and λ̃(Γ). We introduce a new parameter:

κ(Γ) = inf{σp0(S) : S is a polymatroid with Γ = Γp0(S)},

and κ̃(Γ) is defined analogously. Observe that 1 ≤ κ(Γ) ≤ σ(Γ) ≤ λ(Γ) and 1 ≤ κ̃(Γ) ≤
σ̃(Γ) ≤ λ̃(Γ) for every perfect access structure Γ.

Theorem 3.1.2. If Γ′ is a minor of Γ, then κ(Γ′) ≤ κ(Γ), σ(Γ′) ≤ σ(Γ), and λ(Γ′) ≤
λ(Γ). The same applies to the parameters related to the optimal average information ratio.

Proof. The statements about the parameters κ and λ are a consequence of Proposi-
tion 2.1.2 and Theorem 1.4.1. Let Σ = (Si)i∈Q be a secret sharing scheme for Γ and
Z ⊆ P . Then Σ \ Z = (Si)i∈Q−Z is obviously a secret sharing scheme for Γ \ Z. Con-
sider a tuple sZ = (sj)j∈Z such that SZ = (Sj)j∈Z = sZ with nonzero probability. Then
Σ/Z = (Si|SZ = sZ)i∈Q−Z is clearly a secret sharing scheme for Γ/Z. Finally, observe that
both σ(Σ \ Z) and σ(Σ/Z) are at most σ(Σ). The same proof applies for the parameters
related to the average information rate.

It is not difficult to check that σ(Σ) = σ(Σ∗) and σ̃(Σ) = σ̃(Σ∗) if Σ is a linear secret
sharing scheme and Σ∗ is its dual. By combining this with Theorem 2.7.1, the next result
is deduced.

Theorem 3.1.3. If Γ is a perfect access structure, then λ(Γ) = λ(Γ∗) and λ̃(Γ) = λ̃(Γ∗).

We prove in Theorem 3.3.8 that this also applies to the parameter κ. Nevertheless, it
is not known if there is any connection between the optimal (average) information ratio
of an access structure and that of its dual.

3.2 Upper Bounds

Every construction of a secret sharing scheme for Γ provides upper bounds on those
parameters. Unfortunately, no general construction is known providing bounds that are
asymptotically better than the ones given by the constructions in Section 2.5. So the best
known general upper bounds on σ(Γ) are exponential on the number of participants.

Nevertheless, several construction methods have been proposed that provide better up-
per bounds for several particular families of access structures. Most of these constructions
give linear secret sharing schemes, and hence upper bounds on λ(Γ). These methods are
based on decomposing the given access structures into substructures that admit ideal secret
sharing schemes schemes, and combine them to obtain a scheme for the given structure.
By using a small example, we describe in the following a simple decomposition method,
which was used, for instance, in [8]. Subsequently, we present a more sophisticated and
effective construction: the so-called λ-decomposition method due to Stinson [55].

Consider the perfect access structure Γ on the set P = {1, 2, 3, 4} whose minimal
qualified sets are A1 = {1, 2}, A2 = {2, 3} and A3 = {3, 4}. A linear secret sharing scheme
for this access structure with information ratio equal to 3/2 was presented in Section 2.8.
Consider the access structures Γ1 with minΓ1 = {A1, A2} and Γ2 with minΓ2 = {A3}.
Observe that Γ1 ∪ Γ2 = Γ and, because of that, we say that these structures form a
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decomposition of Γ. Both Γ1 and Γ2 admit a K-vector space secret sharing scheme for
every finite field K. Indeed, a scheme Σ1 for Γ1 is obtained by randomly splitting the
secret value s = s1 + s2. Participants 1 and 3 receive the share s1 and participant 2
receive the share s2. A scheme Σ2 for Γ2 is obtained by taking another random split
s = t1+ t2 and giving the share t1 to participant 3 and the share t2 to participant 4. Now
we combine the schemes Σ1 and Σ2 into a scheme Σ. Specifically, a secret value s ∈ K is
distributed according to the two schemes Σ1 and Σ2. If a participant is involved in both
schemes, its share will be an element in K2. That is, the participants in P receive the
shares: S1 = s1 ∈ K, S2 = s2 ∈ K, S3 = (s1, t1) ∈ K2, and S4 = t2 ∈ K. We have obtained
in this way a linear secret sharing scheme for Γ with information ratio equal to 2.

We can improve this value of the information ratio by considering two decompositions
of Γ instead of one. In addition to Γ1, Γ2, we consider the access structures Γ′

1 with
minΓ′

1 = {A1} and Γ′
2 with minΓ′

2 = {A2, A3}. By symmetrically using the decomposition
Γ = Γ′

1∪Γ′
2, we obtain a linear secret sharing scheme Σ′ for Γ in which participant 3 receives

a share in K2 while the secret and the other shares are taken from K. Finally, we combine
the two schemes obtained from those two decompositions: given a secret value (s, s′) ∈ K2,
we compute shares for s according to Σ and shares for s′ according to Σ′. In this way,
the shares for participants 1 and 4 are elements in K2, while the shares for participants 2
and 3 are taken from K3. Since the secret value is an element in K2, we have obtained a
K-linear secret sharing scheme for Γ with information ratio equal to 3/2. Actually, this is
the same scheme as the one we presented in Section 2.8.

That access structure is a member of the family of structures defined from graphs,
for which the optimization problems we are considering here have been widely studied.
Given a graph G, we define the perfect access structure Γ = Γ[G], whose participants
and minimal qualified sets are, respectively, the vertices and edges of G. Take Γ = Γ[G],
where G is a cycle of even length. The minimal qualified sets minΓ = {A1, . . . , A2n}
coincide with the edges of G. For every i = 1, . . . , 2n, consider the access structure
Γi with minΓi = {Ai, Ai+1}, where the sum in the subindex is in Z2n. We have two
decompositions of Γ, namely {Γ2i : i = 1, . . . , n} and {Γ2i−1 : i = 1, . . . , n}. By using
these decompositions in the same way as before, we obtain a linear secret sharing scheme
Σ for Γ with information ratio equal to 3/2.

