
Root optimization of polynomials in the

number field sieve

Shi Bai

Research School of Computer Science

Australian National University

shih.bai@gmail.com

Richard P. Brent

Mathematical Sciences Institute

Australian National University

Australia

Emmanuel Thomé

INRIA Nancy

Villers-lès-Nancy

France

Abstract

The general number field sieve (GNFS) is the most efficient algorithm
known for factoring large integers. It consists of several stages, the first
one being polynomial selection. The quality of the chosen polynomials in
polynomial selection can be modelled in terms of size and root properties.
In this paper, we describe some algorithms for selecting polynomials with
very good root properties.

1 The general number field sieve

The general number field sieve [11] is the most efficient algorithm known
for factoring large integers. It consists of several stages including polyno-
mial selection, sieving, filtering, linear algebra and finding square roots.

Let n be the integer to be factored. The number field sieve starts
by choosing two irreducible and coprime polynomials f(x) and g(x) over
Z which share a common root m modulo n. In practice, the notations
F (x, y) and G(x, y) for the homogenized polynomials corresponding to f
and g are often used. We want to find many coprime pairs (a, b) ∈ Z2

such that the polynomials values F (a, b) and G(a, b) are simultaneously
smooth with respect to some upper bound B. An integer is smooth with
respect to bound B (or B-smooth) if none of its prime factors are larger
than B. The lattice sieving [16] and line sieving [4] are commonly used
to identify such pairs (a, b). The running-time of sieving depends on the
quality of the chosen polynomials in polynomial selection, hence many
polynomial pairs will be generated and optimized in order to produce a
best one.

1

This paper discusses algorithms for root optimization in polynomial
selection in the number field sieve. We mainly focus on polynomial selec-
tion with two polynomials, one of which is a linear polynomial.

2 Polynomial selection

For large integers, most methods [4, 9, 10, 13, 14] use a linear polynomial
for g(x) and a quintic or sextic polynomial for f(x). Let f(x) =

∑d
i=0 cix

i

and g(x) = m2x−m1. The standard method to generate such polynomial
pairs is to expand n in base-(m1,m2) so n =

∑d
i=0 cim

i
1m

d−i
2 .

The running-time of sieving depends on the smoothness of the poly-
nomial values |F (a, b)| and |G(a, b)|. Let Ψ(x, x1/u) be the number of
x1/u-smooth integers below x for some u. The Dickman-de Bruijn func-
tion ρ(u) [7] is often used to estimate Ψ(x, x1/u). It can be shown that

lim
x→∞

Ψ(x, x1/u)

x
= ρ(u).

The Dickman-de Bruijn function satisfies the differential equation

uρ′(u) + ρ(u− 1) = 0, ρ(u) = 1 for 0 ≤ u ≤ 1.

It may be shown that ρ satisfies the asymptotic estimate

log(ρ(u)) = −(1 + o(1))u log u as u → ∞.

For practical purposes, the frequency of smooth numbers can be approxi-
mated by the Canfield-Erdős-Pomerance theorem, which can for example
be stated as follows [8].

Theorem 2.1. For any fixed ǫ > 0, we have

Ψ(x, x1/u) = xu−u(1+o(1))

as x1/u and u tends to infinity, uniformly in the region x ≥ uu/(1−ǫ).

It is desirable that the polynomial pair can produce many smooth in-
tegers across the sieve region. This heuristically requires that the size of
polynomial values is small in general. In addition, one can choose an alge-
braic polynomial f(x) which has many roots modulo small prime powers.
Such a choice is driven by inheritance of practices which already date
back to the CFRAC era, where suitable multipliers were chosen precisely
in order to optimize this very property [12, 17]. Then the polynomial
values are likely to be divisible by small prime powers. This may in-
crease the smoothness chance for polynomial values. We describe some
methods [9, 14] to estimate and compare the quality of polynomials.

2.1 Sieving test

A sieving experiment over short intervals is a relatively accurate method to
compare polynomial pairs. It is often used to compare several polynomial
candidates in the final stage of the polynomial selection. Ekkelkamp [5]
also described a method for predicting the number of relations needed

2

in the sieving. The method conducts a short sieving test and simulates
relations based on the test results. Experiments show that the prediction
of the number of relations is within 2% of the number of relations needed
in the actual factorization.

2.2 Size property

Let (a, b) be pairs of relatively prime integers in the sieving region Ω. For
the moment, we assume that a rectangular sieving region is used where
|a| ≤ U and 0 < b ≤ U . We also assume that polynomial values |F (a, b)|
and |G(a, b)| behave like random integers of similar size. The number of
sieving reports (coprime pairs that lead to smooth polynomial values) can
be approximated by

6

π2

∫∫

Ω

ρ

(

log|F (x, y)|
logB

)

ρ

(

log|G(x, y)|
logB

)

dxdy

The multiplier 6/π2 accounts for the probability of a, b being relatively
prime.

