
Mixed-integer Linear Programming in the
Analysis of Trivium and Ktantan

Julia Borghoff?

Department of Mathematics
Technical University of Denmark

Abstract. In this paper we present a rather new approach to apply
mixed-integer optimization to the cryptanalysis of cryptographic prim-
itives. We focus on the stream cipher Trivium, that has been recom-
mended by the eSTREAM stream cipher project, and the lightweight
block cipher Ktantan. Using these examples we explain how the prob-
lem of solving a non-linear multivariate Boolean equation system can be
formulated as a mixed-integer linear programming problem. Our main
focus is the formulation of the mixed-integer programming model (MIP
model), which includes amongst others the choice of a conversion method
to convert the Boolean equations into equations over the reals, different
guessing strategies and the selection of binary variables. We apply the
commercial solver Cplex to our problems. The results and further possi-
ble features of the approach are discussed.

1 Introduction

There is an increasing number of low-end computing devices such as RFID tags.
These devices are deployed in many different applications and environments.
With the increasing deployment of those devices comes a demand for new se-
curity solutions, because the standardized primitives are often not suitable for
these extremely resource constrained environments. Thus, several new crypto-
graphic primitives such as block and stream ciphers which are specially tailored
to fit the constraints have been proposed in order to satisfy the demand.

Many of these primitives are designed on the edge. Aggressive design decision
have been made to on the one side satisfy the restrictions given and on the other
side maintain a certain security level. New proposals are designed to resist classic
attacks like differential [3] and linear [10] cryptanalysis as well as newer attacks
such as algebraic attacks [7, 6]. Thus, it is important to develop new techniques
for cryptanalysis.

A new method using mixed-integer programming (MIP) has first been in-
troduced to analysis Bivium [4], a small scale variant of the cipher Trivium [9].
The algebraic description of the cipher is the starting point for this rather new
analysis approach. The main idea is to convert the Boolean equation system in

? The author is supported by the Danish research council for Technology and Produc-
tion Sciences, Grant No.10-093667

an equation systems over the reals (where some variables might be restricted to
integer values), use the resulting equation system to formulate a mixed integer
optimization problem and solve this optimization problem. This method seems
to be suitable for ciphers which can be describe as a system of equations with a
low monomial degree.

Compared to the classical algebraic attacks such as Gröbner bases [5] or the
XL algorithm [6], mixed integer programming offers a lot of flexibility such as
considering over- or underdetermined systems. Moreover, it is rather simple to in-
corporate probabilistic equations as it e.g., has been done in [2]. Another feature
of mixed-integer optimization is that we distinguish between integer or binary
variables and continuous variables, where the integer or binary variables are the
variables that are ’expensive’. Thus, we can make use of the strong dependency
between variables, which the algebraic description of a cipher usually exhibits,
and just declare the minimum number of variables as integers or binaries, while
using algebraic attacks all variables are consider equivalent.

We apply mixed-integer programming to analyze the stream cipher Triv-
ium [9], its small scale variant Bivium [11] and the block cipher family Ktan-
tan [8]. Trivium is a hardware oriented stream cipher which is in the final port-
folio of the eSTREAM stream cipher project [1]. Its 288-bit state consists of
three interconnected NFSRs. During the keystream generation in each clock-
ing three state bits are updated using quadratic update functions and one bit
of keystream is generated in a linear manner. The state recovery problem of
Trivium can be described as a quadratic multivariate Boolean equation system
with around a thousand variables and equations [11]. Bivium is a small scale
variant of Trivium which is obtain by removing the last NFSR. Thus, Bivium
has an 17- bit state consisting of two NFSRs. There are two variants of Bivium
called Bivium A and B, which are only distinguish by the keystream equation.
In Bivium A the keystream only depends directly on two bits the second NFSR,
while for Bivium B two bits of each register determine the keystream bit. Ktan-
tan is a family of lightweight block ciphers, that uses the design idea of Bivium.
It supports an 80 bit key and three different block size: 32, 48 or 64 bits. The
plaintext is loaded into two interconnected NFSRs. These NFSRs are clocked
over 254 rounds, where in each round, depending on the block size, two to six
bits are updated using two bits of the masterkey. The content of the register
after 254 rounds is output as ciphertext.

In [4] Bivium has been investigated using mixed-integer programming. Two
different MIP models have been used, one based on the standard conversion
methods and one based on the integer adapted standard conversion method
which has been introduced in order to formulate such MIP problems. While [4]
focuses on state recovery of Bivium A using a MIP model based on the standard
conversion methods, we provide results on Bivium B and Trivium, as well as
on the Ktantan family, where our focus is on MIP models based on the integer
adapted standard conversion method. By comparing the two different conversion
methods for Bivium B and Trivium we show that the integer adapted standard
conversion is more suitable for equation systems with a higher monomial de-

gree. Using the MIP model based on the integer adapted standard conversion
instead of the standard conversion method yields an improvement of factor 2
for Bivium B and an improvement of factor 6 for Trivium. The best confirmed
attack complexity for Trivium corresponds to a search through 2180 keys. For
Ktantan we only consider MIP models based on the integer adapted standard
conversion. We compare different guessing strategies in order to preassign some
of the variables in the problem and identify that it is best to guess the key bits
that are mostly used.

The article is organized as follows. In Section 2 we introduce mixed-integer
linear programming. Section 3 gives a definition of the two different methods to
convert Boolean equations into equations over the reals. In Section 4 we give a
description of the ciphers we are analyzing in this article. We explain how to
formulate the problem of solving a Boolean equations system as a mixed-integer
linear programming problem in Section 5 and present the results we obtain using
this method in Section 6. In the last section we conclude.

