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Abstract. We use the learning with errors (LWE) problem to build a new simple and provably secure
key exchange scheme. The basic idea of the construction can be viewed as certain extension of Diffie-
Hellman problem with errors. The mathematical structure behind comes from the commutativity of
computing a bilinear form in two different ways due to the associativity of the matrix multiplications:

(xt ×A) × y = xt × (A× y),

where x,y are column vectors and A is a square matrix. We show that our new schemes are more
efficient in terms of communication and computation complexity compared with key exchange schemes
or key transport schemes via encryption schemes based on the LWE problem. Furthermore, we extend
our scheme to the ring learning with errors (RLWE) problem, resulting in small key size and better
efficiency.
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1 Introduction

Key exchange protocol enables two users to exchange keys in untrusted channels without sharing
secret materials in advance. The first and celebrated key exchange protocol is the Diffie-Hellman
key exchange protocol [14] which is also a fundamental construction in public key cryptography.
It is simple and elegant, after its invention, countless applications based on Diffie-Hellman key
exchange protocol or the Diffie-Hellman problem were proposed.

1.1 DH Protocol vs Encryption

Diffie and Hellman [14] also introduced the notion of public key encryption, and Rivest, Shamir
and Adleman [26] gave the first concrete public key encryption scheme. Namely, the well-known
RSA encryption. With public key encryption in hand, one can construct a key exchange protocol as
follows: Suppose Alice and Bob want to share some secret value. Alice encrypts a uniformly random
message mA using Bob’s public key and sends the ciphertext to Bob. Bob does the same thing by
encrypting a uniformly random message mB using Alice’s public key and sends the ciphertext to
Alice. Once they get the ciphertexts, Alice and Bob decrypt them using the secret keys and compute
mA ⊕mB. It is easy to see that Alice and Bob will share the same value mA ⊕mB. Instantiating
with the RSA algorithm, the above construction results a very efficient key exchange protocol.
However, the encryption-type key exchange protocol may have an important side-effect in practice:
This approach relies on the user’s private key to protect all the session keys, anyone with access to
a copy of the private key can also uncover the session keys and thus decrypt everything.

The Diffie-Hellman protocol offers an alternative algorithm to RSA for cryptographic key ex-
change. The Diffie-Hellman protocol generates more secure session keys that can’t be recovered
simply by knowing the user’s private key, a protocol security feature called forward security. In
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order to decrypt all communication, now the adversary can no longer compromise just the user’s
private key, but the adversary has to compromise the session keys belonging to every individual
communication session. In other words, using the diffie-hellman protocol, even the adversary knows
the session key of some particular session, he still can not learn anything about the session keys
established before this particular session. Actually, SSL also uses the Diffie-Hellman protocol to
support forward security.

1.2 Lattice-Based Key Exchange Protocol

Since the hard number theory based problems like the discrete logarithm problem and the integer
factorization problem are vulnerable to quantum computer attacks, it is important to find construc-
tions based on problems believed to be resistant to quantum attacks. For instance, post-quantum
key exchange is considered as a high priority by NIST [13].

The motivation of this paper is to build simple Diffie-Hellman like key exchange protocols based
on lattices. Lattice-based public key cryptography has become a promising potential alternative to
public key cryptography based on traditional number theory assumptions. One building block of
lattice-based cryptography, especially in encryption, is the learning with errors (LWE) problem.
After the introduction of the LWE problem by Regev [25], it has attracted a lot of attentions in
theory and applications due to its good asymptotical efficiency and strong security guarantee. In
a nutshell, the (decisional) LWE problem is to distinguish polynomially many noisy inner-product
samples of the form (a, b ≈ 〈a, s〉) from uniformly random ones, where a ← Znq and s ← Znq are
uniformly random.1 An attractive property of the LWE problem shown by Regev [25] is that to
solve the average-case LWE problem is at least as hard as to (quantumly) solve some worst-case
hard lattice problems. Many lattice-based primitives based on LWE have been discovered, such
as public-key encryption [25,16,20], (hierarchical) identity-based encryption [16,1,12], functional
encryption [3,2,5,17] and fully homomorphic encryption [9,7,6,10].

In the constructions mentioned above, a matrix form of the LWE problem is always used (i.e.,
need sufficient many samples). The drawback of that is that it results in large (say quadratic)
key size. To further improve the efficiency, Lyubashevsky, Peikert and Regev [21] introduced the
ring learning with errors (RLWE) problem, which is to distinguish polynomially many noisy ring
multiplications (a, b ≈ a · s) from uniform distribution, where “ ·” is the multiplicative operation
over some ring and a, s are uniformly random from this ring. It is shown in [21] that to solve the
RLWE problem is at least as hard as to solve some worst-case problems in ideal lattices, instead
of general lattices.

What motivates the work in this paper is to try to build a simple key exchange protocol using
the basic idea of Diffie-Hellman protocol but based on the LWE and RLWE problem. There are
already related works in [18,19,11,15], but as far as we know there is not yet until very recently any
provably secure key exchange protocols based on the LWE problem as a direct generalization of the
Diffie-Hellman key exchange protocol, which is elegant in terms of its simplicity. We would like to
point out that a very recent work by Peikert [24] also presents an efficient key exchange protocol,
but with totally different techniques from ours. To achieve our goal, we first use the normal form
of LWE problem suggested in [4] which means that the secret vector (ring element) in the LWE
(RLWE) samples can be sampled from the error distribution. Then we introduce a notion called
robust extractor, which may be of independent interest, to agree on an identical value from two
close ones.