Since G is a linear polynomial, we may assume that log(|G(a, b)|) does
not vary much across the sieving region. A simplified approximation to
compare polynomials (ignoring the constant multiplier) is to compare

∫∫

Ω

ρ

(

log|F (x, y)|
logB

)

dx dy. (1)

The base-(m1,m2) expansion [9, 10] gives polynomials whose coeffi-
cients are O(n1/(d+1)). The leading coefficients cd and cd−1 are much
smaller than n1/(d+1). The coefficient cd−2 is slightly smaller than n1/(d+1).
For such polynomials, it is often better to use a skewed sieving region
where the sieving bounds for a, b have ratio s, while keeping the area of
the sieving region 2U2. The sieving bounds become |a| ≤ U

√
s and 0 <

b ≤ U/
√
s. Each monomial in the polynomial is bounded by ciU

dsi−d/2.
In the integral (1), computing ρ is time-consuming, especially if there

are many candidates. We can use some coarser approximations. Since
ρ(u) is a decreasing function of u, we want to choose a polynomial pair
such that the size of |F (a, b)| and |G(a, b)| is small on average over all
(a, b). This roughly requires that the coefficients of the polynomials are
small in absolute value. We can compare polynomials by the logarithm of
a L2-norm for polynomial F (x, y) by

1

2
log

(

s−d

∫ 1

−1

∫ 1

−1

F 2(xs, y) dx dy

)

. (2)

where s is the skewness of sieving region. Polynomials which minimize
the expression 2 are expected to be better than others.

2.3 Root property

If a polynomial f(x) has many roots modulo small prime powers, the
polynomial values may behave more smoothly than random integers of

3

about the same size. Boender, Brent, Montgomery and Murphy [3, 13,
14, 15] described some quantitative measures of this effect (root property).

Let p be a fixed prime. Let νp(x) denote the exponent of the largest
power of p dividing the integer x and νp(0) = ∞. Let S be a set of integers.
We use (the same) notation νp(S) to denote the expected p-valuation
of x ∈ S. If integers in S are random and uniformly distributed1, the
expected p-valuation νp(S) is

νp(S) = E
x∈S

[νp(x)] = Pr(νp ≥ 1)+Pr(νp ≥ 2)+· · · = 1

p
+

1

p2
+· · · = 1

p− 1
.

Thus, in an informal (logarithmic) sense, an integer s in S contains an
expected power p1/(p−1).

Let now S be a set of polynomial values f(x). We use (the same) nota-
tion νp(S) (or νp(f)) to denote the expected p-valuation of the polynomial
values S. Hensel’s lemma gives conditions when a root of f (mod pe) can
be lifted to a root of f (mod pe+1).

Lemma 2.2 (Hensel’s lemma). Let r1 be a root of f(x) modulo an odd

prime p.

1. If r1 is a simple root, f(x) (mod pe) has an unique root re ≡ r1
(mod p) for each e > 1.

2. If re is a multiple root2 of f (mod pe) for e ≥ 1, there are two

possible cases. If pe+1 | f(re), then ∀ i ∈ [0, p), pe+1 | f(re + i pe). If

pe+1 ∤ f(re), re cannot be lifted to a root modulo pe+1.

Assume now that the integers x leading to the values f(x) ∈ S are
uniformly random. There are two cases. First, suppose p ∤ ∆, the dis-
criminant of f(x). p is an unramified prime. Then f(x) (mod p) has only
simple roots. Let np be the number of roots. The expected p-valuation of
polynomial values is νp(f) = np/(p − 1) (apply the formula above, using
Pr(νp ≥ e) = np/p

e).
The second case is when p | ∆. Here one may get multiple roots. The

expected p-valuation may be obtained by counting the number of lifted
roots.

In the number field sieve, we want to know the expected p-valuation of
homogeneous polynomial values F (a, b), where (a, b) is a pair of coprime
integers, and F (x, y) is the homogenous polynomial corresponding to f(x).
We assume in the following that (a, b) is a uniformly random pair of
coprime integers. We have

νp(F (a, b)) = νp(F (λa, λb)) (3)

for any integer λ coprime to p. A pair of coprime integers (a, b) maps
to a point (a : b) on the projective line P

1(Fp). Because of property (3)
above, pairs for which νp(F (a, b)) > 0 correspond to the points of the
zero-dimensional variety on P

1(Fp) defined by the polynomial F .

1We consider integer random variables within a large enough bounded sample space.
2We say that re is a multiple root of f (mod pe) if f ′(re) ≡ 0 (mod p).

4

The projective line P1(Fp) has p+1 points, consisting of p affine points
which can be represented as (x : 1) with x ∈ Fp, together with the point
at infinity (1 : 0). Among these, the zeroes of F correspond, for affine
points (x : 1), to affine roots x ∈ Fp of the dehomogenized polynomial f .
The point at infinity is a zero of F if and only if the leading coefficient cd
of f cancels modulo p. If F has a total of np affine and projective zeroes
in P

1(Fp), then F (a, b) for coprime (a, b) is divisible by p with probability
np/(p+ 1).

It is also possible to look at (a, b) modulo a prime power pe. Then (a, b)
maps to an equivalence class (a : b) on the projective line over the ring
Z/peZ. The p-valuation of F at (a : b) ∈ P

1(Z/peZ) (an integer between
0 and e − 1, or “e or more”) conveys the information of what happens
modulo pe. There are pe + pe−1 points in P

1(Z/peZ) (pe affine points of
the form (x : 1), while the remaining pe−1 points at infinity are written
as (1 : py)). A coprime pair (a, b) chosen at random maps therefore to a
given point in P

1(Z/peZ) with probability 1/(pe−1(p+ 1)).
Given an unramified p, let F (x, y) (mod p) have np affine and pro-

jective roots (zeroes on P
1(Fp)). In application of the Hensel Lemma

(applied to f at an affine root x, or to pd−1f(1
py

) above the possible pro-

jective root), there is a constant number np of points (a : b) = P
1(Z/peZ)

such that νp(F (a : b)) ≥ e, as e grows. The expected p-valuation νp(F) is
thus:

νp(F) =

∞
∑

e=1

np

pe−1(p+ 1)
=

npp

p2 − 1
. (4)

For ramified p, simply counting the number np of affine and projective
roots modulo p is not sufficient to deduce νp(F). More careful compu-
tation is needed modulo prime powers, which is addressed in Sections 4
and 5.2.

