
What is the Effective Key Length for a Block
Cipher: an Attack on Every Block Cipher

Jialin Huang and Xuejia Lai

Shanghai Jiaotong University

Abstract. Recently, several important block ciphers are considered to
be broken by the bruteforce-like cryptanalysis, with a time complexity
faster than exhaustive key search by going over the entire key space but
performing less than a full encryption for each possible key. Motivated
by this observation, we describe a meet-in-the-middle attack that can
always be successfully mounted against any practical block ciphers with
success probability one. The data complexity of this attack is the smallest
according to the unicity distance. The time complexity can be written
as 2k(1 − ε) where ε > 0 for all block ciphers. Previously, the security
bound that is commonly accepted is the length k of the given master key.
From our result we point out that actually this k-bit security is always
overestimated and can never be reached due to the inevitable key bits
loss. No amount of clever design can prevent it, but increments of the
number of rounds can reduce this key loss as much as possible. We give
more insight in the problem of the upper bound of effective key bits in
block ciphers, and show a more accurate bound. A suggestion about the
relation between the key size and block size is given. That is, when the
number of rounds is fixed, it is better to take a key size equal to the block
size. Moreover, effective key bits of many well-known block ciphers are
calculated and analyzed, which also confirm their lower security margin
than thought before.

Keywords: block cipher, meet-in-the-middle, effective key length, ex-
haustive search

1 Introduction

As one of the fundamental primitives in symmetric cryptography, block ciphers
play an important role in today’s secure communication. They protest informa-
tion data against unauthorized access and tampering in an insecure communica-
tion channel. Also, the design of many cryptographical schemes, such as secure
encryption modes and authentication modes, is based on the security of block
ciphers. Therefore, their security evaluation has been a hot research issue over
the decades, giving rise to different analysis techniques. One line of research
is the so-called provable security approach [12, 8], such as indistinguishability
analysis. This approach usually studies design principles or cipher structures by
assuming the pseudorandomness for some components. Another line of research



2

focuses on practical security, concerning that if any cryptanalytic attacks can be
mounted successfully on a block cipher, such as differential attacks, linear at-
tacks, meet-in-the-middle attacks, related-key attacks, as well as other existing
cryptanalysis techniques. A block cipher is considered secure when it can resist
against all known attacks. Traditionally the strength of a cryptanalytic attack
is measured by comparing it to the exhaustive search over the entire key space.
So the security of a block cipher mainly depends on the key length.

Recently the (full version of) AES has been called broken because of the
biclique attack [4], which performs faster than the exhaustive search. In [9] the
authors proposed a complex meet-in-the-middle attack on KASUMI using var-
ious subtle weaknesses of the cipher. In [3], the authors proposed several tech-
niques to speed up exhaustive key search on the Full IDEA (by combining the
BD-relation), KASUMI, and GOST. All of above attacks have the following in
common: by going over the entire key space with performing less than a ful-
l encryption for each possible key, the full rounds of the ciphers are targeted
with a time complexity slightly faster than exhaustive key search (for AES-256
is 2254.4, for KASUMI is 2125.8, for IDEA is 2126.8). These results are far from
being any threat for the use of the ciphers in practice. However, they motivate us
to consider the realistic complexity that an attack should be compared to. That
is, in a real world context, what should the time complexity of a valid attack at
most be.

1.1 Related Work

In [3], Biham et al recalled two well known techniques to marginally reduce the
time complexity of exhaustive key search for almost any block ciphers. One is
the distributive technique, which extracts the key bits that are not used in the
first (or last) few operations of the encryption process. Another is the early abort
technique proposed by [11], which is to discard a wrong key before computing
the full ciphertext. Assume that a subset K(1) of the key bits is not used in the
first few operations, and a (possibly different) subset K(2) is not used in the last
few operations. Then Biham et al proposed a more advanced algorithm using
the meet-in-the-middle technique, as follows.
For each value of the bits in K \K(1) \K(2), perform the following:
1. For each value of the bits in K(2) \K(1), perform the first few operations of
the encryption process for the given plaintext. Store the intermediate value and
the corresponding value in K(2) \K(1) in a table.
2. For each value of the bits in K(1) \K(2), perform the last few operations in
the decryption direction for the given ciphertext. Then guess the value of the
remaining bits in K(2), and complete the rest computation up to the interme-
diate value. Check the match with the values in the table.
Above algorithm (we call it Biham’s algorithm in this paper) is enhanced further
with the splice-and-cut technique by considering the common key bits that are
not used in the operations between the plaintext and a pre-chosen intermediate
value and in the last few operations, at the cost of increasing the data complexity
(we call this splice-and-cut version of Biham’s algorithm). Based on the cipher



3

structures and weaknesses of the key schedules, Biham et al showed the speedup
for IDEA, GOST and KASUMI.