The key idea behind our new construction can be viewed as a way to share a secret given by
the value of the bilinear function of two vectors x and y in Znq , where q, n are some integers, via

1 s is secret and remains the same in all the samples.
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the bilinear form:

Q(x,y) = xTAy,

where A is an n× n matrix in Zq. Surely in order to make the system provably secure, we need to
introduce small errors to achieve our goal. The main contribution of this paper is to use this simple
idea to build a simple and provably secure key exchange scheme. In the ring setting, this bilinear
form is more direct, since the ring multiplicative operation is already commutative. Therefore, we
extend our construction further based on the RLWE problem and resulting in a more efficient key
exchange protocol.

1.3 Our Contributions and Techniques

The DH key exchange protocol was invented ahead of the RSA encryption scheme, and these two
system are based on two very different mathematical principles The DH key exchange protocol is
based on the commutativity of the power maps and the hardness of the discrete logarithm problem,
while the RSA cryptosystems is based on special group automorphism and the hardness of prime
factorization of integers.

Due to versatile applications of LWE in cryptography including a very elegant encryption
scheme, it is a natural question to ask if we can construct a simple and elegant key exchange
just like the DH scheme which, however, is not based on the same mathematical principles as that
of the LWE encryption scheme. Our paper gives a positive answer. The fundamental difference is
that we use the quantities of the usual LWE constructions, which serves the purpose of hiding the
plaintext, and later canceled out, to serve the purpose as the exchanged key, and we rely also on the
commutativity of matrix multiplication to compute bilinear maps, which was not used in the LWE
constructions. Thus, from the point view of structural constructions of cryptosystems, we further
demonstrate the versatility of the LWE problem, but in a way different from any previous con-
struction before. The simplicity of the construction is very striking, though the elegance is slightly
affected due to extra bits needed. This method should open possible doors to other applications,
in particular, key distribution systems and new identity-based encryption systems.

More precisely, let’s first recall the standard way to encrypt a message using LWE. Taking
Regev’s encryption for example, the public key consists of a uniformly random matrix A ∈ Zn×mq

and a vector u ∈ Zmq , where u is an LWE sample, i.e., u = AT s + e with uniformly random s ∈ Znq
and error vector e ∈ Zm. To encrypt, the user chooses uniformly random vectors x ∈ {0, 1}m,
and computes c1 = Ax mod q, c2 = 〈u,x〉+m · bq/2c mod q. When decrypting, the user computes
c2 − sT c1 mod q to remove the common part sTAx and recover the message from the “error”.
Instead, our constructions retrieve a shared secret from the common part for each party. More
specifically, suppose the system is built with a uniformly random public parameter M ∈ Zn×nq .
In the key exchange stage, Alice and Bob choose two secret vectors sA ∈ Znq and sB ∈ Znq whose
Euclidean norm is very small (much smaller than q), respectively. Alice and Bob then send pA =
MsA + eA mod q and pB = MT sB + eB mod q to each other, where eA and eB are error vectors
and with small norm. When receiving pB, Alice computes sTApB. Similarly, Bob computes sTBpA.
Note that sTApB and sTBpA are very close to sTAMT sB because sA, sB, eA, eB are small. We then
propose a method to extract a shared secret from the two values which are very close.

To achieve this goal, we need a robust extractor. Before discussing the details, we need to slightly
change the key exchange protocol. We set pA = MsA + 2eA mod q and pB = MT sB + 2eB mod q.
For simplicity, let KA = sApB mod q and KB = sBpA mod q. Note that KA − KB is even and
small and pA and pB are pseudorandom under the LWE assumption as long as gcd(2, q) = 1.
Once Alice and Bob hold KA and KB, respectively, our robust extractor enables Alice and Bob to
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agree on the same value. More specifically, it works in the following way. In addition to KA, Alice
needs to receive a signal value from Bob to indicate KB lies in the interval [−q/4, q/4] ∩ Z or not.
Assume KB lies in [−q/4, q/4]∩Z, and denote KA = KB + 2δ mod q. Observe that 2δ � q/4, then
KB + 2δ mod q = KB mod q + 2δ. This gives us

KA mod q = KB mod q + 2δ (in Z),

and a further modulo operation on 2 yields (KA mod q) mod 2 = (KB mod q) mod 2. Similar anal-
ysis could be taken when KB ∈ Zq lies outside the interval [−q/4, q/4] ∩ Z.

However, this method actually results in another problem. To get a secure key exchange protocol,
we need the extracted key to be uniformly random. Assuming KB is uniformly random. According
to our robust extractor mentioned before, the adversary will know that KB lies in [−q/4, q/4] ∩ Z
or not. The problem is that in our construction we need to choose odd q, which means that Zq has
different numbers of even values and odd values. Therefore, the distribution of (KB mod q) mod 2
always has bias when KB mod q is uniformly random and q is polynomial in the security parameter.
To overcome this problem, we introduce a randomized algorithm to generate the signal, this new
randomized algorithm allows our robust extractor to remove the bias of the distribution of the
extracted key, while preserving the functionality. With this randomized signal generation algorithm,
we show that when KB is uniformly random in Zq, the extracted value on KB is uniformly random
in {0, 1}, even the adversary knows the signal of KB.

Using the property of the randomized signal, we now only need to show that KB is pseudoran-
dom under the LWE assumption. First, due to the squared form of the matrix M, the transcripts
pA and pB are just LWE samples with independent secrets. This implies that they can be replaced
by uniformly random vectors in Znq under the LWE assumption. In order to make the extracted key

look random, we additionally add noises to sTApB and sTBpA, respectively. Notice that if pA and
pB are uniformly random, the “noisy” form of sTApB and sTBpA are LWE samples, which are again
pseudorandom under LWE assumption. In the security proof, we use standard hybrid games and
deal exclusively with the squared matrix M.