Murphy [14, p. 49] defines the α(F) function to compare the cumu-
lative expected p-valuation of polynomial values to random integers of
similar size. α(F) can be considered as the logarithmic benefit of using
polynomials values compared to using random integers.

α(F) =
∑

p≤B
p prime

(

1

p− 1
− νp(F)

)

log p.

where the summand rewrites as

(

1− npp

p+ 1

)

log p

p− 1
when p is unramified.

In the number field sieve, α(F) is often negative since we are interested
in the case when F (x, y) has more than one root.

2.4 Steps in polynomial selection

Polynomial selection can be divided into three steps: polynomial genera-
tion, size optimization and root optimization.

In the polynomial selection, we first generate good polynomials in
terms of the size property. Two efficient algorithms are given by Kleinjung
[9, 10]. Once we have generated some polynomial pairs (f(x) = g(x) =
m2x − m1) of relatively good size, the size and root properties of these
polynomials can be further optimized using translation and rotation.

5

• Translation of f(x) by k gives a new polynomial fk(x) defined by
fk(x) = f(x + k). The root of fk(x) is m1/m2 − k (mod n). The
linear polynomial gk(x) is m2x−m1+km2. Translation only affects
the size property.

• Rotation by a polynomial λ(x) gives a new polynomial fλ(x)(x) de-
fined by fλ(x)(x) = f(x) + λ(x) (m2x−m1). The linear polynomial
is unchanged gλ(x)(x) = g(x) = m2x −m1. The root is unchanged.
λ(x) is often a linear or quadratic polynomial, depending on n and
the skewness of f(x). Rotation can affect both size and root prop-
erties.

Given a polynomial pair, translation and rotation are used to find a
polynomial of smaller (skewed) norm (cf Equation (2)). This is called size
optimization.

Many polynomials can have comparable size after size optimization.
We produce and choose the best polynomials in terms of good α-values.
This requires that the polynomials have many roots modulo small prime
and prime powers. This step is referred to as root optimization.

Given f(x) (or F (x, y)), we can use polynomial rotation to find a
related polynomial fλ(x)(x) (or Fλ(x)(x, y)) which has a smaller α but
similar size. Polynomial rotation may also increase the size of trailing
coefficients. However, if the skewness of the polynomial is large, the size
property of the polynomial may not be altered significantly. Hence there
is some room for rotation if the skewness is large. As an indication of this,
the skewed L∞ norm of f , defined as maxi |si−d/2fi|, remains unchanged
for fλ(x) as long as the trailing coefficients of fλ(x) do not dominate.
This is true for the polynomials generated by the algorithm [10], where
the skewness for the polynomials is likely to be large.

We discuss some algorithms for root optimization in the following sec-
tions.

3 Root sieve

We focus on root optimization for quintic and sextic polynomials in this
chapter. Given a polynomial pair (f, g), we want to find a rotated poly-
nomial with similar size but better root properties. We consider linear
rotations defined by fu,v(x) = f(x) + (ux + v)g(x). We want to choose
(u, v) such that fu,v(x) has a small α-value.

The straightforward way is to look at individual polynomials fu,v(x)
for all possible (u, v)’s and compare their α-values. This is time-consuming
and impractical since the permissible bounds on U, V are often huge.

Murphy [14, p. 84] describes a sieve-like procedure, namely the root
sieve, to find polynomials with good root properties. It is a standard
method to optimize the root property in the final stage of polynomial
selection. We describe Murphy’s root sieve in Algorithm 1. Let B be
the bound for small primes and U, V be bounds for the linear rotation.
The root sieve fills an array with estimated α-values. The α-values are
estimated from p-valuation for small primes p ≤ B. Alternatively, it is suf-
ficient to calculate the summation of the weighted p-valuation νp(F) log p

6

for the purpose of comparison. The idea of the root sieve is that, when r
is a root of fu,v(x) (mod pe), it is also a root of fu+ipe,v+jpe(x) (mod pe).

Algorithm 1: Murphy’s root sieve

input : a polynomial pair f, g; integers U , V , B;
output: an array of approximated α-values of dimension U × V ;

for p ≤ B, p prime do1

for e where pe ≤ B do2

for x ∈ [0, pe − 1] do3

for u ∈ [0, pe − 1] do4

compute v in f(x) + (ux+ v)g(x) ≡ 0 (mod pe);5

update νp(fu+ipe,v+jpe) by sieving;6

In general, the root sieve does not affect the projective roots signifi-
cantly. It is sufficient to only consider the affine roots’ contribution to the
α-value. In the end, we identify good slots (those with small α-values)
in the sieving array. For each slot (polynomial), we can compute a more
accurate α-value with a large bound B and re-optimize its size.

We consider the asymptotic complexity of Murphy’s root sieve.

∑

p≤B
p prime







⌊ log B
log p

⌋
∑

e=1

pepe
(

O(1) +
UV

p2e

)






= O

(

B3

logB

)

+ UV
∑

p≤B
p prime

⌊

logB

log p

⌋

≈ UV logB

∫ B

2

1

log2 p
dp

= O

(

UV
B

logB

)

.