A scheme with the same information ratio cannot be obtained for the cycles with odd
length by applying the same technique. Nevertheless, this can be attained by using the
decomposition method proposed by Stinson [55]. The following construction applies to
a cycle with arbitrary length n. Consider the same structures Γi, where i = 1, . . . , n, as
before. Let K be a field with |K| ≥ n and take n different values x1, . . . , xn ∈ K. Every
one of the access structures Γi admits a K-vector space secret sharing scheme Σi. The
secret value is a pair (s1, s2) ∈ K2. A random polynomial f with degree at most one
such that f(x1) = s1 and f(x2) = s2 is taken. Fore every i = 1, . . . , n, the value si is
distributed into shares according to the scheme Σi, which involves only the participants in
Ai∪Ai+1. Therefore, every participant receives three elements in K as its share, and hence
the information ratio of the scheme is equal to 3/2. Since every minimal qualified subset
Ai ∈ minΓ appears in the substructures Γi−1 and Γi, the participants in Ai can recover
the values si−1 = f(xi−1) and si = f(xi), and hence they can recover the polynomial f
and the secret value. On the other hand, the shares of the participants in an unqualified
subset do not provide any information about the values s1, . . . , sn.

In general, the λ-decomposition method by Stinson is based on the following result.

Proposition 3.2.1. For a perfect access structure Γ, consider substructures (Γ1, . . . ,Γm)
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with Γ =
∪m

i=1 Γi. For every i = 1, . . . ,m, consider the set Pi ⊆ P of participants that
appear in some minimal qualified subset of the substructure Γi, and, for every x ∈ P ,
consider w(x) = |{i : x ∈ Pi}| and take w = maxx∈P w(x). For every minimal qualified
subset A ∈ minΓ, consider γ(A) = |{i : A ∈ Γi}| and take γ = minA∈minΓ γ(A). Assume
that there exists a finite field K with |K| ≥ m such that all substructures Γi are K -vector
space access structures. Then, there exists for the access structure Γ a K -linear secret
sharing scheme with set of secrets E0 = Kγ whose complexity is equal to w/γ.

Proof. Take m different values x1, . . . , xm ∈ K. Given a secret value (s1, . . . , sγ) ∈ E0,
take a random polynomial f with degree at most γ − 1 such that f(xi) = si for every
i = 1, . . . , γ. For every i = 1, . . . ,m, the value sif(xi) is distributed among the participants
in Pi according to a K-vector space secret sharing scheme Σi with access structure Γi.
Clearly, every participant receives at most w elements in K as its share. Every minimal
qualified set can recover γ of the values (s1, . . . , sm), and hence the polynomial f . An
unqualified subset does not obtain any information about the secret value.

3.3 Lower Bounds

Most of the lower bounds that have been obtained for σ(Γ) are in fact lower bounds on
κ(Γ). We prove in the following that both κ(Γ) and κ̃(Γ) can be computed by solving a
linear programming problem. The rank function of a polymatroid S = (Q, f) is a vector
in RP(Q), and κ(Γ) can be obtained as the solution of the following linear programming
problem.

Minimize v
subject to S = (Q, f) is a polymatroid

f({p0}) = 1
Γ = Γp0(S)

v ≥ f({i}) for every i ∈ Q

Analogously, the solution of the following linear programming problem determines κ̃(Γ).

Minimize
∑

i∈P f({i})
subject to S = (Q, f) is a polymatroid

f({p0}) = 1
Γ = Γp0(S)

Because of that, the infimum in the definition of those parameters is in fact a minimum
and both of them are rational numbers. Nevertheless, this does not mean that the values
of κ(Γ) and κ̃(Γ) can be efficiently computed. Observe that both the number of variables
and of constraints are exponential on the number of participants.

Since not all polymatroids are poly-entropic, we may expect that κ(Γ) < σ(Γ) in
general. Nevertheless not many examples have been found of access structures in which
the equality does not hold. Nevertheless, Theorem 3.3.2, which was proved by Csirmaz [16],
implies that the lower bounds on σ(Γ) that are obtained by finding lower bounds on κ(Γ)
are at most linear on the number of participants. Even though we do not have a proof
for that, this seems to imply that those lower bounds are not very good. We need the
following technical result, which was also proved by Csirmaz [16].

Proposition 3.3.1. Let Γ be a perfect access structure on a set P and let S ′ = (P, f) be
a polymatroid with ground set P . The polymatroid S ′ can be extended to a polymatroid
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S = (Q, f) with f({p0}) = 1 such that S \ {p0} = S ′ and Γ = Γp0(S) if and only if the
following conditions are satisfied.

1. If A ⊆ B ⊆ P are such that A /∈ Γ and B ∈ Γ, then f(A) ≤ f(B)− 1.

2. If A,B ∈ Γ and A ∩B /∈ Γ, then f(A ∪B) + f(A ∩B) ≤ f(A) + f(B)− 1.

Theorem 3.3.2. If Γ is an access structure on a set of n participants, then κ(Γ) ≤ n.

Proof. For a set P with |P | = n, consider the polymatroid S ′ = (P, f) defined by f(X) =
n + (n − 1) + · · · + (n − (k − 1)) if |X| = k. This polymatroid satisfies the conditions in
Proposition 3.3.1 for every access structure Γ.

Anyway, the polymatroid technique, that is, finding lower bounds on κ(Γ), has proved
to be very useful when studying some particular families of access structures. In some cases
the obtained lower bounds are tight or, at least, close to the best known upper bounds.
As an example of the kind of results that are obtained by using this technique, we present
the independent sequence method , which was introduced in [7] and was improved in [45].
Let Γ be an access structure on a set of participants P . Consider A ⊆ P and an increasing
sequence of subsets B1 ⊆ · · · ⊆ Bm ⊆ P . We say that (B1, . . . , Bm |A) is an independent
sequence in Γ with length m and size s if |A| = s and, for every i = 1, . . . ,m, there exists
Xi ⊆ A such that Bi∪Xi ∈ Γ, while Bm /∈ Γ and Bi−1∪Xi /∈ Γ if i ≥ 2. The independent
sequence method is based on Theorem 3.3.4. We notice that this result was not stated
in [7, 45] in terms of polymatroids, but in terms of the entropy function.

Lemma 3.3.3. Let Γ be an access structure on the set P and let S = (Q, f) be a polyma-
troid such that f({p0}) = 1 and Γ = Γp0(S). Then, for every A,B ⊆ P ,

• f(A|B) = 1 + f(A|B ∪ {p0}) if B /∈ Γ and A ∪B ∈ Γ, and

• f(A|B) = f(A|B ∪ {p0}) if B ∈ Γ.