2 Mixed-Integer Programming

Combinatorial and integer optimization deals with the problem of minimizing
(or maximizing) a function of several variables subject to equality and inequality
constraints and integrality restrictions on some or all of the variables. A linear
mixed-integer programming problem (MIP) is a problem of the form

min
x
{cTx|Ax ≤ b, x ∈ Zk × Rl}

where c is an n-vector, A is an m × n-matrix (n = k + l) and b is an m-
vector. This means that we minimize a linear function subject to linear equality
and inequality constraints. Additionally, some of the variables are restricted to
integer values while the other variables are real-valued.

The set S of all x ∈ Zk × Rl which satisfies the linear constraints Ax ≤ b

S = {x ∈ Zk × Rl, Ax ≤ b}

is called a feasible set. An element x ∈ S is called a feasible point. The MIP
is called feasible if S 6= ∅ and infeasible if S = ∅. The function z = cTx is the
objective function that we want to minimize.

An MIP has either an optimal solution, is unbounded, or is infeasible. If there
exists for any w ∈ R an x ∈ S such that cTx < w, the MIP is unbounded. A
solution for a MIP is optimal if a feasible point xS ∈ S exists with cTxS ≤ cTx
for all x ∈ S.

Special cases of MIP are the linear programming problem (LP)

min
x
{cTx|Ax ≤ b, x ∈ Rl}

where all variables are continuous and the pure integer programming problem
(IP)

min
x
{cTx|Ax ≤ b, x ∈ Zk}

where all variables are integer-valued.
To solve a MIP problem different techniques are applied such as branch-

and-bound and cutting plane methods. Many of this methods have in common
that they use relaxations, in particular the LP-relaxation, in the processes of
finding an optimum. The relaxation of a MIP problem is obtained by removing
constraints that make solving the problem difficult. This means in particular
that the integer restrictions are removed in order to obtain a LP-relaxation of
a MIP problem. The branch-and-bound algorithms uses the LP-relaxation for
instance for estimating the best achievable objective value in a node of the search
tree. Without going into detail it is intuitively clear that the more accurate this
estimate is the better the algorithm will perform.

Furthermore, the solution time of a mixed-integer linear programming prob-
lem depends on the size of problem, meaning the number of variables, especially
the number of variables with restrictions, the number of constraints but also on
the complexity and density of the constraints. Thus, it is very important how
the MIP problem is formulated. In this article we will compare two different
formulating of a problem that based on different conversion methods.

3 Conversion Methods

The internal state of Trivium or the secret key of Ktantan can be described
as a system of non-linear multivariate Boolean equations. A mixed-integer pro-
gramming problem, however, consists of a real-valued objective function and
real-valued constraints where some variables are possibly restricted to be inte-
gers. Thus, we have to represent the Boolean functions as polynomials over the
reals where some of the variables may have integer restrictions. The conversion
method should ensure that every solution of the Boolean function is also a solu-
tion of the polynomial over the reals, while additional real-valued solutions are
not of interested. We consider two different conversion methods: the standard
conversion method and the integer adapted standard conversion method.

3.1 The Standard Conversion Method

If we want to represent a Boolean function as a polynomial over the reals we have
to map the values FALSE and TRUE to real numbers. The representation of the
Boolean operators follows from this mapping. The most natural representation
is the standard representation.

Definition 1 (Standard Representation).
Given a Boolean function f(x1, . . . , xn) with xi ∈ {FALSE,TRUE} for 1 ≤ i ≤ n
and a mapping t : {FALSE,TRUE} → {0, 1} such that

t(x) =

{
0 if x=FALSE
1 if x=TRUE,

r is the standard representation of f if

r(t(x1), . . . , t(xn)) = t(f(x1, . . . , xn))

holds for all possible configurations of (x1, . . . , xn).

This representation of FALSE and TRUE as real numbers leads to the polyno-
mial expressions of the Boolean operators which is given in Lemma 1. A Boolean
function can be converted recursively into a polynomial over the reals using these
polynomial expressions under consideration of the distributive law in the Boolean
algebra.

Lemma 1. (Standard Conversion Method)
Let f be a Boolean function and r the corresponding standard representation.
Then it holds

1. f(x1, x2) = x1 ∧ x2 =⇒ r(y1, y2) = y1y2
2. f(x1, x2) = x1 ∨ x2 =⇒ r(y1, y2) = y1 + y2 − y1y2
3. f(x1, x2) = x1 ⊕ x2 =⇒ r(y1, y2) = y1 + y2 − 2y1y2
4. f(x1) = ¬x1 =⇒ r(y1) = 1− y1

where yi = t(xi) for i = 1, 2.

Lemma 1 can be proven by inspecting a truth table.

3.2 The Integer Adapted Standard Conversion Method (IASC)

This is a conversion method that only applies to Boolean polynomials, meaning
Boolean functions in algebraic normal form, and was first introduced in [4].
The integer adapted standard conversion methods is deduce from presenting an
equation modulo 2 as an equation over Z and works as follows: We consider
a multivariate Boolean polynomial f over F2 and interpret this polynomial as
a polynomial g over the integers by replacing XOR by addition and AND by
multiplication. All solutions of the Boolean equation f = 0 will yield a multiple
of 2 when plugged into g. Thus, for x ∈ {x|f(x) = 0} it holds that g(x) = 2 · k.
Lets l be the smallest possible value for k and u be the largest. Then we obtain
an integer equation by subtracting a multiple of 2 from g:

g − 2 · yInt = 0 where l ≤ yInt ≤ u.