We are interested in small primes and hence B/ logB is small. The sieving
bounds U, V dominate the running-time O(UV B/ logB).

4 A faster root sieve

In the root sieve, we identify the number of roots of ”rotated” polynomials
fu,v(x) for small primes and prime powers. In most cases, the roots are
simple, and hence their average p-valuation follows Equation (4). There
is no need to count the lifted roots for them. We describe a faster root
sieve based on this idea.

We use the following facts based on Hensel’s lemma. Suppose r1 is
a simple root of f(x) (mod p). There exists a unique lifted root re of
f(x) (mod pe) for each e > 1. In addition, each lifted root re is a simple
root of f(x) (mod p). For convenience, we say re is a simple root of f(x)
(mod pe) if f ′(re) 6≡ 0 (mod p).

Let re be a simple root of a rotated polynomial fu,v(x) (mod pe) for
e ≥ 1. It is clear that fu+ipe,v+jpe(x) ≡ fu,v(x) (mod pe) for integers
i, j. It follows that re is also a simple root of the rotated polynomials

7

fu+ipe,v+jpe(x) (mod pe). Given a simple root r1 of a polynomial fu,v(x)
(mod p), the contribution of the root r1 to νp(Fu,v) is p/(p

2 − 1). We can
update the score3 for all rotated polynomials fu+ip,v+jp(x) in a sieve.

If re is a multiple root of f(x) (mod pe) for some e ≥ 1, there are two
possible cases. If f(re) ≡ 0 (mod pe+1), then ∀l ∈ [0, p), f(re + lpe) ≡ 0
(mod pe+1). There are p lifted roots re+1 satisfying re+1 = (re+ lpe) ≡ re
(mod pe), ∀l ∈ [0, p). In addition, the lifted roots re+1 are multiple since
f ′(re+1) ≡ 0 (mod p). On the other hand, if f(re) 6≡ 0 (mod pe+1), re
cannot be lifted to a root modulo pe+1.

Let re be a multiple root of a rotated polynomial fu,v(x) (mod pe) for
e ≥ 1. It is also a multiple root for all rotated polynomials fu+ipe,v+jpe(x)
(mod pe).

Let r be a fixed integer modulo p. We discuss the case when r is a
multiple root for some rotated polynomial fu,v(x) (mod p). We see that
f(r) + (ur + v)g(r) ≡ 0 (mod p) and f ′(r) + ug(r) + (ur + v)g′(r) ≡
0 (mod p). Since (ur + v) ≡ −f(r)/g(r) (mod p), we get ug2(r) ≡
f(r)g′(r)− f ′(r)g(r) (mod p).

Therefore, only 1 in p of u’s admits a multiple root at r (mod p).
For the other u’s, we can compute v and update the simple contribution
p/(p2 − 1) to slots in the sieve array. If r is a multiple root of fu,v(x)
(mod p), we have to lift to count the lifted roots. We discuss the details of
the lifting method in the following sections. For the moment, we describe
the improved root sieve in Algorithm 2.

Algorithm 2: A faster root sieve

input : a polynomial pair f, g; integers U , V , B;
output: an array of approximated α-values of dimension U × V ;

for p ≤ B, p prime do1

for x ∈ [0, p− 1] do2

compute ũ such that ũg2(x) ≡ f(x)g′(x)− f ′(x)g(x) (mod p);3

for u ∈ [0, p− 1] do4

compute v such that f(x) + uxg(x) + vg(x) ≡ 0 (mod p);5

if u 6= ũ;6

then7

update νp(fu+ip,v+jp) in sieving;8

else9

lift to count multiple roots of fū,v̄(x) (mod pe) such that10

(ū, v̄) ≡ (u, v) (mod p), ū, v̄ ≤ pe, pe ≤ B and then sieve;

Let r = x be fixed in Line 2. In Line 3, we compute ũ such that r is
a multiple root of fũ,v(x) for some v. If u 6= ũ, r is a simple root for this
u, and some v which will be computed in Line 5. If u = ũ, fu,v(x) admits
r as a multiple root. We need to lift (up to degree d) to count the roots.

3νp(Fu,v) log p, the contribution of the root r1 (mod p) to α(Fu,v).

8

The running-time to do this is about

∑

p≤B
p prime

(

p

(

(p− 1)
UV

p2
+O

(

UV

p2

)))

= O

(

UV
B

logB

)

.

The asymptotic running-time has the same magnitude. In practice, how-
ever, we benefit of not considering the prime powers. For comparison,
Murphy’s root sieve takes about UV

∑

p≤B(logB)/(log p) operations, while
Algorithm 2 takes about UV

∑

p≤B 1 operations. Taking B = 200 for in-
stance.

∑

p≤200(log 200)/(log p) ≈ 2705 and
∑

p≤200 1 = 46.

5 A two-stage method

We give a two-stage algorithm for the root optimization. The algorithm is
motivated by previous work by Gower [6], Jason Papadopoulos (personal
communication), Stahlke and Kleinjung [18], who suggested to consider
congruence classes modulo small primes.

If the permissible rotation bounds U, V are large, the root sieve can
take a long time for each polynomial. This is even more inconvenient
if there are many polynomials. We describe a faster method for root
optimization based on the following ideas.