Proof. The equality f(A|B) + f({p0}|A ∪ B) = f({p0}|B) + f(A|B ∪ {p0}) proves both
statements.

Theorem 3.3.4 ([7, 45]). Let Γ be an access structure on the set P and let S = (Q, f) be
a polymatroid such that f({p0}) = 1 and Γ = Γp0(S). If there exists in Γ an independent
sequence (B1, . . . , Bm |A) with length m and size s, then f(A) ≥ m, and consequently
κ(Γ) ≥ m/s.

Proof. We prove first that f(A)− f(A|Bm) ≥ m− 1 by induction on m. This is obviously
true if m = 1. Suppose that m ≥ 2 and take bm = Bm −Bm−1. By Lemma 3.3.3,

f(A|Bm−1)− f(A|Bm) = f(bm|Bm−1)− f(bm|A ∪Bm−1)

≥ f(bm|Xm ∪Bm−1)− f(bm|A ∪Bm−1)

= 1 + f(bm|Xm ∪Bm−1 ∪ {p0})− f(bm|A ∪Bm−1 ∪ {p0})
≥ 1.

By induction hypothesis,

f(A)− f(A|Bm) = f(A)− f(A|Bm−1) + (A|Bm−1)− f(A|Bm) ≥ m− 1.

Therefore, f(A) ≥ m because f(A|Bm) ≥ 1 by Lemma 3.3.3. Finally, since
∑

i∈A f({i}) ≥
f(A) ≥ m, there must exist i ∈ A with f({i}) ≥ m/|A| = m/s. Since this holds for every
polymatroid S = (Q, f) with f({p0}) = 1 and Γ = Γp0(S), it is clear that κ(Γ) ≥ m/s.
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By using this and other techniques, Csirmaz [16] was able to find a family of access
structures which contains, for every positive integer n, an access structure Γn on n partic-
ipants such that κ(Γn) ≥ n/ log n. This is the best known lower bound on the asymptotic
behavior of the optimal information ratio.

In the following we prove another positive result about the polymatroid technique.
Namely, we prove in Theorem 3.3.8 that the bounds that are obtained by this technique
for an access structure apply also to its dual.

There exist several inequivalent ways to define the dual of a polymatroid [57] and
we have to choose the suitable one to prove our result. Specifically, if S = (Q, f) is a
polymatroid, we consider the dual polymatroid S∗ = (Q, f∗), where f∗ : P(Q) → R is
defined by

f∗(X) =
∑
x∈X

f({x})− f(Q) + f(Q−X).

Clearly, if M = (Q, r) is a matroid with r({x}) = 1 for every x ∈ Q, then the dual
matroid of M coincides with the dual polymatroid. We prove in the next lemma that S∗

is actually a polymatroid, and we describe in Lemma 3.3.6 the relation between the dual
of a polymatroid and the dual of the associated access structure.

Lemma 3.3.5. S∗ = (Q, f∗) is a polymatroid.

Proof. Obviously, f∗(∅) = 0. Take a subset X ⊆ Q and a point y /∈ X. Since f({y}) +
f(Q−(X∪{y})) ≥ f(Q−X), we get that f∗(X∪{y}) ≥ f∗(X). Therefore, f∗ is monotone
increasing. Finally, consider two arbitrary subsets X,Y ⊆ Q. Then from the definition of
f∗ and the submodularity of f ,

f∗(X) + f∗(Y )− f∗(X ∪ Y )− f∗(X ∩ Y ) =

= f(Q−X) + f(Q− Y )− f(Q− (X ∪ Y ))− f(Q− (X ∩ Y )) ≥ 0.

This proves that f∗ is submodular.

Lemma 3.3.6. Let Γ be an non-degenerate perfect access structure and let S = (Q, f) be
a polymatroid such that f({p0}) = 1 and Γ = Γp0(S). Then S∗ = (Q, f∗) satisfies that
f∗({p0}) = 1 and Γ∗ = Γp0(S∗).

Proof. Since Γ is non-degenerate, f(P ) = f(Q), and hence h∗({p0}) = 1. For every
X ⊆ P ,

f∗(X ∪ {p0}) = f({p0}) +
∑
x∈X

f({x})− f(Q) + f(P −X).

If X ∈ Γ∗, then P −X /∈ Γ and f(P −X) = f(Q−X)− 1, which implies that

f∗(X ∪ {p0}) = f∗(X).

Finally, f∗(X∪{p0}) = f∗(X)+1 if X /∈ Γ∗ because in this case f(P−X) = f(Q−X).

To be precise, the polymatroid S∗ is properly a dual of S, in the sense that S∗∗ = S, if
and only if f(Q−{x}) = f(Q) for every x ∈ Q. The polymatroids satisfying this property
will be said to be normalized . In addition, we need some technical results that are given
in the next lemma, whose proof is an easy exercise.

Lemma 3.3.7. Let S = (Q, f) be a polymatroid. Then the following properties hold.
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1. The polymatroid S∗ = (Q, f∗) is normalized.

2. f∗∗(X) ≤ f(X) for every X ⊆ Q.

3. S is normalized if and only if S∗∗ = S.

4. If S is normalized, then f∗({x}) = f({x}) for every x ∈ Q, and hence σp0(S∗) =
σp0(S).

Theorem 3.3.8. If Γ is a non-degenerate perfect access structure, then κ(Γ) = κ(Γ∗) and
κ̃(Γ) = κ̃(Γ∗).

Proof. Let S = (Q, f) be a polymatroid such that f({p0}) = 1 and Γ = Γp0(S). From
the fact that Γ∗∗ = Γ and Lemma 3.3.6, we have that Γ∗ = Γp0(S∗) and Γ = Γp0(S∗∗) S∗

and S∗∗ are, Observe that σp0(S∗∗) ≤ σp0(S) by Lemma 3.3.7, (2). In addition, since S∗

is normalized, we have that σp0(S∗) = σp0(S∗∗) by Lemma 3.3.7, (4). Therefore, for every
access structure Γ and for every S with Γ = Γp0(S), exists a polymatroid S∗ with Γ∗ =
Γp0(S∗) such that σp0(S∗) ≤ σp0(S), and hence κ(Γ∗) ≤ κ(Γ). Dually, κ(Γ∗) ≤ κ(Γ∗∗).
The same argument can be used to prove that κ̃(Γ) = κ̃(Γ∗).