In terms of practical applications, one may argue that we can always construct easily a key
exchange scheme using a public key encryption scheme, and why do we need a new key exchange
scheme? One possible reason is the forward security we discussed at the beginning. Besides, we can
compare our scheme with a key exchange based on the LWE-type encryption, but this comparison
surely depends on the assumption what is overhead cost and what is the real key exchange cost. We
can show that there could be indeed substantial advantage in our scheme in terms of communication
cost and (or) computation cost, we will illustrate the point by using our LWE based one and RLWE
based one respectively.

Besides, we also give an interactive multiparty key exchange protocol. This protocol can be
viewed as a generalization of our two party protocol. Although the provable security of the protocol
seems plausible but we do not know how to prove it, and we leave it as an open problem.

1.4 Organization

In Section 2, we give some basic notations and facts. The protocol based on LWE problem is given
in Section 3, and the more efficient protocol based on RLWE problem is given in Section 4. In
Section 5, we describe our interactive key exchange scheme. In the last section, we will present the
conclusion and the discussion.



5

2 Preliminaries

Notations. We use bold capital letters to denote matrices, and bold lowercase letters to denote
vectors. The notation AT denotes the transpose of the matrix A. A function negl(n) is negligible,
if it vanishes faster than the inverse of any polynomial in n. The statistical distance between two
distributions X,Y over some finite or countable set S is defined as ∆(X,Y ) = 1

2

∑
s∈S

∣∣Pr[X =
s]− Pr[Y = s]

∣∣. X and Y are statistically indistinguishable if ∆(X,Y ) is negligible.
Let Λ be a discrete subset of Zm. For any vector c ∈ Rm and any positive parameter σ ∈ R>0,

let ρσ,c(x) = exp(−π‖x− c‖2/σ2) be the Gaussian function on Rm with center c and parameter σ.
Denote ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,c over Λ, and DΛ,σ,c be the discrete

Gaussian distribution over Λ with center c and parameter σ. Specifically, for all y ∈ Λ, we have

DΛ,σ,c(y) =
ρσ,c(y)
ρσ,c(Λ)

. For notional convenience, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ,

respectively.

The Learning with Errors Problem We recall the learning with errors (LWE) problem, a
classical hard problem on lattices defined by Regev [25].

Definition 1. Let n ≥ 1 and q ≥ 2 be integers, let α ∈ (0, 1). For s ∈ Znq , let As,α be the distribution
on Znq × Zq obtained by choosing a vector a ∈ Znq uniformly at random, e← DZ,αq, and outputting
(a, 〈a, s〉+ e).

The LWE problem is : for uniformly random s← Znq , given poly(n) number of samples that are
either from As,α or uniformly random in Znq × Zq, output 0 if the former holds and 1 if the latter
holds.

It is known that when αq ≥ 2
√
n and q = poly(n), this decision problem is at least as hard

as approximating several problems on n-dimensional lattices in the worst-case to within Õ(n/α)
factors with a quantum computer [25] or on a classical computer for a subset of these problems
[23]. A very recent work by Brakerski et al. [8] even shows the classical hardness of LWE for any
polynomial q but the security losses with about a

√
n factor. A simple analysis shows that for any

t ∈ Z+ and gcd(t, q) = 1, then the LWE assumption still holds if we choose b = 〈a, s〉 + te. The
HNF-LWE assumption [4] says that the hardness preserves even if we choose the secret from the
error distribution, i.e. s← DZn,αq. We will exclusively use this assumption.

We will use a bound of the norm of the Gaussian distribution as follows.

Lemma 1 ([22]). For any s ≥ ω(
√

log n), then we have

Pr
x←DZn,s

[‖x‖ > s
√
n] ≤ 2−n.

2.1 Robust Extractors

We now put forward a notion called robust extractor. Informally, a robust extractor enables two
parties to extract an identical information from two close elements with some additional hint.

Definition 2 (Robust Extractors). An algorithm E is a robust extractor on Zq with error
tolerance δ with respect to a hint function S, if the following holds:

– The deterministic algorithm E takes as input an x ∈ Zq and a signal σ ∈ {0, 1}, outputs
k = E(x, σ) ∈ {0, 1}.

– The hint algorithm S takes as input a y ∈ Zq and outputs a signal σ ← S(y) ∈ {0, 1}.
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– For any x, y ∈ Zq such that x− y is even and |x− y| ≤ δ, then it holds that E(x, σ) = E(y, σ),
where σ ← S(y).

We use an robust extractor to guarantee the correctness of our protocol. More specifically, in
our protocol, the parties will compute two very close values in Zq. In order to agree on a common
value, one party additionally send a signal of his value. The both parties computes the shared key
using the robust extractor.

We also note that the errors of x, y in the definition can be set to be multiple of t, where t is a
small integer. For simplicity, we only focus on the case t = 2. Our construction can be extended to
any small integer t.

Signal Functions. We now define two “signal” functions, which are used in the robust extractor.
For prime q > 2, we define σ0(x), σ1(x) from Zq to {0, 1} as follows.

σ0(x) =

{
0, x ∈ [−b q4c, b

q
4c];

1, otherwise.
; σ1(x) =

{
0, x ∈ [−b q4c+ 1, b q4c+ 1];
1, otherwise.

In our robust extractor, we define the hint algorithm S as: for any y ∈ Zq, S(y) = σb(y), where

b
$← {0, 1}. The robust extractor is defined as:

E(x, σ) = (x+ σ · q − 1

2
mod q) mod 2.