A polynomial with only a few roots modulo small prime powers pe is
less likely to have a good α-value. Therefore, rotated polynomials with
many (comparably) roots modulo small prime powers are first detected.
A further root sieve for larger prime powers can then be applied.

In the first stage, we find a (or some) good rotated pair (u0, v0)
(mod pe11 · · · pemm) such that the polynomial fu0,v0(x) has many roots mod-
ulo (very) small prime powers pe11 , · · · , pemm . Let Bs be an upper bound
for pemm . In the second stage, we apply the root sieve in Algorithm 2 to
the polynomial fu0,v0(x) for larger prime powers up to some bound B.

5.1 Stage 1

Given f(x), we want to find a rotated polynomial fu0,v0(x) which has
many roots modulo small primes and small prime powers. Let the prime
powers be pe11 , · · · , pemm . There are several ways to generate fu0,v0(x).

First, we can root-sieve a matrix of pairs (u, v) of size (
∏m

i=1 p
ei
i)2 and

pick up the best (u, v) pair(s) as (u0, v0). If the matrix is small, there is
no need to restrict the bound in the root sieve to be Bs. We can use the
larger bound B. If the matrix is large, however, the root sieve might be
slow. We describe a faster strategy.

We first find m (or more4) individual polynomials fui,vi,pi(x) (1 ≤
i ≤ m) each of which has many roots modulo small peii . The values ui

and vi are bounded by peii . We combine them to obtain a polynomial
fu0,v0(x) (mod

∏m
i=1 p

ei
i) using the Chinese Remainder Theorem. The

polynomial fu0,v0(x) (mod pki) has the same number of roots as the in-
dividual polynomials fui,vi,pi(x) (mod pki) for 1 ≤ k ≤ ei. Hence the

4For each pi, we can generate more than one polynomial. In Stage 2 we consider multi-sets
of combinations.

9

combined polynomial is likely to have many roots modulo small prime
powers pe11 , · · · , pemm .

Individual polynomials. To find individual polynomials fui,vi,pi(x)
that have many roots modulo small prime powers peii , we can root-sieve
a square matrix peii × peii and pick up the good pairs.

Alternatively, we use a lifting method together with a p2i -ary tree data
structure. This seems to be more efficient when p2eii is large. For each
peii , we construct a tree of height ei and record good (u, v) pairs during
the lift. The lift is based on Hensel’s lemma. For convenience, we fix f(x)
(mod p) where p = pi and e = ei for some i. We describe the method.

We create a root node. In the base case, we search for polynomials
fu,v(x) (mod p) (u, v ∈ [0, p)) which have many roots and record them
in the tree. There can be at most p2 level-1 leaves for the root node. In
practice, one can discard those leaves with fewer (comparably) roots and
only keep the best branch.

Let a level-1 leaf be (u, v) (mod p). A simple root is uniquely lifted. If
the polynomial fu,v(x) (mod p) only gives rise to simple roots, we already
know the exact p-valuation of fu,v(x). In case of multiple roots, we need
to lift and record the lifted pairs. Assume that fu,v(x) (mod p) has some
multiple root rm and some simple root rs. We want to update the p-
valuation for rotated polynomials

f(x) +

(

(

u+

e−1
∑

k=1

ikp
k
)

x+
(

v +

e−1
∑

k=1

jkp
k
)

)

g(x) (mod pe) (5)

where each ik, jk ∈ [0, p). We give the following procedure for the lifting.

1. For a simple root rs, we find out which of the rotated polynomials
fu+ip,v+jp(x) (mod p2) admit rs as a root. If fu+ip,v+jp(rs) ≡ 0
(mod p2) for some i, j, then

(irs + j)g(rs) + fu,v(rs)/p ≡ 0 (mod p). (6)

Hence the set of (i, j)’s satisfies a linear congruence equation. For
simple roots, there is no need to compute the lifted root. It is suf-
ficient to update the p-valuation contributed by rs to polynomials
fu+ip,v+jp(x).

2. Let rm be a multiple root of fu,v(x) (mod p). If a rotated polynomial
fu+ip,v+jp(x) (mod p2) admits rm as a root for some (i, j), all the
{rm + lp} (0 ≤ l < p) are also roots for the polynomial. In addition,
f ′
u+ip,v+jp(rm + lp) ≡ 0 (mod p). We record the multiple roots
{rm + lp} together with the {(u+ ip, v + jp)} pairs. The procedure
also works for the lift from pe to pe+1 for higher e’s.

We consider the memory usage of the p2-ary tree. If r is a root of
fu,v(x) (mod p), Equation (6) shows a node (u, v) (mod p) gives p lifted
nodes (u + ip, v + jp) (mod p2) for some (i, j)’s. Since fu,v(x) (mod p)
can potentially have other roots besides r, there could be at most p2 pairs
(u+ ip, v+jp) (mod p2). The procedure also needs to record the multiple
roots for each node. We are mainly interested in the bottom level leaves

10

of the tree, those (u, v) (mod pe). It is safe to delete the tree path which
will not be used anymore. Hence a depth-first lifting method can be used.
In practice, the memory usage is often smaller than a sieve array of size
p2e.

For each p, we find a polynomial that either has many simple roots or
many multiple roots which can be lifted further. Tiny primes p’s are more
likely to be ramified. Hence we are more likely to meet multiple roots for
tiny p.

CRTs. For each p, we have generated some polynomial(s) rotated by
(ux+v)g(x) (mod pe) which have comparably good expected p-valuation.
For convenience, we identify the rotated polynomial by pair (u, v).