1.2 Our Contribution

Most block ciphers in common use are designed to have security equal to their
key length (an exception is Triple-DES). Given that a key consists of k bits,
the exhaustive search of the key space would take 2k encryption, with success
probability of one when the number of plaintext/ciphertext pairs satisfies the
unicity distance.

In this paper, by giving a universal attack which has a time complexity
of 2k(1 − ε) where ε > 0, we point out that the previously thought bound of
the effective key size k can never be achieved for almost all practically used
block ciphers. The data complexity of this attack is the smallest according to
the unicity distance, and the success probability is about one. We present a
formulated description, measuring the effective key length explicitly with some
general parameters, such as block size, key size, and number of rounds. Moreover,
our algorithm is applied to many well-known block ciphers and their effective
key bits are calculated. As predicted, the effective key bits of these ciphers are
all less than the master key size k.

Compared with previous work, our analysis is basing on more general struc-
tures and weaker assumptions, which have nothing to do with the specifics of key
schedules. No matter how clever and secure the block cipher is, our algorithm
is always available to the cryptanalyst. The data complexity of our algorithm
reduces greatly. Only three instances are given for the splice-and-cut version of
Biham’s algorithm: IDEA, KASUMI, and GOST. This indicates that weak key
schedules (all these three ciphers have simply linear key schedules) and large
amount of data complexity are required for the attacks. No instances are given
for the basic Biham’s algorithm. We do a partial match in the middle, instead of
using early abort technique in the ciphertext. More details about the algorithm
such as the computational complexity are presented, not just a rough descrip-
tion. By the explicit quantization of the real bound of effective key lengths, the
relation between key size and block size and the effect of increasing the number
of rounds can be considered from a new point.

1.3 Organizations

This paper is organized as follows. In Section 2, we introduce the basic notations
and construction for block ciphers. In Section 3, a generic attack is proposed and
its computational complexities are studied. The upper bound of effective key bits
is also investigated in this section. In Section 4, we give several widely used block
ciphers as examples to show their effective key lengths. Section 5 discusses and
concludes our results in this paper.



4

2 The Construction, Notations and Conventions

Based on Shannon’s conception of confusion and diffusion, most modern block
ciphers have been designed to use many iterations of substitution (nonlinear
layer) and permutation (linear layer) to obtain enough security (each iteration
is referred to as one round). We give the following notations first.

– P : plaintext where n is the block size
– C: ciphertext
– K: master key where k is the master key size
– R: the number of rounds
– S: the non-linear layer
– L: the linear layer
– Kr: the subkey used in round r
– Xr: the input block to round r where X0 = P
– Y r: the output block of the key mixing in round r
– Zr: the output block of the nonlinear layer in round r

For almost all block ciphers used in practice, their R-round generic structure
is depicted in Fig. 1.

Fig. 1. Structure of an R-round block cipher E

There can be more than one non-linear or linear transformations in each
round function. Usually the key mixing layer adds the subkey to the current



5

state block using linear operations, such as XOR and modulo addition. This
means that the subkeys affect the round transformation with a separable pattern
between different sub-blocks. That is, parts of subkeys directly act on parts of
the internal state. e.g. Kr

i is mixed with Xr
i . Note that a round function in

practice cannot be designed as random permutations, where the subkey can be
regarded to act as a whole.

For a block cipher with key size k, the easiest and universal attack an ad-
versary can mount is to simply try and guess each possible key. The probability
of correctly guessing the key at the first attempt is 2−k. Adding an additional
bit to the length of key halves the probability that the key is correctly guessed.
The time required to exhaust the whole key space is proportional to the time
required to perform 2k encryption operations.

3 A Generic Attack

We introduce a generic meet-in-the-middle attack that can be mounted on every
practical block cipher. This attack is given in Algorithm 1.