As an example we consider the Boolean equation

x1 ⊕ x2 ⊕ (x3 ∧ x4)⊕ x5 ⊕ x6 = FALSE (1)

If we evaluate the corresponding real-valued polynomial y1+y2+y3y4+y5+y6
for all solutions of (1) we get 0, 2, 4 as results. That means that a solution of (1)
is a solution to the following equation over the integers

y1 + y2 + y3y4 + y5 + y6 − 2yInt = 0

where yInt ∈ {0, 1, 2} and yi ∈ {0, 1} for i = 1 . . . 6. The degree of the polynomial
over the integer stays the same and the number of variables and monomials
per equation is increased only by one compared to the Boolean polynomial.

However, this conversion method can only be applied if we can restrict the newly
introduced variable yInt to be integer, the equation does in general not hold over
the reals.

Note, that opposed to the standard conversion methods the integer adapted
standard conversion method can be generalized for prime fields. Let f(x) = 0 be
an equation over Fp then f(y)− pyInt is the corresponding equation over Z.

4 Trivium and Ktantan

In this section we give a short description of the stream cipher Trivium [9]
including the small-scale variant Bivium [11] and the lightweight block cipher
Ktantan [8] which uses design ideas from Bivium.

4.1 Trivium

Trivium [9] was recommended as a stream cipher for hardware application in the
portfolio of the ECRYPT eSTREAM project [1]. Trivium takes an 80 bit key
and 80 bit IV which are loaded into the internal state of size 288 bits consisting
of three interconnected NFSRs. As key-setup the algorithm is clocked 4· 288
times without producing any output. Afterwards the keystream is produce as
described in the following pseudecode where sj denotes the jth bit of the state
and zi is the keystream bit at time i:

for i = 1, 2, . . . do
zi ← s66 + s93 + s162 + s177 + s243 + s288 . Generate output bit zi
ti,1 ← s66 + s93 + s91 · s92 + s171
ti,2 ← s162 + s177 + s175 · s176 + s264
ti,3 ← s243 + s288 + s286 · s287 + s69
(s1, s2, . . . , s93)← (ti,3, s1, . . . , s92)
(s94, s95, . . . , s177)← (ti,1, s94, . . . , s176)
(s178, s179, . . . , s288)← (ti,2, s178, . . . , s287)

end for

Here the ’+’ and ’·’ operations stand for addition and multiplication over F2

respectively.
Bivium B [11] is a small-scale variant of Trivium which is obtained by re-

moving the last NFSR while the structure is kept. That means that the internal
state of Bivium B is of size 177 bits, the keystream depends linearly on 4 state
bits and two state bits are updated each clocking of the algorithm.

Trivium as an Equation System In [11] it is stated that the initial state,
which is the state of the registers at the time when the key generation starts,
(or any other internal state) can be expressed as a system of sparse linear and
quadratic Boolean equations. We consider the initial state bits as variables and
label them with s1 . . . , s288. In each clocking of the Trivium algorithm three
state bits are updated. The update function is a quadratic Boolean function

Algorithm 1 Bivium B:Pseudo code producing one bit of keystream.

for i = 1, 2, . . . do
zi ← s66 + s93 + s162 + s177 . Generate output bit zi
ti,1 ← s66 + s93 + s91 · s92 + s171
ti,2 ← s162 + s177 + s175 · s176 + s69
(s1, s2, . . . , s93)← (ti,2, s1, . . . , s92)
(s94, s95, . . . , s177)← (ti,1, s94, . . . , s176)

end for

of the state bits. In order to keep the degree low and the equations sparse we
introduce new variables for each updated state bit ti,1, ti,2, ti,3. We get the
following equations from the first clocking

s66 ⊕ s93 ⊕ s91 · s92 ⊕ s171 = s289,

s162 ⊕ s177 ⊕ s175 · s176 ⊕ s264 = s290,

s243 ⊕ s288 ⊕ s286 · s287 ⊕ s69 = s291,

s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288 = z.

(2)

where the last equation is the keystream equation with z being the known
keystream bit.

After observing 288 keystream bits we can set up a fully determined system
of 954 Boolean equations in 954 unknowns [11]. We only need to consider 954
equations and unknowns instead of 1152 since we do not care about the last 66
state updates for each register. These variables will not be used in the keystream
equation because the new bits are not used for the keystream generation before
66 further clockings of the cipher. By clocking the algorithm more than 288 times
we can easily obtain an overdetermined equation system.

In a similar way Bivium can be represented as a non-linear Boolean equation
system in 399 equations and variables after observing 177 bits of keystream.

4.2 Ktantan

The Katan and Ktantan family of block ciphers is designed to provide 80 bit
security with as few gates as possible. The main difference between Katan and
Ktantan is the keyschedule. Both cipher come in three different block sizes 32,
48 and 64 bits. To begin with we describe the smallest member of the Ktantan
family: Ktantan-32. The two other variants differ from Ktantan-32 in the size
of the register, the tab positions, and the number of applications of the update
functions in each round. The design is based on the design idea of Bivium. The
cipher consists of two NFSR L1 and L2 of length 13 and 19 bits respectively and
a known counter LFSR T of length 8. The plaintext is loaded in the two NFSRs
and then the cipher is clock for 254 rounds. The details of the update of the
registers are given as follows, where ki denotes a subkey bit, IR is the irregular
clocking determined by the counter T and Li(j) denotes the js bit of register
Li.

for i = 1, . . . , 254 do
fa(L1)← L1(12) + L1(7) + L1(8) · L1(5) + L1(3) · IRi + k2i
fb(L2)← L2(18) + L2(7) + L2(12) · L2(10) + L2(8) · L2(3) + k2i+1

(L1(0), L1(1), . . . , L1(12))← (fb(L2), L1(0), . . . , L1(11))
(L2(0), L2(1), . . . , L2(18))← (fa(L1), L2(0), . . . , L2(17))

end for

For the Ktantan family the key is burnt and for each round of two masterkey
bits are chosen as subkey bits. Which masterkey bit is used as subkey in each
round of the encryption process is determined by the counter T . For Ktantan-32
each masterkey bits is used at least 5 and at most 7 times. The full key schedule
can be found in Appendix A.