Stage 1 repeats for prime powers pe11 , · · · , pemm . Let M =
∏m

i=1 p
ei
i . We

generate the multi-sets combinations of pairs {(u, v)} and recover a set
of {(u0, v0)} (mod M). We fix such a pair (rotated polynomial) (u0, v0)
(mod M).

The whole search space is an integral lattice of Z2. In Stage 2, we
want to root-sieve on the sublattice points defined by (u0+γM, v0+βM)
where (γ, β) ∈ Z2. The sublattice points are expected to give rotated
polynomials with good root properties, since the polynomials have many
roots modulo pe11 , · · · , pemm .

We often choose the pi’s to be the smallest consecutive primes since
they are likely to contribute most to the α-value. The exponents ei in
prime powers peii need some more inspection. If ei is too small, the sieving
range (γ, β) ∈ Z2 can be large. If ei is too large, M is large and hence
some polynomials which have good size property might be omitted in the
root sieve. One heuristic is to choose peii . p

ej
j for i > j, i, j ∈ [1,m]. To

determine m, one can choose M to be comparable to the sieving bound U .
Assume that M ≈ U . We can discard those (u0, v0)’s such that u0 > U .
If u0 is comparable to U , it is sufficient to use a line sieve for constant
rotations.

Remark 5.1. In the implementation, we may want to tune the parameters
by trying several sets of parameters such as various pi’s and ei’s. We
can run a test root sieve in short intervals. The set of parameters which
generates the best score is then used.

5.2 Stage 2

In Stage 2, we apply the root sieve in Algorithm 2 to polynomial fu0,v0(x),
perhaps with some larger prime bound. In the root sieve, one can reuse
the code from Stage 1, where the updates of α-values can be batched. We
describe the method as follows.

Sieve on sublattice. Let M =
∏m

i=1 p
ei
i and (u0, v0) be fixed from

Stage 1. In the second stage, we do the root sieve for (larger) prime powers
on the sublattice defined by {(u0 + γM, v0 + βM)} where γ, β ∈ Z. Let p
be a prime and rk (mod pk) be a root of

f(x) +
(

(u0 + γM)x+ (v0 + βM)
)

g(x) (mod pk)

11

for some fixed integers γ, β. The sieve on the sublattice follows from

f(rk)+
(

(

u0 +M(γ + ipk)
)

rk +
(

v0 +M(β + jpk)
)

)

g(rk) ≡ 0 (mod pk)

for integers i, j ∈ Z. We consider the root sieve for a fixed prime p in
Algorithm 2.

Let f(x), g(x),M, u0, v0 be fixed from Stage 1. In Algorithm 2, we
assume u, r are fixed for the moment. Let p be a prime not dividing M .
The sieve array has approximate size ⌊U/M⌋ × ⌊V/M⌋. Each element
(γ, β) in the sieve array stands for a point (u0 + γM, v0 + βM) in Z2.
We solve for v in f(r) + urg(r) + vg(r) ≡ 0 (mod p). Knowing (u, v), we
can solve for (γ, β) in u ≡ u0 + γM (mod p) and v ≡ v0 + βM (mod p),
provided that p ∤ M .

For the moment, we fix integers γ, β. If r is a simple root, it is sufficient
to sieve (γ + ip, β + jp) for various (i, j)’s and update the p-valuation
p log p/(p2 − 1) to each slot. If r is a multiple root, we can use a similar
lifting procedure as in Stage 1. We describe the recursion to deal with
multiple roots in Algorithm 3.

Algorithm 3: Recursion for multiple roots

input : a polynomial pair f, g; integers U , V , B; node (u, v), tree height
e, current level k, prime p;

output: updated α-values array;

for multiple roots r of fu,v(x) (mod p) do1

for k < e do2

compute (i, j)’s in (ir + j)g(r) + fu,v(r)/p
k ≡ 0 (mod p);3

create child nodes (u+ ipk, v + jpk) with roots4

{r + lpk}, ∀l ∈ [0, p);
recursively call Algorithm 3 on (u, v)’s leftmost child node;5

change coordinates for current node (u, v) and sieve;6

delete current node and move to its sibling node or parent node;7

From Stage 1, we know u0, v0. In Algorithm 2, we fix u, r and solve
for v. Given a multiple root r of f(x) (mod pk), we find pairs (u′, v′)
such that fu′,v′(r) ≡ 0 (mod pk+1) where u′ ≡ u (mod pk) and v′ ≡ v
(mod pk). We can construct nodes representing the (u′, v′) pairs together
with their roots. In the recursion, we compute the lifted nodes in a depth-
first manner. Once the maximum level pe is reached, we do the root sieve
for the current nodes and delete the nodes which have been sieved.

When a lifted tree node (u′, v′) (mod pk) is created, the number of
roots for fu′,v′(x) (mod pk) is known. In the root sieve, the α-scores can
be updated in a batch for all the roots of fu′,v′(x) (mod pk). For each
node (u′, v′), we also need to compute the corresponding coordinates in
the sieve array.

Primes p dividing M . We have assumed that p is a prime not divid-
ing M . From Stage 1, M is a product of prime powers peii for 1 ≤ i ≤ m.

12

For accuracy, we can also consider primes powers p
e′i
i with e′i 6= ei such

that pi appears in the M . Let r be root of fu,v(x) (mod p). If r is a
simple root, there is no need to consider any liftings. Hence we consider
polynomials fu,v(x) (mod p) which have a multiple root.