Data: d kne+ 1 pairs of plaintext and ciphertext
Result: the output key K
for each value of the first k1 key bits do

Compute S1 from P with these k1 bits ;
for each value of the remaining k − k1 key bits do

Compute Z
bR2 c
0 from S1;

Store Z
bR2 c
0 in a table corresponding to the guessed key;

end

end
for each value of the last k1 key bits do

Compute S2 from C with these k1 bits ;
for each value of the remaining k − k1 key bits do

Compute Z
bR2 c
0 from S2;

if Z
bR2 c
0 corresponding to the guessed key is in the table then
add the guessed key into the candidate list;
move onto the next guess;

else
move onto the next guess;

end

end

end

Check keys in the candidate list with other d kne plaintext/ciphertext;
Algorithm 1: The generic meet-in-the-middle attack

S1 is the internal state that can be calculated from P only with k1 bits of
subkeys, where k1 is the maximum smaller than k that can be obtained. Similarly,
S2 is the internal state that can be derived from C only with (other) k1 bits of



6

subkeys. For any block cipher, the states of S1 and S2 certainly can be found.
This algorithm has two phases, the meet-in-the-middle phase that generates the
candidate list containing 2k−M keys, and the check phase that examines the keys
in the list.

For further discussion, we make two assumptions that are reasonable for
practical block ciphers. First, non-linear transformations are assumed to consume
much more time than linear transformations, so only non-linear operations are
counted. Second, key schedules are assumed as negligible, since they are usually
simpler than the encryption function.

Now we discuss the time complexity, data complexity, memory complexity
and success probability for Algorithm 1.
Time complexity
Based on above assumptions, the time complexity is considered as follows. For
any block ciphers, it is always smaller than 2k.

Tcomp = 2k1(
NP→S1

Ntotal
+
NC→S2

Ntotal
+ 2k−k1

Ntotal −NP→S1
−NC→S2

−Nabort

Ntotal
)

+2k−M + 2k−M−n + 2k−M−2n... (1)

≈ 2k(
Ntotal −NP→S1 −NC→S2 −Nabort

Ntotal
)

= 2k(1− NP→S1
+NC→S2

+Nabort

Ntotal
) (2)

where Ntotal means the total non-linear components required in a full encryption.
Denote NP→S1

as the required non-linear components in the calculation from P
to S1. Denote NC→S2

as the required non-linear components in the calculation
from C to S2. Nabort is the number of non-linear components needn’t to be
computed when partial matching techniques are used in the middle. The partial
matching can filter M bits information of the key after the meet-in-the-middle

phase. If write
NP→S1

+NC→S2
+Nabort

Ntotal
as ε, then (2) is = 2k(1− ε), where ε > 0.

Equation (1) can be made more concrete for specific cipher structure. Usually
there are two major structures for block ciphers, SPN and Feistel structure, as
well as their generalized variants and combinations. Each n-bit internal state
W r = (W r

0 , W r
1 ,...,W r

m−1) is a concatenation of m b-bit words W r
i where b is

the size of a non-linear sub-block (e.g. one S-box). For most SPN ciphers, every
non-linear sub-block is keyed, and we match a b-bit word in the middle. So the
time complexity is written as:

Tcomp = 2k1(2
(k
b − 1)

Rm
+2k−k1

Rm− (m− 1 + 2(k
b − 1))

Rm
)+2k−b+2k−b−n+2k−b−2n...

≈ 2k(1−
m− 1 + 2(k

b − 1)

Rm
)

= 2k(1−
1− 3b

n + 2k
n

R
) (3)



7

where m > 1 in practical block ciphers due to limit of the size of one non-linear
operation, as well as k > b. For an entire encryption, there are Rm non-linear
operations. For the first (k

b − 1) operations, we always do not need to guess all
k bits of the key. We can compute S1 by only searching the first (k − b) bits,
without guessing the remaining key bits. The time complexity of factor (k

b − 1)
is saved here. The multiplication of 2 means that the computation from both the
plaintext and the ciphertext should be considered. In the middle round, using
the partial matching technique, we can only compute one non-linear operation
to get a b-bit filter and save another (m− 1) operations.