The register T is initialized with the all one state and runs until the all-
one state is reached again. Thus. we obtain a multivariate non-linear quadratic
Boolean equation system by introducing a new variable for each update state
bit. Additionally the equation system contains 80 unknowns for the keybits. For
one plaintext/ciphertext pair we introduce 32 variables for the initial register,
2 variables for the register update in every round and 80 variables for the key
bits, furthermore we obtain 64 + 2 · 254 equations (note that we obtain 64 extra
equations because the plaintext/ciphertext is known). For each additional pair
we obtain 64 + 2 · 254 equations in only 32 + 2 · 254 unknowns. Thus, we can
easily generate an overdetermined equation system by considering three plain-
text/ciphertext pairs.

Ktantan-48 consists of two NFSRS of length 19 and 29 and the following two
update functions, which ar applied twice in every round using the same subkey
bits:

fa(L1)← L1(18) + L1(12) + L1(15) · L1(7) + L1(6) · IRi + k2i
fb(L2)← L2(28) + L2(19) + L2(21) · L2(13) + L2(15) · L2(6) + k2i+1

For each text pair we obtain 96 + 2 · 2 · 254 equations in 48 + 2 · 2 · 254 un-
knowns. Additionally, there are 80 unknowns describing the key variables. Thus,
only two plaintext/ciphertext pair yield an overdetermined Boolean equation
system. In the same manner two plaintext/ciphertext pair for Ktantan-64 yield
an overdetermined equations system, because each text pair yields 128+2 ·3 ·254
equations in 64 + 2 · 3 · 254 unknowns. Ktantan-64 has two NFSRs of size 25 and
39 respectively, which are update by the following feedback functions where 3
state bits of each register are updated in every round using the same subkey bits

fa(L1)← L1(24) + L1(15) + L1(20) · L1(11) + L1(9) · IRi + k2i
fb(L2)← L2(38) + L2(25) + L2(33) · L2(21) + L2(14) · L2(9) + k2i+1.

It is interesting to note that for the two variants with bigger block size we
only need two plaintext/ciphertext pairs to generate an overdetermined system.
However, as the update functions are applied several times in each round, this
does not result into smaller equation systems.

5 Boolean Equation Systems as Mixed Integer
Programming Problems

In this section we explain how to convert the problem of solving a non-linear
Boolean equation system into a mixed-integer linear programming problem.

To start with we recall what a mixed integer linear programming problem
is. A mixed integer linear programming problem consists of a linear objective
function, a set of linear equality and inequality constraints and a set of variables
with integer restrictions. We distinguish two types of problems, an optimization
problem, where we want to find a point that satisfies all constraints and restric-
tions and yields best possible value for the objective function, and a feasibility
problem, where we are only interested in finding an element in the set of points
that satisfy all constraints and restrictions. The size of the problem (meaning,
number of constraints and variables) is an important factor when estimating if
a problem is solvable, but it is not the most crucial. There are more factors we
have to take into account when formulating a mixed integer program, because
they influence the solvability. As mentioned in Section 2 most approaches for
solving mixed-integer programming problem use relaxations of the problem dur-
ing the solution process. This indicates that the tighter the bounds are which a
relaxation yields the better. One way to achieve tight bounds is to keep the con-
straints sparse. Very complex constraints that contain many variables usually
allow more solutions then sparse constraints that only contain very few vari-
ables. Furthermore, in a branch-and bound approach only variables with integer
restrictions are considered as branching variables. Thus, the number of integer
variable determines the size of the search tree in the worst case and influences
thus the running time of the algorithm. Therefore, one should try to keep the
number of variables with restrictions (binary or integer) low.

When transforming a Boolean equation system into a mixed integer program-
ming problem we know that for each variable in the Boolean system we have
to define at least one corresponding variable in the MIP and each equation in
the Boolean system corresponds to at least one constraint of the MIP. Thus, the
number of variables and constraints in the MIP is lower bounded by the num-
ber of variables and equations in the Boolean equation system and we derive
the set of constraints of the MIP from the Boolean equations. As we consider
a non-linear Boolean equation system on the one side and a system of linear
constraints on the other side we will have to increase the number of variables
and constraints in order to properly translate the one problem into the other.
Later in the section we describe in detail how we can convert a Boolean equation
system into a mixed integer linear programming problem.

We have already mentioned that the Boolean equations will be translated
into a set of constraints. However, we cannot deduce the objective function di-
rectly from the original Boolean problem. That means that we can freely choose
an objective function and thus, we consider a feasibility rather than an opti-
mization problem. But even though we can freely choose the objective function
it is important to put some thoughts in a proper choice of it because the objec-

tive function is extensively used in many solvers e.g. as bounding function and
therefore influences the solution time significantly.

In the remainder of the section we show step by step how to obtain the set
of constraints, how to decide which variables to restrict and how to choose an
objective function. Some of the choice that are made are based on earlier experi-
ments which are reported in detail in [4]. We consider two different formulations
of the problem of solving a non-linear Boolean equation system as MIP, one
based on the standard conversion method and one based on the integer adapted
standard conversion method.