Lemma 2. Let q > 8 be an odd integer, the function E defined above is a robust extractor with
respect to S with error tolerance q

4 − 2.

Proof. For any x, y ∈ Zq such that x− y = 2ε and |2ε| ≤ q
4 − 2. Let σ ← S(y), due to the definition

of S, it is not hard to see that |y + σ · q−12 mod q| ≤ q
4 + 1 for any b used in S to generate σ. We

have

x+ σ · q − 1

2
mod q = y + σ · q − 1

2
+ 2ε mod q = (y + σ · q − 1

2
) mod q + 2ε,

because |(y + σ · q−12 ) mod q + 2ε| ≤ q
4 + 1 + |2ε| ≤ q−1

2 . This implies

E(x, σ) = (x+ σ · q − 1

2
mod q) mod 2 = (y + σ · q − 1

2
mod q) mod 2 = E(y, σ).

The claim follows ut

Our robust extractor enjoys a very nice property which says that for uniformly random x ∈ Zq,
E(x, σ) is uniform in {0, 1} even conditioned on σ, where σ ← S(x). This property is crucial in our
security proof.

Lemma 3. For any odd q > 2, if x is uniformly random in Zq, then E(x) is uniformly random
conditioned on σ, where σ ← S(x).

Proof. For any σ, b′ ∈ {0, 1}, we have

Pr
x

$←Zq ,b
$←{0,1}

[E(x, σ) = b′ | σb(x) = σ]

=
1

2
Pr
x

$←Zq
[E(x, σ) = b′ | σ0(x) = σ] +

1

2
Pr
x

$←Zq
[E(x, σ) = b′ | σ1(x) = σ]

=
1

2
·

Pr
x

$←Zq
[E(x, σ) = b′ ∧ σ0(x) = σ]

Pr
x

$←Zq
[σ0(x) = σ]

+
1

2
·

Pr
x

$←Zq
[E(x, σ) = b′ ∧ σ1(x) = σ]

Pr
x

$←Zq
[σ1(x) = σ]
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Denote I = [−b q4c, b
q
4c] the interval such that σ0 equals 0, then I + 1 is the interval such that σ1

equals 0. It is easy to see that |I| = |I + 1| = 2b q4c + 1. We separately consider two cases, when
σ = 0 and σ = 1. For σ = 0, we have that

Pr
x

$←Zq
[σ0(x) = 0] = Pr

x
$←Zq

[σ1(x) = 0] =
2b q4c+ 1

q
.

Let I0 = {x : x ∈ I ∧ x mod 2 = 0} and I1 = {x : x ∈ I ∧ x mod 2 = 1} and similarly for
(I + 1)0, (I + 1)1. Then we have |I0|+ |(I + 1)0| = |I| and |I1|+ |(I + 1)1| = |I|. Therefore,

Pr
x

$←Zq
[E(x, 0) = b′∧σ0(x) = 0] = Pr

x
$←Zq

[x ∈ Ib′ ] and Pr
x

$←Zq
[E(x, 0) = b′∧σ1(x) = 0] = Pr

x
$←Zq

[x ∈ (I+1)b′ ].

This implies that

Pr
x

$←Zq ,b
$←{0,1}

[E(x, 0) = b′|σb(x) = 0] =
1

2
· q

2b q4c+ 1
· |Ib

′ |+ |(I + 1)b′ |
q

=
1

2
.

For σ = 1, we first note that the intervals Zq\I and Zq\(I+1) have even numbers, i.e., q−(2b q4c+1).
Therefore, we have:

Pr
x

$←Zq
[E(x, 1) = b′ ∧ σ0(x) = 1] = Pr

x
$←Zq

[E(x, 1) = b′ ∧ σ1(x) = 1] =
q − (2b q4c+ 1)

2q
.

A routine calculation shows that Pr
x

$←Zq ,b
$←{0,1}

[E(x, 1) = b′|σb(x) = 1] = 1
2 . This completes the

proof ut

3 Key Exchange Protocol from LWE

Key exchange protocols are very important cryptographic protocols. The original Diffien-Hellman
key exchange protocol [14] is built on the fact that the exponential maps are commutative, namely

gab = (ga)b = (gb)a,

over some multiplicative group G with large order p. If we look carefully why the key exchange
above works, one realizes we may do the same thing using the associativity and commutativity of
computing the value of bilinear form, namely,

xTMy = (xTM)y = xT (My),

where M is an n×n matrix in Zq and x,y are vectors in Znq . Here, this computation can be viewed
a pairing of the two vector x,y via the corresponding bilinear form.

Surely we need to introduce small errors. Namely, the idea of LWE problem, to make the scheme
secure. Our basic idea is that we can use the Hermit normal form of LWE (HNF-LWE) problem to
build a key exchange protocol like the Diffie-Hellman key exchange protocol. The protocol can be
set up as follows.
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3.1 Construction

Two parties Alice and Bob decide to do a key exchange over an open channel. Let E be the robust
extractor with respect to S as defined in Section 2.

– The system first generates the public parameters q, n, α, where q > 2 is prime. Sample a uni-
formly random matrix M← Zn×nq .

– Alice chooses a secret vector sA ← DZn,αq. Then, Alice computes pA = MsA + 2eA mod q,
where eA ← DZn,αq. Sends pA to Bob.

– Receiving pA, Bob first chooses a secret vector sB ← DZn,αq and an error e′B ← DZ,αq. Com-
putes KB = pTA ·sB+2e′B mod q. Then he samples eB ← DZn,αq, computes pB = MT ·sB+2eB
mod q. Bob computes σ ← S(KB) and obtains the shared key SKB = E(KB, σ). Finally Bob
sends (pB, σ) to Alice.