3.4 The Problem Is Solved for Some Access Structures

We present here some examples of access structures for which we can find the exact value of
their optimal information ratio. In addition to the few access structures that are discussed
here, one can find in the literature many more cases in which the problem has been solved.
For instance, most of the access structures on at most five participants [34], most of the
access structures defined by graphs with at most six vertices [22] and, most remarkably,
all access structures defined by trees [19].

On the set P4 = {1, 2, 3, 4}, Consider the access structures Γ1 and Γ2 with minΓ1 =
{{1, 2}, {2, 3}, {3, 4}} and minΓ2 = minΓ1 ∪ {{2, 4}}. The dual access structure Γ∗

1 is
isomorphic to Γ1, while minΓ∗

2 = {{2, 3}, {2, 4}, {1, 3, 4}}. We presented in Section 3.2
a linear secret sharing scheme for Γ1 with information ratio equal to 3/2. A similar
construction can be done for Γ2. Therefore, σ(Γj) ≤ λ(Γj) ≤ 3/2 for j = 1, 2 and, by
Theorem 3.1.3, σ(Γ∗

2) ≤ λ(Γ∗
2) = λ(Γ2) ≤ 3/2. On the other hand, by taking B1 = ∅,

B2 = {1}, and B3 = {1, 4} with X1 = {2, 3}, X2 = {2}, and X3 = {3}, we obtain an
independent sequence with length m = 3 and size s = 2 that applies to both Γ1 and Γ2.
Hence, by Theorem 3.3.4, κ(Γj) ≥ 3/2 if j = 1, 2 and κ(Γ∗

2) ≥ 3/2 by Theorem 3.3.8.
Therefore, we have been able to determine the optimal information ratios of the access
structures Γ1, Γ2 and Γ∗

2, which are all equal to 3/2.

Consider now, for every k ≥ 3, the access structure Γk on the set P = {x0, x1, . . . , xk}
whose minimal qualified sets are {x1, . . . , xk} and all pairs {x0, xi}. We prove in the
following that σ(Γk) = 2− 1/(k − 1).

Proposition 3.4.1. κ(Γk) ≥ 2− 1/(k − 1) for every k ≥ 3.

Proof. Let S = (Q, f) be a polymatroid with f({p0}) = 1 and Γk = Γp0(S). Take B1 = ∅,
and B2 = {xk−1}, and Bj = {xk−j+2, . . . , xk} for every j = 3, . . . , k. In addition, take
X1 = {x0, x1}, and X2 = {x0}, and Xj = {x1, . . . , xk−j+1} for every j = 3, . . . , k. It
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is easy to check that (B1, . . . , Bk+1 |A), where A = {x0, x1, . . . , xk−2}, is an independent
sequence, and hence f(A) ≥ k by Theorem 3.3.4. In addition,

f(A) = f({x0}) +
k−2∑
j=1

f({xj}|{x0, . . . , xj−1}) ≤ f({x0}) + f({x1}) +
k−2∑
j=2

f({xj}|{x0, x1}).

By Lemma 3.3.3,

f({xj}|{x0})− f({xj}|{x0, x1}) = 1 + f({xj}|{x0, p0})− f({xj}|{x0, x1, p0}) ≥ 1,

and hence f({xj}|{x0, x1}) ≤ f({xj}|{x0}) − 1 ≤ f({xj}) − 1 for every j = 2, . . . , k − 2.

Therefore, f(A) ≤ k− 3+
∑k−2

j=0 f({xj}), and hence
∑k−2

j=0 f({xj}) ≥ 2k− 3. This implies
that f({xj}) ≥ (2k − 3)/(k − 1) for some j = 0, . . . , k − 2.

Proposition 3.4.2. For every k ≥ 3 and for every finite field K with at least 3 elements,
there exists a K-linear secret sharing scheme Σ with access structure Γk, set of secret
values Kk−1, and information ratio equal to 2− 1/(k − 1).

Proof. We begin by constructing two K-linear secret sharing schemes for Γk. Consider
E = Kk+1, and Ep0 = Ex0 = K, and Exj = K2 for every j = 1, . . . , k. Consider, for
x ∈ Q = P ∪ {p0}, the linear maps πx : E → Ex determined by

• πp0(s, a, b1, . . . , bk−1) = s,

• πx0(s, a, b1, . . . , bk−1) = a

• πxj (s, a, b1, . . . , bk−1) = (s− a, bj) for j = 1, . . . , k − 1, and

• πxk
(s, a, b1, . . . , bk−1) = (s− a, s+ b1 + · · ·+ bk−1).

These maps define a K-linear secret sharing scheme Σ1 with access structure Γk. Consider
now F = Kk, and Fp0 = K, and Fx0 = Kk−1, and Fxj = K for every j = 1, . . . , k. Consider,
for x ∈ Q = P ∪ {p0}, the linear mappings τx : F → Fx determined by

• τp0(s, c1, . . . , ck−1) = s,

• τx0(s, c1, . . . , ck−1) = (c1, . . . , ck−1),

• τx1(s, c1, . . . , ck−1) = λs− c1, where λ ∈ K− {0, 1− k},

• τxj (s, c1, . . . , ck−1) = s− cj for j = 2, . . . , k − 1, and

• τxk
(s, c1, . . . , ck−1) = s+ c1 + · · ·+ ck−1.

The access structure of the K-linear secret sharing scheme Σ2 defined by these mappings
is again Γk.

By combining k − 2 copies of the scheme Σ1 with the scheme Σ2, we obtain a K-
linear secret sharing scheme for Γk with set of secrets Kk−1 and information ratio equal
to (2k − 3)/(k − 1).

3.5 Exercises

3.1. Explain how to construct a linear secret sharing scheme with information ratio equal
to 3/2 for the perfect access structure Γ on the set P = {1, 2, 3, 4} whose minimal qualified
sets are A1 = {1, 2}, A2 = {2, 3}, A3 = {3, 4}, and A4 = {2, 4}.



Chapter 4

Ideal Secret Sharing Schemes

4.1 Brickell-Davenport Theorem

We introduced in Section 2.4 a family of ideal perfect secret sharing schemes whose access
structures coincide with the ports of the linear matroids. A natural question arising at
this point is to find out if there are other access structures that admit an ideal secret
sharing scheme or, more generally, to try to determine what access structures admit an
ideal secret sharing scheme. A perfect access structure is called ideal if it admits an ideal
secret sharing scheme.