5.1 Converting the Boolean System into a Set of Linear Constraints

The main part when translating a Boolean equation system into a mixed in-
teger programming problem is transforming the Boolean equations into linear
constraints. This is the only part where the Boolean equation system is directly
used in the modeling of the mixed integer programming problem. The transla-
tion from the set of Boolean equations into a set of linear constraints is basically
performed in two steps. First, after a possible preprocessing of the Boolean equa-
tion system, the Boolean equations are converted into equations over the reals
or the integers. This yields a system of non-linear equations. The next step is
to linearize these equations by the replacing non-linear terms by new variables
and additional inequality constraints which ensure that new variables behave
according to the non-linear terms they are replacing. Depending on the choice
of the conversion method we obtain a different set of constraints. Furthermore,
the conversion methods implies integrality restrictions on some variables. Thus,
the choice of the conversion method together with the set of Boolean equation
mainly determines the feasible set.

Using the Integer Adapted Standard Conversion Method Applying the
integer adapted standard conversion method is straight forward and yields, when
we start with a quadratic Boolean equation system, a quadratic equation over
the integers where all variables but the variables yInt, that are introduced by
the conversion method, are binary.

We linearize the constraints in the following way. We replace each quadratic
term xixj by a new variable qi,j and add the following three inequalities to the
set of constraints

qi,j − xi ≤ 0 (3)

qi,j − xj ≤ 0 (4)

xi + xj − qi,j ≤ 1 (5)

The inequalities (3) and (4) ensure that qi,j is zero when xi or xj are zero, while
inequality (5) forces qi,j to take the value one if both xi and xj are one. This
method of linearizing equations can only be applied if the variables which are
involved in the non-linear term are binary variables.

Using the Standard Conversion Method When we apply the standard
conversion method to a Boolean function in ANF the total degree of the resulting
polynomial over the reals equals the number of variables in the Boolean function.
Furthermore, the number of monomials contained in the real-valued polynomial
is exponential in the number of monomial in the Boolean polynomials.

Therefore we add a preprocessing phase where we prepare the Boolean equa-
tion system, before the application of the standard conversion method. We intro-
duce auxiliary variables such that the Boolean polynomial contains at most four
variables. Introducing new variables increases not only the number of variables
but also introduces additional equations (one equation for each variable). Fur-
thermore, we rewrite the equation such that left and the right hand side of the
equation contain at most two variables. After this preprocessing we convert each
side of the Boolean equation separately into a polynomial over the reals using
the standard conversion method and consider the difference of these two polyno-
mials as the desired real-valued polynomial. This yields us a system of quadratic
real-valued equations when starting with a quadratic Boolean equation system.

In order to clarify the method we described above we use the following ex-
ample. We consider the Boolean equation:

x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ∧ x6 ⊕ x7 = 0

We introduce two auxiliary variable s1 and s2 thus that we obtain three equations
in total:

s1 = x1 ⊕ x2 (6)

s2 = x5 ∧ x6 (7)

s1 ⊕ x3 ⊕ s2 ⊕ x7 = 0 (8)

The first two equations already satisfy the properties that each side of the equa-
tions contains at most two variables, while we rewrite the last equation as follows

s1 ⊕ x3 = s2 ⊕ x7 (9)

The equations (8) and (9) have the same set of solution but converting Equation
(9) yields a quadratic polynomial over the reals while Equation (8) yields a
real-valued polynomial of degree 4. Applying the standard conversion method
to each side of the equations separately and taking the difference yields the
following three equations over the reals

s1 − x1 − x2 + 2x1x2 = 0 (10)

s2 − x5x6 = 0 (11)

s1 + x3 − 2s1x3 − s2 − x7 + 2s2x7 = 0 (12)

Thus, we obtain quadratic polynomial equations over the reals which can be
linearized using the approach described in Section 5.1.

5.2 Integer Restrictions

Some restriction on variables are implied by the conversion method that has
been used. When using the integer adapted standard conversion the variables
yInt which are introduced by the conversion method have to be restricted to
be integers; their bounds depend on the number of monomials in the Boolean
polynomial. Usually, it holds yInt ∈ Z and 0 ≤ yInt ≤ k/2 where k is the number
of monomials in the corresponding Boolean polynomial.

The variables qi,j which are introduced during the linearization process di-
rectly depend on the variables in the quadratic term xixj which they replace.
This is independent of the conversion method used and means, when xi and
xj are binary, qi,j will automatically take a binary value. Thus, there is no
additional binary restriction on qi,j necessary. The same holds for the auxiliary
variables which are introduced to decrease the number of variables per equations
as the expense of additional equations before applying the standard conversion
method.

In general when describing a cipher we introduce new variables in order to
keep the degree of the polynomials low; these are for example the new vari-
ables which are introduce for the updated register bits in Bivium, Trivium and
Ktantan. These variables are depending on the initial state variables and in the
case of Ktantan the key bits and are connected to them by equations with bi-
nary/integer coefficients. Thus, they will be binary if the initial variables are
binary. Therefore, it is sufficient to restrict the initial state and the key variables
to be binary and no restrictions on the variables coming from the register up-
dates are necessary. It is important to note that even though we do not restrict
the variables to be binary we still bound them with zero as lower and one as
upper bound.

The initial state variables and the key variables have to be binary variables.