– Once getting (pB, σ), Alice samples e′A ← DZ,αq and computes KA = sTApB + 2e′A mod q, and
obtains SKA = E(KA, σ).

Correctness We now show that if Alice and Bob run the protocol honestly, they will share an
identical key.

Lemma 4. If 8(αq)2 · n ≤ q
4 − 2, then SKA = SKB with overwhelming probability.

Proof. From the form of KA,KB, we have KA = sTA(MT ·sB+2eB)+2e′A = sTAMT sB+2(sTAeB+e′A),
KB = (sTAMT + 2eTA)sB + 2e′B = sTAMT sB + 2(eTAsB + e′B). Hence, we have

KA = KB + 2(sTAeB + e′A − eTAsB − e′B) mod q.

From Lemma 1, we have that

|2(sTAeB + e′A − eTAsB − e′B)| ≤ 8 · (αq
√
n) · (αq

√
n) = 8(αq)2 · n ≤ q

4
− 2,

with overwhelming probability. Because E is a robust extractor with respect to S with error toler-
ance q

4 − 2 due to Lemma 2. We have SKA = E(KA, σ) = E(KB, σ) = KB.

Moreover, we show that SKA = SKB = (sTAMT sB +σ(KB) · q−12 mod q) mod 2. This is because

sTAMT sB +σ(KB) · q−12 = KB +σ(KB) · q−12 −2(eTAsB +e′B) mod q, and |KB +σ(KB) · q−12 | <
q
4 +1.

Hence
(
sTAMT sB + σ(KB) · q−12

)
mod q =

(
KB + σ(KB) · q−12

)
mod q − 2(eTAsB + e′B) (in Z), and

we have SKA = SKB = (sTAMT sB + σ(KB) · q−12 mod q) mod 2. ut

Remark. We note that for the correctness of our protocol, Bob has to send a signal to Alice to tell
her that the resulting KB is in the range close to [−b q4c, b

q
4c] or not. The reason is to make sure that

the error terms in KB and KA do not result different modulo q operations. The drawback of the
signal is that the adversary will also know the “main” part, say sTAMT sB mod q or sTAMT sB + q−1

2
mod q, lies close to [−b q4c, b

q
4c] or not. However, this does not harm the security, since if we can

show KB is (pseudo)random in Zq, the additional modulo 2 operation makes the shared key uniform
in Z2 due to Lemma 3.

Parameter Selection. A reasonable way to select the parameters is n = λ, q = λ4, α = 1/λ3.
It’s easy to verify that αq ≥

√
n and the correctness holds.
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3.2 Security

We now define the passive security of a key exchange protocol. Intuitively, any PPT adversary
should not distinguish a real shared key to a random one even if he gets the transcripts of the
protocol. More specifically, we define the advantage of an adversary A:

AdvA = Pr[b′ ← A(transcripts,Kb), b
$← {0, 1},K0 is real,K1 is random : b = b′]− 1/2.

Definition 3. We say a key exchange protocol is secure under passive adversary, if for any PPT
adversary the above advantage is negligible.

We now slightly change the definition according to our construction, we do not need the ad-
versary to distinguish the shared key, instead we want it to distinguish KA or KB from uniformly
random in Zq. Namely, we prove that

Pr[b′ ← A(M,pA,pB,Kb), b
$← {0, 1},K0 = KB,K1

$← Zq : b = b′]− 1/2

is negligible (we can also replace K0 = KA). Lemma 3 guarantees that this definition is sufficient.

Theorem 1. The construction above is secure against passive PPT adversaries, if the HNF-LWE
assumption holds.

Proof. We prove the security by a series of games. The first game Game0 is the real game which
the adversary gets the real KB, while in the last game Game4 the adversary gets a uniformly
random KB. We show that the views of Game0 and Game4 are computational indistinguishable
for any PPT adversaries, under the HNF-LWE assumption.

Game0. This is the real game between the protocol challenger and the passive adversary A. That
is the adversary obtains M,pA,pB, σb(KB),KB, where pA = MsA + 2eA, pB = MT sB + 2eB and
KB = pTAsB + 2e′B. Then A outputs a guess b′.

Game1. This game is identical to Game0 except that instead of setting pA = MsA + 2eA and

KB = pTAsB + 2e′B. The challenger sets pA = bA and KB = bTA · sB + 2e′B, where bA
$← Znq .

In Lemma 5, we show that under the HNF-LWE assumption, the views in Game0 and Game1
are computationally indistinguishable for any PPT passive adversaries. Note that here sA is chosen
according to the error distribution.

Game2. This game is identical to Game1 except that instead of setting pB = MT sB + 2eB and

KB = bTA · sB + 2e′B. The challenger sets pB = bB and KB = u, where bB
$← Znq and u

$← Zq.

We show the views for any PPT passive adversaries in Game1 and Game2 are computationally
indistinguishable, if the HNF-LWE assumption holds. The proof is given in Lemma 6.

Game3. This game is identical to Game2 except that instead of setting pA = bA. The challenger
sets pA = MsA + 2eA.

In Lemma 7, we prove the views in Game2 and Game3 are computationally indistinguishable,
if the HNF-LWE assumption holds.
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Game4. This game is identical to Game3 except that instead of setting pB = bB. The challenger
sets pB = MT sB + 2eB.

In Lemma 8, we prove that the views in Game3 and Game4 are indistinguishable, if the HNF-
LWE assumption holds. The claim follows from Lemma 5,6,7,8 directly. ut

Lemma 5. Any PPT passive adversary can not distinguish Game0 and Game1, if the HNF-LWE
assumption holds.