For the Feistel structure, time complexity can be derived in the same way
and the resulted formula is very similar. Due to the half diffusion property, at
least one round of computation can be saved when matching in the middle. For
other more detailed structures, such as MISTY (note that it has different sizes
for non-linear components, 7 to 7 bits and 9 to 9 bits S-boxes) and Lai-Massey
structures, we give examples directly in Section 4.
Data complexity
The required number of pairs of plaintext/ciphertext here is U + 1, where U =
d kne is the smallest data complexity according to the unicity distance. We use
the first pair of data to filter parts of the wrong keys and generate the candidate
list. Then we require at most another U pairs of plaintext/ciphertext for finding
the right key.

If we store the internal states before and after the meet state in the middle,
we can use the first data pair for filtering another n−M bits. Now the first data
also can provide all its n-bit information for checking, the same as other pairs of
plaintext/ciphertext. So the data complexity can be reduce to U . Since the data
complexity now is U + 1, which is small enough, this tradeoff is unnecessary.
Memory Complexity
Algorithm 1 has a memory complexity of 2k ·M bits. If more memory can be
sacrificed, the data complexity can be lowered as mentioned above. The time-
memory tradeoff is not our concern here.
Success probability
In the meet-in-the-middle phase, a wrong key is eliminated with a probability
of 1 − 2−M . When examined in the candidate list with the second data pair, a
wrong key is discarded with a probability of 1− 2−(M+n). And when examined
with the third data pair (if needed), a wrong key is eliminated with a probability
of 1−2−(M+2n), and so on. The success probability of Algorithm 1 is the product
of these probabilities for all 2k − 1 wrong keys, which is approximately one.

Algorithm 1 is similar with Biham’s algorithm, but has several differences.
First, Biham’s algorithm does not mention where the intermediate value is to
meet. We explicitly claim that the meet position does not influence all the com-
plexities of Algorithm 1. Without loss of generality, we fix this value as some
sub-block in the middle round. Second, instead of aborting the evaluation after
computing part of the ciphertext, we apply the early abort technique in the
middle. That is, we partially match in the middle before computing the full in-
termediate state.



8

An Upper Bound of the Effective Key Length
No matter how clever and secure the block cipher is, Algorithm 1 is always
available to the cryptanalyst. This indicates that a more accurate effective key
length can be considered by taking the logarithm of the time complexity for this
universal algorithm. As mentioned before, we can focus on (3).

Fig. 2. The relation of key bits loss with key size, block size and number of rounds

The effective key size is k+ log(1− 1− 3b
n + 2k

n )

R ), which is always smaller than k
for any block ciphers. Usually the size of non-linear sub-block b is much smaller
than n and k, and only takes a few fixed values. For conventional block ciphers,
the routine size of S-boxe is 4, 8, or 16 bits (for MISTY and KASUMI this is
7 or 9 bits). And for lightweight block ciphers, the routine size is 3 or 4 bits.

1− 3b
n + 2k

n is always larger than zero, so log(1− 1− 3b
n + 2k

n )

R is smaller than zero. The
previously accepted security bound of k key bits actually cannot be achieved.

Denote log(1− 1− 3b
n + 2k

n )

R ) as the loss of effective key bits. We ignore the factor

of 3b
n and draw the function of log(1− 1+ 2k

n

R ) with fixed different R. See Fig. 2.

When R is the same, the larger k
n is, the more key bits loss exists. When k

n is
the same, the more rounds a cipher iterates, the less key bits loss exists. So we
can avoid the loss of key bits as much as possible by increasing the number of
rounds or shortening the ratio of k and n. This indicates what a relation of key
size and block size should be in a secure design, although is not very precise but
still can be a rough guidance for most block ciphers. Also, from the formula we
can conclude that when the number of rounds is sufficiently large, the key bits
loss can very approximate to zero.



9

4 Effective Key Lengths for Block Ciphers

In this section, many practical block ciphers are analyzed for their actual effective
key lengths. For a clear exhibition for (1), we consider conventional block ciphers
and lightweight block ciphers respectively.