5.3 The Objective Function

We convert the Boolean equation system into a equation system over the reals
or the integers and use it to describe the feasible set of the mixed-integer pro-
gramming problem. Thus, we are rather interested in finding a feasible point
than an optimal solution. If we assume that there is only one element in the
feasible set we will find the same solution no matter which objective function we
use (assuming that the solver finds a solution in a reasonable time). However, a
good choice for the objective function significantly improves the solution time.
In [4] experiments with different objective functions have been carried out and
the solver performed best using the sum over all variables as objective function
when using the standard conversion and the sum over all but the integer vari-
ables yInt introduced by the conversion method when using the integer adapted
standard conversion method. For a random point this objective function will
yield as objective value about 1

2× # variables, but for a feasible point the ob-
jective function value will be significantly lower than this value. The reason is
that many of the newly introduced variables replace a quadratic term, thus for

a feasible point they are zero with probability 3
4 . This means by minimizing this

function the algorithm gets information that enables it to consider nodes that
more likely yield a feasible point first. Therefore, we choose in all our experi-
ments the sum over all variables but the variables introduced by the conversion
method as objective function.

6 Results

In this chapter we present experimental results on Bivium, Trivium and Ktantan
when using mixed-integer linear programming in order to recover the initial
state or the secret key, respectively. All experiments are performed using the
commercial solver IBM Ilog Cplex 12.1 available under academic license on a
standard PC. The only available measurement of the complexity is the running
times of the algorithm in seconds. In order to be able to compare our results
with exhaustive search, we provide an implementation1 of the naive brute force
search and measure the time needed to perform the search.

For Bivium and Trivium we compare the approaches of using the standard
and the integer adapted standard conversion method to model the Boolean equa-
tion system as mixed-integer linear programming problem while for Ktantan we
focus on the MIP using the integer adapted standard conversion only. It turns
out that for all ciphers it takes too long time to solve the mixed-integer linear
programming problem as it is, therefore we simplify the problem by guessing
some bits.

6.1 Bivium and Trivium

We compare the standard and the integer adapted standard conversion when
modeling Bivium and Trivium as a mixed-integer programming problem. In or-
der to simplify the problem we guess the last bits of the internal state. In [4]
different guessing strategies have been compared and this seems to be the best
one. Furthermore, we consider an overdetermined equation system in order to
ensure that there is with high probability only one solution and thus, only one
element in the feasible set. For Bivium and Trivium it is easy to obtain an overde-
termined system by observing additional keystream bits; after we have generated
a fully determined system every keystream bit yields two new variables and three
equation or three new variables and four equations, respectively.

Bivium/Trivium as MIP

Bivium/Trivium as MIP using the standard conversion method In [4] it is step
by step explained how to convert Bivium A into a mixed-integer linear program-
ming problem using the standard conversion. We use the same parameters for

1 It is a naive implementation of the ciphers in C which is not optimized for key search
but performs a simple testing. Thus, an optimized implementation might be faster.

Bivium B. We choose the sum over all variables as objective function, restrict
only 177 variables corresponding to the initial state to be binary, and consider
an overdetermined equation system that has been generated by considering 1/3
additional keystream bit, thus 177+59 keystream bits. This number has been
experimentally identified. This yields an MIP in 2821 variables and 5865 con-
straints, 1388 of these are equality constraints.

In an equivalent manner we can model Trivium as a mixed-integer program-
ming problem using the standard conversion method. After observing 384 bits
of keystream this yields a mixed-integer programming problem in 7746 variables
and 16638 constraints. We restrict only the initial 288 variables to be binary.

Bivium/Trivium as MIP using the integer adapted standard conversion Using the
integer adapted standard conversion to model the MIP as been shortly consider
for Bivium A in [4] but showed a worse performance than using the standard
conversion method. However, already in [4] it was suggested that the integer
adapted standard conversion method might be more suitable for Boolean equa-
tion system containing more complex equations as it is the case for Bivium B.
We use the sum over all but the integer variables yInt which are introduce by the
conversion as objective function, the 177 variables corresponding to the initial
state are restricted to be binary while the variables yInt are integers and bounded
depending on the number of monomials in the equation. We assume that already
5 additional keystream bits are enough to generate an overdetermined Boolean
equation system which has a unique solution with high probability. We carried
out some experiments in order to compare the solution time when adding a
different number of additional keystream and the corresponding quadratic equa-
tions and found that it is sufficient to observe 5 additional keystream bits. The
results are summarized in Table 1.

Table 1. Bivium B as MIP using the IASC with 50 preassigned bits. Comparison of
the solution time for different numbers of additionally consider keystream bits.

add. keystream bits 5 30 59

time in sec. 983,84 1310,21 1332,17

This yields a mixed-integer programming problem in 1055 variables of which
177 are binary and 414 are integers after observing 182 bits of keystream. Of the
1110 constraints 414 are equality constraints.

For Trivium we obtain a mixed-integer linear programming problem in 2624
variables and 3017 constraints after observing 293 keystream bits. We restrict
the 288 initial variables to be binary and we additionally have 974 variables with
integer restrictions.

Results on Trivium and Bivium We compare the time needed for solving
the mixed-integer problem that was obtained by using the standard and the

integer adapted standard conversion method. To simplify the problem we guess
some of the last bits of initial state.

Table 2. Bivium: Comparison of the solution time in seconds when using the standard
conversion method or the integer adapted standard conversion method for modeling
the MIP. The last 50 bits of the initial state are set to the correct value.