Proof. We prove the lemma by showing that if there exists an adversary A who can distinguish
Game0 and Game1, then we can construct another adversary B to distinguish the HNF-LWE
samples from uniform. B works as follows. Once obtaining challenges (M,bA) ∈ Zn×nq × Znq from
the HNF-LWE challenger, where bA is either Ms + 2e or uniformly random in Znq , B samples

sB ← DZn,αq and sets KB = bTAsB + 2e′B and computes pB = MT sB + 2eB. Finally B sends
(M,pA = bA,pB, σb(KB),KB) to A. B outputs whatever A outputs. We note that B can sample
the errors and compute σb(KB) by himself.

If bA is an LWE sample, then what A obtains are exactly the same as in Game0; if bA is
uniformly random in Znq , then what A obtains are exactly the same as in Game1. This implies
that if A can distinguish Game0 and Game1 with noticeable advantage, then B can distinguish
HNF-LWE samples from uniformly random with the same advantage. This finishes the proof. ut

Lemma 6. Any PPT passive adversary can not distinguish Game1 and Game2, if the HNF-LWE
assumption holds.

Proof. We prove this lemma by showing that if there exists an adversary A distinguishes Game1
and Game2, then we can construct a PPT adversary B to distinguish the HNF-LWE samples from
uniform. B works as follows. Once obtaining challenges (M,bB) ∈ Zn×nq ×Znq and (bA, u) ∈ Znq ×Zq,
where u and u are either MT s + 2e,bTAs + 2e or uniformly random in Znq and Zq respectively, B
sets pA = bA, let pB = bB and KB = u, and computes σb(KB). B sends (M,pA,pB, σb(KB),KB)
to A, and outputs whatever A outputs. Note that if bB, u are LWE samples, then what A gets are
exactly the same as in Game1; if bB, u are uniformly random, then what A gets are exactly the
same as in Game2. Therefore, if A can distinguish the two games with noticeable advantage, then
B can break the HNF-LWE problem with noticeable advantage. This complete the proof. ut

Lemma 7. Any PPT passive adversary can not distinguish Game2 and Game3, if the HNF-LWE
assumption holds.

Proof. The proof is similar to Lemma 5, except we still choose KB uniformly from Zq. ut

Lemma 8. Any PPT passive adversary can not distinguish Game3 and Game4, if the HNF-LWE
assumption holds.

Proof. The proof is similar to Lemma 6, except we still choose KB uniformly from Zq. ut

Key Exchange Protocol with Multiple Bits. In order to get multiple shared secret bits in
the protocol, one can use the matrix secret form of LWE assumption. More specifically, Alice and
Bob choose secret matrix SA,SB ∈ Zn×nq instead of sA, sB (still from the error distribution). It’s
easy to extend the other part to get multiple shared secret bits. The security is straightforwardly
from the underlying HNF-LWE assumption by standard hybrid argument.
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Comparisons . We now give some comparisons with directly using public key encryption scheme
to do key exchange. The main idea of using PKE is as follows: for two parties A and B with key
pair (pkA, skA) and (pkB, skB), respectively. A chooses a bit a uniformly at random, and encryption
it by using B’s public key cB = Enc(pkB, a) and sends cB to B. Similarly B chooses a uniform
bit b and sends cA = Enc(pkA, b) to A. A and B decrypt the ciphertext by using their own secret
keys and compute a ⊕ b. We note that, by using the PKE based key exchange, the users need to
first download the public key of the party he/she wants to communicate. Therefore, it incurs more
communication complexity. While in our scheme, the public parameter M is generated once for all,
namely a public authority like NIST can generate one matrix M that any two parties can use the
same M, while the security is not affected. We focus on LWE-based encryptions and estimate the
complexity for 1 bit secret key. The comparisons are given in Table 1:

Table 1. Comparisons between LWE-based ones for 1-bit secret key

Pub. Param. Commun. Comp. Comput. Comp. Assumption

Reg’05 [25] 4(n + 1)n log2 q (4n2 + 6n) log2 q + 2 log q 4n2 log q SIVPÕ(n3)

LP’11 [20] 4n2 log q 4(n2 + n) log q 6n2 SIVPÕ(n3)

Ours n2 log q 2n log q + 1 2n2 SIVPÕ(n4)

Pub. Param. means the size of public parameter; Commun. Comp. means the communication complexity; Comput.
Comp. means the computation complexity and is estimated by the number of multiplications in Zq.

We also compare the efficiency of our scheme with key transport schemes based on PKE from
LWE. Intuitively, in a key transport scheme, party A chooses a uniformly random bit s and encrypts
it by using B’s public key to c = Enc(pkB, s) and then sends c to B. B uses its secret key to decrypt
c and recover s. The session key between A and B is s. A drawback of key transport schemes is
that the shared key is totally determined by one party, while in our protocol, the shared key is
determined by both involved parties. Another method to construct key transport schemes is to use
key encapsulation mechanism (KEM). By now (except [24]), the efficiency of all the KEM schemes
based on LWE is almost the same as the encryption scheme. We would like to point out that our
protocol can also be easily extended to a more efficient KEM scheme. Therefore, when considering
key transport schemes, the communication complexity and computation complexity will be half as
the key exchange schemes based on PKE. From the results in Table 1, even in such a scenario,
the efficiency of our scheme is still substantially better in terms of communication complexity and
computation complexity.