We fix some p = pi and e = ei, which are used in Stage 1. Let u, v, p
be fixed in Algorithm 2. Let e′ be the exponent of p that we want to
consider in Stage 2. There are two cases depending on e′.

If e′ ≤ e, the points on the sublattice have equal scores contributed by
roots modulo pe

′

. It is sufficient to look at the multiple roots modulo pk

for k ≤ e′. In Algorithm 2, we either sieve all slots of the array or do not
sieve at all. Given u, v, p, k, if v ≡ v0 (mod pk) in v ≡ v0+βM (mod pk),
we need to sieve the whole array. This can be omitted because it will
give the same result for each polynomial and we only want to compare
polynomials. If v0 6≡ v (mod pk), no slot satisfies the equation. Therefore,
it is safe to skip the current iteration when e′ ≤ e.

If e′ > e, the rotated polynomials (u, v) (mod pk) for e < k ≤ e′ may
have different behaviors. We describe some modifications in the lifting
procedure. Let u ≡ u0 (mod pk), r, v0 be fixed in Algorithm 2. We
compute v. We want to know which points (polynomials) on the sieve
array are equivalent to (u, v) (mod pk).

For k ≤ e, the situation is similar to the case when e′ ≤ e. If the
equation v ≡ v0 (mod pk) is satisfied, we record the node (u, v) (mod pk)
for further liftings. There is no need to sieve since all slots on the sieve
array have equal scores for roots modulo pk. If v0 6≡ v (mod p) where
k = 1, we have neither to root-sieve nor record the node. Let e < k ≤ e′.
If (u′, v′) (mod pk) satisfies u′ ≡ u (mod p) and v′ ≡ v (mod p), we need

v0 + βM ≡ v′ (mod pk).

The equation is solvable for β only if

v0 ≡ v′ (mod pk).

Hence it is safe to discard those (u, v) (mod p) such that u ≡ u0 (mod p)
but
v 6≡ v0 (mod p).

On the other hand, we consider some k in e < k ≤ e′. In the lifting
procedure, we record nodes without sieving until we reach the level-(e+1)
nodes. Starting from a node (u, v) modulo pe+1, that is k > e, we want
to solve the equation

v0 + βM ≡ v (mod pk).

The depth-first lifting procedure shows that

v0 ≡ v (mod pe).

Hence β is solvable in the following equation

v0 − v

pe
+

M

pe
β ≡ 0 (mod pk−e)

since gcd(M/pe, p) = 1. In the root sieve, we step the array by β + jpk−e

for various j.

13

5.3 Further remarks and improvements

Let (U, V) be the rotation bounds for the polynomial. The root sieve in
Algorithm 2 runs asymptotically in time UV B/ logB (ignoring constant
factors). In Stage 2, the searching space is restricted to a sublattice de-
termined by M =

∏m
i=1 p

ei
i , where the parameters pi’s depend on Stage

1. Hence, the root sieve in Stage 2 runs in time about UV B/(M2 logB).
In Stage 2, the points not on the sublattice are discarded since com-

pared to points on the sublattice they have worse p-valuation for those p’s
in Stage 1. We assumed that they were unlikely to give rise to polynomials
with good root properties. However, a polynomial could have good α(F)
while some p in M gives a poor p-valuation. This often happens when
some p′-valuation of p′ ∤ M , those ignored in Stage 1, is exceptionally
good, and hence mitigates some poor p-valuation where p | M .

Alternatively, we can use a root sieve to identify good rotations in
Stage 1 for some small sieving bounds (U ′, V ′). Then we examine the
pattern of p-valuation of these polynomials and decide the congruence
classes used in Stage 2.

We have ignored the size property of polynomials in the algorithms.
We have assumed that polynomials rotated by similar (u, v)’s have com-
parable size. In practice, some trials are often needed to decide the sieving
bounds (U, V). We give some further remarks regarding the implementa-
tion.

Block sieving. The root sieve makes frequent memory references to
the array. However, there is only one arithmetic operation for each array
element. The time spent on retrieving memory often dominates. For
instance, the root sieve may cause cache misses if the sieve on p steps over
a large sieve array. A common way to deal with cache misses is to sieve
in blocks.

We partition the sieving region into multiple blocks each of whose size
is at most the cache size. In the root sieve, we attempt to keep each block
in the cache while many arithmetic operations are applied. The fragment
of the block sieving is described in Algorithm 4.

Algorithm 4: Block sieving

input : a polynomial pair f, g; integers U , V , B;
output: an array of approximated α-values in dimension U × V ;

for x ≤ B do1

for each block do2

for p where x < p ≤ B do3

· · · · · ·4

We have also changed the order of iterations to better facilitate the
block sieving. This might give some benefits due to the following heuristic.
In Algorithm 2, when p is small, polynomial roots x modulo p are small.
The number of roots x ≤ p blocked for sieving is also limited. Instead

14

we block primes p. If x is small, there are still many p’s which can be
blocked.

For multiple roots, we might need to sieve in steps pk for k ≥ 1. When
pk is not too small, each block has only a few (or none) references. In
this case, we may use a sorting-based sieving procedure like the bucket
sieve [1].

Arithmetic. The coefficients of the rotated polynomials are multiple
precision numbers. Since pe can often fit into a single precision integer, it
is sufficient to use single precision in most parts of the algorithms.