SCM IASC

average 207,4 113,9

log average 7,7 6,8

total time (log) 57,7 56,8

For Bivium B we guess the 50 last bits of the register. The results are
summarized in the Table 2. According to our reference implementation we can
search through 210.1 keys per second. The average solution time for Bivium B
as a mixed-integer programming problem when using the standard conversion
method and guessing 50 bits is 207, 45 seconds. This is the average for the cases
were we guessed correct, for wrong guesses the solver decides on average even
faster that the problem is infeasible. Thus, when we incorporate the time for bit
guessing, the initial state can be found in 257.7 which corresponds to a search
through 267.8 keys2. Using the integer adapted standard conversion to model
Bivium as MIP improves the running time by a factor of two compared to the
standard conversion method. When guessing 50 bits the problem can be solved
in 113, 88 seconds on average which leads to a total solution time of 256.8 seconds
or equivalent it means that we have to search through 266.9 keys.

For Trivium we have to guess at least the 160 bits in order to obtain re-
sults in a reasonable time. Thus, this approach is clearly worse than exhaustive
search. However, assuming that we are facing a Boolean equation system with
around a 1000 variables, or assume that the 288 initial state variables form the
secret the results are quite impressive and show the strength of using mixed in-
teger programming for solving sparse Boolean equation systems. The results are
summarized in Table 3. The MIPs modeled using the integer adapted standard
conversion can in average be solved 6 times faster than when using the stan-
dard conversion method. Furthermore, we can observe that when we reduce the
number of guess, the running time for a single instance increases but the overall
running time decreases, because the increase in the solution time is less than
the gain when guessing less bits. Using the integer adapted standard conver-
sion method reducing the number of guessed variable from 165 to 160 improves

2 In [4] it is stated that it takes 264.5 seconds to solve the MIP corresponding to
Bivium B using the standard conversion. The improvement by a factor of almost 27

can be explained by using an newer version of CPLEX on a faster machine. For the
experiments carried out here we use CPLEX 12.2 on PC with an Intel Core 2 Duo
E6850 3GHZ processor and 3 GB RAM.

the total running time by a factor of two and yields a average running time of
2171.3 seconds including the time for guessing the variables. This corresponds to
a search through 2180,3 keys3.

Table 3. Trivium: Comparison of the solution time in seconds when using the standard
conversion method or the integer adapted standard conversion method for modeling
the MIP. The last 165 bits or 160 bits of the initial state are set to the correct value.

seed SCM 165 preassig. IASC 165 preassig. IASC 160 preassig.

average 1729,7 281,7 2461,1
log average 10,8 8,1 11,3

total time (log) 175,8 173,1 171,3

6.2 Ktantan

The experiments on Trivium showed that the integer adapted standard con-
version method is more suitable when converting complex equations into con-
straints. Therefore we focus on the integer adapted standard conversion method
to model the key recovery problem of Ktantan as mixed-integer linear pro-
gramming problem. For Ktantan32 three plaintext/ciphertext pairs will yield
an overdetermined system and thus with high probability determine the key
uniquely. However, in order to simplify the problem we will guess several key
bits. Guessing key bits fixes some of the variables and thus decreases the num-
ber of variables. Thus, it is sufficient to consider the equation system obtained
from two plaintext/ciphertext pairs. This yields a Boolean equation system of
1168 variables in 1152 equations. The corresponding mixed-integer programming
problem consists of 3728 variables and 5760 constraints. We only restrict the 80
key variables to be binary and the variables yInt introduceed by the integer
adapted standard conversion method to be integer. These are 1016 variables.
As the registers are initialized with the known plaintext and the key variables
are binary the updated register variables will automatically take binary values
when bounded by zero and one. As objective function we take the sum over all
variables that are bounded by zero and one. That are all variables except the
variables introduced by the conversion method.

We have to guess 70 variables in order to obtain a solution in a reasonable
time. We explore three different guessing strategies: The first keybits of the
master key, the last keybits of the master key and the key bits which are used
most often as subkeys. It turns out that guessing the most used bits is the best
strategy and yields a running time of 277,66. The results are summarized in Table
4. We can see that for very few problem no running time is given. In these cases

3 According to our reference implementation we can search through 29 keys per sec-
onds.

the running time exceeded one hour and an the computation has been aborted.
In such cases we can guess an additional bit in order to speed up the calculation.

When testing a single plaintext/ciphertext pair we can search through 216.3

keys per second. Thus, using mixed-integer programming in order to find the
secret key corresponds to a search through 294 keys and is therefore worse than
exhaustive search. We formulate the key recovery problem of Ktantan48/64 as
a mixed-integer programming problem. We guessed the 72 most used key bits.
The results are summarized in Table 5. We can conclude, that Ktantan does
not seem to be a suitable problem for mixed-integer programming. The only
variables which are actually unkown in the problem are the 80 key variables, as
we have to guess almost all variables of these variables and it takes additional
3-4 minutes to solve the resulting problem, an exhaustive search will be more
efficient.

7 Conclusion

We investigated a rather new technique for cryptanalysis based on mixed-integer
programming. We presented results on Bivium, Trivium and the Ktantan family,
where we considered different MIP models as well as different guessing strategies.
In the current version mixed-integer programming does not pose a threat to Triv-
ium or Ktantan. However, especially the results on Trivium show that mixed-
integer programming has potential to provide solution to structured Boolean
equation systems where a part of the variables depend on some initial variables.
Generally, this approach seems to be similar to algebraic attacks because our
targets are cryptographic algorithms that can be describe as a system of sparse
equations. However, mixed-integer programming is far more flexible than alge-
braic attacks as we can solve over- or underdetermined systems. Furthermore the
fact that we consider optimization problem enables to easily incorporate proba-
bilistic equation, which makes this attack suitable for side channel attacks, noisy
keystream and general algebraic attack where we can find additional equations
that do not hold in all cases. Therefore we think that mixed-integer program-
ming is a valuable technique in cryptanalysis, but it is yet open to examine the
real potential of it in different scenarios.