Brickell and Davenport [10] generalized Theorem 2.4.2 by proving that every ideal
secret sharing scheme (linear or not) defines a matroid M with ground set Q = P ∪ {p0}
such that the access structure of the scheme is the matroid port Γp0(M). We present here
a combinatorial version of that result.

Lemma 4.1.1. Let Γ be a perfect access structure and let S = (Q, f) be a polymatroid
with f({p0}) = 1 and Γp0(S) = Γ. If C /∈ Γ and C ∪ {x} ∈ Γ, then f({x}|C) = 1 and
f({x}|C ∪ {p0}) = 0.

Proof. Use f(C)+f({p0}|C)+f({x}|C∪{p0}) = f(B)+f({p0}|B), where B = C∪{x}.

Theorem 4.1.2. Let S = (Q, f) be a polymatroid with f({p0}) = 1 such that the access
structure Γp0(S) is perfect and connected. If f({x}) = 1 for every x ∈ Q, then S is a
matroid.

Proof. Since f(A ∪ {p0}) − f(A) ∈ {0, 1}, we only have to prove that f(A) ∈ Z for
every A ⊆ P . Suppose that f is not integer-valued and take A ⊆ P , minimal with
f(A) /∈ Z. Then m < f(A) < m + 1 for some integer m. Clearly, f(A − {x}) = m and
0 < f({x}|A− {x}) < 1 for every x ∈ A.

Suppose that A ∈ Γ. By Lemma 4.1.1, A−{x} ∈ Γ for every x ∈ A. Let B be a minimal
qualified set with B ⊆ A, and take x ∈ B and C = B−{x}. Then f({x}|C∪{p0}) = 0 and,
since A−{x} is qualified, f({x}|A−{x}) = f({x}|(A−{x})∪{p0}) = 0, a contradiction.

Suppose now that A /∈ Γ and consider B ⊆ P , minimal with B /∈ Γ and A ∪ B ∈ Γ.
There exists such a set because Γ is connected. By Lemma 4.1.1, f({y}|(A∪B)−{y}) = 1
for every y ∈ B, and hence f(A ∪ B) = f(A) + |B|. Since f({x}|(A ∪ B) − {x}) ≤
f({x}|A − {x}) < 1 for every x ∈ A, we have by Lemma 4.1.1 that (A ∪ B) − {x} ∈ A
for every x ∈ A. This implies that f((A ∪ B) − {x}) = f(A − {x}) + |B|. Consider now
a minimal qualified subset C such that B ⊆ C ⊆ A ∪ B and take x ∈ A ∩ C and the
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Figure 4.1: The non-Pappus matroid

subsets C ′ = C − {x} and A′ = (A ∪ B) − {x}. Then f({x}|C ′ ∪ {p0}) = 0, and hence
f({x}|A′) = f({x}|A′ ∪ {p0}) = 0. Therefore, f(A ∪ B) = f(A′) + f({x}|A′) = f(A′),
which implies that f(A) = f(A− {x}), a contradiction.

In particular, Theorem 4.1.2 implies that Γ is a matroid port if and only if κ(Γ) = 1.
Another consequence of Theorem 4.1.2 is that the symmetry property that was proved in
Section 2.4 for vector space secret sharing schemes applies to every ideal secret sharing
scheme. Namely, if a collection (Si)i∈Q of random variables defines an ideal secret sharing
scheme on Q−{p0} for some p0 ∈ Q, then it defines as well an ideal secret sharing scheme
on Q− {p} for every p ∈ Q.

4.2 Two Counterexamples and Two Open Problems

Observe that Theorem 2.4.2 provides a sufficient condition for an access structure to be
ideal. Namely, the ports of linear matroids are ideal access structures. As a consequence of
Theorem 4.1.2, an access structure is ideal if and only if it is a port of some poly-entropic
matroid. In particular, being a matroid port is a necessary condition for an access structure
to be ideal. Seymour [48] showed that the necessary condition is not sufficient by proving
that the ports of the Vámos matroid are not ideal access structures. On the other hand,
Simonis and Ashikhmin [53] proved that the sufficient condition is not necessary because
the non-Pappus matroid is not linearly representable but each of its ports admit an ideal
secret sharing scheme.

The ground set of the Vámos matroid is Q = {1, . . . , 8} and its bases are all subsets
with 4 elements except {1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}, {3, 4, 7, 8}, and {5, 6, 7, 8}. Ob-
serve that, by identifying the pairs {1, 2}, {3, 4}, {5, 6}, and {7, 8} we obtain from the
Vámos matroid the integer polymatroid defined in Exercise 1.4. Since this polymatroid is
not linear over any field, the same applies to the Vámos matroid. Moreover, by using the
information inequality given by Zhang and Yeung [58], which is discussed in Chapter 5, it
can be easily proved that the Vámos matroid is not poly-entropic. Seymour [48] presented
a direct combinatorial proof of this fact. Bounds on the optimal information ratio of the
ports of the Vámos matroid are given in Chapter 5.
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The matroid on 9 points that is geometrically represented in Figure 4.1 is called the
non-Pappus matroid. That is, it is a matroid with rank 3 in which all 2-sets are indepen-
dent and a set with three points is dependent if and only if these points are collinear. For
instance, {2, 4, 7} is a dependent set while {1, 2, 8} and {7, 8, 9} are independent. This
matroid is not linearly representable over any field. Otherwise, Figure 4.1 would corre-
spond to a configuration of points and lines on a projective plane over some field, and
hence the three central points (7, 8, 9) should be collinear by Pappus Theorem, a contra-
diction. Nevertheless, Simonis and Ashikhmin [53] proved that the non-Pappus matroid
is F3-poly-linear. Specifically, the following matrix provides an F3-linear representation of
the polymatroid 2M , where M is the non-Pappus matroid.

G =



1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1 0 2 1 0 1 1 0 1 0
0 0 0 0 0 0 0 2 0 1 2 0 1 2 0 2 0 1
0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1 0
0 0 0 1 0 1 2 1 0 0 2 1 0 0 1 0 0 1

 .

Therefore, the non-Pappus matroid is poly-entropic by Theorem 1.6.2, and hence every
one of its ports admits an ideal secret sharing scheme. Actually, the matrix G provides
an F3-linear ideal secret sharing scheme for every port of the non-Pappus matroid.

Several classes of matroids and matroid ports have appeared here. Each class contains
the preceding ones.