The algorithms involve arithmetic on pk for all k ≤ e. It is sufficient
to store polynomial coefficients modulo pe and do the modulo reduction
for arithmetic modulo pk. Let D be a multiple precision integer. In the
algorithm, we use a single precision integer S instead of D where S = D
(mod pe). If x ≡ D (mod pk) for k ≤ e, it is clear that x ≡ S (mod pk).
Hence we can use the S in the root optimization.

In addition, the range of possible α-values is small. We may use short
integers to approximate the α-values instead of storing floating point num-
bers. This might save some memory.

Quadratic rotation. Sextic polynomials have been used in the factor-
izations of many large integers such as RSA-768. Rotations by quadratic
polynomials can be used for sextic polynomials if the coefficients and skew-
ness of the polynomials are large. We have assumed that W is small in
fw,u,v(x) and we restricted to use linear rotations in this section. If the
permissible bound for W is large, we can use a similar idea to that in
Stage 1 to find good sublattices in three variables. At the end of Stage 1,
a set of polynomials having good α-values are found which are defined
by rotations of (w0, u0, v0)’s. In Stage 2, we root-sieve on the sublattice
{(w0 + δM, u0 + γM, v0 + βM)} where δ, γ, β ∈ Z.

6 Conclusion

Root optimization aims to produce polynomials that have many roots
modulo small primes and prime powers. We gave some faster methods
for root optimization based on Hensel’s lifting lemma and root sieve on
congruences classes modulo small prime powers. The algorithms described
here have been implemented and tested in practice. The implementation
can be found in CADO-NFS [2].

References

[1] K. Aoki and H. Ueda. Sieving using bucket sort. In Proceedings of

ASIACRYPT ’04, volume 3329 of Lecture Notes in Computer Sci-

ence, pages 92–102. Springer, 2004.

[2] S. Bai, P. Gaudry, A. Kruppa, F. Morain, L. Muller, E. Thomé,
P. Zimmermann, et al. CADO-NFS, an implementation of the num-
ber field sieve. http://cado-nfs.gforge.inria.fr, 2011.

15

http://cado-nfs.gforge.inria.fr

[3] H. Boender. Factoring large integers with the quadratic sieve. PhD
thesis, Leiden University, 1997.

[4] J. Buhler, H. Lenstra, and C. Pomerance. Factoring integers with
the number field sieve. In Lenstra and Lenstra [11], pages 50–94.

[5] W. Ekkelkamp. Predicting the sieving effort for the number field
sieve. In Proceedings of ANTS-VIII, volume 5011 of Lecture Notes in

Computer Science, pages 167–179. Springer, 2008.

[6] J. E. Gower. Rotations and translations of number field sieve poly-
nomials. In Proceedings of ASIACRYPT ’03, volume 2894 of Lecture
Notes in Computer Science, pages 302–310. Springer, 2003.

[7] A. Granville. Smooth numbers: computational number theory and
beyond. In Proc. MSRI Conf. Algorithmic Number Theory: Lattices,

Number Fields, Curves and Cryptography. MSRI Publications, Vol-
ume 44, 2008.

[8] A. Hildebrand and G. Tenenbaum. Integers without large prime
factors. Journal de Théorie des Nombres de Bordeaux, 5(2):411–484,
1993.

[9] T. Kleinjung. On polynomial selection for the general number field
sieve. Mathematics of Computation, 75(256):2037–2047, 2006.

[10] T. Kleinjung. Polynomial selection. In CADO workshop on integer

factorization, INRIA Nancy, 2008. http://cado.gforge.inria.fr/

workshop/slides/kleinjung.pdf.

[11] A. K. Lenstra and H. W. Lenstra, Jr., editors. The Development of

the Number Field Sieve, volume 1554 of Lecture Notes in Mathemat-

ics. Springer, 1993.

[12] M. A. Morrison and J. Brillhart. A method of factoring and the
factorization of F7. Math. Comp., 29(129):183205, 1975.

[13] B. A. Murphy. Modelling the Yield of Number Field Sieve Polynomi-
als. In Algorithmic Number Theory - ANTS III, LNCS 1443, pages
137–147, 1998.

[14] B. A. Murphy. Polynomial selection for the number field sieve in-

teger factorisation algorithm. PhD thesis, The Australian National
University, 1999.

[15] B. A. Murphy and R. P. Brent. On quadratic polynomials for the
number field sieve. In Proceedings of the CATS ’98, volume 20 of Aus-
tralian Computer Science Communications, pages 199–213. Springer,
1998.

[16] J. M. Pollard. The lattice sieve. In Lenstra and Lenstra [11], pages
43–49.

[17] C. Pomerance and J. Wagstaff, S. S. Implementation of the continued
fraction integer factoring algorithm. Congr. Numer., 37:99118, 1983.

[18] C. Stahlke and T. Kleinjung. Ideas for finding better polynomials
to use in GNFS. In Workshop on Factoring Large Numbers, Dis-

crete Logarithmes and Cryptanalytical Hardware, Institut für Exper-
imentelle Mathematik, Universität Duisburg-Essen, 2008.

16

http://cado.gforge.inria.fr/workshop/slides/kleinjung.pdf
http://cado.gforge.inria.fr/workshop/slides/kleinjung.pdf

	The general number field sieve
	Polynomial selection
	Sieving test
	Size property
	Root property
	Steps in polynomial selection

	Root sieve
	A faster root sieve
	A two-stage method
	Stage 1
	Stage 2
	Further remarks and improvements

	Conclusion