4.1 Conventional Block Ciphers

We take AES an an example, which is the most widely used block cipher now.
It is selected as the new standard for replacing DES by NIST in 2000. As we
assumed before, we count the computational complexity for S-boxes. This is also
taken in [4]. For AES-128, the key size k and block size n are both 128 bits, the
size of non-liner sub-blocks (S-box) b is 8, and the number of rounds R is 10.
There are 16 sub-blocks in the state, that is m = 16. Refer to [6] for more details
about AES. Note that the whitening key K0 should also be considered here. The
detailed application of Algorithm 1 is as follows. Z5

0 is the intermediate value for
meeting. Choose (Z1

0 , Z1
1 ,...,Z1

14) as S1. Compute S1 from P by guessing (K0
0 ,

K0
1 ,...,K0

14), 120 bits totally. Then for each guess of K0
15, the last 8 bits of the

master key K, complete the encryption operations from S1 to Z5
0 . This requires

a calculation of Z1
15, Z2, Z3, Z4, Z5

0 , 50 S-boxes totally. Store Z5
0 in a hash table

corresponding to the guessed key. Choose (X10
1 , X10

2 ,...,X10
15 ) as S2. Compute S2

from C by guessing (K10
1 , K10

2 ,...,K10
15 ), 120 bits again. Then for each guess of

K10
0 , the last 8 bits of a mapping of the master key K, complete the decryption

operations from S2 to Z5
0 . This needs a computation of X10

0 , X9, X8, X7, X6,
65 S-boxes totally. There are 10× 16 = 160 S-boxes for the full AES-128. So for
each guess of 128-bit of K, only 115 S-boxes need to compute. This means 115

160 of
one full 10-round encryption for each guess. The time complexity of Algorithm 1
here is about 2128× 115

160 = 2127.5 (this value also can directly derive from (3)), so
the effective key length can be regarded as 127.5 bits. We consider a little more
about the structure of AES, that is, its branch number in the diffusion layer.
Only four bytes knowledge of Z4 is needed for computing Z5

0 , and four bytes
knowledge of X6 is needed. This can save additional 24 S-boxes, and the time
complexity of Algorithm 1 is reduced to 2127.2. Similarly, the time complexity of
Algorithm 1 for AES-256 is 2255.1. Compared with our upper bound of key bits,
the best attack result so far on AES-256 with a time complexity of 2254.4 has
much less gain than expected, since the effective key bits of AES-256 is actually
only 255.1-bit.

We compute effective key lengths for other well-known block ciphers, listing
in Table. 1.

We briefly explain for KASUMI [2]. Assume that the most time consuming
sub-functions are three FI in each round for KASUMI. Only 7 16-bit words
of the key require to be guessed before going to the third FI of round 1. Also,
there is no need to guess all 128 bits of the key when the three FI operations are
completed in round 8. Besides, the Feistel struture saves one more round in the
middle, so there are 16 FI calculated for each guessed key. The time complexity
is 2128 × 16

24 = 2127.4.



10

Table 1. Time complexity of Algorithm 1 for conventional block ciphers, which also
indicates effective key lengths

Block cipher n k R Time complexity of Previously best time
Algorithm 1 complexity on full rounds

AES-128 128 128 10 2127.2 2126.1 [4]
AES-192 128 192 12 2191.1 2189.7 [4]
AES-256 128 256 14 2255.1 2254.4 [4]

SHACAL2 256 512 64 2511 NO
MISTY1 64 128 8 2127.6 NO

ARIA-128 128 128 12 2127.4 NO
ARIA-128 128 192 14 2191.4 NO
ARIA-128 128 256 16 2255.3 NO

IDEA 64 128 8.5 2127.4 2126.1 [10]
KASUMI 64 128 8 2127.4 2125.8 [9]

Above ciphers are all recommended as standards or used by the industry for
secure communications. According to our analysis, their security margin needs
to be reconsidered. e.g. If an attack on SHACAL2 has a time complexity larger
than 2511, then this attack should be regarded as invalid. The best attack on full
IDEA that was thought to optimize 1.9 bits now should be regarded as only 1.3
bits optimization.

4.2 Lightweight Block Ciphers

Most recently, secure communication on extremely constrained devices have been
developing, such as RFID tags and sensor nodes. The constraints are mainly driv-
en by cost and result in highly limited computing power, chip area and/or power
supply, which mean that we must leave behind much of our conventional block
ciphers. So the development of lightweight block ciphers is progressing great-
ly, resulting in more and more aggressive designs that often show two features.
First, innovative techniques are used to improve existing ciphers. Second, the
security margins that block ciphers are traditionally equipped with are reduced
as much as possible in order to optimize the cipher performance. Due to these
differences to conventional block ciphers, we discuss Algorithm 1 on lightweight
block ciphers separately.