1. The first one is the class of the linear matroids, whose ports are the vector space
access structures.

2. The poly-linear matroids form the second class. Their ports are precisely those
access structures that admit a linear ideal secret sharing scheme.

3. The class of the poly-entropic matroids and their ports, the ideal access structures.

4. Finally, the class of all matroids and the class of all matroid ports.

The Vámos matroid is not poly-entropic, while the non-Pappus matroid is poly-linear but
it is not linear. The existence of poly-entropic matroids that are not poly-linear remains
an open question. All those classes are minor-closed, and all but the third one are duality-
closed. It is unknown whether the dual of a poly-entropic matroid is poly-entropic.

4.3 Ideal Access Structures Defined by Graphs

For a graph G = (V,E), we consider the access structure Γ[G] in which the participants are
identified to the vertices of G and the edges correspond to the minimal qualified subsets.
In this section, we determine which graph access structures admit an ideal secret sharing
scheme. Observe that it is enough to solve this question for connected graphs, because a
graph access structure Γ[G] admits an ideal secret sharing scheme if and only if this is the
case for every connected component of G. Moreover, we can assume that G is not trivial,
that is, it has at least two vertices.

We begin by identifying in Proposition 4.3.1 the graph access structures that are ma-
troid ports. Then we prove in Proposition 4.3.2 that all those matroid ports admit a
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vector space secret sharing scheme. In a complete multipartite graph, the set of vertices is
partitioned into several parts and two vertices are adjacent if and only if they belong to
different parts.

Proposition 4.3.1. Let G be a connected graph. Then the access structure Γ[G] is a
matroid port if and only if G is a complete multipartite graph.

Proof. LetG = (V,E) be a complete multipartite graph. TakeQ = V ∪{p0} and the family
B ⊆ P(Q) formed by the edges of G and the sets of the form {p0, x} with x ∈ V . Clearly,
B is the family of bases of a matroid M with ground set Q. Moreover, Γ[G] = Γp0(M).

We prove now the converse. Let G = (V,E) be a connected graph and suppose that
Γ[G] = Γp0(M) for some matroid M = (Q, r) with Q = V ∪ {p0}.

We affirm that the matroid M has rank 2, that is, r(Q) = 2. This can be proved by
induction on n, the number of vertices. If n = 2, then Q = {p0, x, y} and {x, y} is the only
qualified set. Clearly, {x, p0} is independent but Q is dependent, and hence r(Q) = 2.
Suppose that n > 2. Take a vertex x ∈ V such that the subgraph G′ of G induced by
V − {x} is connected (such a vertex always exist). Then Γ[G′] = Γ[G] \ {x}, and hence
Γ[G′] = Γp0(M \ {x}) by Proposition 2.1.2. By the induction hypothesis, the matroid
M \ {x} has rank 2, and hence r(Q−{x}) = 2. Let y ∈ V −{x} be a neighbor of x. Then
r({p0, y}) = r({p0, x, y}) = 2. Finally, r(Q) + r({p0, y}) ≤ r(Q− {x}) + r({p0, x, y}), and
hence r(Q) = 2.

Consider the binary relation on V defined by x ∼ y if and only if x = y or {x, y} is a
dependent set of M . It is not difficult to check that this is an equivalence relation, which
induces a partition V = V1∪· · ·∪Vs. Observe that a subset {x, y} ⊆ V is in Γp0(M) if and
only if {x, y} is a basis of M , that is, if and only x ∈ Vi and y ∈ Vj with i ̸= j. Therefore,
G is a complete multipartite graph.

Proposition 4.3.2. If G is a complete multipartite graph, then the access structure Γ[G]
admits a vector space secret sharing scheme.

Proof. LetG = (V,E) be a complete multipartite graph for the partition V = V1∪· · ·∪Vs of
the set of vertices. Consider a finite fieldK with |K| ≥ s and aK-vector space secret sharing
scheme Σ for the (2, s)-threshold access structure on the set of participants {V1, . . . , Vs}
Finally, consider a secret sharing scheme on the set V in which all participants in Vi receive
the share corresponding to Vi according to the scheme Σ. Clearly, this is a K-vector space
secret sharing scheme for the access structure Γ[G].

Propositions 4.3.1 and 4.3.2 provide a characterization of the ideal access structures de-
fined by graphs. This characterization and an additional result are given in Theorem 4.3.4.

Lemma 4.3.3. Let G be a connected graph. If G is not a complete multipartite graph,
then there exists an induced subgraph of G on four vertices which is isomorphic to one of
the graphs in Figure 4.2.

Proof. A graph G is a complete multipartite graph if and only if every connected com-
ponent of its complementary graph G′ is a complete graph. Let G be a connected graph
that is not a complete multipartite graph and let G′ be its complement. If there exist two
vertices x, y of G at distance 3, a shortest path joining these to vertices produces an in-
duced subgraph of G that is isomorphic to the first graph in Figure 4.2. Suppose that the
diameter of G is equal to 2. Since one of the connected components of the complementary
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Figure 4.2: Forbidden subgraphs of complete multipartite graphs

graph G′ is not a complete graph, there exist three vertices x, y, z of G such that {x, y}
and {y, z} are edges of G′ and {x, z} is not (and hence it is an edge of G). Since {x, y}
is not an edge of G, the distance in G between these two vertices is equal to 2, so there
exists a vertex t that is adjacent in G to x and to y. Clearly, the subgraph of G induced
by the vertices x, y, z, t is isomorphic to one of the graphs in Figure 4.2.

Theorem 4.3.4. Let G be a connected graph. Then the following statements are equiva-
lent.

1. G is a complete multipartite graph.

2. Γ[G] is a vector space access structure.

3. Γ[G] is an ideal access structure.

4. Γ[G] is a matroid port.

5. σ(Γ[G]) < 3/2.

Proof. The equivalence between the first four statements has been proved already. There-
fore, σ(Γ[G]) = 1 < 3/2 if G is a complete multipartite graph. Otherwise, by Lemma 4.3.3,
there exist an induced subgraph of G that is isomorphic to one of the graphs in Figure 4.2.
This implies that one of the access structures Γ1 or Γ2 defined in Section 3.4 is a minor of
Γ[G]. Therefore, σ(Γ[G]) ≥ 3/2 by Theorem 3.1.2.