4 Key Exchange Protocol from Ring-LWE

In this section, we show how to get a more efficient key exchange protocol from the ring learning
with errors (RLWE) problem [21]. Consider the ring R = Z[x]/f(x), where f(x) = xn + 1 and n is
a power of 2. For an integer q, let Rq = R/qR. Any element in Rq is represented by a degree n− 1
polynomial, which can also be viewed as a vector with its corresponding coefficients as its entries.
For an element

a(x) = a0 + a1x+ ...+ an−1x
n−1,

we define ‖a‖ = max|ai|, the `∞ norm of the vector (a0, a1, ..., an−1). Furthermore, it’s easy to get
that ‖x · y‖ ≤ n‖x‖ · ‖y‖ for any x, y ∈ R. For convenience, we do not give the specific description
of the error distribution, since we only care the norm of the element from the distribution. Denote
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χ (whose support is R) to be β-bounded, if Pr[‖x‖ > β : x← χ] ≤ negl(n). We recall the definition
of RLWE proposed by Lyubashevsky, Peikert and Regev [21].

Definition 4. Let n ≥ 1 be a power of 2 and q ≥ 2 be an integer, let R = Z[x]/f(x), where
f(x) = xn + 1, and R = R/qR. Let χ be β-bounded. For s ∈ Rq, let As,χ be the distribution on
Rq ×Rq obtained by choosing a← Rq uniformly at random, e← χ, outputting (a, a · s+ e mod q).

The RLWE problem is : for uniformly random s ← Rq, given poly(n) number of samples that
are either from As,χ or uniformly random in Rq × Rq, output 0 if the former holds and 1 if the
latter holds.

The RLWEn,q,χ assumption says that the RLWEn,q,χ problem is infeasible. Denote the assump-

tion by RLWE
(m)
n,q,χ when we require the indistinguishability to hold given only m samples. We state

the hardness of the special case of RLWE
(m)
n,q,χ described in [21] as follows.

Theorem 2 ([21]). For the ring R = Z[X]/f(x), f(x) = xn + 1, where n is a power of 2, and
a prime integer q = q(n) = 1 mod 2n, and β = ω(

√
n log n), there is an efficiently samplable

distribution χ that outputs elements of R with norm at most β with overwhelming probability, such

that if there exists an efficient algorithm that solves RLWE
(m)
n,q,χ, then there is an efficient quantum

algorithm for solving n2.5 · (q/β) · (nm/ log(nm))1/4-approximate worst-case SVP for ideal lattices
over R.

The HNF-RLWE assumption [4] says that the hardness preserves even if we choose the secret
from the error distribution, i.e. s← χ.

We also extend our “signal” algorithms and key algorithm to the ring case. For any a =∑n−1
i=0 aix

i ∈ Rq, we extend σ0(a), σ1(a) : Rq → R2 as follows:

σ0(a) =
n−1∑
i=0

σ0(ai)x
i; σ1(a) =

n−1∑
i=0

σ1(ai)x
i.

The algorithm S now is defined as S(a) = σb(a), where b
$← {0, 1}. Similarly, we also extend the

robust extractor E(a, σ) : Rq → R2 as follows:

E(a, σ) = (a+ σ · q − 1

2
mod q) mod 2.

4.1 Construction

We now describe the key exchange protocol based on RLWE assumption.

– The system first generates the public parameters q, n, χ, β,R = Z[x]/f(x), where f(x) = xn + 1
and n is a power of 2. Sample a uniformly random element m← Rq.

– Alice first chooses an secret element sA ← χ. Then, Alice computes pA = msA + 2eA mod q,
where eA ← χ. Sends pA to Bob.

– Receiving pA, Bob first chooses a secret element sB ← χ and an error e′B ← χ. Bob then
computes KB = pA · sB + 2e′B mod q and σ ← S(KB). He samples eB ← χ and computes
pB = m · sB + 2eB mod q. Finally, Bob sends (pB, σ) to Alice and obtains the shared key
SKB = E(KB, σ).

– Once getting (pB, σ), Alice samples e′A ← χ and computes KA = sApB+2e′A mod q, and obtains
SKA = E(KA, σ).
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Correctness We now show that if Alice and Bob run the protocol honestly, they will share an
identical key.

Lemma 9. If 8nβ2 ≤ q
4 − 2, then SKA = SKB with overwhelming probability.

Proof. The form of KA,KB are as follows. KA = msAsB + 2(sAeB + e′A) mod q. KB = msAsB +
2(eAsB + e′B) mod q. Therefore, we have:

KA = KB + 2(eAsB + e′B − sAeB − e′A) mod (q, xn + 1).

Note that from Lemma 1, we have ‖2(sAeB +e′A−eAsB−e′B)‖ ≤ 8nβ2 ≤ q
4 −2, with overwhelming

probability. Therefore, from Lemma 2, we have SKA = E(KA, σ) = E(Kb, σ) = SKB.

Moreover, we can show that SKA = SKB = (msAsB + σ · q−12 mod (q, xn + 1)) mod 2. The
proof is the same as the one in Section 3.1. ut

Parameter Selection. A reasonable way to select the parameters is n = λ, q = λ4, β = λ.

Theorem 3. The construction above is secure against passive PPT adversaries, if the HNF-RLWE
assumption holds.