Take GOST as an example. GOST is known as the former Soviet encryption
standard GOST 28147-89 which was standardized as the Russian encryption
standard in 1989. It is well suitable for compact hardware implementations due
to the simple structure, and the most compact implementation requires only
651 GE [13]. Therefore, GOST is considered as ultra lightweight. GOST has a
32-round Feistel structure with 64-bit block size n and 256-bit key size k. The F -
function consists of eight S-boxes. Refer to [1] for more details. The application
of Algorithm 1 is as follows. Due to the Feistel structure, we can check if R15

equals to L16. Compute P to S1 by guessing the 7 32-bit subkeys in the first
seven rounds, and the least significant 28 bits of the subkey in round 8, 252



11

bits totally. Then for each guess of the most significant 4 bits of the subkey in
round 8, complete the encryption from S1 to R15. This requires a calculation of
6 rounds and the last S-box in round 8, 49 S-boxes totally. Store the first 4 bits
of R15 in a hash table corresponding to the guessed key. Similarly, compute C to
S2 by guessing the 7 32-bit subkeys in the last seven rounds, as well as the least
significant 28 bits of the subkey in round 25, 252 bits totally. Then for each guess
of the most significant 4 bits of the subkey in round 25, complete the decryption
operations from S2 to L16. This needs a computation from round 16 to round
24, and the last S-box in round 25, 73 S-boxes totally. So for each guess of the
256-bit master key, 122 S-boxes require to be computed, which is 122

256 of a full
32 rounds encryption (There are 8× 32 = 256 S-boxes for the full GOST). The
time complexity of Algorithm 1 is about 2256× 122

256 = 2254.9. So the effective key
length is 254.9-bit. Moreover, we can only match part of R15 with part of L16,
e.g. their least significant 4 bits. In order to compute these 4 bits of R15, only
two S-boxes require to be calculated in round 14. Similarly, only two S-boxes
are needed in round 16 for the matched 4 bits of L16. 12 S-boxes are saved now,
so the time complexity is slightly reduced to 2254.8. Note that, previous attacks
on full GOST take use of its self-similarity property and relatively simple key
schedule. We only consider the basic structure, which means that even the key
schedule is much more complicated, Algorithm 1 still cannot be avoided.

Other results of lightweight block ciphers are summarized in Table 2. Some
lightweight block ciphers have no non-linear components, e.g. XTEA. In this
situation, different linear operations in the round function are considered to
cost the same time, or we can simply take the round function as a unit when
computing the time complexity.

Table 2. Time complexity of Algorithm 1 for lightweight block ciphers, which also
indicates effective key lengths

Block cipher n k R Time complexity of Previously best time
Algorithm 1 complexity on full rounds

GOST 64 256 32 2254.8 2224 [7]
PRESENT-80 64 80 31 279.7 NO
PRESENT-128 64 128 31 2127.6 NO

KATAN/KTANTAN 32/48/64 80 254 279.4 275.2 [5]
HIGHT 64 128 32 2127.1 NO
XTEA 64 128 64 2127.7 NO

Piccolo-80 64 80 25 279.7 NO
Piccolo-128 64 128 31 2127.6 NO

5 Discussion and Conclusion

Recently, there are significant improvements on meet-in-the-middle attacks, as
well as other bruteforce-like cryptanalysis. This makes us consider a universal



12

attack on all block ciphers, except the traditional exhaustive search method.
In a practical cryptographic primitive, there are always some independent sub-
modules. Computing these sub-modules with a independent pattern, instead
of a combinational pattern, will save the overall time complexity. We describe
a generic meet-in-the-middle attack that can always be mounted against any
practical block ciphers. No amount of clever design can prevent it, no matter
how many rounds or how complicated key schedule the cipher has. Note that
having a sufficiently many rounds is still an important and expedient way to
protect against it, since a larger number of rounds brings a higher complexity
for Algorithm 1. We indicate a more accurate upper bound of effective key
lengths for practical block ciphers, and claim that no these ciphers can reach
their expected security margin, the given length of their master keys. Previously,
exhaustive key search is generally considered as the benchmark with which other
attacks are measured. A theoretical break (or academic break) against a block
cipher is an attack with time complexity less than that of exhaustive key search,
i.e. 2k. Our analysis shows that tiny sacrifice of key bits is inevitable. So if
an attack has the computational complexity larger than Algorithm 1 (even still
faster than exhaustive search), it cannot be regarded as a valid attack. Algorithm
1 is also used to many well-known block ciphers and their effective key lengths
are calculated. As predicted, the effective key bits of these ciphers are all less
than the master key size k. However, our attack will not create a real threat for
existing block ciphers, due to its limit caused by having to perform at least one
operation for each possible key.