4.4 A Generalization of Brickell-Davenport Theorem

As a consequence of Theorem 4.3.4, there does not exist any graph G such that the
access structure Γ[G] satisfies 1 < σ(Γ[G]) < 3/2. The ideal access structures have been
characterized for other families, and in many of them the same gap in the values of the
optimal information ratio appears. This is the case for the access structures on at most
five participants [34], the bipartite access structures [45], the structures with at most four
minimal qualified subsets [38], and the ones with intersection number equal to one [39].

A common explanation to this repeated phenomenon was provided in [40]. By using
Theorem 4.4.1, a characterization of matroid ports by excluded minors presented in 1976
by Seymour [47]. Another characterization of matroid ports was previously given by
Lehman [37].

Theorem 4.4.1. A perfect access structure is a matroid port if and only if it does not
have any minor isomorphic to one of the access structures Γ1, Γ2, Γ

∗
2, or Γk with k ≥ 3

that were defined in Section 3.4.
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Since the value of κ is at least 3/2 for all those forbidden minors, we obtain the following
corollary of Theorems 4.1.2 and 4.4.1.

Corollary 4.4.2. If Γ is not a matroid port, then κ(Γ) ≥ 3/2. As a consequence, the
access structure of every secret sharing scheme Σ with σ(Σ) < 3/2 is a matroid port.

In all the aforementioned families of access structures, the matroid ports coincide with
the ideal access structures, and hence the gap in the values of the optimal information ratio
is explained by Corollary 4.4.2. This gap does not hold in general, because 1 < σ(Γ) < 3/2
if Γ is a port of the Vámos matroid [2]. This result is explained in more detail in Chapter 5.

Another consequence of Corollary 4.4.2 is the existence of a gap in the values of the
parameter κ. Indeed, there does not exist any access structure Γ with 1 < κ(Γ) < 3/2.
The existence of other gaps in the values of this parameter is a natural question. For
instance, from the results in [17, 18, 19, 41], one could conjecture that, if κ(Γ) < 2, then
κ(Γ) = 2−1/s for some positive integer s. This is the case as well for the access structures
Γk that are analyzed in Section 3.4. Nevertheless, two access structures that refute this
conjecture were presented in [26], namely one with κ(Γ) = 22/13 and another one with
κ(Γ) = 99/53.



Chapter 5

Information Inequalities and
Secret Sharing

5.1 Information Inequalities

In 1998, Zhang and Yeung [58] presented for the first time a linear inequality that has to
be satisfied by the joint Shannon entropies of every collection of four random variables and
cannot be derived from the polymatroid axioms. These axioms are also called Shannon
information inequalities, because they are equivalent to the basic inequalities on Shannon
entropies that are discussed in Section 1.5. Because of that, Zhang-Yeung inequality is
said to be a non-Shannon information inequality . Other such linear inequalities have
been found in [23, 25, 42] and other works. Matúš [42] found an infinite number of
independent linear non-Shannon information inequalities that apply to every family of
four random variables. No such inequality exists for families of at most three random
variables. Clearly, the rank function of every entropic polymatroid must satisfy all those
non-Shannon information inequalities and, since they are linear, this also applies to poly-
entropic polymatroids. Therefore, those inequalities can be used to prove that a given
polymatroid is not poly-entropic.

Before the discovery of non-Shannon inequalities, Ingleton [31] presented a linear in-
equality that must be satisfied by the rank function of every linear polymatroid on a ground
set with four points. Since it is a linear inequality, it must be satisfied as well by the joint
Shannon entropies of every linear collection of four random variables. Ingleton inequality
can be derived from a property of linear collections of random variables that does not ex-
tend to the general case. Namely, the existence, for every pair of random variables in the
collection, of an additional random variable conveying their common information. More
specifically, let (Si)i∈Q be a K-linear family of random variables and (Vi)i∈Q a K-linear
representation of the polymatroid (Q, f), where f(A) = H(SA)/ log |K| for every A ⊆ Q
(see Section 1.6). Then, for every {i, j} ⊆ Q, the random variable T that can be obtained
from the intersection of the vector subspaces Vi and Vj conveys the common information
of the random variables Si and Sj . This means that T can be derived from both Si and Sj ,
that is H(T |Si) = H(T |Sj) = 0, and has maximum entropy among all random variables
with that property because H(T ) = H(Si)−H(Si|Sj). This property has been used in [24]
to find other linear inequalities that apply to the rank function of linearly representable
polymatroids. We present Ingleton inequality in Theorem 5.1.3. Two technical lemmas
are needed to prove it.
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Lemma 5.1.1. If f is the rank function of a polymatroid, then

f({b}|{c, d})− f({b}|{a, c}) + f({d}|{a}) ≥ 0

for every four elements a, b, c, d in the ground set.

Proof. Since f is submodular, f(X|Y ) ≥ f(X|Y ∪ Z) for every X,Y, Z ⊆ Q, and hence

f({b}|{c, d})− f({b}|{a, c}) + f({d}|{a})
≥ f({b}|{a, c, d})− f({b}|{a, c}) + f({d}|{a, c})
= f({b, d}|{a, c})− f({b}|{a, c})
≥ 0,

and the proof is finished.

Lemma 5.1.2. If f is the rank function of a polymatroid, then

f({x5}) ≤ f({x1}|{x3})− f({x1}|{x2, x3}) + f({x1}|{x4})− f({x1}|{x2, x4}) +
+ f({x3})− f({x3}|{x4}) + 2f({x5}|{x1}) + 2f({x5}|{x2})

for every five elements x1, . . . , x5 in the ground set.

Proof. By using Lemma 5.1.1 twice, the second term in the inequality is greater than or
equal to α1, where

α1 = f({x1}|{x3})− f({x1}|{x3, x5}) + f({x1}|{x4})− f({x1}|{x4, x5}) +
+ f({x3})− f({x3}|{x4}) + 2f({x5}|{x1}).

Observe that the sets in Equation (1.1) can be taken in any order. Therefore,

α1 = f({x5}|{x3})− f({x5}|{x1, x3}) + f({x5}|{x4})− f({x5}|{x1, x4}) +
+ f({x3})− f({x3}|{x4}) + 2f({x5}|{x1}).

Now we apply again Lemma 5.1.1 twice and we obtain

α1 ≥ f({x5}|{x3}) + f({x5}|{x4}) + f({x3})− f({x3}|{x4}) = α2.