Proof. The proof is almost the same as in 1, we omit it here. ut

Comparisons. Here, we give comparisons between our scheme and other key exchange schme
based on public key encryption from RLWE. We use two examples, one is the RLWE-based scheme
from Lyubashevsky et al. [21], and the other one is the NTRU variant from Stehlé and Steinfeld
[27]. Due to the property of RLWE, our scheme can agree on n bit secret key once. We note
that the public parameter m can be produced once for all, therefore, it significantly reduce the
communication cost. The comparisons are given in Table 2. When comparing to the key transport
schemes based on PKE, where the communication and computation cost will be cut to half for
encryption based schemes, the efficiency of our scheme is still better than the LPR’10 [21] scheme
in communication cost (1/2) but worse in computation cost (4/3); and our scheme is slightly worse
than the SS’11 [27] scheme. But we note that the assumption of the SS’11 [27] is much stronger.
Therefore, to obtain same security, one needs to increase the security parameter in SS’11 [27],
which results much worse efficiency. This means our scheme could still have substantial advantage
in terms of practical applications.

Table 2. Comparisons between RLWE-based ones for n bit secret key

Pub. Param. Commun. Comp. Comput. Comp. Assumption

LPR’10 [21] 4n log q 8n log q 6 Ideal-SIVPÕ(n3)

SS’11 [27] 2n log q 4n log q 4 Ideal-SIVPÕ(n8)

Ours n log q 2n log q + n 4 Ideal-SIVPÕ(n4.5)

Pub. Param. means the size of public parameter; Commun. Comp. means the communication complexity; Comput.
Comp. means the computation complexity and is estimated by the number of multiplications in the ring Rq.
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5 Interactive Multiparty Key Exchange Protocol

In this section, we describe an interactive multiparty key exchange protocol based on RLWE prob-
lem. Although the provable security of the protocol seems plausible, we still can not do it, and we
leave it as an open problem.

We now describe the interactive multiparty key exchange protocol.

– For a set of k users, the system first generates the public parameters q, n, χ, β,R = Z[x]/f(x),
where f(x) = xn + 1 and n is a power of 2. Samples a uniformly random element m← Rq.

– For i ∈ {0, ..., k−1}, the user i chooses random si ← χ and e0i ← χ. Computes p0i = msi+2e0i ∈
Rq, and sends p0i to the user i + 1. Then for 1 ≤ j ≤ k − 2, user i + j mod k computes

pji = si+j mod k · pj−1i + 2eji , where eji ∈ χ, and sends pji to the user i+ j + 1 mod k.

– For the user 0, he or she first chooses ê0 ← χ and computes K0 = pk−21 · s0 + 2ê0, then he or she
computes σ ← S(K0). The user 0 obtains the shared key SK0 = E(K0, σ). Finally, the user 0
broadcasts σ.

– For users 1 ≤ i ≤ k − 1. they first choose êi ← χ and compute Ki = pk−2i+1 mod k · si + 2êi and
each obtains the shared secret key SKi = E(Ki, σ).

Correctness We now show that if Alice and Bob run the protocol honestly, they will share an
identical key.

Lemma 10. If 4k · nkβk+1 ≤ q
4 − 2 , then all the k parties share the same secret key with over-

whelming probability.

Proof. The correctness is very similar to the RLWE base two party key exchange protocol. Let’s
first look at K0, we can rewrite it in the form: K0 = m

∏k−1
i=0 si +∆0, where:

∆0 = s0

k−1∏
i=2

si · 2 · e01 + s0

k−1∏
i=3

si · 2 · e11 + · · ·+ s0 · sk−1 · 2 · ek−31 + s0 · 2 · ek−21 + 2ê0.

Note that ‖∆0‖ ≤ k · 2 · nkβk+1. Similarly, we can compute Kj = m
∏k−1
i=0 si + ∆j , where

‖∆j‖ ≤ k · 2 · nkβk+1 and 1 ≤ j ≤ k − 1. Notice that since ‖∆0 −∆j‖ ≤ 4k · nkβk+1 ≤ q
4 − 2 for

1 ≤ j ≤ k − 1, we can apply Lemma 2 to finish the remaining part of this lemma. ut

6 Conclusion

In this paper, we use the LWE problem to build a new, simple and provably secure key exchange
protocol with the help of robust extractors. We show that our scheme have substantial advantages
in practical applications when compared with similar scheme derived from the encryption schemes
based on the LWE problem. We also extend the construction to the RLWE case. Our construction
is a significant additional step in showing how versatile the LWE assumption can be.

The LWE problem itself can be viewed as certain form of inner product with small errors
that somehow can be eliminated for certain applications. Our construction can be viewed as an
extension of this idea to the case of a bilinear pairing, namely a pairing of bilinear forms with errors.
In addition, the reason why the scheme works well actually depends on the associativity and the
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commutativity of the multiplications in both the non-commutative rings (the LWE problem ) and
the commutative rings (the RLWE problem). We believe that exploring further algebraic properties
of the non-commutative rings could yield even more interesting cryptographic protocols, such as
certain homomorphic properties over non-commutative operations over matrices.

References

1. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (h) ibe in the standard model. In EUROCRYPT, pages
553–572. Springer, 2010.

2. S. Agrawal, X. Boyen, V. Vaikuntanathan, P. Voulgaris, and H. Wee. Functional encryption for threshold functions
(or fuzzy ibe) from lattices. In PKC, pages 280–297, 2012.

3. S. Agrawal, D. Freeman, and V. Vaikuntanathan. Functional encryption for inner product predicates from
learning with errors. In ASIACRYPT, pages 21–40. Springer, 2011.

4. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-secure encryption
based on hard learning problems. In CRYPTO, pages 595–618. Springer, 2009.

5. X. Boyen. Attribute-based functional encryption on lattices. In TCC, pages 122–142. Springer, 2013.
6. Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. In CRYPTO,

pages 868–886. Springer, 2012.
7. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping.

In ITCS, pages 309–325, 2012.
8. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of learning with errors. In
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