A Ktantan Key Schedule

The master key of the Ktantan family is burnt into the device. For each round
two bits of the master bits are chosen as subkey bits. The counter register T is
used to determine the subkey bits.

The masterkey K is split into K = w4||w3||w2||w1||w0 where the least signifi-
cant bit of w0 is the least significant bit of K. Let ai = MUX16to1(wi, T7T6T5T4)
where MUX16to1(x, y) gives the yth bit of x. Then

ka = T̄3T̄2(a0)⊕ (T3 ∨ T2)MUX4to1(a4a3a2a1, T1T0)

Table 4. Results on Ktantan-32. Running time in seconds when 70 key bits are guessed.
The second column gives the running time when guessing the key bits which are used
most often during the encryption, column 3 and 4 contain the running times when we
guess the first or the last bits of the key respectively. ”‘-”’ denotes that the algorithm
has been stopped after exciding a running time of 1000 sec.

seed most used first last

12341 372,9 72,7 65,07
12342 113,5 295,2 179,26
12343 231,5 228,4 195,49
12344 165,4 151,9 315,2
12345 336,4 464,1 390,16
12346 220,7 598,7 154,07
12347 108,4 437,5 134,5
12348 170,2 10,6 106,81
12349 - 227,3 185,56
12350 165,9 611,1 246,09
12351 336,1 467,6 30,64
12352 445,6 397,18 114,22
12353 195,0 1215,96 140,26
12354 51,8 64,12 247,75
12355 121,5 287,17 83,76
12356 203,4 443,84 282,05
12357 33,5 234,03 249,93
12358 227,5 - 388,07
12359 70,4 364,04 115,27
12360 261,5 148,61 172,58
12361 156 376,82 139,65
12362 150,9 951,86 290,19
12363 303,4 457,83 369,96
12364 200,2 336,68 138,59
12365 330,3 548,69 161,27
12366 232,9 116,72 224,14
12367 25,1 624,28 241,3
12368 199,2 308,34 219,68
12369 291,4 295,44 54,6
12370 234,7 497,39 267,75
12371 8,7 290,38 222,27
12372 148,3 493,29 184,85
12373 214,2 392,72 199,32
12374 117,8 374,17 96,36
12375 226,1 658,81 599,03
12376 67,5 202,88 240,51
12377 376,8 - 137,76
12378 300,5 363,7 171,73
12379 242,4 2234 151,62
12380 308,3 637,06 432,2
12381 224,4 429,47 -
12382 30,6 223,99 517,45
12383 19,4 336,03 70,11
12384 207,7 417,01 230,49
12385 438,4 568,3 274,97
12386 218,5 305,25 29,94
12387 155 111,98 64,18
12388 198,8 258,68 81,21
12389 150,8 - 347,82
12390 279,8 391,89 271,43

average 201,8 423,9 208,7

log 7,7 8,7 7,7

Table 5. Running times for Ktantan48 and Ktantan64

Cipher time in sec log total running time in sec

Ktantan48 99,32 6,63 78,63

Ktantan64 317,1 8,31 80,31

kb = T̄3T2(a4)⊕ (T3 ∨ T̄2)MUX4to1(a3a2a1a0, ¯T1T0),

and k2i = ka and k2i+1 = kb.

References

1. The eSTREAM project. http://www.ecrypt.eu.org/stream/.
2. Albrecht, M., and Cid, C. Cold boot key recovery by solving polyonomial

systems with noise. IACR eprint http://eprint.iacr.org/2011/038.pdf, 2011.
3. Biham, E., and Shamir, A. Differential Cryptanalysis of the Data Encryption

Standard. Springer-Verlag, 1993. ISBN: 0-387-97930-1, 3-540-97930-1.
4. Borghoff, J., Knudsen, L. R., and Stolpe, M. Bivium as a mixed-integer

linear programming problem. In Cryptography and Coding, 12th IMA International
Conference (2009), M. G. Parker, Ed., vol. 5921 of Lecture Notes of Computer
Science, Springer, pp. 133–152.

5. Buchberger, B. Ein algorithmisches Kriterium fü r die Lö sbarkeit eines alge-
braischen Gleichungssystems. Aequationes Mathematicae 4 (1970), 374–383.

6. Courtois, N., Klimov, E., Patarin, J., and Shamir, A. Efficient algorithms
for solving overdefined systems of multivariate polynomial equations. In Advances
in Cryptology – EUROCRYPT 2000 (2000), B. Preenel, Ed., vol. 1807 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 392–407.

7. Courtois, N., and Meier, W. Algebraic attacks on stream ciphers with linear
feedback. In Advances in Cryptology – EUROCRYPT 2003 (2003), E. Biham, Ed.,
vol. 2656 of Lecture Notes of Computer Science, Springer, pp. 644–644.

8. De Cannière, C., Dunkelman, O., and Kneževic, M. KATAN and KTANTAN
- a family of small and efficient hardware-oriented block ciphers. In Cryptographic
Hardware and Embedded Systems - CHES 2009 (2009), vol. 5747/2009 of Lecture
Notes in Computer Science, pp. 272–288.

9. De Cannière, C., and Preneel, B. Trivium specifications. eSTREAM,
ECRYPT Stream Cipher Project (2006).

10. Matsui, M. Linear cryptanalysis method for DES cipher. In Advances in Cryp-
tology - EUROCRYPT ’93 (1994), T. Helleseth, Ed., vol. 765 of Lecture Notes in
Computer Science, Springer.

11. Raddum, H. Cryptanalytic results on Trivium. eSTREAM report 2006/039, 2006.
http://www.ecrypt.eu.org/stream/triviump3.html.