Another interesting discussion is about the relation between the block size
with the master key size. Shannon’s work on information theory shows that to
achieve the perfect secrecy, it is necessary for the key size to be at least as large
as the block size. That is, k > n. According to our analysis in Section 3, when
the number of rounds is fixed, the larger k

n is, the more loss of effective key bits
there is. So k = n is the best solution in the block cipher design in this context.

In the exhaustive key search, having to go through the entire key space before
finding the correct key would be very unlucky, while being correct on the first
guess would be very lucky. So the expected time to recover a k-bit key is 2k−1

encryptions. Note that most of the effective key lengths we calculate for existing
block ciphers are larger than this average case, although some are still smaller.
Given that the time complexity of Algorithm 1 in this paper is for the worst
case, considering the average case and then comparing the result with 2k−1 can
be the further work.

References

1. National soviet bureau of standards. information processing system - cryptographic
protection - cryptographic algorithm gost 28147-89. 1989.

2. 3rd generation partnership project, technical specification group services and sys-
tem aspects, 3g security, specification of the 3gpp confidentiality and integrity
algorithms; document 2: Kasumi specification, v3.1.1. 2001.



13

3. E. Biham, O. Dunkelman, N. Keller, and A. Shamir. New data-efficient attacks on
reduced-round idea. Cryptology ePrint Archive, Report 2011/417, 2011.

4. A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique cryptanalysis of the
full aes. In Proceedings of the 17th international conference on The Theory and
Application of Cryptology and Information Security, ASIACRYPT’11, pages 344–
371, Berlin, Heidelberg, 2011. Springer-Verlag.

5. A. Bogdanov and C. Rechberger. A 3-subset meet-in-the-middle attack: Crypt-
analysis of the lightweight block cipher KTANTAN. In A. Biryukov, G. Gong,
and D. R. Stinson, editors, Selected Areas in Cryptography, volume 6544 of Lecture
Notes in Computer Science, pages 229–240. Springer, 2010.

6. J. Daemen and V. Rijmen. Aes proposal: Rijndael. In First Advanced Encryption
Standard (AES) Conference, 1998.

7. I. Dinur, O. Dunkelman, and A. Shamir. Improved attacks on full gost. In A. Can-
teaut, editor, Fast Software Encryption, volume 7549 of Lecture Notes in Computer
Science, pages 9–28. Springer Berlin Heidelberg, 2012.

8. S. Even and Y. Mansour. A construction of a cipher from a single pseudorandom
permutation. In H. Imai, R. Rivest, and T. Matsumoto, editors, Advances in
Cryptology ASIACRYPT ’91, volume 739 of Lecture Notes in Computer Science,
pages 210–224. Springer Berlin Heidelberg, 1993.

9. K. Jia, H. Yu, and X. Wang. A meet-in-the-middle attack on the full kasumi.
Cryptology ePrint Archive, Report 2011/466, 2011.

10. D. Khovratovich, G. Leurent, and C. Rechberger. Narrow-bicliques: Cryptanalysis
of full idea. In D. Pointcheval and T. Johansson, editors, Advances in Cryptology
C EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
392–410. Springer Berlin Heidelberg, 2012.

11. J. Lu, Y. Wei, J. Kim, and P. Fouque. Cryptanalysis of reduced versions of the
camellia block cipher. In Selected Areas in Cryptography, 2011.

12. M. Luby and C. Rackoff. How to construct pseudo-random permutations from
pseudo-random functions. In H. Williams, editor, Advances in Cryptology CRYP-
TO 85 Proceedings, volume 218 of Lecture Notes in Computer Science, pages 447–
447. Springer Berlin Heidelberg, 1986.

13. A. Poschmann, S. Ling, and H. Wang. 256 bit standardized crypto for 650 ge:
Gost revisited. In Proceedings of the 12th international conference on Cryptograph-
ic hardware and embedded systems, CHES’10, pages 219–233, Berlin, Heidelberg,
2010. Springer-Verlag.