Applying Lemma 5.1.2 another time,

α2 ≥ f({x5}|{x3}) + f(x3)− f(x3|x5) = f(x5),

which concludes the proof.

Theorem 5.1.3. Ingleton inequality. Let S = (Q, f) be a poly-linear polymatroid with
ground set Q = {x1, x2, x3, x4}. Then

f({x1}) + f({x2}) + f({x3, x4}) + f({x1, x2, x3}) + f({x1, x2, x4}) ≤

≤ f({x1, x2}) + f({x1, x3}) + f({x1, x4}) + f({x2, x3}) + f({x2, x4}).
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Proof. Obviously, we can assume that S is K-linear for some field K. Let (Vi)1≤i≤4 be a

K-linear representation of S. Take V5 = V1 ∩ V2 and consider the polymatroid Ŝ = (Q̂, f)
with ground set Q̂ = Q∪{x5} that is K-linearly representated by the collection (Vi)1≤i≤5.
Then f({x5}|{x1}) = f({x5}|{x2}) = 0 and f({x5}) = f({x1})−f({x1}|{x2}). Therefore,
by Lemma 5.1.2,

f({x1})− f({x1}|{x2}) ≤ f({x1}|{x3})− f({x1}|{x2, x3}) +
+ f({x1}|{x4})− f({x1}|{x2, x4}) +
+ f({x3})− f({x3}|{x4}).

Ingleton inequality is obtained after expanding terms in this expression.

Ingleton inequality can be generalized by applying it to subsets, instead of elements,
of the ground set.

Corollary 5.1.4. Ingleton inequality, general version. Let S = (Q, f) be a poly-
linear polymatroid. Then

f(X1) + f(X2) + f(X3 ∪X4) + f(X1 ∪X2 ∪X3) + f(X1 ∪X2 ∪X4) ≤

≤ f(X1 ∪X2) + f(X1 ∪X3) + f(X1 ∪X4) + f(X2 ∪X3) + f(X2 ∪X4)

for every four subsets X1, X2, X3, X4 ⊆ Q.

Proof. As before, we can assume that S is linear. Consider the polymatroid S ′ = (Q′, f ′)
with ground set Q′ = {1, 2, 3, 4} and rank function defined by f ′(J) = f(

∪
i∈J Xi) for

every J ⊆ Q′. Clearly, S ′ is linear too. The proof is concluded by applying Theorem 5.1.3
to S ′.

We can prove that the integer polymatroid in Problem 1.4 is not linear by using
Theorem 5.1.3. Indeed, if we substitute x1 = 2, x2 = 3, x3 = 1, and x4 = 4 in Ingleton
inequality, the first term is equal to 16 while the second one is equal to 15. Therefore,
this polymatroid does not satisfy Ingleton inequality, and hence it is not poly-linear. One
can use Corollary 5.1.4 to prove that the Vámos matroid, as defined in Section 4.2, is not
poly-linear by taking X1 = {3, 4}, X2 = {5, 6}, X3 = {1, 2}, and X4 = {7, 8}.

By applying a similar but more elaborate idea, Zhang and Yeung [58] found a linear
inequality that is satisfied by every poly-entropic polymatroid.

Theorem 5.1.5. Zhang-Yeung inequality. Let S = (Q, f) be a poly-entropic polyma-
troid. Then

2f(X1) + 2f(X2) + f(X3) + f(X3 ∪X4) + 4f(X1 ∪X2 ∪X3) + f(X1 ∪X2 ∪X4) ≤

≤ 3f(X1 ∪X2) + 3f(X2 ∪X3) + 3f(X1 ∪X3) + f(X1 ∪X4) + f(X2 ∪X4)

for every four subsets X1, X2, X3, X4 ⊆ Q.

If we apply Theorem 5.1.5 to the Vámos matroid in the same way as we applied
Corollary 5.1.4, the first term in the inequality is equal to 34 while the second one is
equal to 33. Therefore, the Vámos matroid is not poly-entropic. The same applies to the
polymatroid in Problem 1.4.
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5.2 Better Lower Bounds on the Optimal Information Ratio

We saw in Section 3.3 that, for a given perfect access structure Γ, the values of κ(Γ)
and κ̃(Γ), and hence lower bounds on σ(Γ) and σ̃(Γ), can be obtained by solving a linear
programming problem. Nevertheless, these lower bounds are not tight in general. In fact,
better lower bounds on σ(Γ) can be obtained for some access structures by using non-
Shannon inequalities, which are linear inequalities, to add new constraints to the linear
program used to compute κ(Γ). The same applies to σ̃(Γ). Ingleton inequality can be
used similarly to obtain better lower bounds on λ(Γ) and λ̃(Γ).

This is the case for the ports of the Vámos matroid. One can prove that their optimal
information ratios are greater than 1 (the value of κ for them) by adding to the linear
program the instance of the Zhang-Yeung inequality that is not satisfied by the rank
function of the Vámos matroid (see Section 5.1). This was the first known separation
result between the values of the parameters κ and σ, and it was proved in a different
way in [2]. Moreover, since the existence of linear secret sharing schemes for the those
access structures with information ratio equal to 4/3 was proved in [40], the ports of the
Vámos matroid were the first know examples of access structures with 1 < σ(Γ) < 3/2.
The bounds from [2] were improved in [43] by using some of the non-Shannon inequalities
presented in [23].

Every port of the Vámos matroid M is isomorphic to Γ1 = Γ1(M) or Γ3 = Γ3(M).
Moreover, Γ∗

1 = Γ3, and hence λ(Γ1) = λ(Γ3). The best known upper and lower bounds
on the optimal information ratios of those access structures, which are obtained from the
results in [2, 40, 43], are given in the following.

• κ(Γ1) = 1 < 9/8 ≤ σ(Γ1) ≤ λ(Γ1) ≤ 4/3.

• κ(Γ3) = 1 < 19/17 ≤ σ(Γ3) ≤ λ(Γ3) ≤ 4/3.

• 5/4 ≤ λ(Γ1) = λ(Γ3) ≤ 4/3.

Ingleton inequality has been used to find separation results between the values of the
parameters κ and λ for an infinite family of graph access structures [17].

Even though non-Shannon information inequalities provide better bounds on the opti-
mal information ratio, Beimel and Orlov [3] proved that the best asymptotic lower bounds
on the optimal information ratio that can be obtained by using all known non-Shannon
information inequalities are at most linear on the number of participants.
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